Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignin: Characterization of a Multifaceted Crop Component

Identifieur interne : 001407 ( Pmc/Corpus ); précédent : 001406; suivant : 001408

Lignin: Characterization of a Multifaceted Crop Component

Auteurs : Michael Frei

Source :

RBID : PMC:3848262

Abstract

Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines.


Url:
DOI: 10.1155/2013/436517
PubMed: 24348159
PubMed Central: 3848262

Links to Exploration step

PMC:3848262

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignin: Characterization of a Multifaceted Crop Component</title>
<author>
<name sortKey="Frei, Michael" sort="Frei, Michael" uniqKey="Frei M" first="Michael" last="Frei">Michael Frei</name>
<affiliation>
<nlm:aff id="I1">Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24348159</idno>
<idno type="pmc">3848262</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848262</idno>
<idno type="RBID">PMC:3848262</idno>
<idno type="doi">10.1155/2013/436517</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Lignin: Characterization of a Multifaceted Crop Component</title>
<author>
<name sortKey="Frei, Michael" sort="Frei, Michael" uniqKey="Frei M" first="Michael" last="Frei">Michael Frei</name>
<affiliation>
<nlm:aff id="I1">Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Scientific World Journal</title>
<idno type="eISSN">1537-744X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarkar, P" uniqKey="Sarkar P">P Sarkar</name>
</author>
<author>
<name sortKey="Bosneaga, E" uniqKey="Bosneaga E">E Bosneaga</name>
</author>
<author>
<name sortKey="Auer, M" uniqKey="Auer M">M Auer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonawitz, Nd" uniqKey="Bonawitz N">ND Bonawitz</name>
</author>
<author>
<name sortKey="Chapple, C" uniqKey="Chapple C">C Chapple</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubin, Em" uniqKey="Rubin E">EM Rubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magalhaes Silva Moura, Jc" uniqKey="Magalhaes Silva Moura J">JC Magalhaes Silva Moura</name>
</author>
<author>
<name sortKey="Valencise Bonine, Ca" uniqKey="Valencise Bonine C">CA Valencise Bonine</name>
</author>
<author>
<name sortKey="De Oliveira Fernandes Viana, J" uniqKey="De Oliveira Fernandes Viana J">J de Oliveira Fernandes Viana</name>
</author>
<author>
<name sortKey="Dornelas, Mc" uniqKey="Dornelas M">MC Dornelas</name>
</author>
<author>
<name sortKey="Mazzafera, P" uniqKey="Mazzafera P">P Mazzafera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voelker, Sl" uniqKey="Voelker S">SL Voelker</name>
</author>
<author>
<name sortKey="Lachenbruch, B" uniqKey="Lachenbruch B">B Lachenbruch</name>
</author>
<author>
<name sortKey="Meinzer, Fc" uniqKey="Meinzer F">FC Meinzer</name>
</author>
<author>
<name sortKey="Kitin, P" uniqKey="Kitin P">P Kitin</name>
</author>
<author>
<name sortKey="Strauss, Sh" uniqKey="Strauss S">SH Strauss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q Zhao</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuck, Co" uniqKey="Tuck C">CO Tuck</name>
</author>
<author>
<name sortKey="Perez, E" uniqKey="Perez E">E Perez</name>
</author>
<author>
<name sortKey="Horvath, It" uniqKey="Horvath I">IT Horvath</name>
</author>
<author>
<name sortKey="Sheldon, Ra" uniqKey="Sheldon R">RA Sheldon</name>
</author>
<author>
<name sortKey="Poliakoff, M" uniqKey="Poliakoff M">M Poliakoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lal, R" uniqKey="Lal R">R Lal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Somerville, C" uniqKey="Somerville C">C Somerville</name>
</author>
<author>
<name sortKey="Youngs, H" uniqKey="Youngs H">H Youngs</name>
</author>
<author>
<name sortKey="Taylor, C" uniqKey="Taylor C">C Taylor</name>
</author>
<author>
<name sortKey="Davis, Sc" uniqKey="Davis S">SC Davis</name>
</author>
<author>
<name sortKey="Long, Sp" uniqKey="Long S">SP Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogt, T" uniqKey="Vogt T">T Vogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Cj" uniqKey="Liu C">CJ Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N Suzuki</name>
</author>
<author>
<name sortKey="Koussevitzky, S" uniqKey="Koussevitzky S">S Koussevitzky</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almagro, L" uniqKey="Almagro L">L Almagro</name>
</author>
<author>
<name sortKey="Ros, Lvg" uniqKey="Ros L">LVG Ros</name>
</author>
<author>
<name sortKey="Belchi Navarro, S" uniqKey="Belchi Navarro S">S Belchi-Navarro</name>
</author>
<author>
<name sortKey="Bru, R" uniqKey="Bru R">R Bru</name>
</author>
<author>
<name sortKey="Barcel, Ar" uniqKey="Barcel A">AR Barceló</name>
</author>
<author>
<name sortKey="Pedre O, Ma" uniqKey="Pedre O M">MA Pedreño</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Brien, Ja" uniqKey="O Brien J">JA O'Brien</name>
</author>
<author>
<name sortKey="Daudi, A" uniqKey="Daudi A">A Daudi</name>
</author>
<author>
<name sortKey="Butt, Vs" uniqKey="Butt V">VS Butt</name>
</author>
<author>
<name sortKey="Bolwell, Gp" uniqKey="Bolwell G">GP Bolwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apel, K" uniqKey="Apel K">K Apel</name>
</author>
<author>
<name sortKey="Hirt, H" uniqKey="Hirt H">H Hirt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanholme, R" uniqKey="Vanholme R">R Vanholme</name>
</author>
<author>
<name sortKey="Demedts, B" uniqKey="Demedts B">B Demedts</name>
</author>
<author>
<name sortKey="Morreel, K" uniqKey="Morreel K">K Morreel</name>
</author>
<author>
<name sortKey="Ralph, J" uniqKey="Ralph J">J Ralph</name>
</author>
<author>
<name sortKey="Boerjan, W" uniqKey="Boerjan W">W Boerjan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpita, Nc" uniqKey="Carpita N">NC Carpita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukushima, Rs" uniqKey="Fukushima R">RS Fukushima</name>
</author>
<author>
<name sortKey="Hatfield, Rd" uniqKey="Hatfield R">RD Hatfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allison, Gg" uniqKey="Allison G">GG Allison</name>
</author>
<author>
<name sortKey="Morris, C" uniqKey="Morris C">C Morris</name>
</author>
<author>
<name sortKey="Clifton Brown, J" uniqKey="Clifton Brown J">J Clifton-Brown</name>
</author>
<author>
<name sortKey="Lister, Sj" uniqKey="Lister S">SJ Lister</name>
</author>
<author>
<name sortKey="Donnison, Is" uniqKey="Donnison I">IS Donnison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jahn, Ce" uniqKey="Jahn C">CE Jahn</name>
</author>
<author>
<name sortKey="Mckay, Jk" uniqKey="Mckay J">JK Mckay</name>
</author>
<author>
<name sortKey="Mauleon, R" uniqKey="Mauleon R">R Mauleon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakiroglu, M" uniqKey="Sakiroglu M">M Sakiroglu</name>
</author>
<author>
<name sortKey="Moore, Kj" uniqKey="Moore K">KJ Moore</name>
</author>
<author>
<name sortKey="Brummer, Ec" uniqKey="Brummer E">EC Brummer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kramer, M" uniqKey="Kramer M">M Kramer</name>
</author>
<author>
<name sortKey="Weisbjerg, Mr" uniqKey="Weisbjerg M">MR Weisbjerg</name>
</author>
<author>
<name sortKey="Lund, P" uniqKey="Lund P">P Lund</name>
</author>
<author>
<name sortKey="Jensen, Cs" uniqKey="Jensen C">CS Jensen</name>
</author>
<author>
<name sortKey="Pedersen, Mg" uniqKey="Pedersen M">MG Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowry, Jb" uniqKey="Lowry J">JB Lowry</name>
</author>
<author>
<name sortKey="Conlan, Ll" uniqKey="Conlan L">LL Conlan</name>
</author>
<author>
<name sortKey="Schlink, Ac" uniqKey="Schlink A">AC Schlink</name>
</author>
<author>
<name sortKey="Mcsweeney, Cs" uniqKey="Mcsweeney C">CS McSweeney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwab, Pm" uniqKey="Schwab P">PM Schwab</name>
</author>
<author>
<name sortKey="Lamb, Jfs" uniqKey="Lamb J">JFS Lamb</name>
</author>
<author>
<name sortKey="Sheaffer, Cc" uniqKey="Sheaffer C">CC Sheaffer</name>
</author>
<author>
<name sortKey="Barnes, Dk" uniqKey="Barnes D">DK Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilman, D" uniqKey="Wilman D">D Wilman</name>
</author>
<author>
<name sortKey="Moghaddam, Pr" uniqKey="Moghaddam P">PR Moghaddam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knudsen, Keb" uniqKey="Knudsen K">KEB Knudsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwaasa, Ad" uniqKey="Iwaasa A">AD Iwaasa</name>
</author>
<author>
<name sortKey="Beauchemin, Ka" uniqKey="Beauchemin K">KA Beauchemin</name>
</author>
<author>
<name sortKey="Buchanan Smith, Jg" uniqKey="Buchanan Smith J">JG Buchanan-Smith</name>
</author>
<author>
<name sortKey="Acharya, Sn" uniqKey="Acharya S">SN Acharya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armstrong, Dg" uniqKey="Armstrong D">DG Armstrong</name>
</author>
<author>
<name sortKey="Cook, H" uniqKey="Cook H">H Cook</name>
</author>
<author>
<name sortKey="Thomas, B" uniqKey="Thomas B">B Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcbee, Gg" uniqKey="Mcbee G">GG McBee</name>
</author>
<author>
<name sortKey="Miller, Fr" uniqKey="Miller F">FR Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arai Sanoh, Y" uniqKey="Arai Sanoh Y">Y Arai-Sanoh</name>
</author>
<author>
<name sortKey="Ida, M" uniqKey="Ida M">M Ida</name>
</author>
<author>
<name sortKey="Zhao, R" uniqKey="Zhao R">R Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abiven, S" uniqKey="Abiven S">S Abiven</name>
</author>
<author>
<name sortKey="Heim, A" uniqKey="Heim A">A Heim</name>
</author>
<author>
<name sortKey="Schmidt, Mwi" uniqKey="Schmidt M">MWI Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frei, M" uniqKey="Frei M">M Frei</name>
</author>
<author>
<name sortKey="Makkar, Hps" uniqKey="Makkar H">HPS Makkar</name>
</author>
<author>
<name sortKey="Becker, K" uniqKey="Becker K">K Becker</name>
</author>
<author>
<name sortKey="Wissuwa, M" uniqKey="Wissuwa M">M Wissuwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Frei, M" uniqKey="Frei M">M Frei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frei, M" uniqKey="Frei M">M Frei</name>
</author>
<author>
<name sortKey="Kohno, Y" uniqKey="Kohno Y">Y Kohno</name>
</author>
<author>
<name sortKey="Wissuwa, M" uniqKey="Wissuwa M">M Wissuwa</name>
</author>
<author>
<name sortKey="Makkar, Hps" uniqKey="Makkar H">HPS Makkar</name>
</author>
<author>
<name sortKey="Becker, K" uniqKey="Becker K">K Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatfield, R" uniqKey="Hatfield R">R Hatfield</name>
</author>
<author>
<name sortKey="Fukushima, Rs" uniqKey="Fukushima R">RS Fukushima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goff, Bm" uniqKey="Goff B">BM Goff</name>
</author>
<author>
<name sortKey="Murphy, Pt" uniqKey="Murphy P">PT Murphy</name>
</author>
<author>
<name sortKey="Moore, Kj" uniqKey="Moore K">KJ Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkmann, K" uniqKey="Brinkmann K">K Brinkmann</name>
</author>
<author>
<name sortKey="Blaschke, L" uniqKey="Blaschke L">L Blaschke</name>
</author>
<author>
<name sortKey="Polle, A" uniqKey="Polle A">A Polle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stange, Rr" uniqKey="Stange R">RR Stange</name>
</author>
<author>
<name sortKey="Mcdonald, Re" uniqKey="Mcdonald R">RE McDonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vansoest, Pj" uniqKey="Vansoest P">PJ Vansoest</name>
</author>
<author>
<name sortKey="Robertson, Jb" uniqKey="Robertson J">JB Robertson</name>
</author>
<author>
<name sortKey="Lewis, Ba" uniqKey="Lewis B">BA Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudekum, Kh" uniqKey="Sudekum K">KH Südekum</name>
</author>
<author>
<name sortKey="Voigt, K" uniqKey="Voigt K">K Voigt</name>
</author>
<author>
<name sortKey="Monties, B" uniqKey="Monties B">B Monties</name>
</author>
<author>
<name sortKey="Stangassinger, M" uniqKey="Stangassinger M">M Stangassinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sluiter, Jb" uniqKey="Sluiter J">JB Sluiter</name>
</author>
<author>
<name sortKey="Ruiz, Ro" uniqKey="Ruiz R">RO Ruiz</name>
</author>
<author>
<name sortKey="Scarlata, Cj" uniqKey="Scarlata C">CJ Scarlata</name>
</author>
<author>
<name sortKey="Sluiter, Ad" uniqKey="Sluiter A">AD Sluiter</name>
</author>
<author>
<name sortKey="Templeton, Dw" uniqKey="Templeton D">DW Templeton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y Suzuki</name>
</author>
<author>
<name sortKey="Yamamoto, N" uniqKey="Yamamoto N">N Yamamoto</name>
</author>
<author>
<name sortKey="Hattori, T" uniqKey="Hattori T">T Hattori</name>
</author>
<author>
<name sortKey="Sakamoto, M" uniqKey="Sakamoto M">M Sakamoto</name>
</author>
<author>
<name sortKey="Umezawa, T" uniqKey="Umezawa T">T Umezawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukushima, Rs" uniqKey="Fukushima R">RS Fukushima</name>
</author>
<author>
<name sortKey="Dehority, Ba" uniqKey="Dehority B">BA Dehority</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Han, L" uniqKey="Han L">L Han</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Hjg" uniqKey="Jung H">HJG Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedersen, Jf" uniqKey="Pedersen J">JF Pedersen</name>
</author>
<author>
<name sortKey="Vogel, Kp" uniqKey="Vogel K">KP Vogel</name>
</author>
<author>
<name sortKey="Funnell, Dl" uniqKey="Funnell D">DL Funnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casler, Md" uniqKey="Casler M">MD Casler</name>
</author>
<author>
<name sortKey="Buxton, Dr" uniqKey="Buxton D">DR Buxton</name>
</author>
<author>
<name sortKey="Vogel, Kp" uniqKey="Vogel K">KP Vogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Br" uniqKey="Lee B">BR Lee</name>
</author>
<author>
<name sortKey="Kim, Ky" uniqKey="Kim K">KY Kim</name>
</author>
<author>
<name sortKey="Jung, Wj" uniqKey="Jung W">WJ Jung</name>
</author>
<author>
<name sortKey="Avice, Jc" uniqKey="Avice J">JC Avice</name>
</author>
<author>
<name sortKey="Ourry, A" uniqKey="Ourry A">A Ourry</name>
</author>
<author>
<name sortKey="Kim, Th" uniqKey="Kim T">TH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Pr" uniqKey="Peterson P">PR Peterson</name>
</author>
<author>
<name sortKey="Sheaffer, Cc" uniqKey="Sheaffer C">CC Sheaffer</name>
</author>
<author>
<name sortKey="Hall, Mh" uniqKey="Hall M">MH Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petit, Hv" uniqKey="Petit H">HV Petit</name>
</author>
<author>
<name sortKey="Pesant, Ar" uniqKey="Pesant A">AR Pesant</name>
</author>
<author>
<name sortKey="Barnett, Gm" uniqKey="Barnett G">GM Barnett</name>
</author>
<author>
<name sortKey="Mason, Wn" uniqKey="Mason W">WN Mason</name>
</author>
<author>
<name sortKey="Dionne, Jl" uniqKey="Dionne J">JL Dionne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deetz, Da" uniqKey="Deetz D">DA Deetz</name>
</author>
<author>
<name sortKey="Jung, Hg" uniqKey="Jung H">HG Jung</name>
</author>
<author>
<name sortKey="Buxton, Dr" uniqKey="Buxton D">DR Buxton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiasconaro, Ml" uniqKey="Fiasconaro M">ML Fiasconaro</name>
</author>
<author>
<name sortKey="Gogorcena, Y" uniqKey="Gogorcena Y">Y Gogorcena</name>
</author>
<author>
<name sortKey="Munoz, F" uniqKey="Munoz F">F Munoz</name>
</author>
<author>
<name sortKey="Andueza, D" uniqKey="Andueza D">D Andueza</name>
</author>
<author>
<name sortKey="Sanchez Diaz, M" uniqKey="Sanchez Diaz M">M Sanchez-Diaz</name>
</author>
<author>
<name sortKey="Antolin, Mc" uniqKey="Antolin M">MC Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Br" uniqKey="Lee B">BR Lee</name>
</author>
<author>
<name sortKey="Muneer, S" uniqKey="Muneer S">S Muneer</name>
</author>
<author>
<name sortKey="Jung, Wj" uniqKey="Jung W">WJ Jung</name>
</author>
<author>
<name sortKey="Avice, Jc" uniqKey="Avice J">JC Avice</name>
</author>
<author>
<name sortKey="Ourry, A" uniqKey="Ourry A">A Ourry</name>
</author>
<author>
<name sortKey="Kim, T H" uniqKey="Kim T">T-H Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guenni, O" uniqKey="Guenni O">O Guenni</name>
</author>
<author>
<name sortKey="Marin, D" uniqKey="Marin D">D Marín</name>
</author>
<author>
<name sortKey="Baruch, Z" uniqKey="Baruch Z">Z Baruch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Li, Wc" uniqKey="Li W">WC Li</name>
</author>
<author>
<name sortKey="Xu, Yq" uniqKey="Xu Y">YQ Xu</name>
</author>
<author>
<name sortKey="Li, Gj" uniqKey="Li G">GJ Li</name>
</author>
<author>
<name sortKey="Liao, Y" uniqKey="Liao Y">Y Liao</name>
</author>
<author>
<name sortKey="Fu, Fl" uniqKey="Fu F">FL Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vincent, D" uniqKey="Vincent D">D Vincent</name>
</author>
<author>
<name sortKey="Lapierre, C" uniqKey="Lapierre C">C Lapierre</name>
</author>
<author>
<name sortKey="Pollet, B" uniqKey="Pollet B">B Pollet</name>
</author>
<author>
<name sortKey="Cornic, G" uniqKey="Cornic G">G Cornic</name>
</author>
<author>
<name sortKey="Negroni, L" uniqKey="Negroni L">L Negroni</name>
</author>
<author>
<name sortKey="Zivy, M" uniqKey="Zivy M">M Zivy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leinhos, V" uniqKey="Leinhos V">V Leinhos</name>
</author>
<author>
<name sortKey="Bergmann, H" uniqKey="Bergmann H">H Bergmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahmoudi, H" uniqKey="Mahmoudi H">H Mahmoudi</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Gruber, My" uniqKey="Gruber M">MY Gruber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Aguayo, I" uniqKey="Sanchez Aguayo I">I Sánchez-Aguayo</name>
</author>
<author>
<name sortKey="Rodriguez Galan, Jm" uniqKey="Rodriguez Galan J">JM Rodríguez-Galán</name>
</author>
<author>
<name sortKey="Garcia, R" uniqKey="Garcia R">R García</name>
</author>
<author>
<name sortKey="Torreblanca, J" uniqKey="Torreblanca J">J Torreblanca</name>
</author>
<author>
<name sortKey="Pardo, Jm" uniqKey="Pardo J">JM Pardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peyrano, G" uniqKey="Peyrano G">G Peyrano</name>
</author>
<author>
<name sortKey="Taleisnik, E" uniqKey="Taleisnik E">E Taleisnik</name>
</author>
<author>
<name sortKey="Quiroga, M" uniqKey="Quiroga M">M Quiroga</name>
</author>
<author>
<name sortKey="De Forchetti, Sm" uniqKey="De Forchetti S">SM de Forchetti</name>
</author>
<author>
<name sortKey="Tigier, H" uniqKey="Tigier H">H Tigier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cachorro, P" uniqKey="Cachorro P">P Cachorro</name>
</author>
<author>
<name sortKey="Ortiz, A" uniqKey="Ortiz A">A Ortiz</name>
</author>
<author>
<name sortKey="Barcelo, Ar" uniqKey="Barcelo A">AR Barcelo</name>
</author>
<author>
<name sortKey="Cerda, A" uniqKey="Cerda A">A Cerda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karahara, I" uniqKey="Karahara I">I Karahara</name>
</author>
<author>
<name sortKey="Ikeda, A" uniqKey="Ikeda A">A Ikeda</name>
</author>
<author>
<name sortKey="Kondo, T" uniqKey="Kondo T">T Kondo</name>
</author>
<author>
<name sortKey="Uetake, Y" uniqKey="Uetake Y">Y Uetake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Hm" uniqKey="Wang H">HM Wang</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Fu, Yp" uniqKey="Fu Y">YP Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Cc" uniqKey="Lin C">CC Lin</name>
</author>
<author>
<name sortKey="Kao, Ch" uniqKey="Kao C">CH Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neves, Gys" uniqKey="Neves G">GYS Neves</name>
</author>
<author>
<name sortKey="Marchiosi, R" uniqKey="Marchiosi R">R Marchiosi</name>
</author>
<author>
<name sortKey="Ferrarese, Mll" uniqKey="Ferrarese M">MLL Ferrarese</name>
</author>
<author>
<name sortKey="Siqueira Soares, Rc" uniqKey="Siqueira Soares R">RC Siqueira-Soares</name>
</author>
<author>
<name sortKey="Ferrarese Filho, O" uniqKey="Ferrarese Filho O">O Ferrarese-Filho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kova Ik, J" uniqKey="Kova Ik J">J Kováčik</name>
</author>
<author>
<name sortKey="Stork, F" uniqKey="Stork F">F Štork</name>
</author>
<author>
<name sortKey="Klejdus, B" uniqKey="Klejdus B">B Klejdus</name>
</author>
<author>
<name sortKey="Gruz, J" uniqKey="Gruz J">J Grúz</name>
</author>
<author>
<name sortKey="Hedbavny, J" uniqKey="Hedbavny J">J Hedbavny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, B" uniqKey="Ma B">B Ma</name>
</author>
<author>
<name sortKey="Gao, L" uniqKey="Gao L">L Gao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Cui, J" uniqKey="Cui J">J Cui</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hossain, Ma" uniqKey="Hossain M">MA Hossain</name>
</author>
<author>
<name sortKey="Hossain, Akmz" uniqKey="Hossain A">AKMZ Hossain</name>
</author>
<author>
<name sortKey="Kihara, T" uniqKey="Kihara T">T Kihara</name>
</author>
<author>
<name sortKey="Koyama, H" uniqKey="Koyama H">H Koyama</name>
</author>
<author>
<name sortKey="Hara, T" uniqKey="Hara T">T Hara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasaki, M" uniqKey="Sasaki M">M Sasaki</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
<author>
<name sortKey="Matsumoto, H" uniqKey="Matsumoto H">H Matsumoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heidarabadi, Md" uniqKey="Heidarabadi M">MD Heidarabadi</name>
</author>
<author>
<name sortKey="Ghanati, F" uniqKey="Ghanati F">F Ghanati</name>
</author>
<author>
<name sortKey="Fujiwara, T" uniqKey="Fujiwara T">T Fujiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finger Teixeira, A" uniqKey="Finger Teixeira A">A Finger-Teixeira</name>
</author>
<author>
<name sortKey="Lucio Ferrarese, Mdl" uniqKey="Lucio Ferrarese M">MDL Lucio Ferrarese</name>
</author>
<author>
<name sortKey="Soares, Ar" uniqKey="Soares A">AR Soares</name>
</author>
<author>
<name sortKey="Da Silva, D" uniqKey="Da Silva D">D da Silva</name>
</author>
<author>
<name sortKey="Ferrarese Filho, O" uniqKey="Ferrarese Filho O">O Ferrarese-Filho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Cc" uniqKey="Lin C">CC Lin</name>
</author>
<author>
<name sortKey="Chen, Lm" uniqKey="Chen L">LM Chen</name>
</author>
<author>
<name sortKey="Liu, Zh" uniqKey="Liu Z">ZH Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cervilla, Lm" uniqKey="Cervilla L">LM Cervilla</name>
</author>
<author>
<name sortKey="Rosales, Ma" uniqKey="Rosales M">MA Rosales</name>
</author>
<author>
<name sortKey="Rubio Wilhelmi, Mm" uniqKey="Rubio Wilhelmi M">MM Rubio-Wilhelmi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Ph" uniqKey="Brown P">PH Brown</name>
</author>
<author>
<name sortKey="Graham, Rd" uniqKey="Graham R">RD Graham</name>
</author>
<author>
<name sortKey="Nicholas, Djd" uniqKey="Nicholas D">DJD Nicholas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rengel, Z" uniqKey="Rengel Z">Z Rengel</name>
</author>
<author>
<name sortKey="Graham, Rd" uniqKey="Graham R">RD Graham</name>
</author>
<author>
<name sortKey="Pedler, Jf" uniqKey="Pedler J">JF Pedler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kova Ik, J" uniqKey="Kova Ik J">J Kováčik</name>
</author>
<author>
<name sortKey="Klejdus, B" uniqKey="Klejdus B">B Klejdus</name>
</author>
<author>
<name sortKey="Stork, F" uniqKey="Stork F">F Štork</name>
</author>
<author>
<name sortKey="Hedbavny, J" uniqKey="Hedbavny J">J Hedbavny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fritz, C" uniqKey="Fritz C">C Fritz</name>
</author>
<author>
<name sortKey="Palacios Rojas, N" uniqKey="Palacios Rojas N">N Palacios-Rojas</name>
</author>
<author>
<name sortKey="Feil, R" uniqKey="Feil R">R Feil</name>
</author>
<author>
<name sortKey="Stitt, M" uniqKey="Stitt M">M Stitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teixeira, Af" uniqKey="Teixeira A">AF Teixeira</name>
</author>
<author>
<name sortKey="Andrade, Adb" uniqKey="Andrade A">ADB Andrade</name>
</author>
<author>
<name sortKey="Ferrarese Filho, O" uniqKey="Ferrarese Filho O">O Ferrarese-Filho</name>
</author>
<author>
<name sortKey="Ferrarese, Mdl" uniqKey="Ferrarese M">MDL Ferrarese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eppendorfer, Wh" uniqKey="Eppendorfer W">WH Eppendorfer</name>
</author>
<author>
<name sortKey="Eggum, Bo" uniqKey="Eggum B">BO Eggum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Ma, Jf" uniqKey="Ma J">JF Ma</name>
</author>
<author>
<name sortKey="Yamamoto, N" uniqKey="Yamamoto N">N Yamamoto</name>
</author>
<author>
<name sortKey="Hattori, T" uniqKey="Hattori T">T Hattori</name>
</author>
<author>
<name sortKey="Sakamoto, M" uniqKey="Sakamoto M">M Sakamoto</name>
</author>
<author>
<name sortKey="Umezawa, T" uniqKey="Umezawa T">T Umezawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frei, M" uniqKey="Frei M">M Frei</name>
</author>
<author>
<name sortKey="Wissuwa, M" uniqKey="Wissuwa M">M Wissuwa</name>
</author>
<author>
<name sortKey="Pariasca Tanaka, J" uniqKey="Pariasca Tanaka J">J Pariasca-Tanaka</name>
</author>
<author>
<name sortKey="Chen, Cp" uniqKey="Chen C">CP Chen</name>
</author>
<author>
<name sortKey="Sudekum, K H" uniqKey="Sudekum K">K-H Südekum</name>
</author>
<author>
<name sortKey="Kohno, Y" uniqKey="Kohno Y">Y Kohno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanz, J" uniqKey="Sanz J">J Sanz</name>
</author>
<author>
<name sortKey="Muntifering, Rb" uniqKey="Muntifering R">RB Muntifering</name>
</author>
<author>
<name sortKey="Bermejo, V" uniqKey="Bermejo V">V Bermejo</name>
</author>
<author>
<name sortKey="Gimeno, Bs" uniqKey="Gimeno B">BS Gimeno</name>
</author>
<author>
<name sortKey="Elvira, S" uniqKey="Elvira S">S Elvira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muntifering, Rb" uniqKey="Muntifering R">RB Muntifering</name>
</author>
<author>
<name sortKey="Chappelka, Ah" uniqKey="Chappelka A">AH Chappelka</name>
</author>
<author>
<name sortKey="Lin, Jc" uniqKey="Lin J">JC Lin</name>
</author>
<author>
<name sortKey="Karnosky, Df" uniqKey="Karnosky D">DF Karnosky</name>
</author>
<author>
<name sortKey="Somers, Gl" uniqKey="Somers G">GL Somers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muntifering, Rb" uniqKey="Muntifering R">RB Muntifering</name>
</author>
<author>
<name sortKey="Crosby, Dd" uniqKey="Crosby D">DD Crosby</name>
</author>
<author>
<name sortKey="Powell, Mc" uniqKey="Powell M">MC Powell</name>
</author>
<author>
<name sortKey="Chappelka, Ah" uniqKey="Chappelka A">AH Chappelka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Powell, Mc" uniqKey="Powell M">MC Powell</name>
</author>
<author>
<name sortKey="Muntifering, Rb" uniqKey="Muntifering R">RB Muntifering</name>
</author>
<author>
<name sortKey="Lin, Jc" uniqKey="Lin J">JC Lin</name>
</author>
<author>
<name sortKey="Chappelka, Ah" uniqKey="Chappelka A">AH Chappelka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bender, J" uniqKey="Bender J">J Bender</name>
</author>
<author>
<name sortKey="Muntifering, Rb" uniqKey="Muntifering R">RB Muntifering</name>
</author>
<author>
<name sortKey="Lin, Jc" uniqKey="Lin J">JC Lin</name>
</author>
<author>
<name sortKey="Weigel, Hj" uniqKey="Weigel H">HJ Weigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rozema, J" uniqKey="Rozema J">J Rozema</name>
</author>
<author>
<name sortKey="Tosserams, M" uniqKey="Tosserams M">M Tosserams</name>
</author>
<author>
<name sortKey="Nelissen, Hjm" uniqKey="Nelissen H">HJM Nelissen</name>
</author>
<author>
<name sortKey="Van Heerwaarden, L" uniqKey="Van Heerwaarden L">L van Heerwaarden</name>
</author>
<author>
<name sortKey="Broekman, Ra" uniqKey="Broekman R">RA Broekman</name>
</author>
<author>
<name sortKey="Flierman, N" uniqKey="Flierman N">N Flierman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charles, Mt" uniqKey="Charles M">MT Charles</name>
</author>
<author>
<name sortKey="Goulet, A" uniqKey="Goulet A">A Goulet</name>
</author>
<author>
<name sortKey="Arul, J" uniqKey="Arul J">J Arul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamasaki, S" uniqKey="Yamasaki S">S Yamasaki</name>
</author>
<author>
<name sortKey="Noguchi, N" uniqKey="Noguchi N">N Noguchi</name>
</author>
<author>
<name sortKey="Mimaki, K" uniqKey="Mimaki K">K Mimaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilal, M" uniqKey="Hilal M">M Hilal</name>
</author>
<author>
<name sortKey="Parrado, Mf" uniqKey="Parrado M">MF Parrado</name>
</author>
<author>
<name sortKey="Rosa, M" uniqKey="Rosa M">M Rosa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zavala, Ja" uniqKey="Zavala J">JA Zavala</name>
</author>
<author>
<name sortKey="Scopel, Al" uniqKey="Scopel A">AL Scopel</name>
</author>
<author>
<name sortKey="Ballare, Cl" uniqKey="Ballare C">CL Ballaré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballester, A R" uniqKey="Ballester A">A-R Ballester</name>
</author>
<author>
<name sortKey="Lafuente, Mt" uniqKey="Lafuente M">MT Lafuente</name>
</author>
<author>
<name sortKey="Forment, J" uniqKey="Forment J">J Forment</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valentines, Mc" uniqKey="Valentines M">MC Valentines</name>
</author>
<author>
<name sortKey="Vilaplana, R" uniqKey="Vilaplana R">R Vilaplana</name>
</author>
<author>
<name sortKey="Torres, R" uniqKey="Torres R">R Torres</name>
</author>
<author>
<name sortKey="Usall, J" uniqKey="Usall J">J Usall</name>
</author>
<author>
<name sortKey="Larrigaudiere, C" uniqKey="Larrigaudiere C">C Larrigaudière</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhuiyan, Nh" uniqKey="Bhuiyan N">NH Bhuiyan</name>
</author>
<author>
<name sortKey="Selvaraj, G" uniqKey="Selvaraj G">G Selvaraj</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="King, J" uniqKey="King J">J King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhuiyan, Nh" uniqKey="Bhuiyan N">NH Bhuiyan</name>
</author>
<author>
<name sortKey="Selvaraj, G" uniqKey="Selvaraj G">G Selvaraj</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="King, J" uniqKey="King J">J King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bi, C" uniqKey="Bi C">C Bi</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Jackson, L" uniqKey="Jackson L">L Jackson</name>
</author>
<author>
<name sortKey="Gill, Bs" uniqKey="Gill B">BS Gill</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dushnicky, Lg" uniqKey="Dushnicky L">LG Dushnicky</name>
</author>
<author>
<name sortKey="Ballance, Gm" uniqKey="Ballance G">GM Ballance</name>
</author>
<author>
<name sortKey="Sumner, Mj" uniqKey="Sumner M">MJ Sumner</name>
</author>
<author>
<name sortKey="Macgregor, Aw" uniqKey="Macgregor A">AW MacGregor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Hao, J" uniqKey="Hao J">J Hao</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, W" uniqKey="Sun W">W Sun</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Fan, Q" uniqKey="Fan Q">Q Fan</name>
</author>
<author>
<name sortKey="Xue, G" uniqKey="Xue G">G Xue</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dracatos, Pm" uniqKey="Dracatos P">PM Dracatos</name>
</author>
<author>
<name sortKey="Cogan, Noi" uniqKey="Cogan N">NOI Cogan</name>
</author>
<author>
<name sortKey="Dobrowolski, Mp" uniqKey="Dobrowolski M">MP Dobrowolski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eynck, C" uniqKey="Eynck C">C Eynck</name>
</author>
<author>
<name sortKey="Seguin Swartz, G" uniqKey="Seguin Swartz G">G Séguin-Swartz</name>
</author>
<author>
<name sortKey="Clarke, We" uniqKey="Clarke W">WE Clarke</name>
</author>
<author>
<name sortKey="Parkin, Iap" uniqKey="Parkin I">IAP Parkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guillaumie, S" uniqKey="Guillaumie S">S Guillaumie</name>
</author>
<author>
<name sortKey="Mzid, R" uniqKey="Mzid R">R Mzid</name>
</author>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Méchin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mzid, R" uniqKey="Mzid R">R Mzid</name>
</author>
<author>
<name sortKey="Marchive, C" uniqKey="Marchive C">C Marchive</name>
</author>
<author>
<name sortKey="Blancard, D" uniqKey="Blancard D">D Blancard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamphuis, Lg" uniqKey="Kamphuis L">LG Kamphuis</name>
</author>
<author>
<name sortKey="Williams, Ah" uniqKey="Williams A">AH Williams</name>
</author>
<author>
<name sortKey="Kuster, H" uniqKey="Kuster H">H Küster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozlowska, M" uniqKey="Kozlowska M">M Kozlowska</name>
</author>
<author>
<name sortKey="Krzywanski, Z" uniqKey="Krzywanski Z">Z Krzywanski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lygin, Av" uniqKey="Lygin A">AV Lygin</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Vittal, R" uniqKey="Vittal R">R Vittal</name>
</author>
<author>
<name sortKey="Widholm, Jm" uniqKey="Widholm J">JM Widholm</name>
</author>
<author>
<name sortKey="Hartman, Gl" uniqKey="Hartman G">GL Hartman</name>
</author>
<author>
<name sortKey="Lozovaya, Vv" uniqKey="Lozovaya V">VV Lozovaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, H" uniqKey="Shi H">H Shi</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abo Elyousr, Kam" uniqKey="Abo Elyousr K">KAM Abo-Elyousr</name>
</author>
<author>
<name sortKey="Hashem, M" uniqKey="Hashem M">M Hashem</name>
</author>
<author>
<name sortKey="Ali, Eh" uniqKey="Ali E">EH Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L Zhu</name>
</author>
<author>
<name sortKey="Tu, L" uniqKey="Tu L">L Tu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Gs" uniqKey="Wu G">GS Wu</name>
</author>
<author>
<name sortKey="Shortt, Bj" uniqKey="Shortt B">BJ Shortt</name>
</author>
<author>
<name sortKey="Lawrence, Eb" uniqKey="Lawrence E">EB Lawrence</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreu, Ab" uniqKey="Andreu A">AB Andreu</name>
</author>
<author>
<name sortKey="Guevara, Mg" uniqKey="Guevara M">MG Guevara</name>
</author>
<author>
<name sortKey="Wolski, Ea" uniqKey="Wolski E">EA Wolski</name>
</author>
<author>
<name sortKey="Daleo, Gr" uniqKey="Daleo G">GR Daleo</name>
</author>
<author>
<name sortKey="Caldiz, Do" uniqKey="Caldiz D">DO Caldiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wally, O" uniqKey="Wally O">O Wally</name>
</author>
<author>
<name sortKey="Punja, Zk" uniqKey="Punja Z">ZK Punja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrod, B" uniqKey="Garrod B">B Garrod</name>
</author>
<author>
<name sortKey="Lewis, Rg" uniqKey="Lewis R">RG Lewis</name>
</author>
<author>
<name sortKey="Brittain, Mj" uniqKey="Brittain M">MJ Brittain</name>
</author>
<author>
<name sortKey="Davies, Wp" uniqKey="Davies W">WP Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandal, S" uniqKey="Mandal S">S Mandal</name>
</author>
<author>
<name sortKey="Mitra, A" uniqKey="Mitra A">A Mitra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagarathna, Kc" uniqKey="Nagarathna K">KC Nagarathna</name>
</author>
<author>
<name sortKey="Shetty, Sa" uniqKey="Shetty S">SA Shetty</name>
</author>
<author>
<name sortKey="Shetty, Hs" uniqKey="Shetty H">HS Shetty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nandini, D" uniqKey="Nandini D">D Nandini</name>
</author>
<author>
<name sortKey="Mohan, Jss" uniqKey="Mohan J">JSS Mohan</name>
</author>
<author>
<name sortKey="Singh, G" uniqKey="Singh G">G Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pomar, F" uniqKey="Pomar F">F Pomar</name>
</author>
<author>
<name sortKey="Novo, M" uniqKey="Novo M">M Novo</name>
</author>
<author>
<name sortKey="Bernal, Ma" uniqKey="Bernal M">MA Bernal</name>
</author>
<author>
<name sortKey="Merino, F" uniqKey="Merino F">F Merino</name>
</author>
<author>
<name sortKey="Barcel, Ar" uniqKey="Barcel A">AR Barceló</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegrist, J" uniqKey="Siegrist J">J Siegrist</name>
</author>
<author>
<name sortKey="Jeblick, W" uniqKey="Jeblick W">W Jeblick</name>
</author>
<author>
<name sortKey="Kauss, H" uniqKey="Kauss H">H Kauss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vidhyasekaran, P" uniqKey="Vidhyasekaran P">P Vidhyasekaran</name>
</author>
<author>
<name sortKey="Kamala, N" uniqKey="Kamala N">N Kamala</name>
</author>
<author>
<name sortKey="Ramanathan, A" uniqKey="Ramanathan A">A Ramanathan</name>
</author>
<author>
<name sortKey="Rajappan, K" uniqKey="Rajappan K">K Rajappan</name>
</author>
<author>
<name sortKey="Paranidharan, V" uniqKey="Paranidharan V">V Paranidharan</name>
</author>
<author>
<name sortKey="Velazhahan, R" uniqKey="Velazhahan R">R Velazhahan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elfstrand, M" uniqKey="Elfstrand M">M Elfstrand</name>
</author>
<author>
<name sortKey="Sitbon, F" uniqKey="Sitbon F">F Sitbon</name>
</author>
<author>
<name sortKey="Lapierre, C" uniqKey="Lapierre C">C Lapierre</name>
</author>
<author>
<name sortKey="Bottin, A" uniqKey="Bottin A">A Bottin</name>
</author>
<author>
<name sortKey="Von Arnold, S" uniqKey="Von Arnold S">S von Arnold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishihara, T" uniqKey="Ishihara T">T Ishihara</name>
</author>
<author>
<name sortKey="Mitsuhara, I" uniqKey="Mitsuhara I">I Mitsuhara</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H Takahashi</name>
</author>
<author>
<name sortKey="Nakaho, K" uniqKey="Nakaho K">K Nakaho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fogain, R" uniqKey="Fogain R">R Fogain</name>
</author>
<author>
<name sortKey="Gowen, Sr" uniqKey="Gowen S">SR Gowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kavitha, Rs" uniqKey="Kavitha R">RS Kavitha</name>
</author>
<author>
<name sortKey="Balamohan, Tn" uniqKey="Balamohan T">TN Balamohan</name>
</author>
<author>
<name sortKey="Kavitha, M" uniqKey="Kavitha M">M Kavitha</name>
</author>
<author>
<name sortKey="Selvi, Bs" uniqKey="Selvi B">BS Selvi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valette, C" uniqKey="Valette C">C Valette</name>
</author>
<author>
<name sortKey="Andary, C" uniqKey="Andary C">C Andary</name>
</author>
<author>
<name sortKey="Geiger, Jp" uniqKey="Geiger J">JP Geiger</name>
</author>
<author>
<name sortKey="Sarah, Jl" uniqKey="Sarah J">JL Sarah</name>
</author>
<author>
<name sortKey="Nicole, M" uniqKey="Nicole M">M Nicole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zacheo, G" uniqKey="Zacheo G">G Zacheo</name>
</author>
<author>
<name sortKey="Bleve Zacheo, T" uniqKey="Bleve Zacheo T">T Bleve-Zacheo</name>
</author>
<author>
<name sortKey="Pacoda, D" uniqKey="Pacoda D">D Pacoda</name>
</author>
<author>
<name sortKey="Orlando, C" uniqKey="Orlando C">C Orlando</name>
</author>
<author>
<name sortKey="Durbin, Rd" uniqKey="Durbin R">RD Durbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ithal, N" uniqKey="Ithal N">N Ithal</name>
</author>
<author>
<name sortKey="Recknor, J" uniqKey="Recknor J">J Recknor</name>
</author>
<author>
<name sortKey="Nettleton, D" uniqKey="Nettleton D">D Nettleton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barros Rios, J" uniqKey="Barros Rios J">J Barros-Rios</name>
</author>
<author>
<name sortKey="Malvar, Ra" uniqKey="Malvar R">RA Malvar</name>
</author>
<author>
<name sortKey="Jung, H Jg" uniqKey="Jung H">H-JG Jung</name>
</author>
<author>
<name sortKey="Santiago, R" uniqKey="Santiago R">R Santiago</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beeghly, Hh" uniqKey="Beeghly H">HH Beeghly</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
<author>
<name sortKey="Lee, M" uniqKey="Lee M">M Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Sn" uniqKey="Johnson S">SN Johnson</name>
</author>
<author>
<name sortKey="Hallett, Pd" uniqKey="Hallett P">PD Hallett</name>
</author>
<author>
<name sortKey="Gillespie, Tl" uniqKey="Gillespie T">TL Gillespie</name>
</author>
<author>
<name sortKey="Halpin, C" uniqKey="Halpin C">C Halpin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loranger, J" uniqKey="Loranger J">J Loranger</name>
</author>
<author>
<name sortKey="Meyer, St" uniqKey="Meyer S">ST Meyer</name>
</author>
<author>
<name sortKey="Shipley, B" uniqKey="Shipley B">B Shipley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Méchin</name>
</author>
<author>
<name sortKey="Argillier, O" uniqKey="Argillier O">O Argillier</name>
</author>
<author>
<name sortKey="Hebert, Y" uniqKey="Hebert Y">Y Hébert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roussel, V" uniqKey="Roussel V">V Roussel</name>
</author>
<author>
<name sortKey="Gibelin, C" uniqKey="Gibelin C">C Gibelin</name>
</author>
<author>
<name sortKey="Fontaine, As" uniqKey="Fontaine A">AS Fontaine</name>
</author>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardinal, Aj" uniqKey="Cardinal A">AJ Cardinal</name>
</author>
<author>
<name sortKey="Lee, M" uniqKey="Lee M">M Lee</name>
</author>
<author>
<name sortKey="Moore, Kj" uniqKey="Moore K">KJ Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krakowsky, Md" uniqKey="Krakowsky M">MD Krakowsky</name>
</author>
<author>
<name sortKey="Lee, M" uniqKey="Lee M">M Lee</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krakowsky, Md" uniqKey="Krakowsky M">MD Krakowsky</name>
</author>
<author>
<name sortKey="Lee, M" uniqKey="Lee M">M Lee</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Thomas, J" uniqKey="Thomas J">J Thomas</name>
</author>
<author>
<name sortKey="Denoue, D" uniqKey="Denoue D">D Denoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riboulet, C" uniqKey="Riboulet C">C Riboulet</name>
</author>
<author>
<name sortKey="Fabre, F" uniqKey="Fabre F">F Fabre</name>
</author>
<author>
<name sortKey="Denoue, D" uniqKey="Denoue D">D Dénoue</name>
</author>
<author>
<name sortKey="Martinant, Jp" uniqKey="Martinant J">JP Martinantä</name>
</author>
<author>
<name sortKey="Lefevre, B" uniqKey="Lefevre B">B Lefèvre</name>
</author>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Méchin</name>
</author>
<author>
<name sortKey="Denoue, D" uniqKey="Denoue D">D Denoue</name>
</author>
<author>
<name sortKey="Bauland, C" uniqKey="Bauland C">C Bauland</name>
</author>
<author>
<name sortKey="Laborde, J" uniqKey="Laborde J">J Laborde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenzana, Re" uniqKey="Lorenzana R">RE Lorenzana</name>
</author>
<author>
<name sortKey="Lewis, Mf" uniqKey="Lewis M">MF Lewis</name>
</author>
<author>
<name sortKey="Jung, H Jg" uniqKey="Jung H">H-JG Jung</name>
</author>
<author>
<name sortKey="Bernardo, R" uniqKey="Bernardo R">R Bernardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenz, Aj" uniqKey="Lorenz A">AJ Lorenz</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
<author>
<name sortKey="Hansey, Cn" uniqKey="Hansey C">CN Hansey</name>
</author>
<author>
<name sortKey="Kaeppler, Sm" uniqKey="Kaeppler S">SM Kaeppler</name>
</author>
<author>
<name sortKey="De Leon, N" uniqKey="De Leon N">N de Leon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Méchin</name>
</author>
<author>
<name sortKey="Lefevre, B" uniqKey="Lefevre B">B Lefevre</name>
</author>
<author>
<name sortKey="Maltese, S" uniqKey="Maltese S">S Maltese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grando, S" uniqKey="Grando S">S Grando</name>
</author>
<author>
<name sortKey="Baum, M" uniqKey="Baum M">M Baum</name>
</author>
<author>
<name sortKey="Ceccarelli, S" uniqKey="Ceccarelli S">S Ceccarelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siahsar, Ba" uniqKey="Siahsar B">BA Siahsar</name>
</author>
<author>
<name sortKey="Peighambari, Sa" uniqKey="Peighambari S">SA Peighambari</name>
</author>
<author>
<name sortKey="Taleii, Ar" uniqKey="Taleii A">AR Taleii</name>
</author>
<author>
<name sortKey="Naghavi, Mr" uniqKey="Naghavi M">MR Naghavi</name>
</author>
<author>
<name sortKey="Nabipour, A" uniqKey="Nabipour A">A Nabipour</name>
</author>
<author>
<name sortKey="Sarrafi, A" uniqKey="Sarrafi A">A Sarrafi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murray, Sc" uniqKey="Murray S">SC Murray</name>
</author>
<author>
<name sortKey="Rooney, Wl" uniqKey="Rooney W">WL Rooney</name>
</author>
<author>
<name sortKey="Mitchell, Se" uniqKey="Mitchell S">SE Mitchell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiringani, Al" uniqKey="Shiringani A">AL Shiringani</name>
</author>
<author>
<name sortKey="Friedt, W" uniqKey="Friedt W">W Friedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bao, Js" uniqKey="Bao J">JS Bao</name>
</author>
<author>
<name sortKey="Jin, L" uniqKey="Jin L">L Jin</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Xie, Jk" uniqKey="Xie J">JK Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, J K" uniqKey="Xie J">J-K Xie</name>
</author>
<author>
<name sortKey="Kong, X L" uniqKey="Kong X">X-L Kong</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Stein, A" uniqKey="Stein A">A Stein</name>
</author>
<author>
<name sortKey="Wittkop, B" uniqKey="Wittkop B">B Wittkop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vermerris, W" uniqKey="Vermerris W">W Vermerris</name>
</author>
<author>
<name sortKey="Sherman, Dm" uniqKey="Sherman D">DM Sherman</name>
</author>
<author>
<name sortKey="Mcintyre, Lm" uniqKey="Mcintyre L">LM McIntyre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y H" uniqKey="Kim Y">Y-H Kim</name>
</author>
<author>
<name sortKey="Kim, Cy" uniqKey="Kim C">CY Kim</name>
</author>
<author>
<name sortKey="Song, W K" uniqKey="Song W">W-K Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallego Giraldo, L" uniqKey="Gallego Giraldo L">L Gallego-Giraldo</name>
</author>
<author>
<name sortKey="Jikumaru, Y" uniqKey="Jikumaru Y">Y Jikumaru</name>
</author>
<author>
<name sortKey="Kamiya, Y" uniqKey="Kamiya Y">Y Kamiya</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schreiber, L" uniqKey="Schreiber L">L Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hose, E" uniqKey="Hose E">E Hose</name>
</author>
<author>
<name sortKey="Clarkson, Dt" uniqKey="Clarkson D">DT Clarkson</name>
</author>
<author>
<name sortKey="Steudle, E" uniqKey="Steudle E">E Steudle</name>
</author>
<author>
<name sortKey="Schreiber, L" uniqKey="Schreiber L">L Schreiber</name>
</author>
<author>
<name sortKey="Hartung, W" uniqKey="Hartung W">W Hartung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naseer, S" uniqKey="Naseer S">S Naseer</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="Lapierre, C" uniqKey="Lapierre C">C Lapierre</name>
</author>
<author>
<name sortKey="Franke, R" uniqKey="Franke R">R Franke</name>
</author>
<author>
<name sortKey="Nawrath, C" uniqKey="Nawrath C">C Nawrath</name>
</author>
<author>
<name sortKey="Geldner, N" uniqKey="Geldner N">N Geldner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovacik, J" uniqKey="Kovacik J">J Kovacik</name>
</author>
<author>
<name sortKey="Klejdus, B" uniqKey="Klejdus B">B Klejdus</name>
</author>
<author>
<name sortKey="Hedbavny, J" uniqKey="Hedbavny J">J Hedbavny</name>
</author>
<author>
<name sortKey="Stork, F" uniqKey="Stork F">F Stork</name>
</author>
<author>
<name sortKey="Gruz, J" uniqKey="Gruz J">J Gruz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van De Mortel, Je" uniqKey="Van De Mortel J">JE van de Mortel</name>
</author>
<author>
<name sortKey="Villanueva, La" uniqKey="Villanueva L">LA Villanueva</name>
</author>
<author>
<name sortKey="Schat, H" uniqKey="Schat H">H Schat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsumoto, H" uniqKey="Matsumoto H">H Matsumoto</name>
</author>
<author>
<name sortKey="Motoda, H" uniqKey="Motoda H">H Motoda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dordas, C" uniqKey="Dordas C">C Dordas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hames, Br" uniqKey="Hames B">BR Hames</name>
</author>
<author>
<name sortKey="Kurek, B" uniqKey="Kurek B">B Kurek</name>
</author>
<author>
<name sortKey="Pollet, B" uniqKey="Pollet B">B Pollet</name>
</author>
<author>
<name sortKey="Lapierre, C" uniqKey="Lapierre C">C Lapierre</name>
</author>
<author>
<name sortKey="Monties, B" uniqKey="Monties B">B Monties</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baier, M" uniqKey="Baier M">M Baier</name>
</author>
<author>
<name sortKey="Kandlbinder, A" uniqKey="Kandlbinder A">A Kandlbinder</name>
</author>
<author>
<name sortKey="Golldack, D" uniqKey="Golldack D">D Golldack</name>
</author>
<author>
<name sortKey="Dietz, Kj" uniqKey="Dietz K">KJ Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiscus, El" uniqKey="Fiscus E">EL Fiscus</name>
</author>
<author>
<name sortKey="Booker, Fl" uniqKey="Booker F">FL Booker</name>
</author>
<author>
<name sortKey="Burkey, Ko" uniqKey="Burkey K">KO Burkey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kangasj Rvi, J" uniqKey="Kangasj Rvi J">J Kangasjärvi</name>
</author>
<author>
<name sortKey="Jaspers, P" uniqKey="Jaspers P">P Jaspers</name>
</author>
<author>
<name sortKey="Kollist, H" uniqKey="Kollist H">H Kollist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frei, M" uniqKey="Frei M">M Frei</name>
</author>
<author>
<name sortKey="Tanaka, Jp" uniqKey="Tanaka J">JP Tanaka</name>
</author>
<author>
<name sortKey="Chen, Cp" uniqKey="Chen C">CP Chen</name>
</author>
<author>
<name sortKey="Wissuwa, M" uniqKey="Wissuwa M">M Wissuwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guidi, L" uniqKey="Guidi L">L Guidi</name>
</author>
<author>
<name sortKey="Degl Nnocenti, E" uniqKey="Degl Nnocenti E">E Degl’Innocenti</name>
</author>
<author>
<name sortKey="Genovesi, S" uniqKey="Genovesi S">S Genovesi</name>
</author>
<author>
<name sortKey="Soldatini, Gf" uniqKey="Soldatini G">GF Soldatini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, J" uniqKey="Davidson J">J Davidson</name>
</author>
<author>
<name sortKey="Phillips, M" uniqKey="Phillips M">M Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Q H" uniqKey="Ma Q">Q-H Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Q H" uniqKey="Ma Q">Q-H Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banniza, S" uniqKey="Banniza S">S Banniza</name>
</author>
<author>
<name sortKey="Hashemi, P" uniqKey="Hashemi P">P Hashemi</name>
</author>
<author>
<name sortKey="Warkentin, Td" uniqKey="Warkentin T">TD Warkentin</name>
</author>
<author>
<name sortKey="Vandenberg, A" uniqKey="Vandenberg A">A Vandenberg</name>
</author>
<author>
<name sortKey="Davis, Ar" uniqKey="Davis A">AR Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, M" uniqKey="Inoue M">M Inoue</name>
</author>
<author>
<name sortKey="Gao, Zs" uniqKey="Gao Z">ZS Gao</name>
</author>
<author>
<name sortKey="Cai, Hw" uniqKey="Cai H">HW Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ookawa, T" uniqKey="Ookawa T">T Ookawa</name>
</author>
<author>
<name sortKey="Ishihara, K" uniqKey="Ishihara K">K Ishihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Travis, Aj" uniqKey="Travis A">AJ Travis</name>
</author>
<author>
<name sortKey="Murison, Sd" uniqKey="Murison S">SD Murison</name>
</author>
<author>
<name sortKey="Hirst, Dj" uniqKey="Hirst D">DJ Hirst</name>
</author>
<author>
<name sortKey="Walker, Kc" uniqKey="Walker K">KC Walker</name>
</author>
<author>
<name sortKey="Chesson, A" uniqKey="Chesson A">A Chesson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
<author>
<name sortKey="Huang, R" uniqKey="Huang R">R Huang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sattler, Se" uniqKey="Sattler S">SE Sattler</name>
</author>
<author>
<name sortKey="Funnell Harris, Dl" uniqKey="Funnell Harris D">DL Funnell-Harris</name>
</author>
<author>
<name sortKey="Pedersen, Jf" uniqKey="Pedersen J">JF Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ching, A" uniqKey="Ching A">A Ching</name>
</author>
<author>
<name sortKey="Dhugga, Ks" uniqKey="Dhugga K">KS Dhugga</name>
</author>
<author>
<name sortKey="Appenzeller, L" uniqKey="Appenzeller L">L Appenzeller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vance, Cp" uniqKey="Vance C">CP Vance</name>
</author>
<author>
<name sortKey="Kirk, Tk" uniqKey="Kirk T">TK Kirk</name>
</author>
<author>
<name sortKey="Sherwood, Rt" uniqKey="Sherwood R">RT Sherwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collinge, Db" uniqKey="Collinge D">DB Collinge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mateille, T" uniqKey="Mateille T">T Mateille</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacharya, A" uniqKey="Bhattacharya A">A Bhattacharya</name>
</author>
<author>
<name sortKey="Sood, P" uniqKey="Sood P">P Sood</name>
</author>
<author>
<name sortKey="Citovsky, V" uniqKey="Citovsky V">V Citovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baker, Cj" uniqKey="Baker C">CJ Baker</name>
</author>
<author>
<name sortKey="Orlandi, Ew" uniqKey="Orlandi E">EW Orlandi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelini, R" uniqKey="Angelini R">R Angelini</name>
</author>
<author>
<name sortKey="Tisi, A" uniqKey="Tisi A">A Tisi</name>
</author>
<author>
<name sortKey="Rea, G" uniqKey="Rea G">G Rea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cipollini, D" uniqKey="Cipollini D">D Cipollini</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Whitehill, Jga" uniqKey="Whitehill J">JGA Whitehill</name>
</author>
<author>
<name sortKey="Powell, Jr" uniqKey="Powell J">JR Powell</name>
</author>
<author>
<name sortKey="Bonello, P" uniqKey="Bonello P">P Bonello</name>
</author>
<author>
<name sortKey="Herms, Da" uniqKey="Herms D">DA Herms</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrotenboer, Ac" uniqKey="Schrotenboer A">AC Schrotenboer</name>
</author>
<author>
<name sortKey="Allen, Ms" uniqKey="Allen M">MS Allen</name>
</author>
<author>
<name sortKey="Malmstrom, Cm" uniqKey="Malmstrom C">CM Malmstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funnell Harris, Dl" uniqKey="Funnell Harris D">DL Funnell-Harris</name>
</author>
<author>
<name sortKey="Pedersen, Jf" uniqKey="Pedersen J">JF Pedersen</name>
</author>
<author>
<name sortKey="Sattler, Se" uniqKey="Sattler S">SE Sattler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gibson, Dm" uniqKey="Gibson D">DM Gibson</name>
</author>
<author>
<name sortKey="King, Bc" uniqKey="King B">BC King</name>
</author>
<author>
<name sortKey="Hayes, Ml" uniqKey="Hayes M">ML Hayes</name>
</author>
<author>
<name sortKey="Bergstrom, Gc" uniqKey="Bergstrom G">GC Bergstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, X" uniqKey="Geng X">X Geng</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eggert, C" uniqKey="Eggert C">C Eggert</name>
</author>
<author>
<name sortKey="Temp, U" uniqKey="Temp U">U Temp</name>
</author>
<author>
<name sortKey="Eriksson, Kel" uniqKey="Eriksson K">KEL Eriksson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, D" uniqKey="Singh D">D Singh</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinis, Mj" uniqKey="Dinis M">MJ Dinis</name>
</author>
<author>
<name sortKey="Bezerra, Rmf" uniqKey="Bezerra R">RMF Bezerra</name>
</author>
<author>
<name sortKey="Nunes, F" uniqKey="Nunes F">F Nunes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isroi, I" uniqKey="Isroi I">I Isroi</name>
</author>
<author>
<name sortKey="Millati, R" uniqKey="Millati R">R Millati</name>
</author>
<author>
<name sortKey="Syamsiah, S" uniqKey="Syamsiah S">S Syamsiah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, P" uniqKey="Kumar P">P Kumar</name>
</author>
<author>
<name sortKey="Barrett, Dm" uniqKey="Barrett D">DM Barrett</name>
</author>
<author>
<name sortKey="Delwiche, Mj" uniqKey="Delwiche M">MJ Delwiche</name>
</author>
<author>
<name sortKey="Stroeve, P" uniqKey="Stroeve P">P Stroeve</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geib, Sm" uniqKey="Geib S">SM Geib</name>
</author>
<author>
<name sortKey="Filley, Tr" uniqKey="Filley T">TR Filley</name>
</author>
<author>
<name sortKey="Hatcher, Pg" uniqKey="Hatcher P">PG Hatcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krause, Do" uniqKey="Krause D">DO Krause</name>
</author>
<author>
<name sortKey="Denman, Se" uniqKey="Denman S">SE Denman</name>
</author>
<author>
<name sortKey="Mackie, Ri" uniqKey="Mackie R">RI Mackie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varga, Ga" uniqKey="Varga G">GA Varga</name>
</author>
<author>
<name sortKey="Kolver, Es" uniqKey="Kolver E">ES Kolver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novaes, E" uniqKey="Novaes E">E Novaes</name>
</author>
<author>
<name sortKey="Kirst, M" uniqKey="Kirst M">M Kirst</name>
</author>
<author>
<name sortKey="Chiang, V" uniqKey="Chiang V">V Chiang</name>
</author>
<author>
<name sortKey="Winter Sederoff, H" uniqKey="Winter Sederoff H">H Winter-Sederoff</name>
</author>
<author>
<name sortKey="Sederoff, R" uniqKey="Sederoff R">R Sederoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herrero, M" uniqKey="Herrero M">M Herrero</name>
</author>
<author>
<name sortKey="Do Valle, Cb" uniqKey="Do Valle C">CB do Valle</name>
</author>
<author>
<name sortKey="Hughes, Nrg" uniqKey="Hughes N">NRG Hughes</name>
</author>
<author>
<name sortKey="De Sabatel, Vo" uniqKey="De Sabatel V">VO de Sabatel</name>
</author>
<author>
<name sortKey="Jessop, Ns" uniqKey="Jessop N">NS Jessop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cannas, A" uniqKey="Cannas A">A Cannas</name>
</author>
<author>
<name sortKey="Van Soest, Pj" uniqKey="Van Soest P">PJ Van Soest</name>
</author>
<author>
<name sortKey="Pell, An" uniqKey="Pell A">AN Pell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Getachew, G" uniqKey="Getachew G">G Getachew</name>
</author>
<author>
<name sortKey="Blummel, M" uniqKey="Blummel M">M Blümmel</name>
</author>
<author>
<name sortKey="Makkar, Hps" uniqKey="Makkar H">HPS Makkar</name>
</author>
<author>
<name sortKey="Becker, K" uniqKey="Becker K">K Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casler, Md" uniqKey="Casler M">MD Casler</name>
</author>
<author>
<name sortKey="Jung, Hjg" uniqKey="Jung H">HJG Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Mechin</name>
</author>
<author>
<name sortKey="Argillier, O" uniqKey="Argillier O">O Argillier</name>
</author>
<author>
<name sortKey="Menanteau, V" uniqKey="Menanteau V">V Menanteau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riboulet, C" uniqKey="Riboulet C">C Riboulet</name>
</author>
<author>
<name sortKey="Lefevre, B" uniqKey="Lefevre B">B Lefèvre</name>
</author>
<author>
<name sortKey="Denoue, D" uniqKey="Denoue D">D Dénoue</name>
</author>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gomes, Di" uniqKey="Gomes D">DI Gomes</name>
</author>
<author>
<name sortKey="Detmann, E" uniqKey="Detmann E">E Detmann</name>
</author>
<author>
<name sortKey="Valadares Filho, Sdc" uniqKey="Valadares Filho S">SDC Valadares Filho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Hjg" uniqKey="Jung H">HJG Jung</name>
</author>
<author>
<name sortKey="Lamb, Jfs" uniqKey="Lamb J">JFS Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabber, Jh" uniqKey="Grabber J">JH Grabber</name>
</author>
<author>
<name sortKey="Mertens, Dr" uniqKey="Mertens D">DR Mertens</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Funk, C" uniqKey="Funk C">C Funk</name>
</author>
<author>
<name sortKey="Lu, F" uniqKey="Lu F">F Lu</name>
</author>
<author>
<name sortKey="Ralph, J" uniqKey="Ralph J">J Ralph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Boever, Jl" uniqKey="De Boever J">JL de Boever</name>
</author>
<author>
<name sortKey="Cottyn, Bg" uniqKey="Cottyn B">BG Cottyn</name>
</author>
<author>
<name sortKey="De Brabander, Dl" uniqKey="De Brabander D">DL de Brabander</name>
</author>
<author>
<name sortKey="Vanacker, Jm" uniqKey="Vanacker J">JM Vanacker</name>
</author>
<author>
<name sortKey="Boucque, Cv" uniqKey="Boucque C">CV Boucqué</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Hg" uniqKey="Jung H">HG Jung</name>
</author>
<author>
<name sortKey="Mertens, Dr" uniqKey="Mertens D">DR Mertens</name>
</author>
<author>
<name sortKey="Payne, Aj" uniqKey="Payne A">AJ Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Traxler, Mj" uniqKey="Traxler M">MJ Traxler</name>
</author>
<author>
<name sortKey="Fox, Dg" uniqKey="Fox D">DG Fox</name>
</author>
<author>
<name sortKey="Van Soest, Pj" uniqKey="Van Soest P">PJ van Soest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karakurt, I" uniqKey="Karakurt I">I Karakurt</name>
</author>
<author>
<name sortKey="Aydin, G" uniqKey="Aydin G">G Aydin</name>
</author>
<author>
<name sortKey="Aydiner, K" uniqKey="Aydiner K">K Aydiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bodas, R" uniqKey="Bodas R">R Bodas</name>
</author>
<author>
<name sortKey="Prieto, N" uniqKey="Prieto N">N Prieto</name>
</author>
<author>
<name sortKey="Garcia Gonzalez, R" uniqKey="Garcia Gonzalez R">R Garcia-Gonzalez</name>
</author>
<author>
<name sortKey="Andres, S" uniqKey="Andres S">S Andres</name>
</author>
<author>
<name sortKey="Giraldez, Fj" uniqKey="Giraldez F">FJ Giraldez</name>
</author>
<author>
<name sortKey="Lopez, S" uniqKey="Lopez S">S Lopez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Marx, T" uniqKey="Marx T">T Marx</name>
</author>
<author>
<name sortKey="Lora, J" uniqKey="Lora J">J Lora</name>
</author>
<author>
<name sortKey="Phillip, Le" uniqKey="Phillip L">LE Phillip</name>
</author>
<author>
<name sortKey="Mcallister, Ta" uniqKey="Mcallister T">TA McAllister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hindrichsen, Ik" uniqKey="Hindrichsen I">IK Hindrichsen</name>
</author>
<author>
<name sortKey="Wettstein, Hr" uniqKey="Wettstein H">HR Wettstein</name>
</author>
<author>
<name sortKey="Machmuller, A" uniqKey="Machmuller A">A Machmüller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S Singh</name>
</author>
<author>
<name sortKey="Kushwaha, Bp" uniqKey="Kushwaha B">BP Kushwaha</name>
</author>
<author>
<name sortKey="Nag, Sk" uniqKey="Nag S">SK Nag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hendriks, Atwm" uniqKey="Hendriks A">ATWM Hendriks</name>
</author>
<author>
<name sortKey="Zeeman, G" uniqKey="Zeeman G">G Zeeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bugg, Tdh" uniqKey="Bugg T">TDH Bugg</name>
</author>
<author>
<name sortKey="Ahmad, M" uniqKey="Ahmad M">M Ahmad</name>
</author>
<author>
<name sortKey="Hardiman, Em" uniqKey="Hardiman E">EM Hardiman</name>
</author>
<author>
<name sortKey="Rahmanpour, R" uniqKey="Rahmanpour R">R Rahmanpour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Dinh, T" uniqKey="Van Dinh T">T van Dinh</name>
</author>
<author>
<name sortKey="Cone, Jw" uniqKey="Cone J">JW Cone</name>
</author>
<author>
<name sortKey="Baars, Jjp" uniqKey="Baars J">JJP Baars</name>
</author>
<author>
<name sortKey="Sonnenberg, Asm" uniqKey="Sonnenberg A">ASM Sonnenberg</name>
</author>
<author>
<name sortKey="Hendriks, Wh" uniqKey="Hendriks W">WH Hendriks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shrivastava, B" uniqKey="Shrivastava B">B Shrivastava</name>
</author>
<author>
<name sortKey="Thakur, S" uniqKey="Thakur S">S Thakur</name>
</author>
<author>
<name sortKey="Khasa, Yp" uniqKey="Khasa Y">YP Khasa</name>
</author>
<author>
<name sortKey="Gupte, A" uniqKey="Gupte A">A Gupte</name>
</author>
<author>
<name sortKey="Puniya, Ak" uniqKey="Puniya A">AK Puniya</name>
</author>
<author>
<name sortKey="Kuhad, Rc" uniqKey="Kuhad R">RC Kuhad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodrigues, Mam" uniqKey="Rodrigues M">MAM Rodrigues</name>
</author>
<author>
<name sortKey="Pinto, P" uniqKey="Pinto P">P Pinto</name>
</author>
<author>
<name sortKey="Bezerra, Rmf" uniqKey="Bezerra R">RMF Bezerra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarnklong, C" uniqKey="Sarnklong C">C Sarnklong</name>
</author>
<author>
<name sortKey="Coneja, Jw" uniqKey="Coneja J">JW Coneja</name>
</author>
<author>
<name sortKey="Pellikaan, W" uniqKey="Pellikaan W">W Pellikaan</name>
</author>
<author>
<name sortKey="Hendriks, Wh" uniqKey="Hendriks W">WH Hendriks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahman, Mm" uniqKey="Rahman M">MM Rahman</name>
</author>
<author>
<name sortKey="Lourenco, M" uniqKey="Lourenco M">M Lourenço</name>
</author>
<author>
<name sortKey="Hassim, Ha" uniqKey="Hassim H">HA Hassim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akin, De" uniqKey="Akin D">DE Akin</name>
</author>
<author>
<name sortKey="Sethuraman, A" uniqKey="Sethuraman A">A Sethuraman</name>
</author>
<author>
<name sortKey="Morrison, Wh" uniqKey="Morrison W">WH Morrison</name>
</author>
<author>
<name sortKey="Martin, Sa" uniqKey="Martin S">SA Martin</name>
</author>
<author>
<name sortKey="Eriksson, Kel" uniqKey="Eriksson K">KEL Eriksson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okano, K" uniqKey="Okano K">K Okano</name>
</author>
<author>
<name sortKey="Ohkoshi, N" uniqKey="Ohkoshi N">N Ohkoshi</name>
</author>
<author>
<name sortKey="Nishiyama, A" uniqKey="Nishiyama A">A Nishiyama</name>
</author>
<author>
<name sortKey="Usagawa, T" uniqKey="Usagawa T">T Usagawa</name>
</author>
<author>
<name sortKey="Kitagawa, M" uniqKey="Kitagawa M">M Kitagawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jx" uniqKey="Liu J">JX Liu</name>
</author>
<author>
<name sortKey="Orskov, Er" uniqKey="Orskov E">ER Orskov</name>
</author>
<author>
<name sortKey="Chen, Xb" uniqKey="Chen X">XB Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sewalt, Vjh" uniqKey="Sewalt V">VJH Sewalt</name>
</author>
<author>
<name sortKey="Beauchemin, Ka" uniqKey="Beauchemin K">KA Beauchemin</name>
</author>
<author>
<name sortKey="Rode, Lm" uniqKey="Rode L">LM Rode</name>
</author>
<author>
<name sortKey="Acharya, S" uniqKey="Acharya S">S Acharya</name>
</author>
<author>
<name sortKey="Baron, Vs" uniqKey="Baron V">VS Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Guillet, C" uniqKey="Guillet C">C Guillet</name>
</author>
<author>
<name sortKey="Goffner, D" uniqKey="Goffner D">D Goffner</name>
</author>
<author>
<name sortKey="Pichon, M" uniqKey="Pichon M">M Pichon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorstensson, Emg" uniqKey="Thorstensson E">EMG Thorstensson</name>
</author>
<author>
<name sortKey="Buxton, Dr" uniqKey="Buxton D">DR Buxton</name>
</author>
<author>
<name sortKey="Cherney, Jh" uniqKey="Cherney J">JH Cherney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goto, M" uniqKey="Goto M">M Goto</name>
</author>
<author>
<name sortKey="Matsuoka, J" uniqKey="Matsuoka J">J Matsuoka</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Ehara, H" uniqKey="Ehara H">H Ehara</name>
</author>
<author>
<name sortKey="Morita, O" uniqKey="Morita O">O Morita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ledgerwood, Dn" uniqKey="Ledgerwood D">DN Ledgerwood</name>
</author>
<author>
<name sortKey="Depeters, Ej" uniqKey="Depeters E">EJ DePeters</name>
</author>
<author>
<name sortKey="Robinson, Ph" uniqKey="Robinson P">PH Robinson</name>
</author>
<author>
<name sortKey="Taylor, Sj" uniqKey="Taylor S">SJ Taylor</name>
</author>
<author>
<name sortKey="Heguy, Jm" uniqKey="Heguy J">JM Heguy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S Singh</name>
</author>
<author>
<name sortKey="Prasad, Svs" uniqKey="Prasad S">SVS Prasad</name>
</author>
<author>
<name sortKey="Katiyar, Ds" uniqKey="Katiyar D">DS Katiyar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baucher, M" uniqKey="Baucher M">M Baucher</name>
</author>
<author>
<name sortKey="Bernard Vailhe, Ma" uniqKey="Bernard Vailhe M">MA Bernard-Vailhé</name>
</author>
<author>
<name sortKey="Chabbert, B" uniqKey="Chabbert B">B Chabbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Getachew, G" uniqKey="Getachew G">G Getachew</name>
</author>
<author>
<name sortKey="Iba Ez, Am" uniqKey="Iba Ez A">AM Ibáñez</name>
</author>
<author>
<name sortKey="Pittroff, W" uniqKey="Pittroff W">W Pittroff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
<author>
<name sortKey="Hall, Mb" uniqKey="Hall M">MB Hall</name>
</author>
<author>
<name sortKey="Gallo Meagher, M" uniqKey="Gallo Meagher M">M Gallo-Meagher</name>
</author>
<author>
<name sortKey="Smith, Rl" uniqKey="Smith R">RL Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Hjg" uniqKey="Jung H">HJG Jung</name>
</author>
<author>
<name sortKey="Ni, Wt" uniqKey="Ni W">WT Ni</name>
</author>
<author>
<name sortKey="Chapple, Ccs" uniqKey="Chapple C">CCS Chapple</name>
</author>
<author>
<name sortKey="Meyer, K" uniqKey="Meyer K">K Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sang, T" uniqKey="Sang T">T Sang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, Js" uniqKey="Yuan J">JS Yuan</name>
</author>
<author>
<name sortKey="Tiller, Kh" uniqKey="Tiller K">KH Tiller</name>
</author>
<author>
<name sortKey="Al Ahmad, H" uniqKey="Al Ahmad H">H Al-Ahmad</name>
</author>
<author>
<name sortKey="Stewart, Nr" uniqKey="Stewart N">NR Stewart</name>
</author>
<author>
<name sortKey="Stewart, Cn" uniqKey="Stewart C">CN Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hodgson, Em" uniqKey="Hodgson E">EM Hodgson</name>
</author>
<author>
<name sortKey="Lister, Sj" uniqKey="Lister S">SJ Lister</name>
</author>
<author>
<name sortKey="Bridgwater, Av" uniqKey="Bridgwater A">AV Bridgwater</name>
</author>
<author>
<name sortKey="Clifton Brown, J" uniqKey="Clifton Brown J">J Clifton-Brown</name>
</author>
<author>
<name sortKey="Donnison, Is" uniqKey="Donnison I">IS Donnison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrus, L" uniqKey="Petrus L">L Petrus</name>
</author>
<author>
<name sortKey="Noordermeer, Ma" uniqKey="Noordermeer M">MA Noordermeer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Triolo, Jm" uniqKey="Triolo J">JM Triolo</name>
</author>
<author>
<name sortKey="Pedersen, L" uniqKey="Pedersen L">L Pedersen</name>
</author>
<author>
<name sortKey="Qu, H" uniqKey="Qu H">H Qu</name>
</author>
<author>
<name sortKey="Sommer, Sg" uniqKey="Sommer S">SG Sommer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saidur, R" uniqKey="Saidur R">R Saidur</name>
</author>
<author>
<name sortKey="Abdelaziz, Ea" uniqKey="Abdelaziz E">EA Abdelaziz</name>
</author>
<author>
<name sortKey="Demirbas, A" uniqKey="Demirbas A">A Demirbas</name>
</author>
<author>
<name sortKey="Hossain, Ms" uniqKey="Hossain M">MS Hossain</name>
</author>
<author>
<name sortKey="Mekhilef, S" uniqKey="Mekhilef S">S Mekhilef</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gary, C" uniqKey="Gary C">C Gary</name>
</author>
<author>
<name sortKey="Frossard, Js" uniqKey="Frossard J">JS Frossard</name>
</author>
<author>
<name sortKey="Chenevard, D" uniqKey="Chenevard D">D Chenevard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendu, V" uniqKey="Mendu V">V Mendu</name>
</author>
<author>
<name sortKey="Shearin, T" uniqKey="Shearin T">T Shearin</name>
</author>
<author>
<name sortKey="Campbell, Je" uniqKey="Campbell J">JE Campbell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orts, Wj" uniqKey="Orts W">WJ Orts</name>
</author>
<author>
<name sortKey="Holtman, Km" uniqKey="Holtman K">KM Holtman</name>
</author>
<author>
<name sortKey="Seiber, Jn" uniqKey="Seiber J">JN Seiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Wei, X Y" uniqKey="Wei X">X-Y Wei</name>
</author>
<author>
<name sortKey="Cao, J P" uniqKey="Cao J">J-P Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melligan, F" uniqKey="Melligan F">F Melligan</name>
</author>
<author>
<name sortKey="Dussan, K" uniqKey="Dussan K">K Dussan</name>
</author>
<author>
<name sortKey="Auccaise, R" uniqKey="Auccaise R">R Auccaise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutkowski, P" uniqKey="Rutkowski P">P Rutkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boateng, Aa" uniqKey="Boateng A">AA Boateng</name>
</author>
<author>
<name sortKey="Weimer, Pj" uniqKey="Weimer P">PJ Weimer</name>
</author>
<author>
<name sortKey="Jung, Hg" uniqKey="Jung H">HG Jung</name>
</author>
<author>
<name sortKey="Lamb, Jfs" uniqKey="Lamb J">JFS Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fahmi, R" uniqKey="Fahmi R">R Fahmi</name>
</author>
<author>
<name sortKey="Bridgwater, Av" uniqKey="Bridgwater A">AV Bridgwater</name>
</author>
<author>
<name sortKey="Donnison, I" uniqKey="Donnison I">I Donnison</name>
</author>
<author>
<name sortKey="Yates, N" uniqKey="Yates N">N Yates</name>
</author>
<author>
<name sortKey="Jones, Jm" uniqKey="Jones J">JM Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hodgson, Em" uniqKey="Hodgson E">EM Hodgson</name>
</author>
<author>
<name sortKey="Nowakowski, Dj" uniqKey="Nowakowski D">DJ Nowakowski</name>
</author>
<author>
<name sortKey="Shield, I" uniqKey="Shield I">I Shield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, Y" uniqKey="Zeng Y">Y Zeng</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Ma, F" uniqKey="Ma F">F Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pereira, Eg" uniqKey="Pereira E">EG Pereira</name>
</author>
<author>
<name sortKey="Da Silva, Jn" uniqKey="Da Silva J">JN da Silva</name>
</author>
<author>
<name sortKey="De Oliveira, Jl" uniqKey="De Oliveira J">JL de Oliveira</name>
</author>
<author>
<name sortKey="Machado, Cs" uniqKey="Machado C">CS Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subramani, V" uniqKey="Subramani V">V Subramani</name>
</author>
<author>
<name sortKey="Gangwal, Sk" uniqKey="Gangwal S">SK Gangwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Hp" uniqKey="Yang H">HP Yang</name>
</author>
<author>
<name sortKey="Yan, R" uniqKey="Yan R">R Yan</name>
</author>
<author>
<name sortKey="Chen, Hp" uniqKey="Chen H">HP Chen</name>
</author>
<author>
<name sortKey="Lee, Dh" uniqKey="Lee D">DH Lee</name>
</author>
<author>
<name sortKey="Zheng, Cg" uniqKey="Zheng C">CG Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barneto, Ag" uniqKey="Barneto A">AG Barneto</name>
</author>
<author>
<name sortKey="Carmona, Ja" uniqKey="Carmona J">JA Carmona</name>
</author>
<author>
<name sortKey="Galvez, A" uniqKey="Galvez A">A Gálvez</name>
</author>
<author>
<name sortKey="Conesa, Ja" uniqKey="Conesa J">JA Conesa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barneto, Ag" uniqKey="Barneto A">AG Barneto</name>
</author>
<author>
<name sortKey="Carmona, Ja" uniqKey="Carmona J">JA Carmona</name>
</author>
<author>
<name sortKey="Ferrer, Jac" uniqKey="Ferrer J">JAC Ferrer</name>
</author>
<author>
<name sortKey="Blanco, Mjd" uniqKey="Blanco M">MJD Blanco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarkar, N" uniqKey="Sarkar N">N Sarkar</name>
</author>
<author>
<name sortKey="Ghosh, Sk" uniqKey="Ghosh S">SK Ghosh</name>
</author>
<author>
<name sortKey="Bannerjee, S" uniqKey="Bannerjee S">S Bannerjee</name>
</author>
<author>
<name sortKey="Aikat, K" uniqKey="Aikat K">K Aikat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindedam, J" uniqKey="Lindedam J">J Lindedam</name>
</author>
<author>
<name sortKey="Andersen, Sb" uniqKey="Andersen S">SB Andersen</name>
</author>
<author>
<name sortKey="Demartini, J" uniqKey="Demartini J">J DeMartini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lygin, Av" uniqKey="Lygin A">AV Lygin</name>
</author>
<author>
<name sortKey="Upton, J" uniqKey="Upton J">J Upton</name>
</author>
<author>
<name sortKey="Dohleman, Fg" uniqKey="Dohleman F">FG Dohleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenz, Aj" uniqKey="Lorenz A">AJ Lorenz</name>
</author>
<author>
<name sortKey="Anex, Rp" uniqKey="Anex R">RP Anex</name>
</author>
<author>
<name sortKey="Isci, A" uniqKey="Isci A">A Isci</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
<author>
<name sortKey="De Leon, N" uniqKey="De Leon N">N de Leon</name>
</author>
<author>
<name sortKey="Weimer, Pj" uniqKey="Weimer P">PJ Weimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Wf" uniqKey="Anderson W">WF Anderson</name>
</author>
<author>
<name sortKey="Dien, Bs" uniqKey="Dien B">BS Dien</name>
</author>
<author>
<name sortKey="Jung, H Jg" uniqKey="Jung H">H-JG Jung</name>
</author>
<author>
<name sortKey="Vogel, Kp" uniqKey="Vogel K">KP Vogel</name>
</author>
<author>
<name sortKey="Weimer, Pj" uniqKey="Weimer P">PJ Weimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, C" uniqKey="Fu C">C Fu</name>
</author>
<author>
<name sortKey="Mielenz, Jr" uniqKey="Mielenz J">JR Mielenz</name>
</author>
<author>
<name sortKey="Xiao, X" uniqKey="Xiao X">X Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kusiima, Jm" uniqKey="Kusiima J">JM Kusiima</name>
</author>
<author>
<name sortKey="Powers, Se" uniqKey="Powers S">SE Powers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minu, K" uniqKey="Minu K">K Minu</name>
</author>
<author>
<name sortKey="Jiby, Kk" uniqKey="Jiby K">KK Jiby</name>
</author>
<author>
<name sortKey="Kishore, Vvn" uniqKey="Kishore V">VVN Kishore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monlau, F" uniqKey="Monlau F">F Monlau</name>
</author>
<author>
<name sortKey="Sambusiti, C" uniqKey="Sambusiti C">C Sambusiti</name>
</author>
<author>
<name sortKey="Barakat, A" uniqKey="Barakat A">A Barakat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsavkelova, Ea" uniqKey="Tsavkelova E">EA Tsavkelova</name>
</author>
<author>
<name sortKey="Netrusov, Ai" uniqKey="Netrusov A">AI Netrusov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klimiuk, E" uniqKey="Klimiuk E">E Klimiuk</name>
</author>
<author>
<name sortKey="Pok J, T" uniqKey="Pok J T">T Pokój</name>
</author>
<author>
<name sortKey="Budzy Ski, W" uniqKey="Budzy Ski W">W Budzyński</name>
</author>
<author>
<name sortKey="Dubis, B" uniqKey="Dubis B">B Dubis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grieder, C" uniqKey="Grieder C">C Grieder</name>
</author>
<author>
<name sortKey="Dhillon, Bs" uniqKey="Dhillon B">BS Dhillon</name>
</author>
<author>
<name sortKey="Schipprack, W" uniqKey="Schipprack W">W Schipprack</name>
</author>
<author>
<name sortKey="Melchinger, Ae" uniqKey="Melchinger A">AE Melchinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Triolo, Jm" uniqKey="Triolo J">JM Triolo</name>
</author>
<author>
<name sortKey="Sommer, Sg" uniqKey="Sommer S">SG Sommer</name>
</author>
<author>
<name sortKey="M Ller, Hb" uniqKey="M Ller H">HB Møller</name>
</author>
<author>
<name sortKey="Weisbjerg, Mr" uniqKey="Weisbjerg M">MR Weisbjerg</name>
</author>
<author>
<name sortKey="Jiang, Xy" uniqKey="Jiang X">XY Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Komilis, Dp" uniqKey="Komilis D">DP Komilis</name>
</author>
<author>
<name sortKey="Ham, Rk" uniqKey="Ham R">RK Ham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buffiere, P" uniqKey="Buffiere P">P Buffiere</name>
</author>
<author>
<name sortKey="Loisel, D" uniqKey="Loisel D">D Loisel</name>
</author>
<author>
<name sortKey="Bernet, N" uniqKey="Bernet N">N Bernet</name>
</author>
<author>
<name sortKey="Delgenes, Jp" uniqKey="Delgenes J">JP Delgenes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taherzadeh, Mj" uniqKey="Taherzadeh M">MJ Taherzadeh</name>
</author>
<author>
<name sortKey="Karimi, K" uniqKey="Karimi K">K Karimi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlsson, M" uniqKey="Carlsson M">M Carlsson</name>
</author>
<author>
<name sortKey="Lagerkvist, A" uniqKey="Lagerkvist A">A Lagerkvist</name>
</author>
<author>
<name sortKey="Morgan Sagastume, F" uniqKey="Morgan Sagastume F">F Morgan-Sagastume</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackulak, T" uniqKey="Mackulak T">T Mackulak</name>
</author>
<author>
<name sortKey="Prousek, J" uniqKey="Prousek J">J Prousek</name>
</author>
<author>
<name sortKey="Svorc, L" uniqKey="Svorc L">L Svorc</name>
</author>
<author>
<name sortKey="Drtil, M" uniqKey="Drtil M">M Drtil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziemi Ski, K" uniqKey="Ziemi Ski K">K Ziemiński</name>
</author>
<author>
<name sortKey="Romanowska, I" uniqKey="Romanowska I">I Romanowska</name>
</author>
<author>
<name sortKey="Kowalska, M" uniqKey="Kowalska M">M Kowalska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, Z" uniqKey="Song Z">Z Song</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
<author>
<name sortKey="Zhang, T" uniqKey="Zhang T">T Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monlau, F" uniqKey="Monlau F">F Monlau</name>
</author>
<author>
<name sortKey="Barakat, A" uniqKey="Barakat A">A Barakat</name>
</author>
<author>
<name sortKey="Steyer, Jp" uniqKey="Steyer J">JP Steyer</name>
</author>
<author>
<name sortKey="Carrere, H" uniqKey="Carrere H">H Carrere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanholme, R" uniqKey="Vanholme R">R Vanholme</name>
</author>
<author>
<name sortKey="Morreel, K" uniqKey="Morreel K">K Morreel</name>
</author>
<author>
<name sortKey="Darrah, C" uniqKey="Darrah C">C Darrah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weng, J K" uniqKey="Weng J">J-K Weng</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Bonawitz, Nd" uniqKey="Bonawitz N">ND Bonawitz</name>
</author>
<author>
<name sortKey="Chapple, C" uniqKey="Chapple C">C Chapple</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuomela, M" uniqKey="Tuomela M">M Tuomela</name>
</author>
<author>
<name sortKey="Vikman, M" uniqKey="Vikman M">M Vikman</name>
</author>
<author>
<name sortKey="Hatakka, A" uniqKey="Hatakka A">A Hatakka</name>
</author>
<author>
<name sortKey="It Vaara, M" uniqKey="It Vaara M">M Itävaara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zech, W" uniqKey="Zech W">W Zech</name>
</author>
<author>
<name sortKey="Senesi, N" uniqKey="Senesi N">N Senesi</name>
</author>
<author>
<name sortKey="Guggenberger, G" uniqKey="Guggenberger G">G Guggenberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marschner, B" uniqKey="Marschner B">B Marschner</name>
</author>
<author>
<name sortKey="Brodowski, S" uniqKey="Brodowski S">S Brodowski</name>
</author>
<author>
<name sortKey="Dreves, A" uniqKey="Dreves A">A Dreves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amelung, W" uniqKey="Amelung W">W Amelung</name>
</author>
<author>
<name sortKey="Flach, Kw" uniqKey="Flach K">KW Flach</name>
</author>
<author>
<name sortKey="Zech, W" uniqKey="Zech W">W Zech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiem, R" uniqKey="Kiem R">R Kiem</name>
</author>
<author>
<name sortKey="Kogel Knabner, I" uniqKey="Kogel Knabner I">I Kögel-Knabner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gleixner, G" uniqKey="Gleixner G">G Gleixner</name>
</author>
<author>
<name sortKey="Poirier, N" uniqKey="Poirier N">N Poirier</name>
</author>
<author>
<name sortKey="Bol, R" uniqKey="Bol R">R Bol</name>
</author>
<author>
<name sortKey="Balesdent, J" uniqKey="Balesdent J">J Balesdent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrington, Em" uniqKey="Carrington E">EM Carrington</name>
</author>
<author>
<name sortKey="Hernes, Pj" uniqKey="Hernes P">PJ Hernes</name>
</author>
<author>
<name sortKey="Dyda, Ry" uniqKey="Dyda R">RY Dyda</name>
</author>
<author>
<name sortKey="Plante, Af" uniqKey="Plante A">AF Plante</name>
</author>
<author>
<name sortKey="Six, J" uniqKey="Six J">J Six</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amelung, W" uniqKey="Amelung W">W Amelung</name>
</author>
<author>
<name sortKey="Flach, K W" uniqKey="Flach K">K-W Flach</name>
</author>
<author>
<name sortKey="Zech, W" uniqKey="Zech W">W Zech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thevenot, M" uniqKey="Thevenot M">M Thevenot</name>
</author>
<author>
<name sortKey="Dignac, M F" uniqKey="Dignac M">M-F Dignac</name>
</author>
<author>
<name sortKey="Rumpel, C" uniqKey="Rumpel C">C Rumpel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osono, T" uniqKey="Osono T">T Osono</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sinsabaugh, Rl" uniqKey="Sinsabaugh R">RL Sinsabaugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Austin, At" uniqKey="Austin A">AT Austin</name>
</author>
<author>
<name sortKey="Ballare, Cl" uniqKey="Ballare C">CL Ballaré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simpson, Mj" uniqKey="Simpson M">MJ Simpson</name>
</author>
<author>
<name sortKey="Simpson, Aj" uniqKey="Simpson A">AJ Simpson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adair, Ec" uniqKey="Adair E">EC Adair</name>
</author>
<author>
<name sortKey="Parton, Wj" uniqKey="Parton W">WJ Parton</name>
</author>
<author>
<name sortKey="Del Grosso, Sj" uniqKey="Del Grosso S">SJ del Grosso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Br" uniqKey="Taylor B">BR Taylor</name>
</author>
<author>
<name sortKey="Parkinson, D" uniqKey="Parkinson D">D Parkinson</name>
</author>
<author>
<name sortKey="Parsons, Wfj" uniqKey="Parsons W">WFJ Parsons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, M" uniqKey="Becker M">M Becker</name>
</author>
<author>
<name sortKey="Ladha, Jk" uniqKey="Ladha J">JK Ladha</name>
</author>
<author>
<name sortKey="Ottow, Jcg" uniqKey="Ottow J">JCG Ottow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, M" uniqKey="Becker M">M Becker</name>
</author>
<author>
<name sortKey="Ladha, Jk" uniqKey="Ladha J">JK Ladha</name>
</author>
<author>
<name sortKey="Simpson, Ic" uniqKey="Simpson I">IC Simpson</name>
</author>
<author>
<name sortKey="Ottow, Jcg" uniqKey="Ottow J">JCG Ottow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cobo, Jg" uniqKey="Cobo J">JG Cobo</name>
</author>
<author>
<name sortKey="Barrios, E" uniqKey="Barrios E">E Barrios</name>
</author>
<author>
<name sortKey="Kass, Dcl" uniqKey="Kass D">DCL Kass</name>
</author>
<author>
<name sortKey="Thomas, Rj" uniqKey="Thomas R">RJ Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cornelissen, Jhc" uniqKey="Cornelissen J">JHC Cornelissen</name>
</author>
<author>
<name sortKey="Quested, Hm" uniqKey="Quested H">HM Quested</name>
</author>
<author>
<name sortKey="Gwynn Jones, D" uniqKey="Gwynn Jones D">D Gwynn-Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palm, Ca" uniqKey="Palm C">CA Palm</name>
</author>
<author>
<name sortKey="Sanchez, Pa" uniqKey="Sanchez P">PA Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalbitz, K" uniqKey="Kalbitz K">K Kalbitz</name>
</author>
<author>
<name sortKey="Kaiser, K" uniqKey="Kaiser K">K Kaiser</name>
</author>
<author>
<name sortKey="Bargholz, J" uniqKey="Bargholz J">J Bargholz</name>
</author>
<author>
<name sortKey="Dardenne, P" uniqKey="Dardenne P">P Dardenne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Machinet, Ge" uniqKey="Machinet G">GE Machinet</name>
</author>
<author>
<name sortKey="Bertrand, I" uniqKey="Bertrand I">I Bertrand</name>
</author>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Chabbert, B" uniqKey="Chabbert B">B Chabbert</name>
</author>
<author>
<name sortKey="Recous, S" uniqKey="Recous S">S Recous</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liebner, F" uniqKey="Liebner F">F Liebner</name>
</author>
<author>
<name sortKey="Four, Gp" uniqKey="Four G">GP Four</name>
</author>
<author>
<name sortKey="De La Rosa Arranz, Jm" uniqKey="De La Rosa Arranz J">JM de la Rosa Arranz</name>
</author>
<author>
<name sortKey="Hilseher, A" uniqKey="Hilseher A">A Hilseher</name>
</author>
<author>
<name sortKey="Rosenau, T" uniqKey="Rosenau T">T Rosenau</name>
</author>
<author>
<name sortKey="Knicker, H" uniqKey="Knicker H">H Knicker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batjes, Nh" uniqKey="Batjes N">NH Batjes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanco Canqui, H" uniqKey="Blanco Canqui H">H Blanco-Canqui</name>
</author>
<author>
<name sortKey="Lal, R" uniqKey="Lal R">R Lal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dijkstra, Fa" uniqKey="Dijkstra F">FA Dijkstra</name>
</author>
<author>
<name sortKey="Hobbie, Se" uniqKey="Hobbie S">SE Hobbie</name>
</author>
<author>
<name sortKey="Knops, Jmh" uniqKey="Knops J">JMH Knops</name>
</author>
<author>
<name sortKey="Reich, Pb" uniqKey="Reich P">PB Reich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandal, B" uniqKey="Mandal B">B Mandal</name>
</author>
<author>
<name sortKey="Majumder, B" uniqKey="Majumder B">B Majumder</name>
</author>
<author>
<name sortKey="Adhya, Tk" uniqKey="Adhya T">TK Adhya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Ea" uniqKey="Davidson E">EA Davidson</name>
</author>
<author>
<name sortKey="Janssens, Ia" uniqKey="Janssens I">IA Janssens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, X" uniqKey="Feng X">X Feng</name>
</author>
<author>
<name sortKey="Simpson, Aj" uniqKey="Simpson A">AJ Simpson</name>
</author>
<author>
<name sortKey="Wilson, Kp" uniqKey="Wilson K">KP Wilson</name>
</author>
<author>
<name sortKey="Williams, Dd" uniqKey="Williams D">DD Williams</name>
</author>
<author>
<name sortKey="Simpson, Mj" uniqKey="Simpson M">MJ Simpson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barriere</name>
</author>
<author>
<name sortKey="Argillier, O" uniqKey="Argillier O">O Argillier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignols, F" uniqKey="Vignols F">F Vignols</name>
</author>
<author>
<name sortKey="Rigau, J" uniqKey="Rigau J">J Rigau</name>
</author>
<author>
<name sortKey="Torres, Ma" uniqKey="Torres M">MA Torres</name>
</author>
<author>
<name sortKey="Capellades, M" uniqKey="Capellades M">M Capellades</name>
</author>
<author>
<name sortKey="Puigdomenech, P" uniqKey="Puigdomenech P">P Puigdomenech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Ali, F" uniqKey="Ali F">F Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tjardes, Ke" uniqKey="Tjardes K">KE Tjardes</name>
</author>
<author>
<name sortKey="Buskirk, Dd" uniqKey="Buskirk D">DD Buskirk</name>
</author>
<author>
<name sortKey="Allen, Ms" uniqKey="Allen M">MS Allen</name>
</author>
<author>
<name sortKey="Ames, Nk" uniqKey="Ames N">NK Ames</name>
</author>
<author>
<name sortKey="Bourquin, Ld" uniqKey="Bourquin L">LD Bourquin</name>
</author>
<author>
<name sortKey="Rust, Sr" uniqKey="Rust S">SR Rust</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliver, Al" uniqKey="Oliver A">AL Oliver</name>
</author>
<author>
<name sortKey="Grant, Rj" uniqKey="Grant R">RJ Grant</name>
</author>
<author>
<name sortKey="Pedersen, Jf" uniqKey="Pedersen J">JF Pedersen</name>
</author>
<author>
<name sortKey="O Ear, J" uniqKey="O Ear J">J O’Rear</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dien, Bs" uniqKey="Dien B">BS Dien</name>
</author>
<author>
<name sortKey="Sarath, G" uniqKey="Sarath G">G Sarath</name>
</author>
<author>
<name sortKey="Pedersen, Jf" uniqKey="Pedersen J">JF Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenz, Aj" uniqKey="Lorenz A">AJ Lorenz</name>
</author>
<author>
<name sortKey="Coors, Jg" uniqKey="Coors J">JG Coors</name>
</author>
<author>
<name sortKey="De Leon, N" uniqKey="De Leon N">N de Leon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saballos, A" uniqKey="Saballos A">A Saballos</name>
</author>
<author>
<name sortKey="Vermerris, W" uniqKey="Vermerris W">W Vermerris</name>
</author>
<author>
<name sortKey="Rivera, L" uniqKey="Rivera L">L Rivera</name>
</author>
<author>
<name sortKey="Ejeta, G" uniqKey="Ejeta G">G Ejeta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Pm" uniqKey="White P">PM White</name>
</author>
<author>
<name sortKey="Rice, Cw" uniqKey="Rice C">CW Rice</name>
</author>
<author>
<name sortKey="Baldock, Ja" uniqKey="Baldock J">JA Baldock</name>
</author>
<author>
<name sortKey="Tuinstra, Mr" uniqKey="Tuinstra M">MR Tuinstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barriere, Y" uniqKey="Barriere Y">Y Barrière</name>
</author>
<author>
<name sortKey="Mechin, V" uniqKey="Mechin V">V Méchin</name>
</author>
<author>
<name sortKey="Lafarguette, F" uniqKey="Lafarguette F">F Lafarguette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dimov, Z" uniqKey="Dimov Z">Z Dimov</name>
</author>
<author>
<name sortKey="Suprianto, E" uniqKey="Suprianto E">E Suprianto</name>
</author>
<author>
<name sortKey="Hermann, F" uniqKey="Hermann F">F Hermann</name>
</author>
<author>
<name sortKey="Mollers, C" uniqKey="Mollers C">C Möllers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, C" uniqKey="Shi C">C Shi</name>
</author>
<author>
<name sortKey="Uzarowska, A" uniqKey="Uzarowska A">A Uzarowska</name>
</author>
<author>
<name sortKey="Ouzunova, M" uniqKey="Ouzunova M">M Ouzunova</name>
</author>
<author>
<name sortKey="Landbeck, M" uniqKey="Landbeck M">M Landbeck</name>
</author>
<author>
<name sortKey="Wenzel, G" uniqKey="Wenzel G">G Wenzel</name>
</author>
<author>
<name sortKey="Lubberstedt, T" uniqKey="Lubberstedt T">T Lübberstedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morrell, Pl" uniqKey="Morrell P">PL Morrell</name>
</author>
<author>
<name sortKey="Buckler, Es" uniqKey="Buckler E">ES Buckler</name>
</author>
<author>
<name sortKey="Ross Ibarra, J" uniqKey="Ross Ibarra J">J Ross-Ibarra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riedelsheimer, C" uniqKey="Riedelsheimer C">C Riedelsheimer</name>
</author>
<author>
<name sortKey="Lisec, J" uniqKey="Lisec J">J Lisec</name>
</author>
<author>
<name sortKey="Czedik Eysenberg, A" uniqKey="Czedik Eysenberg A">A Czedik-Eysenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hisano, H" uniqKey="Hisano H">H Hisano</name>
</author>
<author>
<name sortKey="Nandakumar, R" uniqKey="Nandakumar R">R Nandakumar</name>
</author>
<author>
<name sortKey="Wang, Z Y" uniqKey="Wang Z">Z-Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fornale, S" uniqKey="Fornale S">S Fornale</name>
</author>
<author>
<name sortKey="Capellades, M" uniqKey="Capellades M">M Capellades</name>
</author>
<author>
<name sortKey="Encina, A" uniqKey="Encina A">A Encina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piquemal, J" uniqKey="Piquemal J">J Piquemal</name>
</author>
<author>
<name sortKey="Chamayou, S" uniqKey="Chamayou S">S Chamayou</name>
</author>
<author>
<name sortKey="Nadaud, I" uniqKey="Nadaud I">I Nadaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Dg" uniqKey="Guo D">DG Guo</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Wheeler, J" uniqKey="Wheeler J">J Wheeler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Jh" uniqKey="Jung J">JH Jung</name>
</author>
<author>
<name sortKey="Fouad, Wm" uniqKey="Fouad W">WM Fouad</name>
</author>
<author>
<name sortKey="Vermerris, W" uniqKey="Vermerris W">W Vermerris</name>
</author>
<author>
<name sortKey="Gallo, M" uniqKey="Gallo M">M Gallo</name>
</author>
<author>
<name sortKey="Altpeter, F" uniqKey="Altpeter F">F Altpeter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reddy, Mss" uniqKey="Reddy M">MSS Reddy</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Shadle, G" uniqKey="Shadle G">G Shadle</name>
</author>
<author>
<name sortKey="Jackson, L" uniqKey="Jackson L">L Jackson</name>
</author>
<author>
<name sortKey="Aljoe, H" uniqKey="Aljoe H">H Aljoe</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fornal, F" uniqKey="Fornal F">F Fornal</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Chai, C" uniqKey="Chai C">C Chai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rastogi, S" uniqKey="Rastogi S">S Rastogi</name>
</author>
<author>
<name sortKey="Dwivedi, Un" uniqKey="Dwivedi U">UN Dwivedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fonseca, Cel" uniqKey="Fonseca C">CEL Fonseca</name>
</author>
<author>
<name sortKey="Viands, Dr" uniqKey="Viands D">DR Viands</name>
</author>
<author>
<name sortKey="Hansen, Jl" uniqKey="Hansen J">JL Hansen</name>
</author>
<author>
<name sortKey="Pell, An" uniqKey="Pell A">AN Pell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Zein, I" uniqKey="Zein I">I Zein</name>
</author>
<author>
<name sortKey="Brenner, Ea" uniqKey="Brenner E">EA Brenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabber, Jh" uniqKey="Grabber J">JH Grabber</name>
</author>
<author>
<name sortKey="Ress, D" uniqKey="Ress D">D Ress</name>
</author>
<author>
<name sortKey="Ralph, J" uniqKey="Ralph J">J Ralph</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabber, Jh" uniqKey="Grabber J">JH Grabber</name>
</author>
<author>
<name sortKey="Schatz, Pf" uniqKey="Schatz P">PF Schatz</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Lu, F" uniqKey="Lu F">F Lu</name>
</author>
<author>
<name sortKey="Ralph, J" uniqKey="Ralph J">J Ralph</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ScientificWorldJournal</journal-id>
<journal-id journal-id-type="iso-abbrev">ScientificWorldJournal</journal-id>
<journal-id journal-id-type="publisher-id">TSWJ</journal-id>
<journal-title-group>
<journal-title>The Scientific World Journal</journal-title>
</journal-title-group>
<issn pub-type="epub">1537-744X</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24348159</article-id>
<article-id pub-id-type="pmc">3848262</article-id>
<article-id pub-id-type="doi">10.1155/2013/436517</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Lignin: Characterization of a Multifaceted Crop Component</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-2474-6558</contrib-id>
<name>
<surname>Frei</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="I1">Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany</aff>
<author-notes>
<corresp id="cor1">*Michael Frei:
<email>mfrei@uni-bonn.de</email>
</corresp>
<fn fn-type="other">
<p>Academic Editors: J. J. Loor, M. Nikolic, B. Uzun, L. Velasco, and B. R. Wilson</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>11</month>
<year>2013</year>
</pub-date>
<volume>2013</volume>
<elocation-id>436517</elocation-id>
<history>
<date date-type="received">
<day>5</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013 Michael Frei.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines.</p>
</abstract>
<funding-group>
<award-group>
<funding-source>http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaft</funding-source>
<award-id>FR2951/1-1</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Lignin is a complex aromatic polymer, which is deposited in the secondary cell walls of all vascular plants [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
]. It is tightly cross-linked with other cell wall components and can thus be considered the “cellular glue” providing strength to plant tissues and fibers and stiffness to the cell walls [
<xref ref-type="bibr" rid="B3">3</xref>
]. Its function in plants also includes the defense against abiotic and biotic stresses, especially pathogens and insects [
<xref ref-type="bibr" rid="B4">4</xref>
], and conferring stability to xylem vessels for efficient water transport [
<xref ref-type="bibr" rid="B5">5</xref>
]. Together with the carbohydrate polymers cellulose and hemicellulose, lignin forms the largest portion of “lignocellulosic” plant materials. Thus, lignin accounts for a substantial portion of the total organic carbon in the biosphere, surpassed only by cellulose [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B6">6</xref>
]. </p>
<p>It has been estimated that more than 2 × 10
<sup>11</sup>
 tons of lignocellulosic material are produced as agricultural byproducts each year, including straw, roots, husks, bagasse, shells [
<xref ref-type="bibr" rid="B7">7</xref>
]. Cereal production alone produces roughly 2.8 × 10
<sup>9</sup>
 tons of lignocellulosic crop residue each year [
<xref ref-type="bibr" rid="B8">8</xref>
]. A large portion of these crop residues are traditionally incorporated into soils, but some are used as animal feed; lignocelluloses have recently been identified as an abundant source of feedstock for bioenergy production [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
]. With the increasing demand for biomass as feedstock for bioenergy conversion, even the production of specialized biomass crops such as
<italic>Miscanthus</italic>
spp. or bioenergy maize is becoming more common, thus adding to the vast pool of lignocellulosic material produced each year [
<xref ref-type="bibr" rid="B9">9</xref>
]. The characteristic feature determining the role of lignin in various applications of lignocelluloses is its resistance to microbial fermentation, whether in living plants, in ruminants' digestive tract, in soils, or in bioenergy reactors. </p>
<p>This review characterizes the role of lignin from the point of view of analytical chemistry, plant stress physiology, animal nutrition, bioenergy production, soil science, and crop breeding. It focuses on annual crops grown in agro-ecosystems, rather than woody and perennial species and natural ecosystems. By elucidating the role of lignin from the perspective of several disciplines, synergies and conflicts are identified that need to be addressed in crop management, the utilization of crop products and residues, and in plant breeding schemes. </p>
</sec>
<sec id="sec2">
<title>2. Lignin Biosynthesis</title>
<p>Lignin biosynthesis in plants can be divided into three major phases: (i) synthesis of monolignols in the symplastic shikimate and phenylpropanoid pathway, (ii) export of monolignols to the apoplast, and (iii) activation of monolignols by enzyme-mediated formation of monolignol radicals in the apoplast and their polymerization to form complex lignin polymers (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). </p>
<p>The phenylpropanoid pathway is the source of a huge array of secondary metabolites such as flavonoids, anthocyanins, tannins, coumarin, and volatiles [
<xref ref-type="bibr" rid="B10">10</xref>
,
<xref ref-type="bibr" rid="B11">11</xref>
]. It is based on just a few intermediates of the shikimate pathway, which involves the conversion of the carboxylic acid shikimate to the aromatic amino acid L-phenylalanine. Important steps of the shikimate pathway are localized in the plastids [
<xref ref-type="bibr" rid="B10">10</xref>
]. The deamination of L-phenylalanine to
<italic>trans</italic>
-cinnamate is catalyzed by the key enzyme phenylalanine ammonia lyase (PAL), which forms the entry point into the synthesis of all phenylpropanoids [
<xref ref-type="bibr" rid="B11">11</xref>
]. The formation of monolignols further requires hydroxylation of the aromatic ring, methylation of hydroxyl groups, and the stepwise reduction of monolignol side chains from carboxylic acids to alcohols. These steps are mediated by specific enzymes [
<xref ref-type="bibr" rid="B2">2</xref>
] and lead to the formation of three major monolignols, that is,
<italic>p</italic>
-Coumaryl alcohol, Coniferyl alcohol, and Sinapyl alcohol. </p>
<p>These monolignols constitute the building blocks for lignin polymers and have to be transported across the plasma membrane to the apoplast. Although the transport of monolignols remains poorly understood, three major models have been proposed [
<xref ref-type="bibr" rid="B11">11</xref>
]: (i) transport of monolignols through vesicles derived from Golgi bodies, (ii) passive diffusion of monolignols through the plasma membrane, and (iii) active transport mediated by plasma-membrane located transporters. Further details of these proposed transport mechanism are discussed in a review by Liu [
<xref ref-type="bibr" rid="B11">11</xref>
]. Overall, monolignol transport remains a poorly understood step in lignin biosynthesis that warrants further research. </p>
<p>Activation of monolignols in the apoplast requires enzymes such as peroxidases (POX), laccases (LAC), or other polyphenol oxidases that transfer electrons from monolignols to electron receptors. These apoplastic enzymes interact with reactive oxygen species (ROS) such as hydrogen peroxide or superoxide, which act as electron receptors or modulators of POX and LAC enzymes through their signaling function [
<xref ref-type="bibr" rid="B12">12</xref>
<xref ref-type="bibr" rid="B14">14</xref>
]. ROS are formed as byproducts of many metabolic processes in plants, but can also be actively produced through enzymes such as NADPH-oxidases or “class III peroxidases” (also termed as guaiacol POX), and they accumulate excessively when plants encounter abiotic or biotic stress [
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
]. POX use hydrogen peroxide as an electron receptor to oxidize a variety of phenolic compounds including monolignols [
<xref ref-type="bibr" rid="B11">11</xref>
]. Laccases (LAC) are copper-containing apoplastic enzymes that oxidize phenolic compounds using molecular oxygen as an electron receptor [
<xref ref-type="bibr" rid="B11">11</xref>
]. Generally, plant genomes contain many isoforms of POX and LAC genes with presumably overlapping functions, making it difficult to link particular isoforms of these enzymes to lignin synthesis [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
]. After the activation of monolignols by these enzymes, oxidized monolignol radicals couple on to each other to form three dimensionally cross-linked structures. This process is called polymerization and constitutes the final step of lignin biosynthesis. </p>
<p>This section gives only a brief summary of the most important processes involved in lignin biosynthesis. The genetic, transcriptional, and biochemical regulation of lignin biosynthesis in plants is extremely complex and has been discussed extensively (for reviews see [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
]). </p>
</sec>
<sec id="sec3">
<title>3. Lignin Content of Crops and Quantitative Measurements</title>
<p>The lignin content of crops depends on multiple factors, such as the growth stage, genotype, morphological fraction, and environmental conditions. Data from studies that surveyed a broad range of herbaceous agricultural crops show that lignin concentration in the vegetative tissue usually ranges from 1 to 15 percent of the dry mass [
<xref ref-type="bibr" rid="B18">18</xref>
<xref ref-type="bibr" rid="B26">26</xref>
]. The extent of lignification tends to increase with increasing plant age [
<xref ref-type="bibr" rid="B27">27</xref>
<xref ref-type="bibr" rid="B30">30</xref>
], an effect that appears to be more pronounced in grasses as compared to legumes [
<xref ref-type="bibr" rid="B22">22</xref>
]. In addition, large genotypic differences in lignin content within the same species have been reported. For example, studies on genotypic variation in rice straw lignin reported values ranging from 1 to almost 12 percent [
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
], although at least some of this variation might be explained by the fact that the analyses were conducted in different laboratories, as detailed below. Another study on the biomass crop
<italic>Miscanthus</italic>
revealed a range of 6 to 14 percent in 244 different accessions [
<xref ref-type="bibr" rid="B19">19</xref>
]. Differences also occur between lignification of different morphological fractions. In maize, roots were shown to contain more lignin than aboveground biomass [
<xref ref-type="bibr" rid="B31">31</xref>
], while in rice, differences between lignification of the stem and leaf were not consistent and depended on the genotype [
<xref ref-type="bibr" rid="B20">20</xref>
]. Moreover, abiotic and biotic stress factors tend to affect the lignification of crops [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B32">32</xref>
<xref ref-type="bibr" rid="B34">34</xref>
], as detailed in the respective sections of this review. </p>
<p>Apart from these factors causing true differences in lignification of crops, substantial variation arises from the analytical method employed in determining lignin concentration. Comparative studies testing different analytical methods reported up to fourfold differences in lignin content of identical samples [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B35">35</xref>
<xref ref-type="bibr" rid="B38">38</xref>
]. It is thus evident that lignin values obtained using different methods in different laboratories cannot be directly compared. </p>
<p>Methods for determining lignin in crops can be grouped into three categories: gravimetric, spectrometric, and noninvasive methods (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
). Several of these methods require a pretreatment of plant samples to remove non-cell wall components such as proteins, lipids, and nonstructural carbohydrates. The type of pretreatment depends on the sample and may consist of a neutral detergent fiber digestion [
<xref ref-type="bibr" rid="B39">39</xref>
], treatment with hot water-organic solvent, or ethanol-benzene [
<xref ref-type="bibr" rid="B40">40</xref>
]. Gravimetric methods are based on sequential digestion and weighing of cell wall fractions. The “Klason” method represents a classical approach [
<xref ref-type="bibr" rid="B41">41</xref>
] and is based on a two-step digestion of all nonlignin components in sulfuric acid, followed by the recovery and weighing of the residue. The acid detergent lignin (ADL) method [
<xref ref-type="bibr" rid="B39">39</xref>
] is based on pretreatment of the samples with an acid detergent solution (ADS), in which proteins, nonstructural carbohydrates, lipids, pectin, and hemicelluloses are removed, leaving a residue of cellulose and lignin. Cellulose is then removed by sulfuric acid digestion, and the residue is weighed. This method may be inaccurate in samples containing high amounts of cutin or suberin, two compounds which are not removed by ADS [
<xref ref-type="bibr" rid="B35">35</xref>
]. In this case, ADS treated samples are exposed to permanganate oxidation, which decomposes the lignin fraction. Permanganate lignin (PerL) is then obtained by the difference in weight before and after permanganate treatment. </p>
<p>Spectrometric methods are based on solubilization of lignin from cell wall preparations and measurement of its specific absorbance at 280 nm. These methods require the removal of potentially interfering substances by pretreatment as described previously, to obtain cell wall preparations. Lignin is then derivatized using acetylbromide [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
], HCl triethylene glycol [
<xref ref-type="bibr" rid="B40">40</xref>
], or thioglycolate [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
] to render lignin soluble in a suitable solvent. Solubilized lignin can then be quantified by spectrometric measurements at 280 nm using extinction coefficients, but these need to be calibrated for each type of sample [
<xref ref-type="bibr" rid="B35">35</xref>
]. Alternatively, standard curves for quantification can be obtained using standardized lignin preparations [
<xref ref-type="bibr" rid="B40">40</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
,
<xref ref-type="bibr" rid="B43">43</xref>
]. </p>
<p>Noninvasive methods take advantage of specific spectra associated with lignin, which can be measured in almost unprocessed samples. However, these methods require calibration using data obtained from gravimetric or spectrometric methods, and the calibration models obtained are specific to a particular type of samples (e.g., rice straw, alfalfa, etc.). Commonly used noninvasive methods include near infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR) spectroscopy [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
]. The advantage of these methods is that, once a calibration model has been established, they are suitable for high throughput analyses in applications such as plant breeding. </p>
<p>The lowest values are usually obtained from the widely used ADL method, presumable because a portion of the lignin is removed during the acid detergent treatment preceding the sulfuric acid digestion, thus leading to an underestimation of true lignin values [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
]. However, the data obtained from different methods strongly depends on the type of sample, its content of substances interfering with each of the assays, and its lignin composition. Further details on comparison of analytical methods, including analytical protocols, have been published elsewhere [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
]. </p>
</sec>
<sec id="sec4">
<title>4. Role of Lignin in Abiotic Stress Tolerance</title>
<p>Lignin in crops interacts with abiotic stresses in two ways: (i) many abiotic stresses influence lignin biosynthesis and therefore affect the lignin content of crops [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
], and (ii) lignification of crop tissues affects plant fitness and can confer tolerance to abiotic stresses [
<xref ref-type="bibr" rid="B46">46</xref>
,
<xref ref-type="bibr" rid="B47">47</xref>
]. The effects of some predominant abiotic stresses on lignin content of crops are summarized in
<xref ref-type="table" rid="tab1">Table 1</xref>
. This summary considers only studies reporting actual lignin measurements and excludes reports on stress responses of lignin biosynthetic genes and enzymes, without actually measuring lignin. Evidently, most of these studies reported enhanced lignin content in crops grown under abiotic stress. </p>
<p>In the case of drought, contradicting effects on lignin level have been observed (
<xref ref-type="table" rid="tab1">Table 1</xref>
). Increases in lignin content observed in maize, clover, and ryegrass were explained with drought-induced activation of lignifying enzymes [
<xref ref-type="bibr" rid="B48">48</xref>
,
<xref ref-type="bibr" rid="B49">53</xref>
,
<xref ref-type="bibr" rid="B50">56</xref>
]. The role of lignin in the drought tolerance of maize was also confirmed in experiments in which lignin deficient mutants exhibited drought symptoms even in well-watered conditions [
<xref ref-type="bibr" rid="B51">150</xref>
] and in which leaf lignin levels correlated with drought tolerance in a set of contrasting genotypes [
<xref ref-type="bibr" rid="B50">56</xref>
]. Similarly, transgenic tobacco plants with enhanced lignin levels showed improved tolerance to drought compared to the wild type [
<xref ref-type="bibr" rid="B52">151</xref>
]. However, some studies also reported decreases in the lignin content due to drought. For example, it was found that water deficit decreased the level of lignifying enzymes and consequently the lignin level in maize leaves [
<xref ref-type="bibr" rid="B53">57</xref>
]. Another study reported enhanced drought tolerance in transgenic alfalfa plants, which have lower lignin levels than their wild type [
<xref ref-type="bibr" rid="B54">152</xref>
]. The authors explained these observations with constitutive stress defense gene activation associated with lack of lignin in their alfalfa mutants. In summary, controversial results have been reported from drought experiments, which could be explained by species and genotypic differences, different drought treatments, or different methods employed for lignin measurement. </p>
<p>Unlike drought stress, almost all other experiments reported increases in lignification when crops were subjected to various abiotic stresses (see
<xref ref-type="table" rid="tab1">Table 1</xref>
), thus highlighting the importance of lignin as a stress response factor. In the case of salinity, lignification of the root was observed in many crop species (
<xref ref-type="table" rid="tab1">Table 1</xref>
). A transgenic rice line which deposited enhanced levels of lignin in the roots when exposed to salt treatment was more tolerant than its wild type, which did not show such a response [
<xref ref-type="bibr" rid="B55">64</xref>
]. The beneficial effects of lignification were explained with anatomical changes that facilitate water flow and maintain structural integrity of the xylem vessels during salt stress [
<xref ref-type="bibr" rid="B56">60</xref>
,
<xref ref-type="bibr" rid="B57">62</xref>
], or by lignification of the Casparian strip, which forms a mechanical barrier to ion diffusion in the root endodermis [
<xref ref-type="bibr" rid="B58">63</xref>
,
<xref ref-type="bibr" rid="B59">153</xref>
,
<xref ref-type="bibr" rid="B60">154</xref>
]. In fact, lignin was recently shown to be the major component of the Casparian strip
<italic>Arabidopsis thaliana</italic>
roots [
<xref ref-type="bibr" rid="B61">155</xref>
]. Lignification has also been proposed to be a factor causing root growth reduction under salt stress due to elevated rigidity of lignified cell walls [
<xref ref-type="bibr" rid="B62">66</xref>
].</p>
<p>Similar to salinity, lignification of the root was observed as a response to mineral toxicities in many crop species (
<xref ref-type="table" rid="tab1">Table 1</xref>
). When chamomile plants were subjected to short-term (7 days) aluminum (Al) toxicity [
<xref ref-type="bibr" rid="B63">156</xref>
], the effects of lignification varied depending on the concurrent application of biochemical regulators: it increased with the application of salicylic acid but decreased with application of the reducing agent dithiothreitol (DTT). In studies on rice and wheat roots, Al toxicity increased the root hydrogen peroxide levels, which was considered as a redox signal leading to lignification [
<xref ref-type="bibr" rid="B64">68</xref>
,
<xref ref-type="bibr" rid="B65">69</xref>
]. In a study on flax [
<xref ref-type="bibr" rid="B66">71</xref>
], Al toxicity likewise led to lignification of the root, but this effect was mitigated by application of high doses of boron (B) [
<xref ref-type="bibr" rid="B66">71</xref>
], while excess B solely also increased lignin levels. B toxicity also increased lignification of tomato roots [
<xref ref-type="bibr" rid="B67">74</xref>
], while cadmium and copper toxicity stimulated the lignification of soybean roots [
<xref ref-type="bibr" rid="B68">72</xref>
]. Enhanced deposition of lignin in the root endodermis was also observed under Zn toxicity in the metal hyper-accumulator plant
<italic>Thlaspi caerulescens</italic>
,which can tolerate much higher metal levels than other species [
<xref ref-type="bibr" rid="B69">157</xref>
]. Common observations in all of these studies were that mineral toxicities increased hydrogen peroxide levels, which induced lignin biosynthetic enzymes (especially POX) and consequently led to lignification and solidification of the cell walls but also reduced root growth [
<xref ref-type="bibr" rid="B70">158</xref>
]. </p>
<p>Mineral deficiencies were also shown to influence the lignin level of crops (
<xref ref-type="table" rid="tab1">Table 1</xref>
). Nitrogen (N) deficiency led to increases in lignin content of tobacco plants [
<xref ref-type="bibr" rid="B71">78</xref>
], which was explained with a shift from nitrogen containing compounds to carbon-rich phenylpropanoids in the plant tissues. Calcium deficiency induced the activity of enzymes of the phenylpropanoid pathway, which increased the lignin level in soybean roots [
<xref ref-type="bibr" rid="B72">79</xref>
]. Similarly, potassium, phosphorus, and N deficiency increased the lignin content of potato tubers [
<xref ref-type="bibr" rid="B73">80</xref>
], but the authors did not give a physiological explanation for their observation. Manganese (Mn) deficiency appears to be an exception, as it reduced the lignin concentration in wheat roots and shoots [
<xref ref-type="bibr" rid="B74">75</xref>
,
<xref ref-type="bibr" rid="B75">76</xref>
]. This exception can be explained by the fact that Mn is required for lignin biosynthesis as it activates several enzymes of the shikimate and phenylpropanoid pathway [
<xref ref-type="bibr" rid="B76">159</xref>
,
<xref ref-type="bibr" rid="B77">160</xref>
]. </p>
<p>High tropospheric ozone led to increased lignin levels in the aboveground parts of a number of forage or cereal crops (
<xref ref-type="table" rid="tab1">Table 1</xref>
). Ozone is a phytotoxic air pollutant which enters the crop leaves during photosynthetic gas exchange and decomposes into reactive oxygen species (ROS) in the apoplast [
<xref ref-type="bibr" rid="B78">161</xref>
,
<xref ref-type="bibr" rid="B79">162</xref>
]. This leads to an oxidative burst, during which further ROS are produced through the function of enzymes such as NADPH oxidase, followed by a signaling cascade which can lead to cell death and the formation of visible leaf symptoms [
<xref ref-type="bibr" rid="B80">163</xref>
]. Genes and enzymes involved in lignin biosynthesis, such as phenylalanine ammonia lyase (PAL) or POX, are triggered by these processes because they form part of the defense mechanism to contain cell death [
<xref ref-type="bibr" rid="B81">164</xref>
,
<xref ref-type="bibr" rid="B82">165</xref>
]. Thus, there is broad agreement in the scientific literature that ozone exposure leads to enhanced lignin concentration in crops (
<xref ref-type="table" rid="tab1">Table 1</xref>
). </p>
<p>Similar mechanisms have been put forward to explain increases in lignin concentration due to elevated UV radiation (
<xref ref-type="table" rid="tab1">Table 1</xref>
). There is consensus that UV-B or UV-C radiation stimulated the phenylpropanoid pathway leading to enhanced lignification in grasses [
<xref ref-type="bibr" rid="B83">88</xref>
], tomato fruits [
<xref ref-type="bibr" rid="B84">89</xref>
], cucumber seedlings [
<xref ref-type="bibr" rid="B85">90</xref>
], and quinoa seedlings [
<xref ref-type="bibr" rid="B86">91</xref>
], representing a resistance mechanism against oxidative stress. In a study on soybeans [
<xref ref-type="bibr" rid="B87">92</xref>
], high UV-B radiation only increased the level of soluble phenolics but not that of lignin polymers. The authors speculated that the lack of polymerization occurred because samples were taken early in the growing season and emphasized the role of UV-induced phenolics in the protection against insect herbivory as a positive side effect. Similarly, transgenic rice lines with enhanced lignin level showed improved resistance against high UV radiation but also biotic stresses [
<xref ref-type="bibr" rid="B88">99</xref>
].</p>
<p>Apart from its involvement in typical abiotic stresses, lignin has long been assumed to be involved in resistance of crops to lodging, although it remained unclear whether lignin had a positive or negative effect [
<xref ref-type="bibr" rid="B89">166</xref>
]. While lignin could lend mechanical support to the stalks, it may also have the opposite effect of making stalks more brittle and thus susceptible to mechanical damage [
<xref ref-type="bibr" rid="B89">166</xref>
]. This decade-old question is still being discussed in the scientific literature with contradictory results. Some recent work indicated that high lignin levels were associated with lodging resistance in wheat [
<xref ref-type="bibr" rid="B90">167</xref>
,
<xref ref-type="bibr" rid="B91">168</xref>
] and pea [
<xref ref-type="bibr" rid="B92">169</xref>
], and a quantitative trait locus (QTL) for lodging resistance colocated with a QTL for high lignin content in ryegrass [
<xref ref-type="bibr" rid="B93">170</xref>
]. A study on rice concluded that lignin played an important role in lodging tolerance but suggested that its distribution and density were more important than its concentration [
<xref ref-type="bibr" rid="B94">171</xref>
]. No significant differences in lignin content were seen in wheat cultivars differing in lodging resistance [
<xref ref-type="bibr" rid="B95">172</xref>
], while another study concluded that cellulose rather than lignin conferred resistance to lodging in wheat [
<xref ref-type="bibr" rid="B96">173</xref>
]. In addition, brown-midrib mutations, which were associated with reduced lignin levels, did not affect lodging resistance in maize, sorghum, and pearl millet [
<xref ref-type="bibr" rid="B97">174</xref>
]. A study on a maize mutant with drastically reduced mechanical strength suggested that cellulose rather than lignin deposition in the stalk was associated with susceptibility to lodging [
<xref ref-type="bibr" rid="B98">175</xref>
]. In summary, the question of whether lignin confers tolerance to lodging remains unanswered.</p>
</sec>
<sec id="sec5">
<title>5. Role of Lignin in Biotic Stress Tolerance</title>
<p>The cell wall constitutes the first line of defense of plants against pathogens such as bacteria and fungi, nematodes, or herbivorous insects [
<xref ref-type="bibr" rid="B99">176</xref>
,
<xref ref-type="bibr" rid="B100">177</xref>
]. Lignin solidifies the cell wall, providing a nondegradable barrier for pathogens, and is therefore thought to enhance its protective effect against such biotic stresses [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B101">178</xref>
]. Enhanced lignin biosynthesis due to biotic stress has been ascribed to stimulation of the phenylpropanoid pathway and the induction of apoplastic lignin polymerization [
<xref ref-type="bibr" rid="B103">95</xref>
,
<xref ref-type="bibr" rid="B102">179</xref>
]. These defense reactions are mediated by ROS-induced signaling cascades. A common response of plants to biotic stresses has been termed “oxidative burst,” and involves the active production of apoplastic ROS [
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B104">180</xref>
,
<xref ref-type="bibr" rid="B105">181</xref>
]. This can be mediated by NAD(P)H-oxidases, that is, plasma-membrane bound enzymes transferring electrons from cytosolic NAD(P)H to extracellular oxygen to produce superoxide. This particularly aggressive ROS is dismutated to hydrogen peroxide by the enzyme superoxide dismutase (SOD) [
<xref ref-type="bibr" rid="B104">180</xref>
]. Alternatively, an oxidative burst can be mediated by apoplastic enzymes such as class III POX [
<xref ref-type="bibr" rid="B13">13</xref>
] or polyamine oxidases [
<xref ref-type="bibr" rid="B105">181</xref>
]. Apoplastic ROS serve as signaling molecules to induce defense reactions and serve as electron receptors for lignification, which facilitates the containment of pathogens and wound-healing. </p>
<p>These processes have been observed in numerous studies investigating a broad range of biotic stresses affecting model plants, woody plant species, and agricultural crops. Experiments supporting the protective effects of lignification against biotic stresses in agricultural crops are summarized in
<xref ref-type="table" rid="tab2">Table 2</xref>
. The broad spectrum of different crops and pathogens/insects highlights the general applicability of the principle that lignin constitutes a biotic stress tolerance factor. The majority of the experiments reporting a protective role of lignin dealt with fungal pathogens, suggesting that lignification is particularly effective against this category of pathogens. Fewer studies dealt with bacteria, nematodes, and insects. The experiments summarized in
<xref ref-type="table" rid="tab2">Table 2</xref>
can be grouped into three categories.
<list list-type="roman-lower">
<list-item>
<p>The first category includes studies reporting indirect or correlative evidence for the involvement of lignin in tolerance to abiotic stresses. Evidence was based on contrasting lignin levels or differential stress responses of lignin biosynthetic pathways in tolerant and intolerant genotypes. While such studies are informative and quite abundant, their weakness is that unrelated crop genotypes presumably differed in many traits apart from lignification, which may also have influenced their tolerance. This category represents the majority of the studies summarized in
<xref ref-type="table" rid="tab2">Table 2</xref>
. </p>
</list-item>
<list-item>
<p>The second one includes studies in which genes affecting lignin biosynthesis were specifically manipulated to obtain near-isogenic lines of crops differing in lignin content. This approach was taken in a number of experiments using diverse crop species such as wheat [
<xref ref-type="bibr" rid="B106">96</xref>
], rice [
<xref ref-type="bibr" rid="B88">99</xref>
], tobacco [
<xref ref-type="bibr" rid="B107">103</xref>
,
<xref ref-type="bibr" rid="B108">104</xref>
,
<xref ref-type="bibr" rid="B109">121</xref>
,
<xref ref-type="bibr" rid="B110">130</xref>
], cotton [
<xref ref-type="bibr" rid="B111">108</xref>
], potato [
<xref ref-type="bibr" rid="B112">111</xref>
], and carrot [
<xref ref-type="bibr" rid="B113">113</xref>
]. Either gain of function (to increase lignin) or loss of function (to decrease lignin) mutants were used in these experiments to obtain direct evidence of the involvement of lignin in tolerance against biotic stresses. </p>
</list-item>
<list-item>
<p>The third category includes studies applying pretreatment with elicitors to induce systemically acquired resistance in crops, which involved enhanced lignin content in pretreated plants. These studies used either pretreatment with biological elicitors such as
<italic>Pseudomonas</italic>
ssp. [
<xref ref-type="bibr" rid="B114">120</xref>
], fungal extracts [
<xref ref-type="bibr" rid="B116">115</xref>
,
<xref ref-type="bibr" rid="B115">117</xref>
], chemical compounds such as salicylic acid, dichloroisonicotinic acid, or bion (benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester [
<xref ref-type="bibr" rid="B118">109</xref>
,
<xref ref-type="bibr" rid="B117">119</xref>
], or mechanical injury [
<xref ref-type="bibr" rid="B119">93</xref>
]. These approaches were shown to enhance lignin levels and, consequently, resistance to biotic stresses in orange fruits [
<xref ref-type="bibr" rid="B119">93</xref>
], cotton roots [
<xref ref-type="bibr" rid="B118">109</xref>
], tomato [
<xref ref-type="bibr" rid="B116">115</xref>
], peanut [
<xref ref-type="bibr" rid="B115">117</xref>
], cucumber [
<xref ref-type="bibr" rid="B117">119</xref>
], and rice [
<xref ref-type="bibr" rid="B114">120</xref>
]. </p>
</list-item>
</list>
</p>
<p>Despite the abundant evidence for the protective role of lignin against biotic stresses, there are also reports in which the lignin level did not positively affect crops resistance. Lignin concentration was not a factor differentiating
<italic>Fraxinus</italic>
cultivars resistant or susceptible to emerald ash borer [
<xref ref-type="bibr" rid="B120">182</xref>
]. Also, lignin levels did not explain the resistance of five different switchgrass (
<italic>Panicum virgatum</italic>
) populations to aphids and aphid-transmitted virus diseases [
<xref ref-type="bibr" rid="B121">183</xref>
]. In sorghum, low lignin “brown-midrib” genotypes even exhibited reduced colonization by
<italic>Fusarium</italic>
ssp. and
<italic>Alternaria alternata </italic>
[
<xref ref-type="bibr" rid="B122">184</xref>
]. The authors suggested that impairment of lignin synthesis could shift intermediates of the phenylpropanoid pathway to different branches, which also have protective effects against pathogens. Overall, these exceptions are relatively rare and do not necessarily contradict the majority of studies supporting the important role of lignin in plant defense against biotic stresses. </p>
<p>Because the cell wall constitutes such an important physical barrier, pathogens have evolved a broad array of enzymes to digest lignocelluloses [
<xref ref-type="bibr" rid="B123">185</xref>
]. A class of fungi called white rot fungi possesses the particular ability to decompose lignin via extracellular enzymes such as lignin peroxidase, manganese peroxidase, and laccase [
<xref ref-type="bibr" rid="B124">186</xref>
<xref ref-type="bibr" rid="B126">188</xref>
]. These fungi are increasingly being used in agricultural or industrial applications that require the removal of lignin from plant material, such as ruminant nutrition or bioethanol production [
<xref ref-type="bibr" rid="B127">189</xref>
<xref ref-type="bibr" rid="B129">191</xref>
]. The digestive systems of herbivorous insects do not have the capacity of decomposing lignin, but some insects host lignin degrading fungi in their stomachs to facilitate the digestion of lignified plant material [
<xref ref-type="bibr" rid="B130">192</xref>
]. </p>
</sec>
<sec id="sec6">
<title>6. Role of Lignin in Animal Nutrition </title>
<p>From a point of view of animal nutritionists, lignin represents an undesired or “antinutritive” component. Being part of the cell wall, lignin forms a limiting factor especially in the diets of ruminant herbivores, which unlike monogastric animals are able to digest cell wall material efficiently. With the aid of their anaerobic rumen microbial population, ruminant herbivores ferment polysaccharide polymers (cellulose and hemicelluloses) into short chain fatty acids, which serve as a source of energy for the animal, while the microbes themselves form a source of protein [
<xref ref-type="bibr" rid="B131">193</xref>
,
<xref ref-type="bibr" rid="B132">194</xref>
]. The extremely diverse rumen microbial population produces many glycosyl hydrolases, that is, enzymes that hydrolyze the glycosidic bonds between carbohydrates, or between carbohydrate and noncarbohydrate molecules [
<xref ref-type="bibr" rid="B131">193</xref>
]. In contrast, lignin is not readily fermented by the rumen bacteria but is only partly degraded by rumen anaerobic fungi [
<xref ref-type="bibr" rid="B131">193</xref>
]. As a consequence, it limits the feed value of plant materials through two mechanisms. (i) Inaccessible energy content: although lignin has about 30 percent higher gross energy content than cellulose [
<xref ref-type="bibr" rid="B133">195</xref>
], this energy is barely accessible for ruminants. Therefore, the lignin content is negatively correlated with digestible energy in ruminant diets. (ii) Reduced feed intake: due to the association with polysaccharide constituents, lignin forms a physical barrier and thus hinders the access of rumen microbes to fermentable cell wall components. Consequently the passage rate of feeds through the rumen is slowed down, thus reducing the feed intake capacity [
<xref ref-type="bibr" rid="B134">196</xref>
,
<xref ref-type="bibr" rid="B135">197</xref>
]. </p>
<p>The negative correlation between lignin content and digestibility of forage materials in ruminant diets has been documented in numerous experiments. A common approach to determine the feed value of plant materials for ruminates involves the incubation of samples in rumen liquor
<italic>in vitro</italic>
to measure digestibility. This can be accompanied by time-course measurements of the amount of gas produced during fermentation, which is positively correlated with digestibility [
<xref ref-type="bibr" rid="B136">198</xref>
]. Using such techniques, lignin was identified as a dominant factor limiting the feed value in perennial grasses [
<xref ref-type="bibr" rid="B137">199</xref>
], maize stems [
<xref ref-type="bibr" rid="B138">200</xref>
,
<xref ref-type="bibr" rid="B139">201</xref>
], and tropical forages [
<xref ref-type="bibr" rid="B140">202</xref>
]. In an experiment with alfalfa, it was shown that lignin content had a more negative effect in long-term than in short-term
<italic>in vitro</italic>
incubations, indicating that it affected the potential extent of digestion rather than the rate of digestion [
<xref ref-type="bibr" rid="B141">203</xref>
]. Similar relationships were also found in artificially modeled diets: in incubation experiments with maize cell walls that were artificially lignified using monolignol treatments, the lignification caused up to a 12-fold increase in the lag time of cellulose fermentation [
<xref ref-type="bibr" rid="B142">204</xref>
]. Animal feeding experiments in principle confirmed these
<italic>in vitro</italic>
experiments. For example, it was demonstrated that lignin was the main chemical parameter explaining the
<italic>in vivo</italic>
organic matter digestibility of 64 different grass silages fed to cattle [
<xref ref-type="bibr" rid="B143">205</xref>
]. Another study reported a negative correlation between lignin concentration and
<italic>in vitro</italic>
digestibility in 36 different forages including legumes, C3 grasses, and C4 grasses and confirmed these results in feeding trials with lambs [
<xref ref-type="bibr" rid="B144">206</xref>
]. </p>
<p>Models have been established to predict cell wall digestibility from the degree of lignification. Traxler et al. [
<xref ref-type="bibr" rid="B145">207</xref>
] identified highly positive correlations between lignin content and the indigestible cell wall fraction of 145 different forages and used these data to develop models for predicting digestibility based on lignin concentrations. Similarly, Kramer et al. [
<xref ref-type="bibr" rid="B22">22</xref>
] concluded that the indigestible fraction of plant materials can be estimated from the lignin concentration but also recommended that the same models cannot be applied across different species. </p>
<p>In contrast to the well-documented negative impacts of lignification on forage digestibility, a few studies have also reported positive effects of lignin in ruminant diets relating to greenhouse gas emissions. Ruminant production is one of the most important sources of anthropogenic methane, which constitutes the second most important greenhouse gas next to carbon dioxide [
<xref ref-type="bibr" rid="B146">208</xref>
]. In the rumen, methane is produced during the anaerobic fermentation of organic materials, and released into the atmosphere [
<xref ref-type="bibr" rid="B147">209</xref>
]. When purified lignin was added to lamb diets at different rates, it reduced the feed intake but did not affect growth performance. However, it decreased the methane release in
<italic>in vitro</italic>
incubations of lamb feed formulations [
<xref ref-type="bibr" rid="B148">210</xref>
]. Similarly, high lignin diets exhibited relatively low methane release during
<italic>in vitro</italic>
incubations in rumen liquor obtained from a cow compared to high sugar diets [
<xref ref-type="bibr" rid="B149">211</xref>
]. In addition, when different types of roughage were incubated in buffalo inoculum, a negative correlation between lignin content and methane release was noted [
<xref ref-type="bibr" rid="B150">212</xref>
]. Together, these studies suggest a positive role of lignin in mitigating methane emissions from ruminant production. </p>
<p>Despite these rare examples of positive effects of lignin, animal nutritionists usually seek to minimize the lignin content of ruminant diets. Two strategies are discussed in the scientific literature: (i) pretreatment of forages to remove lignin prior to feeding them to animals and (ii) breeding of novel low lignin genotypes of forage crops. </p>
<p>Pretreatments to limit the negative effect of lignin on forage digestibility include biological, physical, and chemical processes [
<xref ref-type="bibr" rid="B151">213</xref>
]. The most widely used biological pretreatment of forages involves the use of white rot or brown rot fungi. These lignin degrading fungi produce several types of extracellular oxidative enzymes such as laccases and lignolytic peroxidases [
<xref ref-type="bibr" rid="B152">214</xref>
]. This ability has been used to improve the feed value of low quality forages such as wheat straw [
<xref ref-type="bibr" rid="B153">215</xref>
<xref ref-type="bibr" rid="B155">217</xref>
], rice straw [
<xref ref-type="bibr" rid="B156">218</xref>
], oil palm fronts [
<xref ref-type="bibr" rid="B157">219</xref>
], Bermuda grass [
<xref ref-type="bibr" rid="B158">220</xref>
], and bamboo [
<xref ref-type="bibr" rid="B159">221</xref>
], just to name a few. In these studies, plant materials were incubated either with fungal inoculum or with isolated enzymes [
<xref ref-type="bibr" rid="B155">217</xref>
] for several days up to fifteen weeks. These treatments were shown to effectively decrease lignification of forages and thus improve their digestibility in ruminant diets. Physical pretreatments such as grinding and steaming usually aim at improving the access of rumen microbes to fermentable cell wall components [
<xref ref-type="bibr" rid="B151">213</xref>
] but may not directly affect lignin content [
<xref ref-type="bibr" rid="B160">222</xref>
]. Chemical treatments involve the extraction of lignin from forages using solvents such as NaOH/ethanol [
<xref ref-type="bibr" rid="B161">223</xref>
] or oxidants such as peracetic acid or hydrogen peroxide [
<xref ref-type="bibr" rid="B151">213</xref>
]. </p>
<p>Efforts to breed for low lignin content in forage crops comprised both conventional breeding and biotechnological approaches [
<xref ref-type="bibr" rid="B162">224</xref>
]. Selection for high
<italic>in vitro</italic>
digestibility in four perennial forages was associated with simultaneous selection for low lignin content [
<xref ref-type="bibr" rid="B47">47</xref>
]. Naturally occurring or induced brown midrib mutations are known to reduce the lignin content in a number of grass species [
<xref ref-type="bibr" rid="B97">174</xref>
] and were also associated with improved digestibility in maize [
<xref ref-type="bibr" rid="B138">200</xref>
,
<xref ref-type="bibr" rid="B163">225</xref>
,
<xref ref-type="bibr" rid="B164">226</xref>
], sorghum, and sudangrass [
<xref ref-type="bibr" rid="B165">227</xref>
,
<xref ref-type="bibr" rid="B166">228</xref>
].</p>
<p>A number of studies also tested crop or model species that were genetically modified to contain lower lignin content. The downregulation of different monolignol biosynthetic genes to engineer transgenic alfalfa plants containing less lignin led to improved digestibility in independent experiments [
<xref ref-type="bibr" rid="B167">229</xref>
,
<xref ref-type="bibr" rid="B168">230</xref>
]. Similar results were reported from transgenic maize in which a gene encoding a lignin biosynthetic gene was suppressed [
<xref ref-type="bibr" rid="B169">231</xref>
]. In contrast, changes in lignin composition (but not lignin quantity) due to manipulation of a gene involved in monolignol synthesis (ferulate-5-hydroxylase) did not affect the
<italic>in vitro</italic>
digestibility of
<italic>Arabidopsis thaliana</italic>
plants [
<xref ref-type="bibr" rid="B170">232</xref>
]. Together, these studies clearly demonstrate that genetic approaches are effective in reducing the lignin content and improving the digestibility of forages. </p>
</sec>
<sec id="sec7">
<title>7. Role of Lignin in the Bioenergy Sector</title>
<p>Lignocellulosic crops or crop residues constitute one of the most abundant resources for the expansion of the renewable energy sector [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B171">233</xref>
,
<xref ref-type="bibr" rid="B172">234</xref>
]. The role of lignin for energy production from biomass is ambivalent. Whether it constitutes a desired or undesired component essentially depends on the energy conversion process. In thermochemical conversion processes, especially in direct combustion, high lignin content improves the energetic value of biomass. It contains less oxygen than cellulose and hemicellulose and has a heating value of 22–24 kJ g
<sup>−1</sup>
, which is 30 to 50 percent more than that of other cell wall components such as cellulose and hemicellulose [
<xref ref-type="bibr" rid="B133">195</xref>
,
<xref ref-type="bibr" rid="B173">235</xref>
,
<xref ref-type="bibr" rid="B174">236</xref>
]. In contrast, lignin is inhibitory to biological conversion processes such as microbial fermentation for bioethanol or biogas generation [
<xref ref-type="bibr" rid="B173">235</xref>
,
<xref ref-type="bibr" rid="B175">237</xref>
]. </p>
<p>In direct combustion of lignocellulosic material, the heating value of biomass is strictly positively correlated with its lignin content [
<xref ref-type="bibr" rid="B176">238</xref>
,
<xref ref-type="bibr" rid="B177">239</xref>
]. Direct combustion has several advantages in small-scale applications: it is straightforward, does not require any processing or investments, and is also cheap and flexible [
<xref ref-type="bibr" rid="B176">238</xref>
]. These potential advantages favor the use of crop byproducts as a source of energy in homes and small industries in developing countries [
<xref ref-type="bibr" rid="B176">238</xref>
,
<xref ref-type="bibr" rid="B178">240</xref>
]. However, direct combustion has the disadvantage of substantial air pollution and low energy density of unprocessed biomass, making large scale storage and transport unprofitable [
<xref ref-type="bibr" rid="B176">238</xref>
]. Therefore, lignocellulosic biomass is usually processed into more practicable forms such as liquid fuels or combustible gases. </p>
<p>Cell wall material, including cellulose, hemicelluloses, and lignin, can be converted to liquid fuels by pyrolysis. This thermochemical process involves high-temperature heating in the absence of air or oxygen to produce a pyrolysis oil, a complex mixture of components that is generally a low-quality fuel in itself, but can also be upgraded by further processing [
<xref ref-type="bibr" rid="B179">241</xref>
]. Pyrolysis oils are very diverse in their composition, as illustrated by a study which identified 167 different compounds in the pyrolysis oil obtained from rice husks [
<xref ref-type="bibr" rid="B180">242</xref>
]. Pyrolysis has the added benefit of producing char as a byproduct, a stable carbon sink which can be used as a natural soil amendment (so-called “bio-char”), and sequester carbon dioxide [
<xref ref-type="bibr" rid="B181">243</xref>
]. Due to its chemical structure and highly cross-linked nature, lignin has a higher thermal resistance than cellulose and therefore requires higher temperatures for pyrolysis [
<xref ref-type="bibr" rid="B182">244</xref>
]. Boateng et al. [
<xref ref-type="bibr" rid="B183">245</xref>
] compared the performance of 20 alfalfa samples differing in lignin content in two energy conversion processes: high energy pyrolysis and biochemical fermentation by rumen microbes. While biochemical conversion was negatively correlated with lignin content, no negative impact of lignin on pyrolysis yield was noted. Similarly, Fahmi et al. [
<xref ref-type="bibr" rid="B184">246</xref>
] suggested that lignin did not negatively affect pyrolysis yield, but it may lead to the presence of unstable high molecular weight compounds in the pyrolysis oil, which lower the oil quality. Hodgson et al. [
<xref ref-type="bibr" rid="B185">247</xref>
] found little variation in lignin-derived pyrolysis products in a set of
<italic>Miscanthus</italic>
genotypes differing in their lignin content and concluded that a substantial proportion of the lignin remained unpyrolyzed at the temperature used in their study (500°C). Another study demonstrated that corn stover pretreated with white rot fungi to break down lignin polymers prior to pyrolysis improved the efficiency of thermochemical conversion of lignin [
<xref ref-type="bibr" rid="B186">248</xref>
]. These examples illustrate that the efficiency and quality of lignin pyrolysis products are variable due to the complex structure and heterogenic composition of lignin. Pyrolysis of lignocelluloses therefore requires optimization of the processing conditions based on the particular species and applications in mind. </p>
<p>Gasification constitutes an alternative thermochemical conversion process. It involves the conversion of solid biomass to syngas (CO + H
<sub>2</sub>
) at high temperatures (usually >700°C) with controlled amounts of oxygen, steam, or a mix of gases [
<xref ref-type="bibr" rid="B187">249</xref>
]. After some purification steps, syngas is used in gas turbines or catalytically converted to liquid fuels such as ethanol, although this process remains technically challenging [
<xref ref-type="bibr" rid="B188">250</xref>
]. The gasification of lignin produces four times more hydrogen than cellulose and almost four times more than hemicelluloses [
<xref ref-type="bibr" rid="B189">251</xref>
]. Therefore, high lignin content is considered a favorable trait in biomass used for gasification, and pretreatments often aim at increasing the lignin content. Composting was shown to effectively increase the lignin content of different types of biomass (
<italic>Leucaena leucocephala, Chamaecytisus palmensis</italic>
), which in turn led to increases in hydrogen yield in gasification [
<xref ref-type="bibr" rid="B190">252</xref>
,
<xref ref-type="bibr" rid="B191">253</xref>
]. In summary, it can be concluded that direct combustion and gasification constitute the most effective thermochemical conversions processes for high lignin biomass [
<xref ref-type="bibr" rid="B174">236</xref>
], while pyrolysis may lead to variable results. </p>
<p>In biological energy conversion processes, lignin poses problems very similar to those experienced by animal nutritionists as it constitutes an indigestible component and a mechanical barrier to microbial fermentation of cell wall polysaccharides. The production of bioethanol involves saccharification of cell wall carbohydrates, that is, the enzymatic hydrolysis of cell wall polysaccharides into simple sugars by inoculation with cellulases, followed by fermentation into ethanol by yeast species such as
<italic>Saccharomyces cerevisiae </italic>
[
<xref ref-type="bibr" rid="B192">254</xref>
]. Due to its inhibitory role, lignin is sometimes removed from biomass prior to saccharification using biological or chemical pretreatments [
<xref ref-type="bibr" rid="B192">254</xref>
]. </p>
<p>The inhibitory role of lignin in bioethanol production has been demonstrated in many studies. For example, lignin content was negatively correlated with sugar release during saccharification of wheat straw [
<xref ref-type="bibr" rid="B193">255</xref>
]. A similar relationship was reported for the bioenergy species
<italic>Miscanthus</italic>
, where lignin content was the major determinant of enzymatic biomass degradation [
<xref ref-type="bibr" rid="B194">256</xref>
]. Some authors undertook simultaneous measurements of feed value of forages in ruminant diets and potential ethanol yield and found positive correlations as expected. For example, corn stover
<italic>in vitro</italic>
digestibility was positively and lignin content was negatively correlated with ethanol yield in corn stover [
<xref ref-type="bibr" rid="B195">257</xref>
]. Anderson et al. demonstrated a positive correlation between ethanol yield and digestibility for ruminants in 50 Bermuda grass accessions, but lignin explained only a small proportion of the variation [
<xref ref-type="bibr" rid="B196">258</xref>
]. Similar results were obtained in experiments with transgenic crops in which lignin level had been manipulated. Transgenic alfalfa plants engineered to contain less lignin than their wild type showed improved saccharification efficiency [
<xref ref-type="bibr" rid="B197">259</xref>
]. Similarly, the reduction of the lignin content in switchgrass by downregulation of a lignin biosynthesis gene improved the ethanol yield by up to 38% and reduced the need for pretreatment of feedstock, as well as the doses of cellulases required for saccharification [
<xref ref-type="bibr" rid="B198">260</xref>
]. While lignin clearly limits the ethanol production from biomass, the unfermented residues of saccharification and fermentation, which contain high levels of lignin, can be reused for thermochemical energy conversion, especially direct combustion, to produce heat and electricity [
<xref ref-type="bibr" rid="B199">261</xref>
]. Alternatively, lignin may be removed from the biomass prior to the saccharification and recovered for diverse applications using chemical precipitation methods [
<xref ref-type="bibr" rid="B200">262</xref>
]. </p>
<p>An alternative biological method to process biomass into energy is the generations of biogas using anaerobic microbial digestion. The term biogas refers to a mix of combustible gases such as methane and hydrogen, which are formed by mixed microbial cultures digesting biomass in anaerobic reactors [
<xref ref-type="bibr" rid="B201">263</xref>
,
<xref ref-type="bibr" rid="B202">264</xref>
]. There is broad agreement in the scientific literature that lignin is a major factor limiting the biogas yield in anaerobic digestion [
<xref ref-type="bibr" rid="B202">264</xref>
], as illustrated by both experimental and modeling studies. For example, the methane yield in a variety of crops (maize, sorghum, and
<italic>Miscanthus</italic>
) depended mostly on the polysaccharide to lignin ratio of the feedstock [
<xref ref-type="bibr" rid="B203">265</xref>
]. Another study tested the biogas production of 57 different plant samples and concluded that a lignin (ADL) content of 10% was a critical threshold for high biodegradability in anaerobic digestion [
<xref ref-type="bibr" rid="B175">237</xref>
]. Also, a significant negative correlation between lignin content and methane production was observed in 285 different maize genotypes [
<xref ref-type="bibr" rid="B204">266</xref>
]. Several predictive models to estimate the biogas yield from lignocellulosic material include lignin as the major negative factor [
<xref ref-type="bibr" rid="B205">267</xref>
<xref ref-type="bibr" rid="B207">269</xref>
]. Because lignin is such an important factor limiting biogas yield, pretreatments of feedstock often aim at removing lignin from biomass [
<xref ref-type="bibr" rid="B208">270</xref>
,
<xref ref-type="bibr" rid="B209">271</xref>
]. Such pretreatments include the chemical extraction of lignin using a variety of solvents [
<xref ref-type="bibr" rid="B208">270</xref>
], biological treatments with lignin degrading fungi or enzymes [
<xref ref-type="bibr" rid="B208">270</xref>
,
<xref ref-type="bibr" rid="B210">272</xref>
,
<xref ref-type="bibr" rid="B211">273</xref>
], oxidation of lignin using oxidants such as hydrogen peroxide [
<xref ref-type="bibr" rid="B212">274</xref>
], or heat treatments in combination with extraction or oxidation [
<xref ref-type="bibr" rid="B213">275</xref>
]. </p>
<p>Regarding the role of lignin, the challenges faced in animal nutrition and in the bioenergy generation via biological conversion are very similar and require better understanding of lignin synthesis and its breakdown. A common strategy that has been proposed in both fields of research is the engineering of modified lignin polymers that are less inhibitory to enzymatic breakdown, while maintaining the functional roles of lignin in adaptation of crops to abiotic and biotic environmental conditions [
<xref ref-type="bibr" rid="B214">276</xref>
,
<xref ref-type="bibr" rid="B215">277</xref>
].</p>
</sec>
<sec id="sec8">
<title>8. Role of Lignin in Soils </title>
<p>In agricultural soils, lignin has important implications for the soil organic matter (SOM) cycling, thus affecting soil structure, mineralization of nutrients, and carbon (C) sequestration. Traditionally it was assumed that lignin forms a relatively stable component of SOM due to its recalcitrant chemical structure and its resistance to microbial degradation. In this model, the predominant fate of lignin derived from crop residues is the conversion into relatively stable humic substances
<italic>via </italic>
aromatic residues of lignin polymers [
<xref ref-type="bibr" rid="B216">278</xref>
,
<xref ref-type="bibr" rid="B217">279</xref>
]. However, this concept is under debate since more recent research suggests that selective preservation of lignin occurs only in the earlier stages of litter decomposition, whereas found that lignin derived compounds do not accumulate in the refractory C pool of soils [
<xref ref-type="bibr" rid="B218">280</xref>
<xref ref-type="bibr" rid="B222">284</xref>
]. The low level of associations of lignin with soil minerals has been put forward as a possible explanation for its low accumulation in stable carbon pools [
<xref ref-type="bibr" rid="B222">284</xref>
,
<xref ref-type="bibr" rid="B223">285</xref>
]. Breakdown of lignin in soil is a predominantly aerobic process mediated by microorganisms such as basidiomycete fungi (brown rot and white rot fungi) and a few species of bacteria such as
<italic>Streptomyces</italic>
spp. [
<xref ref-type="bibr" rid="B216">278</xref>
,
<xref ref-type="bibr" rid="B224">286</xref>
,
<xref ref-type="bibr" rid="B225">287</xref>
]. These microorganisms produce extracellular enzymes such as phenol oxidases and POX [
<xref ref-type="bibr" rid="B226">288</xref>
] that are also employed in pretreatments of ruminant feed or bioenergy feedstock as described in the previous sections. Besides this predominant biotic decomposition of organic matter, abiotic decomposition also occurs due to photo-degradation. Lignin was shown to be more susceptible to photo-degradation than other SOM components because it acts as an effective light absorbing compound over a wide range of wavelengths [
<xref ref-type="bibr" rid="B227">289</xref>
]. Soil scientists have developed indicators to characterize the lignin degradation state in soils, such as the acid (Ac)/aldehyde Ac/Ald ratio, which is determined after the oxidation of samples with CuO to release single ring phenolics. Ac/Ald indicates the ratio of oxidized (carboxylic acid) to more reduced (aldehyde) forms of lignin derived phenolics (such as vanillic acid to vanillin) and increases upon biodegradation of lignin [
<xref ref-type="bibr" rid="B224">286</xref>
,
<xref ref-type="bibr" rid="B228">290</xref>
]. </p>
<p>Despite the controversy regarding the long-term fate of lignin in soils, there is broad agreement that lignin is a factor that slows down the mineralization of nutrients from crop residues on the time scale of a cropping season. The lignin concentration and the lignin/N ratio are widely used as indicators for the degradability of litter [
<xref ref-type="bibr" rid="B229">291</xref>
,
<xref ref-type="bibr" rid="B230">292</xref>
]. For example, lignin negatively affected the short-term N release in rice soils from different types of green manure differing in lignin content, including legumes, azolla, and rice straw [
<xref ref-type="bibr" rid="B231">293</xref>
,
<xref ref-type="bibr" rid="B232">294</xref>
]. Similarly, N release rate was limited by the lignin/N ratio in a study testing mineralization of nutrients from 12 different plant materials in tropical hillside soils [
<xref ref-type="bibr" rid="B233">295</xref>
]. Remarkably, the authors of this study suggested that nutrient mineralization rate from green manures can be estimated by feed value analyses such as
<italic>in vitro</italic>
dry matter digestibility, which was confirmed in an investigation of a range of subarctic plant species [
<xref ref-type="bibr" rid="B234">296</xref>
]. The influence of lignin on organic matter decomposition is time dependent and becomes more dominant as decay proceeds, as illustrated in several studies. Taylor et al. [
<xref ref-type="bibr" rid="B230">292</xref>
] suggested that lignin/N ratio was a poor indicator for litter decomposition during the first two months of organic matter incubation in soil but it became more dominant thereafter. This result is congruent with another study [
<xref ref-type="bibr" rid="B235">297</xref>
], in which N released from tropical manure incorporated into soil was not correlated with lignin levels during the first eight weeks of incubation. Similarly, the dissolved organic carbon released from litter decomposition was not affected by lignin during the first five months of litter decomposition, but thereafter it was affected by lignin quantity and quality [
<xref ref-type="bibr" rid="B236">298</xref>
]. In a study on maize roots from 16 different genotypes differing in lignin content and composition, lignin showed no correlation with cumulative C mineralization during the first two weeks of incubation in soil, but showed significant negative correlation from two weeks up to 26 months of incubation [
<xref ref-type="bibr" rid="B237">299</xref>
]. Differences in time scales between studies may be explained with different types of organic matter, different soils, and incubation conditions used. Lastly, lignified biomass with slow mineralization of nutrients could also be interpreted positively as a sustainable fertilizer. Congruent with this concept, artificial ammonoxidized lignin was suggested as a soil amendment combining slow but sustainable nitrogen release with a carbon sequestration function [
<xref ref-type="bibr" rid="B238">300</xref>
]. </p>
<p>SOM contains two-thirds of the terrestrial C storage in the world [
<xref ref-type="bibr" rid="B228">290</xref>
,
<xref ref-type="bibr" rid="B239">301</xref>
] and therefore forms a crucial C sink with respect to global change. Lignin is considered to play an important role in C sequestration in soils [
<xref ref-type="bibr" rid="B240">302</xref>
] and is typically considered a recalcitrant carbon pool in models estimating the CO
<sub>2</sub>
release from SOM decomposition [
<xref ref-type="bibr" rid="B229">291</xref>
]. In addition, a number of experimental studies proposed beneficial roles of lignin in C stabilization in soils. Dijkstra et al. [
<xref ref-type="bibr" rid="B241">303</xref>
] monitored SOM decomposition as affected by N inputs, plant species, and elevated CO
<sub>2</sub>
and concluded that the lignin content of plant litter was a crucial factor determining C stabilization in a grassland ecosystem. Similarly, high lignin content of soil amendments such as compost was considered as a factor leading to stabilization of soil organic C in nonlabile pools in flooded rice ecosystems [
<xref ref-type="bibr" rid="B242">304</xref>
]. In contrast, an increasing number of studies found that lignin derived compounds did not selectively accumulate in the refractory C pool of deeper soil horizons [
<xref ref-type="bibr" rid="B218">280</xref>
<xref ref-type="bibr" rid="B221">283</xref>
], suggesting that the role of lignin in long-term C sequestration remains to be fully elucidated. Moreover, feedback reactions of global change on carbon cycling in soils are expected, because processes such as lignin decomposition are influenced by environmental factors such as rising temperatures [
<xref ref-type="bibr" rid="B243">305</xref>
]. In a soil warming experiment, the presence of lignin degrading fungi was increased and the degradation of lignin was accelerated at higher temperatures, which would imply faster rates of lignin decomposition in future climates [
<xref ref-type="bibr" rid="B244">306</xref>
]. In contrast, when soil samples were taken from 18 different grassland sites across temperature transects, cool climate favored higher Ac/Ald ratio, indicating a higher degree of microbial lignin decomposition [
<xref ref-type="bibr" rid="B223">285</xref>
]. Such apparent contradictions might be explained with different methodological approaches, that is, a single site experiment in which one factor (soil temperature) was varied versus a multisite study. In conclusion, important questions regarding the potential of lignin to contribute to carbon sequestration in a changing environment are under debate and remain to be answered. </p>
</sec>
<sec id="sec9">
<title>9. Lignin as a Target for Crop Breeding</title>
<p>Lignin content or composition is not a classical target trait in crop breeding, which tends to be more focused on crop yields, stress resistance, or consumer quality of edible crop parts. More recently, molecular breeding techniques in combination with high throughput phenotyping have allowed for more targeted inclusion of specific quality traits such as lignin content in crop breeding schemes. As detailed in the previous sections, lignin content of crops potentially constitutes an important breeding target from the perspectives of several agricultural disciplines. In the past, crop breeding projects were motivated mostly by the role of lignin in animal nutrition and biofuel production and thus aimed at decreasing the lignin content of crops. In principle, three approaches have been adopted in breeding crops with modified lignin content: (i) use of naturally occurring or induced brown midrib mutations, which affect the lignin content; (ii) mapping of quantitative trait loci (QTL) influencing the lignin content, which can be applied in marker assisted selection; (iii) genetic modification of lignin biosynthetic genes to generate transgenic crops with altered lignin content or composition. </p>
<p>Brown midrib mutations were discovered in the 1920s in maize plants, which showed reddish-brown pigmentation of the leaf midrib [
<xref ref-type="bibr" rid="B245">307</xref>
]. Subsequently, four genes causing this phenotype in maize were identified that originated from natural mutations and were named
<italic>bm1</italic>
,
<italic>bm2</italic>
,
<italic>bm3,</italic>
and
<italic>bm4</italic>
. It was later discovered that these mutations caused reduced lignin levels [
<xref ref-type="bibr" rid="B245">307</xref>
]. Meanwhile, brown midrib mutants have been isolated in other C4 grasses such as sorghum and pearl millet, arising either through spontaneous or chemically induced mutations. Some genes underlying brown midrib loci have been identified in maize and sorghum. They encode orthologues of lignin biosynthetic genes such as caffeic-O-methyltransferases and O-methyltransferase [
<xref ref-type="bibr" rid="B97">174</xref>
,
<xref ref-type="bibr" rid="B246">308</xref>
]. Moreover, candidate genes for a further brown midrib locus in maize (bm6) were proposed by genetic mapping [
<xref ref-type="bibr" rid="B247">309</xref>
]. Brown midrib mutants form an excellent model for investigating implications of lignin for crops and have been characterized regarding their resistance to biotic stresses [
<xref ref-type="bibr" rid="B122">184</xref>
], feed quality [
<xref ref-type="bibr" rid="B165">227</xref>
,
<xref ref-type="bibr" rid="B248">310</xref>
,
<xref ref-type="bibr" rid="B249">311</xref>
], biofuel potential [
<xref ref-type="bibr" rid="B250">312</xref>
<xref ref-type="bibr" rid="B252">314</xref>
], and degradability in soil [
<xref ref-type="bibr" rid="B253">315</xref>
]. </p>
<p>QTL mapping and marker assisted selection take advantage of the naturally occurring genetic variation in lignin content occurring within crop species [
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B204">266</xref>
,
<xref ref-type="bibr" rid="B254">316</xref>
,
<xref ref-type="bibr" rid="B255">317</xref>
]. QTL associated with lignin content were reported for a number of crop species (
<xref ref-type="table" rid="tab3">Table 3</xref>
). The majority of these studies dealt with maize, but a few studies also investigated other species such as barley, sorghum, and rice (
<xref ref-type="table" rid="tab3">Table 3</xref>
). The primary research objective of most experiments was to improve the feed quality for ruminants by lowering the lignin content, and lignin content was only one among several feed quality parameters for which QTL were reported. However, a few studies, especially on sorghum, were primarily designed to increase the bioenergy potential of the crop (
<xref ref-type="table" rid="tab3">Table 3</xref>
). In most populations, a fairly large number of QTL were detected with low or intermediate effects, individually explaining up to twenty percent of the phenotypic variation in lignin content, as indicated by partial
<italic>R</italic>
<sup>2</sup>
values (
<xref ref-type="table" rid="tab3">Table 3</xref>
). In maize, only one major QTL explaining 43 percent of Klason lignin (KL) content was reported in a recent study [
<xref ref-type="bibr" rid="B256">142</xref>
]. Remarkably, this latter study found no colocalization between QTL for KL and ADL, indicating that these two types of lignin represent different fractions of the cell wall. Summarizing their work with six different mapping populations of maize, Barrière et al. [
<xref ref-type="bibr" rid="B256">142</xref>
] assembled an inventory of 50 QTL for ADL, which corresponded to 23 positions in the maize genome. Some QTL for lignin content in crops colocalized with
<italic>in vitro</italic>
dry matter digestibility [
<xref ref-type="bibr" rid="B254">316</xref>
], genes involved in lignin biosynthesis [
<xref ref-type="bibr" rid="B257">135</xref>
], or regulatory elements involved in cell wall synthesis [
<xref ref-type="bibr" rid="B256">142</xref>
]. Surprisingly, in some maize populations (e.g., [
<xref ref-type="bibr" rid="B258">138</xref>
]) no colocalization of QTL for lignin and digestibility was observed, indicating that other factors were limiting the digestibility for ruminates. Apart from maize, a major QTL was reported in rapeseed explaining 39 percent of the variation in ADL [
<xref ref-type="bibr" rid="B259">149</xref>
]. Subsequent fine mapping and sequencing of a candidate gene revealed that a polymorphism in the lignin biosynthetic gene cinnamoyl Co-A reductase 1 was probably responsible for differences in seed lignin content. Besides classical QTL mapping for simple quantitative traits such as lignin content, eQTL (expression quantitative trait locus) mapping has more recently been developed to identify genomic regions associated with gene expression patterns associated with a particular phenotype. This approach was used by Shi et al. [
<xref ref-type="bibr" rid="B260">318</xref>
], who selected 439 candidate genes associated with altered cell wall composition in brown midrib maize mutants, and determined eQTL regulating their expression. </p>
<p>While QTL experiments, such as those summarized in
<xref ref-type="table" rid="tab3">Table 3</xref>
, typically use biparental populations, genome-wide association mapping is emerging as a powerful tool to map genes for quantitative traits in populations of unrelated individuals. This approach has the advantage of sampling more genetic diversity and avoids time consuming generation of crosses necessary for QTL mapping [
<xref ref-type="bibr" rid="B261">319</xref>
]. A genome-wide association study identified loci associated with leaf metabolites in 289 diverse maize lines genotyped with 56 110 SNP markers and reported a locus significantly associated with the level of the lignin precursor
<italic>p</italic>
-coumaric acid, which was also correlated with lignin content [
<xref ref-type="bibr" rid="B262">320</xref>
]. </p>
<p>Alternatively, lignin content of crops was modified by transgenic approaches [
<xref ref-type="bibr" rid="B263">321</xref>
]. Genetic engineering strategies included the manipulation of lignin biosynthesis at the regulatory level, controlling monolignol biosynthetic enzymes, and modification of lignin polymer structure [
<xref ref-type="bibr" rid="B215">277</xref>
,
<xref ref-type="bibr" rid="B263">321</xref>
]. Gene knock-down using RNA interference (RNAi) or antisense techniques was successfully employed in a number of crop species targeting different lignin biosynthetic genes, especially those involved in monolignol synthesis. Silencing of genes encoding cinnamyl alcohol dehydrogenase in maize [
<xref ref-type="bibr" rid="B264">322</xref>
] and alfalfa [
<xref ref-type="bibr" rid="B167">229</xref>
] induced changes in lignin composition rather than notable changes in lignin content but significantly affected the digestibility of transgenic lines. O-methyltransferase genes were down-regulated in transgenic maize [
<xref ref-type="bibr" rid="B169">231</xref>
,
<xref ref-type="bibr" rid="B265">323</xref>
], alfalfa [
<xref ref-type="bibr" rid="B266">324</xref>
], sugarcane [
<xref ref-type="bibr" rid="B267">325</xref>
], and switchgrass [
<xref ref-type="bibr" rid="B198">260</xref>
]. The suppression of gene expression in these species was associated with a decrease in lignin content by up to 30 percent and altered lignin composition, as well as improved digestibility and bioenergy potential. Similarly, the downregulation of three cytochrome P450 genes involved in monolignol synthesis reduced the lignin content by up to 40 percent and altered the lignin composition in transgenic alfalfa [
<xref ref-type="bibr" rid="B268">326</xref>
]. While all of these studies targeted specific monolignol biosynthetic genes, Fornal et al. [
<xref ref-type="bibr" rid="B269">327</xref>
] identified a transcription factor that suppressed the expression of several monolignol biosynthetic genes and proposed it as a good candidate for manipulating the lignin biosynthesis. In addition to these studies with agricultural crops, a large number of mutants of model plants with altered lignin content or composition have been reviewed previously [
<xref ref-type="bibr" rid="B270">328</xref>
].</p>
<p>Concerns have been raised that the breeding of low lignin crops may unintentionally compromise plant fitness by increasing their susceptibility to abiotic or biotic stresses, or by decreasing the plant rigidity and biomass yield [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B271">329</xref>
,
<xref ref-type="bibr" rid="B272">330</xref>
]. A possible solution to this dilemma could be the breeding of plants with altered lignin composition, which would be less inhibitory towards microbial fermentation in ruminant diets of bioenergy production. More specifically, the substitution of traditional monolignols by alternative monomers with reduced hydrophobicity or cross-linking to structural carbohydrates has been proposed [
<xref ref-type="bibr" rid="B214">276</xref>
,
<xref ref-type="bibr" rid="B273">331</xref>
,
<xref ref-type="bibr" rid="B274">332</xref>
]. </p>
</sec>
<sec id="sec10">
<title>10. Summary and Conclusions</title>
<p>The previous sections elucidated the processes and factors affecting lignin deposition in crops, as well as the sometimes conflicting role of lignin in various agricultural disciplines. To summarize these considerations, a conceptual model of factors determining lignification of crops and implications for the utilization of lignocellulosic biomass is suggested (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
). Lignification depends on many abiotic and biotic environmental factors. In particular, the presence of environmental stresses tends to increase lignification in most cases, as detailed in the respective sections of this review. Moreover, the lignin content of crops depends on genetic factors such as species, genotype, and specific genes or loci, which are exploited in the breeding of crops with altered lignin content or composition. There are also numerous genotype-by-environment interactions influencing lignification, as evidenced, for example, by the fact that many of the QTL studies summarized in
<xref ref-type="table" rid="tab3">Table 3</xref>
detected completely different QTL for lignin content when the same populations were grown in different environments. A better understanding of such genotype-by-environment interactions may be one of the major challenges in developing crops with customized lignin content or composition. </p>
<p>Whether high or low lignin is desired depends largely on the use of lignocellulosic material. Applications that favor high lignin content include the breeding of crops resistant to biotic and abiotic stresses, the use of biomass in thermochemical energy conversion processes, and carbon sequestration in recalcitrant biomass (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
). On the other hand, applications that favor low lignin content include the feeding of biomass to ruminant herbivores, biological energy conversion processes such as ethanol or biogas production, and use of crop residues as a nutrient stock for subsequent crops. Exploiting synergies and harmonizing the apparently conflicting roles of lignin remain a major challenge for research, which requires interdisciplinary approaches. A growing number of studies take account of these diverse perspectives by bridging different disciplines. For example, feed digestibility tests using rumen liquor have been used to estimate the degradability of biomass in other media such as soil [
<xref ref-type="bibr" rid="B233">295</xref>
,
<xref ref-type="bibr" rid="B234">296</xref>
] or bioenergy reactors [
<xref ref-type="bibr" rid="B195">257</xref>
]. Wang et al. [
<xref ref-type="bibr" rid="B88">99</xref>
] reported that enhanced lignin content due to the overexpression of a transcriptional regulator conferred tolerance to both abiotic stress (UV-B) and biotic stresses such as rice blast and white backed planthopper. Breeders have recognized that the breeding for low lignin content to enhance the biological degradability of lignocelluloses may compromise plant fitness and stress resistance [
<xref ref-type="bibr" rid="B46">46</xref>
], although this problem may be overcome by manipulating lignin composition instead of lignin content [
<xref ref-type="bibr" rid="B214">276</xref>
]. However, harmonizing all of the conflicting roles of lignin in the diverse disciplines may not always be possible, thus necessitating priority setting regarding the use of lignocellulosic biomass.</p>
</sec>
</body>
<back>
<ack>
<title>Conflict of Interests</title>
<p>The author declares that there is no conflict of interests regarding the publication of this paper. </p>
</ack>
<ack>
<title>Acknowledgment</title>
<p>The author wishes to apologize to those authors whose work was overlooked or not considered due to lack of access or capacity constraints. This work was funded by Deutsche Forschungsgemeinschaft (DFG, FR2951/1-1). </p>
</ack>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarkar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bosneaga</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Auer</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Plant cell walls throughout evolution: towards a molecular understanding of their design principles</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2009</year>
<volume>60</volume>
<issue>13</issue>
<fpage>3615</fpage>
<lpage>3635</lpage>
<pub-id pub-id-type="other">2-s2.0-69949134920</pub-id>
<pub-id pub-id-type="pmid">19687127</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bonawitz</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Chapple</surname>
<given-names>C</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Campbell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lichten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schupbach</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The genetics of lignin biosynthesis: connecting genotype to phenotype</article-title>
<source>
<italic>Annual Review of Genetics</italic>
</source>
<year>2010</year>
<volume>44</volume>
<fpage>337</fpage>
<lpage>363</lpage>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubin</surname>
<given-names>EM</given-names>
</name>
</person-group>
<article-title>Genomics of cellulosic biofuels</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2008</year>
<volume>454</volume>
<issue>7206</issue>
<fpage>841</fpage>
<lpage>845</lpage>
<pub-id pub-id-type="other">2-s2.0-49649106060</pub-id>
<pub-id pub-id-type="pmid">18704079</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Magalhaes Silva Moura</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Valencise Bonine</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>de Oliveira Fernandes Viana</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dornelas</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Mazzafera</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Abiotic and biotic stresses and changes in the lignin content and composition in plants</article-title>
<source>
<italic>Journal of Integrative Plant Biology</italic>
</source>
<year>2010</year>
<volume>52</volume>
<issue>4</issue>
<fpage>360</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="other">2-s2.0-77952935279</pub-id>
<pub-id pub-id-type="pmid">20377698</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voelker</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Lachenbruch</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Meinzer</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Kitin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Strauss</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival</article-title>
<source>
<italic>Plant, Cell and Environment</italic>
</source>
<year>2011</year>
<volume>34</volume>
<issue>4</issue>
<fpage>655</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="other">2-s2.0-79952531450</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Transcriptional networks for lignin biosynthesis: more complex than we thought?</article-title>
<source>
<italic>Trends in Plant Science</italic>
</source>
<year>2011</year>
<volume>16</volume>
<issue>4</issue>
<fpage>227</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="other">2-s2.0-79954418957</pub-id>
<pub-id pub-id-type="pmid">21227733</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuck</surname>
<given-names>CO</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>IT</given-names>
</name>
<name>
<surname>Sheldon</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Poliakoff</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Valorization of biomass: deriving more value from waste</article-title>
<source>
<italic>Science</italic>
</source>
<year>2012</year>
<volume>337</volume>
<fpage>695</fpage>
<lpage>699</lpage>
<pub-id pub-id-type="pmid">22879509</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lal</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>World crop residues production and implications of its use as a biofuel</article-title>
<source>
<italic>Environment International</italic>
</source>
<year>2005</year>
<volume>31</volume>
<issue>4</issue>
<fpage>575</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="other">2-s2.0-15244349972</pub-id>
<pub-id pub-id-type="pmid">15788197</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Somerville</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Youngs</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>SP</given-names>
</name>
</person-group>
<article-title>Feedstocks for lignocellulosic biofuels</article-title>
<source>
<italic>Science</italic>
</source>
<year>2010</year>
<volume>329</volume>
<issue>5993</issue>
<fpage>790</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="other">2-s2.0-77955624887</pub-id>
<pub-id pub-id-type="pmid">20705851</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vogt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Phenylpropanoid biosynthesis</article-title>
<source>
<italic>Molecular Plant</italic>
</source>
<year>2010</year>
<volume>3</volume>
<issue>1</issue>
<fpage>2</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="other">2-s2.0-76549093442</pub-id>
<pub-id pub-id-type="pmid">20035037</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly</article-title>
<source>
<italic>Molecular Plant</italic>
</source>
<year>2012</year>
<volume>5</volume>
<issue>2</issue>
<fpage>304</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="other">2-s2.0-84859115924</pub-id>
<pub-id pub-id-type="pmid">22307199</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Koussevitzky</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>ROS and redox signalling in the response of plants to abiotic stress</article-title>
<source>
<italic>Plant, Cell and Environment</italic>
</source>
<year>2012</year>
<volume>35</volume>
<issue>2</issue>
<fpage>259</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="other">2-s2.0-84855340218</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almagro</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ros</surname>
<given-names>LVG</given-names>
</name>
<name>
<surname>Belchi-Navarro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bru</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barceló</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Pedreño</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Class III peroxidases in plant defence reactions</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2009</year>
<volume>60</volume>
<issue>2</issue>
<fpage>377</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="other">2-s2.0-67649223384</pub-id>
<pub-id pub-id-type="pmid">19073963</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Brien</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Daudi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Butt</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Bolwell</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species and their role in plant defence and cell wall metabolism</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2012</year>
<volume>236</volume>
<fpage>765</fpage>
<lpage>779</lpage>
<pub-id pub-id-type="pmid">22767200</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hirt</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species: metabolism, oxidative stress, and signal transduction</article-title>
<source>
<italic>Annual Review of Plant Biology</italic>
</source>
<year>2004</year>
<volume>55</volume>
<fpage>373</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="other">2-s2.0-3242715114</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanholme</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Demedts</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Morreel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ralph</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Boerjan</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Lignin biosynthesis and structure</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2010</year>
<volume>153</volume>
<issue>3</issue>
<fpage>895</fpage>
<lpage>905</lpage>
<pub-id pub-id-type="other">2-s2.0-77954257815</pub-id>
<pub-id pub-id-type="pmid">20472751</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpita</surname>
<given-names>NC</given-names>
</name>
</person-group>
<article-title>Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy</article-title>
<source>
<italic>Current Opinion in Biotechnology</italic>
</source>
<year>2011</year>
<volume>23</volume>
<fpage>330</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">22209015</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukushima</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Hatfield</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2004</year>
<volume>52</volume>
<issue>12</issue>
<fpage>3713</fpage>
<lpage>3720</lpage>
<pub-id pub-id-type="other">2-s2.0-2942627241</pub-id>
<pub-id pub-id-type="pmid">15186087</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allison</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Clifton-Brown</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lister</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Donnison</surname>
<given-names>IS</given-names>
</name>
</person-group>
<article-title>Genotypic variation in cell wall composition in a diverse set of 244 accessions of
<italic>Miscanthus</italic>
</article-title>
<source>
<italic>Biomass & Bioenergy</italic>
</source>
<year>2011</year>
<volume>35</volume>
<issue>11</issue>
<fpage>4740</fpage>
<lpage>4747</lpage>
<pub-id pub-id-type="other">2-s2.0-81555228593</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jahn</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Mckay</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Mauleon</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic variation in biomass traits among 20 diverse rice varieties</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2011</year>
<volume>155</volume>
<issue>1</issue>
<fpage>157</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="other">2-s2.0-78650989853</pub-id>
<pub-id pub-id-type="pmid">21062890</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakiroglu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Brummer</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Variation in biomass yield, cell wall components, and agronomic traits in a broad range of diploid alfalfa accessions</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2011</year>
<volume>51</volume>
<issue>5</issue>
<fpage>1956</fpage>
<lpage>1964</lpage>
<pub-id pub-id-type="other">2-s2.0-79961178939</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kramer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Weisbjerg</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Estimation of indigestible NDF in forages and concentrates from cell wall composition</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2012</year>
<volume>177</volume>
<fpage>40</fpage>
<lpage>51</lpage>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowry</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Conlan</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Schlink</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>McSweeney</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Acid detergent dispersible lignin in tropical grasses</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>1994</year>
<volume>65</volume>
<fpage>41</fpage>
<lpage>49</lpage>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwab</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>JFS</given-names>
</name>
<name>
<surname>Sheaffer</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>DK</given-names>
</name>
</person-group>
<article-title>Germplasm variability and environmental effects on stem cellulose and lignin concentrations in Alfalfa</article-title>
<source>
<italic>Journal of Agronomy and Crop Science</italic>
</source>
<year>2005</year>
<volume>191</volume>
<issue>5</issue>
<fpage>386</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="other">2-s2.0-26844517980</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Moghaddam</surname>
<given-names>PR</given-names>
</name>
</person-group>
<article-title>In vitro digestibility and neutral detergent fibre and lignin contents of plant parts of nine forage species</article-title>
<source>
<italic>Journal of Agricultural Science</italic>
</source>
<year>1998</year>
<volume>131</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="other">2-s2.0-3543033379</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knudsen</surname>
<given-names>KEB</given-names>
</name>
</person-group>
<article-title>Carbohydrate and lignin contents of plant materials used in animal feeding</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>1997</year>
<volume>67</volume>
<issue>4</issue>
<fpage>319</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="other">2-s2.0-0000054097</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwaasa</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Beauchemin</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Buchanan-Smith</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>Effect of stage of maturity and growth cycle on shearing force and cell wall chemical constituents of alfalfa stems</article-title>
<source>
<italic>Canadian Journal of Animal Science</italic>
</source>
<year>1996</year>
<volume>76</volume>
<issue>3</issue>
<fpage>321</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="other">2-s2.0-0030487091</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armstrong</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The lignin and cellulose contents of certain grassland species at different stages of growth</article-title>
<source>
<italic>Journal of Agricultural Science</italic>
</source>
<year>1950</year>
<volume>40</volume>
<fpage>93</fpage>
<lpage>99</lpage>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McBee</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>FR</given-names>
</name>
</person-group>
<article-title>Stem carbohydrate and lignin concentrations in sorghum hybrids at 7 growth-stages</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>1993</year>
<volume>33</volume>
<fpage>530</fpage>
<lpage>534</lpage>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arai-Sanoh</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane</article-title>
<source>
<italic>Bioscience, Biotechnology and Biochemistry</italic>
</source>
<year>2011</year>
<volume>75</volume>
<issue>6</issue>
<fpage>1104</fpage>
<lpage>1112</lpage>
<pub-id pub-id-type="other">2-s2.0-79959553407</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abiven</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Heim</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>MWI</given-names>
</name>
</person-group>
<article-title>Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil</article-title>
<source>
<italic>Plant and Soil</italic>
</source>
<year>2011</year>
<volume>343</volume>
<issue>1-2</issue>
<fpage>369</fpage>
<lpage>378</lpage>
<pub-id pub-id-type="other">2-s2.0-79956118613</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Makkar</surname>
<given-names>HPS</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wissuwa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Ozone exposure during growth affects the feeding value of rice shoots</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2010</year>
<volume>155</volume>
<issue>1</issue>
<fpage>74</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="other">2-s2.0-72249122996</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Frei</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Stressed food—the impact of abiotic environmental stresses on crop quality</article-title>
<source>
<italic>Agriculture, Ecosystems & Environment</italic>
</source>
<year>2011</year>
<volume>141</volume>
<issue>3-4</issue>
<fpage>271</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="other">2-s2.0-79958022971</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kohno</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wissuwa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Makkar</surname>
<given-names>HPS</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL</article-title>
<source>
<italic>Global Change Biology</italic>
</source>
<year>2011</year>
<volume>17</volume>
<issue>7</issue>
<fpage>2319</fpage>
<lpage>2329</lpage>
<pub-id pub-id-type="other">2-s2.0-79957872074</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hatfield</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Can lignin be accurately measured?</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2005</year>
<volume>45</volume>
<issue>3</issue>
<fpage>832</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="other">2-s2.0-18744364224</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goff</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>2012</year>
<volume>92</volume>
<issue>4</issue>
<fpage>751</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="other">2-s2.0-84856641230</pub-id>
<pub-id pub-id-type="pmid">22095731</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkmann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Blaschke</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Polle</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins</article-title>
<source>
<italic>Journal of Chemical Ecology</italic>
</source>
<year>2002</year>
<volume>28</volume>
<issue>12</issue>
<fpage>2483</fpage>
<lpage>2501</lpage>
<pub-id pub-id-type="other">2-s2.0-0036960021</pub-id>
<pub-id pub-id-type="pmid">12564795</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stange</surname>
<given-names>RR</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>McDonald</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>A simple and rapid method for determination of lignin in plant tissues—its usefulness in elicitor screening and comparison to the thioglycolic acid method</article-title>
<source>
<italic>Postharvest Biology and Technology</italic>
</source>
<year>1999</year>
<volume>15</volume>
<issue>2</issue>
<fpage>185</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="other">2-s2.0-0344699411</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vansoest</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition</article-title>
<source>
<italic>Journal of Dairy Science</italic>
</source>
<year>1991</year>
<volume>74</volume>
<issue>10</issue>
<fpage>3583</fpage>
<lpage>3597</lpage>
<pub-id pub-id-type="other">2-s2.0-0026232176</pub-id>
<pub-id pub-id-type="pmid">1660498</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Südekum</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Voigt</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Monties</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stangassinger</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Spectrophotometric investigations on lignin in wheat (
<italic>Triticum aestivum</italic>
L.): influence of cell wall preparation, solvent, and standard</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>1997</year>
<volume>45</volume>
<issue>4</issue>
<fpage>1220</fpage>
<lpage>1228</lpage>
<pub-id pub-id-type="other">2-s2.0-0343369271</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sluiter</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Scarlata</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Sluiter</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2010</year>
<volume>58</volume>
<issue>16</issue>
<fpage>9043</fpage>
<lpage>9053</lpage>
<pub-id pub-id-type="other">2-s2.0-77956505312</pub-id>
<pub-id pub-id-type="pmid">20669951</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Umezawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>High-throughput determination of thioglycolic acid lignin from rice</article-title>
<source>
<italic>Plant Biotechnology</italic>
</source>
<year>2009</year>
<volume>26</volume>
<issue>3</issue>
<fpage>337</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="other">2-s2.0-68049121969</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukushima</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Dehority</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses</article-title>
<source>
<italic>Journal of Animal Science</italic>
</source>
<year>2000</year>
<volume>78</volume>
<issue>12</issue>
<fpage>3135</fpage>
<lpage>3143</lpage>
<pub-id pub-id-type="other">2-s2.0-0034540997</pub-id>
<pub-id pub-id-type="pmid">11132828</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy</article-title>
<source>
<italic>Energy Sources A</italic>
</source>
<year>2011</year>
<volume>33</volume>
<issue>2</issue>
<fpage>114</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="other">2-s2.0-78049518919</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>HJG</given-names>
</name>
</person-group>
<article-title>Analysis of forage fiber and cell walls in ruminant nutrition</article-title>
<source>
<italic>Journal of Nutrition</italic>
</source>
<year>1997</year>
<volume>127, supplement 5</volume>
<fpage>S810</fpage>
<lpage>S813</lpage>
<pub-id pub-id-type="other">2-s2.0-0030963113</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedersen</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Funnell</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Impact of reduced lignin on plant fitness</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2005</year>
<volume>45</volume>
<issue>3</issue>
<fpage>812</fpage>
<lpage>819</lpage>
<pub-id pub-id-type="other">2-s2.0-18744388042</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casler</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Buxton</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>KP</given-names>
</name>
</person-group>
<article-title>Genetic modification of lignin concentration affects fitness of perennial herbaceous plants</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2002</year>
<volume>104</volume>
<issue>1</issue>
<fpage>127</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="other">2-s2.0-0036934566</pub-id>
<pub-id pub-id-type="pmid">12579437</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Avice</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Ourry</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>TH</given-names>
</name>
</person-group>
<article-title>Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (
<italic>Trifolium repens</italic>
L.)</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2007</year>
<volume>58</volume>
<issue>6</issue>
<fpage>1271</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="other">2-s2.0-34548400169</pub-id>
<pub-id pub-id-type="pmid">17298963</pub-id>
</element-citation>
</ref>
<ref id="B275">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Sheaffer</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Drought effects on perennial forage legume yield and quality</article-title>
<source>
<italic>Agronomy Journal</italic>
</source>
<year>1992</year>
<volume>84</volume>
<fpage>774</fpage>
<lpage>779</lpage>
</element-citation>
</ref>
<ref id="B276">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit</surname>
<given-names>HV</given-names>
</name>
<name>
<surname>Pesant</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Barnett</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>WN</given-names>
</name>
<name>
<surname>Dionne</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Quality and morphological-characteristics of alfalfa as affected by soil-moisture, ph and phosphorus fertilization</article-title>
<source>
<italic>Canadian Journal of Plant Science</italic>
</source>
<year>1992</year>
<volume>72</volume>
<fpage>147</fpage>
<lpage>162</lpage>
</element-citation>
</ref>
<ref id="B277">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deetz</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Buxton</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Water-deficit effects on cell-wall composition and in vitro degradability of structural polysaccharides from alfalfa stems</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>1996</year>
<volume>36</volume>
<issue>2</issue>
<fpage>383</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="other">2-s2.0-0000026018</pub-id>
</element-citation>
</ref>
<ref id="B278">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiasconaro</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Gogorcena</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Munoz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Andueza</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sanchez-Diaz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2012</year>
<volume>191</volume>
<fpage>16</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">22682561</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Muneer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Avice</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Ourry</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T-H</given-names>
</name>
</person-group>
<article-title>Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass (
<italic>Lolium perenne</italic>
)</article-title>
<source>
<italic>Physiologia Plantarum</italic>
</source>
<year>2012</year>
<volume>145</volume>
<fpage>440</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="other">2-s2.0-84857770427</pub-id>
<pub-id pub-id-type="pmid">22289111</pub-id>
</element-citation>
</ref>
<ref id="B279">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guenni</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Marín</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baruch</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality</article-title>
<source>
<italic>Plant and Soil</italic>
</source>
<year>2002</year>
<volume>243</volume>
<issue>2</issue>
<fpage>229</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="other">2-s2.0-0036592716</pub-id>
</element-citation>
</ref>
<ref id="B280">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2012</year>
<volume>52</volume>
<fpage>2718</fpage>
<lpage>2727</lpage>
</element-citation>
</ref>
<ref id="B50">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>FL</given-names>
</name>
</person-group>
<article-title>Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves</article-title>
<source>
<italic>Journal of Applied Genetics</italic>
</source>
<year>2009</year>
<volume>50</volume>
<issue>3</issue>
<fpage>213</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="other">2-s2.0-69549113550</pub-id>
<pub-id pub-id-type="pmid">19638676</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vincent</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lapierre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cornic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Negroni</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zivy</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2005</year>
<volume>137</volume>
<issue>3</issue>
<fpage>949</fpage>
<lpage>960</lpage>
<pub-id pub-id-type="other">2-s2.0-20444472040</pub-id>
<pub-id pub-id-type="pmid">15728345</pub-id>
</element-citation>
</ref>
<ref id="B281">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leinhos</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bergmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Changes in the yield, lignin content and protein patterns of barley (
<italic>Hordeum vulgare</italic>
cv Alexis) induced by drought stress</article-title>
<source>
<italic>Journal of Applied Botany</italic>
</source>
<year>1995</year>
<volume>69</volume>
<fpage>206</fpage>
<lpage>210</lpage>
</element-citation>
</ref>
<ref id="B282">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahmoudi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>MY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2010</year>
<volume>58</volume>
<issue>8</issue>
<fpage>5122</fpage>
<lpage>5130</lpage>
<pub-id pub-id-type="other">2-s2.0-77951290512</pub-id>
<pub-id pub-id-type="pmid">20302375</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sánchez-Aguayo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Rodríguez-Galán</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>García</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Torreblanca</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2004</year>
<volume>220</volume>
<issue>2</issue>
<fpage>278</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="other">2-s2.0-11844266632</pub-id>
<pub-id pub-id-type="pmid">15322882</pub-id>
</element-citation>
</ref>
<ref id="B283">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peyrano</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Taleisnik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Quiroga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>de Forchetti</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Tigier</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots</article-title>
<source>
<italic>Plant Physiology and Biochemistry</italic>
</source>
<year>1997</year>
<volume>35</volume>
<issue>5</issue>
<fpage>387</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="other">2-s2.0-0030924997</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cachorro</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ortiz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Barcelo</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Cerda</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Lignin deposition in vascular tissues of phaseolus-ulgaris roots in response to salt stress and CA
<sup>2+</sup>
ions</article-title>
<source>
<italic>Phyton-Annales Rei Botanicae</italic>
</source>
<year>1993</year>
<volume>33</volume>
<fpage>33</fpage>
<lpage>40</lpage>
</element-citation>
</ref>
<ref id="B58">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karahara</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Uetake</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Development of the Casparian strip in primary roots of maize under salt stress</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2004</year>
<volume>219</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="other">2-s2.0-2442446269</pub-id>
<pub-id pub-id-type="pmid">14986139</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>YP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress</article-title>
<source>
<italic>Plant Cell and Environment</italic>
</source>
<year>2012</year>
<volume>35</volume>
<fpage>1932</fpage>
<lpage>1947</lpage>
</element-citation>
</ref>
<ref id="B284">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings</article-title>
<source>
<italic>Journal of Plant Physiology</italic>
</source>
<year>2001</year>
<volume>158</volume>
<issue>5</issue>
<fpage>667</fpage>
<lpage>671</lpage>
<pub-id pub-id-type="other">2-s2.0-0034986454</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neves</surname>
<given-names>GYS</given-names>
</name>
<name>
<surname>Marchiosi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ferrarese</surname>
<given-names>MLL</given-names>
</name>
<name>
<surname>Siqueira-Soares</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Ferrarese-Filho</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Root growth inhibition and lignification induced by salt stress in soybean</article-title>
<source>
<italic>Journal of Agronomy and Crop Science</italic>
</source>
<year>2010</year>
<volume>196</volume>
<issue>6</issue>
<fpage>467</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="other">2-s2.0-78349232441</pub-id>
</element-citation>
</ref>
<ref id="B285">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kováčik</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Štork</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Klejdus</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Grúz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hedbavny</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Effect of metabolic regulators on aluminium uptake and toxicity in Matricaria chamomilla plants</article-title>
<source>
<italic>Plant Physiology and Biochemistry</italic>
</source>
<year>2012</year>
<volume>54</volume>
<fpage>140</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="other">2-s2.0-84859707655</pub-id>
<pub-id pub-id-type="pmid">22466748</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance</article-title>
<source>
<italic>Plant Cell Reports</italic>
</source>
<year>2012</year>
<volume>31</volume>
<issue>4</issue>
<fpage>687</fpage>
<lpage>696</lpage>
<pub-id pub-id-type="other">2-s2.0-84858295601</pub-id>
<pub-id pub-id-type="pmid">22086537</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hossain</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hossain</surname>
<given-names>AKMZ</given-names>
</name>
<name>
<surname>Kihara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Koyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H
<sub>2</sub>
O
<sub>2</sub>
generation in wheat seedlings</article-title>
<source>
<italic>Soil Science and Plant Nutrition</italic>
</source>
<year>2005</year>
<volume>51</volume>
<issue>2</issue>
<fpage>223</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="other">2-s2.0-18444375890</pub-id>
</element-citation>
</ref>
<ref id="B286">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Lignin deposition induced by aluminum in wheat (
<italic>Triticum aestivum</italic>
) roots</article-title>
<source>
<italic>Physiologia Plantarum</italic>
</source>
<year>1996</year>
<volume>96</volume>
<issue>2</issue>
<fpage>193</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="other">2-s2.0-0030029519</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heidarabadi</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Ghanati</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Interaction between boron and aluminum and their effects on phenolic metabolism of
<italic>Linum usitatissimum</italic>
L. roots</article-title>
<source>
<italic>Plant Physiology and Biochemistry</italic>
</source>
<year>2011</year>
<volume>49</volume>
<issue>12</issue>
<fpage>1377</fpage>
<lpage>1383</lpage>
<pub-id pub-id-type="other">2-s2.0-80053970139</pub-id>
<pub-id pub-id-type="pmid">22078374</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finger-Teixeira</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lucio Ferrarese</surname>
<given-names>MDL</given-names>
</name>
<name>
<surname>Soares</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>da Silva</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ferrarese-Filho</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Cadmium-induced lignification restricts soybean root growth</article-title>
<source>
<italic>Ecotoxicology and Environmental Safety</italic>
</source>
<year>2010</year>
<volume>73</volume>
<issue>8</issue>
<fpage>1959</fpage>
<lpage>1964</lpage>
<pub-id pub-id-type="other">2-s2.0-77957922734</pub-id>
<pub-id pub-id-type="pmid">20817298</pub-id>
</element-citation>
</ref>
<ref id="B287">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>ZH</given-names>
</name>
</person-group>
<article-title>Rapid effect of copper on lignin biosynthesis in soybean roots</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2005</year>
<volume>168</volume>
<issue>3</issue>
<fpage>855</fpage>
<lpage>861</lpage>
<pub-id pub-id-type="other">2-s2.0-12744279483</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cervilla</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Rosales</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rubio-Wilhelmi</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Involvement of lignification and membrane permeability in the tomato root response to boron toxicity</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2009</year>
<volume>176</volume>
<issue>4</issue>
<fpage>545</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="other">2-s2.0-60449120485</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Nicholas</surname>
<given-names>DJD</given-names>
</name>
</person-group>
<article-title>The effects of manganese and nitrate supply on the levels of phenolics and lignin in young wheat plants</article-title>
<source>
<italic>Plant and Soil</italic>
</source>
<year>1984</year>
<volume>81</volume>
<fpage>437</fpage>
<lpage>440</lpage>
</element-citation>
</ref>
<ref id="B75">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rengel</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Pedler</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Time-course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus</article-title>
<source>
<italic>Annals of Botany</italic>
</source>
<year>1994</year>
<volume>74</volume>
<issue>5</issue>
<fpage>471</fpage>
<lpage>477</lpage>
<pub-id pub-id-type="other">2-s2.0-0028005201</pub-id>
</element-citation>
</ref>
<ref id="B288">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kováčik</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klejdus</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Štork</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hedbavny</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2011</year>
<volume>59</volume>
<issue>9</issue>
<fpage>5139</fpage>
<lpage>5149</lpage>
<pub-id pub-id-type="other">2-s2.0-79955677931</pub-id>
<pub-id pub-id-type="pmid">21491911</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fritz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Palacios-Rojas</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Feil</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stitt</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism</article-title>
<source>
<italic>Plant Journal</italic>
</source>
<year>2006</year>
<volume>46</volume>
<issue>4</issue>
<fpage>533</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="other">2-s2.0-33646237133</pub-id>
<pub-id pub-id-type="pmid">16640592</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teixeira</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Andrade</surname>
<given-names>ADB</given-names>
</name>
<name>
<surname>Ferrarese-Filho</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ferrarese</surname>
<given-names>MDL</given-names>
</name>
</person-group>
<article-title>Role of calcium on phenolic compounds and enzymes related to lignification in soybean (
<italic>Glycine max</italic>
L.) root growth</article-title>
<source>
<italic>Plant Growth Regulation</italic>
</source>
<year>2006</year>
<volume>49</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="other">2-s2.0-33744466580</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eppendorfer</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Eggum</surname>
<given-names>BO</given-names>
</name>
</person-group>
<article-title>Effects of sulphur, nitrogen, phosphorus, potassium, and water stress on dietary fibre fractions, starch, amino acids and on the biological value of potato protein</article-title>
<source>
<italic>Plant Foods for Human Nutrition</italic>
</source>
<year>1994</year>
<volume>45</volume>
<issue>4</issue>
<fpage>299</fpage>
<lpage>313</lpage>
<pub-id pub-id-type="other">2-s2.0-0028455212</pub-id>
<pub-id pub-id-type="pmid">7971771</pub-id>
</element-citation>
</ref>
<ref id="B289">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Umezawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Silicon deficiency promotes lignin accumulation in rice</article-title>
<source>
<italic>Plant Biotechnology</italic>
</source>
<year>2012</year>
<volume>29</volume>
<fpage>391</fpage>
<lpage>394</lpage>
</element-citation>
</ref>
<ref id="B290">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wissuwa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pariasca-Tanaka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Südekum</surname>
<given-names>K-H</given-names>
</name>
<name>
<surname>Kohno</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Leaf ascorbic acid level—is it really important for ozone tolerance in rice?</article-title>
<source>
<italic>Plant Physiology and Biochemistry</italic>
</source>
<year>2012</year>
<volume>59</volume>
<fpage>63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="other">2-s2.0-84857963790</pub-id>
<pub-id pub-id-type="pmid">22417733</pub-id>
</element-citation>
</ref>
<ref id="B291">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Muntifering</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Bermejo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gimeno</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Elvira</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Ozone and increased nitrogen supply effects on the yield and nutritive quality of
<italic>Trifolium subterraneum</italic>
</article-title>
<source>
<italic>Atmospheric Environment</italic>
</source>
<year>2005</year>
<volume>39</volume>
<issue>32</issue>
<fpage>5899</fpage>
<lpage>5907</lpage>
<pub-id pub-id-type="other">2-s2.0-24644446934</pub-id>
</element-citation>
</ref>
<ref id="B292">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muntifering</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Chappelka</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Karnosky</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Somers</surname>
<given-names>GL</given-names>
</name>
</person-group>
<article-title>Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system</article-title>
<source>
<italic>Functional Ecology</italic>
</source>
<year>2006</year>
<volume>20</volume>
<issue>2</issue>
<fpage>269</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="other">2-s2.0-33646555753</pub-id>
</element-citation>
</ref>
<ref id="B293">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muntifering</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Crosby</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Chappelka</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>Yield and quality characteristics of bahiagrass (
<italic>Paspalum notatum</italic>
) exposed to ground-level ozone</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2000</year>
<volume>84</volume>
<issue>3-4</issue>
<fpage>243</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="other">2-s2.0-0034607922</pub-id>
</element-citation>
</ref>
<ref id="B294">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Powell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Muntifering</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chappelka</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>Yield and nutritive quality of sericea lespedeza (
<italic>Lespedeza cuneata</italic>
) and little bluestem (
<italic>Schizachyrium scoparium</italic>
) exposed to ground-level ozone</article-title>
<source>
<italic>Environmental Pollution</italic>
</source>
<year>2003</year>
<volume>122</volume>
<issue>3</issue>
<fpage>313</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="other">2-s2.0-0037374723</pub-id>
<pub-id pub-id-type="pmid">12547521</pub-id>
</element-citation>
</ref>
<ref id="B295">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bender</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Muntifering</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Weigel</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Growth and nutritive quality of Poa pratensis as influenced by ozone and competition</article-title>
<source>
<italic>Environmental Pollution</italic>
</source>
<year>2006</year>
<volume>142</volume>
<issue>1</issue>
<fpage>109</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="other">2-s2.0-33646023150</pub-id>
<pub-id pub-id-type="pmid">16290915</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rozema</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tosserams</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nelissen</surname>
<given-names>HJM</given-names>
</name>
<name>
<surname>van Heerwaarden</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Broekman</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Flierman</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species
<italic>Calamagrostis epigeios</italic>
</article-title>
<source>
<italic>Plant Ecology</italic>
</source>
<year>1997</year>
<volume>128</volume>
<issue>1-2</issue>
<fpage>284</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="other">2-s2.0-0030856603</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charles</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Goulet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arul</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. IV. Biochemical modification of structural barriers</article-title>
<source>
<italic>Postharvest Biology and Technology</italic>
</source>
<year>2008</year>
<volume>47</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="other">2-s2.0-36049045188</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamasaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Noguchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mimaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons</article-title>
<source>
<italic>Journal of Radiation Research</italic>
</source>
<year>2007</year>
<volume>48</volume>
<issue>6</issue>
<fpage>443</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="other">2-s2.0-36749006643</pub-id>
<pub-id pub-id-type="pmid">17690531</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parrado</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation</article-title>
<source>
<italic>Photochemistry and Photobiology</italic>
</source>
<year>2004</year>
<volume>79</volume>
<fpage>205</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="pmid">15068034</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zavala</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Scopel</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Ballaré</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Effects of ambient UV-B radiation on soybean crops: impact on leaf herbivory by Anticarsia gemmatalis</article-title>
<source>
<italic>Plant Ecology</italic>
</source>
<year>2001</year>
<volume>156</volume>
<issue>2</issue>
<fpage>121</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="other">2-s2.0-0035651685</pub-id>
</element-citation>
</ref>
<ref id="B119">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballester</surname>
<given-names>A-R</given-names>
</name>
<name>
<surname>Lafuente</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Forment</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance</article-title>
<source>
<italic>Molecular Plant Pathology</italic>
</source>
<year>2011</year>
<volume>12</volume>
<issue>9</issue>
<fpage>879</fpage>
<lpage>897</lpage>
<pub-id pub-id-type="other">2-s2.0-80055102663</pub-id>
<pub-id pub-id-type="pmid">21726388</pub-id>
</element-citation>
</ref>
<ref id="B296">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valentines</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Vilaplana</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Usall</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Larrigaudière</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Specific roles of enzymatic browning and lignification in apple disease resistance</article-title>
<source>
<italic>Postharvest Biology and Technology</italic>
</source>
<year>2005</year>
<volume>36</volume>
<issue>3</issue>
<fpage>227</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="other">2-s2.0-19344363000</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhuiyan</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Selvaraj</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>King</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Role of lignification in plant defense</article-title>
<source>
<italic>Plant Signaling & Behavior</italic>
</source>
<year>2009</year>
<volume>4</volume>
<issue>2</issue>
<fpage>158</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="other">2-s2.0-59449103442</pub-id>
<pub-id pub-id-type="pmid">19649200</pub-id>
</element-citation>
</ref>
<ref id="B106">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhuiyan</surname>
<given-names>NH</given-names>
</name>
<name>
<surname>Selvaraj</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>King</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2009</year>
<volume>60</volume>
<issue>2</issue>
<fpage>509</fpage>
<lpage>521</lpage>
<pub-id pub-id-type="other">2-s2.0-67650787446</pub-id>
<pub-id pub-id-type="pmid">19039100</pub-id>
</element-citation>
</ref>
<ref id="B297">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gill</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Expression of lignin biosynthetic genes in wheat during development and upon infection by fungal pathogens</article-title>
<source>
<italic>Plant Molecular Biology Reporter</italic>
</source>
<year>2011</year>
<volume>29</volume>
<issue>1</issue>
<fpage>149</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="other">2-s2.0-79251644896</pub-id>
</element-citation>
</ref>
<ref id="B298">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dushnicky</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Ballance</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Sumner</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>AW</given-names>
</name>
</person-group>
<article-title>The role of lignification as a resistance mechanism in wheat to a toxin-producing isolate of
<italic>Pyrenophora tritici-repentis</italic>
</article-title>
<source>
<italic>Canadian Journal of Plant Pathology</italic>
</source>
<year>1998</year>
<volume>20</volume>
<issue>1</issue>
<fpage>35</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="other">2-s2.0-0031769405</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants</article-title>
<source>
<italic>Plant Molecular Biology</italic>
</source>
<year>2007</year>
<volume>65</volume>
<issue>6</issue>
<fpage>799</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="other">2-s2.0-36348994901</pub-id>
<pub-id pub-id-type="pmid">17960484</pub-id>
</element-citation>
</ref>
<ref id="B299">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier</article-title>
<source>
<italic>European Journal of Plant Pathology</italic>
</source>
<year>2010</year>
<volume>128</volume>
<issue>1</issue>
<fpage>39</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="other">2-s2.0-77955066025</pub-id>
</element-citation>
</ref>
<ref id="B300">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dracatos</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Cogan</surname>
<given-names>NOI</given-names>
</name>
<name>
<surname>Dobrowolski</surname>
<given-names>MP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (
<italic>Lolium perenne</italic>
L.)</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2008</year>
<volume>117</volume>
<issue>2</issue>
<fpage>203</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="other">2-s2.0-46249106285</pub-id>
<pub-id pub-id-type="pmid">18446316</pub-id>
</element-citation>
</ref>
<ref id="B301">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eynck</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Séguin-Swartz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Parkin</surname>
<given-names>IAP</given-names>
</name>
</person-group>
<article-title>Monolignol biosynthesis is associated with resistance to
<italic>Sclerotinia sclerotiorum</italic>
in
<italic>Camelina sativa</italic>
</article-title>
<source>
<italic>Molecular Plant Pathology</italic>
</source>
<year>2012</year>
<volume>13</volume>
<fpage>887</fpage>
<lpage>899</lpage>
<pub-id pub-id-type="other">2-s2.0-84859378573</pub-id>
<pub-id pub-id-type="pmid">22487550</pub-id>
</element-citation>
</ref>
<ref id="B107">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guillaumie</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mzid</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Méchin</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco</article-title>
<source>
<italic>Plant Molecular Biology</italic>
</source>
<year>2010</year>
<volume>72</volume>
<issue>1-2</issue>
<fpage>215</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="other">2-s2.0-72149086683</pub-id>
<pub-id pub-id-type="pmid">19902151</pub-id>
</element-citation>
</ref>
<ref id="B108">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mzid</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marchive</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Blancard</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens</article-title>
<source>
<italic>Physiologia Plantarum</italic>
</source>
<year>2007</year>
<volume>131</volume>
<issue>3</issue>
<fpage>434</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="other">2-s2.0-34848891868</pub-id>
<pub-id pub-id-type="pmid">18251882</pub-id>
</element-citation>
</ref>
<ref id="B302">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamphuis</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Küster</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in
<italic>Medicago truncatula</italic>
</article-title>
<source>
<italic>Molecular Plant Pathology</italic>
</source>
<year>2012</year>
<volume>13</volume>
<fpage>593</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="other">2-s2.0-84855234582</pub-id>
<pub-id pub-id-type="pmid">22212347</pub-id>
</element-citation>
</ref>
<ref id="B303">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozlowska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Krzywanski</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Lignification in red raspberry canes upon wounding and fungal infection</article-title>
<source>
<italic>Acta Physiologiae Plantarum</italic>
</source>
<year>1991</year>
<volume>13</volume>
<fpage>115</fpage>
<lpage>121</lpage>
</element-citation>
</ref>
<ref id="B304">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lygin</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vittal</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Widholm</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Lozovaya</surname>
<given-names>VV</given-names>
</name>
</person-group>
<article-title>The importance of phenolic metabolism to limit the growth of
<italic>Phakopsora pachyrhizi</italic>
</article-title>
<source>
<italic>Phytopathology</italic>
</source>
<year>2009</year>
<volume>99</volume>
<issue>12</issue>
<fpage>1412</fpage>
<lpage>1420</lpage>
<pub-id pub-id-type="other">2-s2.0-73649089648</pub-id>
<pub-id pub-id-type="pmid">19900008</pub-id>
</element-citation>
</ref>
<ref id="B111">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of cotton (
<italic>Gossypium hirsutum</italic>
) dirigent1 gene enhances lignification that blocks the spread of
<italic>Verticillium dahliae</italic>
</article-title>
<source>
<italic>Acta Biochimica et Biophysica Sinica</italic>
</source>
<year>2012</year>
<volume>44</volume>
<fpage>555</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="pmid">22595512</pub-id>
</element-citation>
</ref>
<ref id="B118">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abo-Elyousr</surname>
<given-names>KAM</given-names>
</name>
<name>
<surname>Hashem</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers</article-title>
<source>
<italic>Crop Protection</italic>
</source>
<year>2009</year>
<volume>28</volume>
<issue>4</issue>
<fpage>295</fpage>
<lpage>301</lpage>
<pub-id pub-id-type="other">2-s2.0-60149102153</pub-id>
</element-citation>
</ref>
<ref id="B305">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lignin metabolism has a central role in the resistance of cotton to the wilt fungus
<italic>Verticillium dahliae</italic>
as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2011</year>
<volume>62</volume>
<issue>15</issue>
<fpage>5607</fpage>
<lpage>5621</lpage>
<pub-id pub-id-type="other">2-s2.0-82255186203</pub-id>
<pub-id pub-id-type="pmid">21862479</pub-id>
</element-citation>
</ref>
<ref id="B112">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Shortt</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>EB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Activation of host defense mechanisms by elevated production of H
<sub>2</sub>
O
<sub>2</sub>
in transgenic plants</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>1997</year>
<volume>115</volume>
<issue>2</issue>
<fpage>427</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="other">2-s2.0-0031401272</pub-id>
<pub-id pub-id-type="pmid">12223817</pub-id>
</element-citation>
</ref>
<ref id="B306">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andreu</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Guevara</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Wolski</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Daleo</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Caldiz</surname>
<given-names>DO</given-names>
</name>
</person-group>
<article-title>Enhancement of natural disease resistance in potatoes by chemicals</article-title>
<source>
<italic>Pest Management Science</italic>
</source>
<year>2006</year>
<volume>62</volume>
<issue>2</issue>
<fpage>162</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="other">2-s2.0-31844444825</pub-id>
<pub-id pub-id-type="pmid">16408317</pub-id>
</element-citation>
</ref>
<ref id="B113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wally</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Punja</surname>
<given-names>ZK</given-names>
</name>
</person-group>
<article-title>Enhanced disease resistance in transgenic carrot (
<italic>Daucus carota</italic>
L.) plants over-expressing a rice cationic peroxidase</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2010</year>
<volume>232</volume>
<issue>5</issue>
<fpage>1229</fpage>
<lpage>1239</lpage>
<pub-id pub-id-type="other">2-s2.0-77956684979</pub-id>
<pub-id pub-id-type="pmid">20730544</pub-id>
</element-citation>
</ref>
<ref id="B307">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrod</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Brittain</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>WP</given-names>
</name>
</person-group>
<article-title>Studies on the contribution of lignin and suberin to the impedance of wounded carrot root-tissue to fungal invasion</article-title>
<source>
<italic>New Phytologist</italic>
</source>
<year>1982</year>
<volume>90</volume>
<fpage>99</fpage>
<lpage>108</lpage>
</element-citation>
</ref>
<ref id="B116">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mandal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mitra</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Reinforcement of cell wall in roots of
<italic>Lycopersicon esculentum</italic>
through induction of phenolic compounds and lignin by elicitors</article-title>
<source>
<italic>Physiological and Molecular Plant Pathology</italic>
</source>
<year>2007</year>
<volume>71</volume>
<issue>4–6</issue>
<fpage>201</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="other">2-s2.0-45049086552</pub-id>
</element-citation>
</ref>
<ref id="B308">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagarathna</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Shetty</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Shetty</surname>
<given-names>HS</given-names>
</name>
</person-group>
<article-title>Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>1993</year>
<volume>44</volume>
<issue>8</issue>
<fpage>1291</fpage>
<lpage>1296</lpage>
<pub-id pub-id-type="other">2-s2.0-77956980213</pub-id>
</element-citation>
</ref>
<ref id="B115">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nandini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>JSS</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Induction of systemic acquired resistance in arachis hypogaea l. by sclerotium rolfsii derived elicitors</article-title>
<source>
<italic>Journal of Phytopathology</italic>
</source>
<year>2010</year>
<volume>158</volume>
<issue>9</issue>
<fpage>594</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="other">2-s2.0-77955250338</pub-id>
</element-citation>
</ref>
<ref id="B309">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pomar</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Novo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bernal</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Merino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Barceló</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during
<italic>Verticillium</italic>
wilt in
<italic>Capsicum annuum</italic>
</article-title>
<source>
<italic>New Phytologist</italic>
</source>
<year>2004</year>
<volume>163</volume>
<issue>1</issue>
<fpage>111</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="other">2-s2.0-3042576342</pub-id>
</element-citation>
</ref>
<ref id="B117">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegrist</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jeblick</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kauss</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Defense responses in infected and elicited cucumber (
<italic>Cucumis sativus</italic>
L.) hypocotyl segments exhibiting acquired resistance</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>1994</year>
<volume>105</volume>
<issue>4</issue>
<fpage>1365</fpage>
<lpage>1374</lpage>
<pub-id pub-id-type="other">2-s2.0-0027951014</pub-id>
<pub-id pub-id-type="pmid">12232291</pub-id>
</element-citation>
</ref>
<ref id="B114">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vidhyasekaran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kamala</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ramanathan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rajappan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Paranidharan</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Velazhahan</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Induction of systemic resistance by
<italic>Pseudomonas fluorescens</italic>
Pf1 against
<italic>Xanthomonas oryzae</italic>
pv.
<italic>Oryzae</italic>
in rice leaves</article-title>
<source>
<italic>Phytoparasitica</italic>
</source>
<year>2001</year>
<volume>29</volume>
<issue>2</issue>
<fpage>155</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="other">2-s2.0-0035037971</pub-id>
</element-citation>
</ref>
<ref id="B109">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elfstrand</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sitbon</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lapierre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bottin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>von Arnold</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2002</year>
<volume>214</volume>
<issue>5</issue>
<fpage>708</fpage>
<lpage>716</lpage>
<pub-id pub-id-type="other">2-s2.0-0347997281</pub-id>
<pub-id pub-id-type="pmid">11882939</pub-id>
</element-citation>
</ref>
<ref id="B310">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishihara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mitsuhara</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nakaho</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Transcriptome analysis of quantitative resistance-specific response upon
<italic>Ralstonia solanacearum</italic>
infection in tomato</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2012</year>
<volume>7</volume>
<issue>10</issue>
<pub-id pub-id-type="publisher-id">e46763</pub-id>
</element-citation>
</ref>
<ref id="B311">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fogain</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gowen</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Investigations on possible mechanisms of resistance to nematodes in Musa</article-title>
<source>
<italic>Euphytica</italic>
</source>
<year>1996</year>
<volume>92</volume>
<issue>3</issue>
<fpage>375</fpage>
<lpage>381</lpage>
<pub-id pub-id-type="other">2-s2.0-0030472737</pub-id>
</element-citation>
</ref>
<ref id="B312">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kavitha</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Balamohan</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Kavitha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Selvi</surname>
<given-names>BS</given-names>
</name>
</person-group>
<article-title>Biochemical interactions of banana hybrids to root lesion nematodes (
<italic>Pratylenchus coffeae</italic>
)</article-title>
<source>
<italic>Plant Archives</italic>
</source>
<year>2008</year>
<volume>8</volume>
<fpage>105</fpage>
<lpage>110</lpage>
</element-citation>
</ref>
<ref id="B313">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valette</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Andary</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Geiger</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Sarah</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Nicole</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode
<italic>Radopholus similis</italic>
</article-title>
<source>
<italic>Phytopathology</italic>
</source>
<year>1998</year>
<volume>88</volume>
<issue>11</issue>
<fpage>1141</fpage>
<lpage>1148</lpage>
<pub-id pub-id-type="other">2-s2.0-0031787593</pub-id>
<pub-id pub-id-type="pmid">18944846</pub-id>
</element-citation>
</ref>
<ref id="B314">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zacheo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bleve-Zacheo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pacoda</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Orlando</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Durbin</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>The association between heat-induced susceptibility of tomato to
<italic>Meloidogyne incognita</italic>
and peroxidase activity</article-title>
<source>
<italic>Physiological and Molecular Plant Pathology</italic>
</source>
<year>1995</year>
<volume>46</volume>
<issue>6</issue>
<fpage>491</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="other">2-s2.0-0028850947</pub-id>
</element-citation>
</ref>
<ref id="B315">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ithal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Recknor</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nettleton</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean</article-title>
<source>
<italic>Molecular Plant-Microbe Interactions</italic>
</source>
<year>2007</year>
<volume>20</volume>
<issue>3</issue>
<fpage>293</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="other">2-s2.0-33847166219</pub-id>
<pub-id pub-id-type="pmid">17378432</pub-id>
</element-citation>
</ref>
<ref id="B316">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barros-Rios</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Malvar</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H-JG</given-names>
</name>
<name>
<surname>Santiago</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Cell wall composition as a maize defense mechanism against corn borers</article-title>
<source>
<italic>Phytochemistry</italic>
</source>
<year>2011</year>
<volume>72</volume>
<issue>4-5</issue>
<fpage>365</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="other">2-s2.0-79952194156</pub-id>
<pub-id pub-id-type="pmid">21281952</pub-id>
</element-citation>
</ref>
<ref id="B317">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beeghly</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Plant fiber composition and resistance to European corn borer in four maize populations</article-title>
<source>
<italic>Maydica</italic>
</source>
<year>1997</year>
<volume>42</volume>
<issue>3</issue>
<fpage>297</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="other">2-s2.0-0030784633</pub-id>
</element-citation>
</ref>
<ref id="B110">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Halpin</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco</article-title>
<source>
<italic>Physiological Entomology</italic>
</source>
<year>2010</year>
<volume>35</volume>
<issue>2</issue>
<fpage>186</fpage>
<lpage>191</lpage>
<pub-id pub-id-type="other">2-s2.0-79952633887</pub-id>
</element-citation>
</ref>
<ref id="B318">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loranger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Shipley</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures</article-title>
<source>
<italic>Ecology</italic>
</source>
<year>2012</year>
<volume>93</volume>
<fpage>2674</fpage>
<lpage>2682</lpage>
<pub-id pub-id-type="pmid">23431597</pub-id>
</element-citation>
</ref>
<ref id="B319">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Méchin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Argillier</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hébert</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2001</year>
<volume>41</volume>
<issue>3</issue>
<fpage>690</fpage>
<lpage>697</lpage>
<pub-id pub-id-type="other">2-s2.0-0034954943</pub-id>
</element-citation>
</ref>
<ref id="B320">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roussel</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gibelin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fontaine</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Genetic analysis in recombinant inbred lines of early dent forage maize. II—QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments</article-title>
<source>
<italic>Maydica</italic>
</source>
<year>2002</year>
<volume>47</volume>
<issue>1</issue>
<fpage>9</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="other">2-s2.0-0036077580</pub-id>
</element-citation>
</ref>
<ref id="B321">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardinal</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2003</year>
<volume>106</volume>
<issue>5</issue>
<fpage>866</fpage>
<lpage>874</lpage>
<pub-id pub-id-type="other">2-s2.0-0037501343</pub-id>
<pub-id pub-id-type="pmid">12647061</pub-id>
</element-citation>
</ref>
<ref id="B257">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krakowsky</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (
<italic>Zea mays</italic>
L.) I: stalk tissue</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2005</year>
<volume>111</volume>
<issue>2</issue>
<fpage>337</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="other">2-s2.0-22844453143</pub-id>
<pub-id pub-id-type="pmid">15902397</pub-id>
</element-citation>
</ref>
<ref id="B322">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krakowsky</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Quantitative trait loci for cell wall components in recombinant inbred lines of maize (
<italic>Zea mays</italic>
L.) II: leaf sheath tissue</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2006</year>
<volume>112</volume>
<issue>4</issue>
<fpage>717</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="other">2-s2.0-32544439526</pub-id>
<pub-id pub-id-type="pmid">16362276</pub-id>
</element-citation>
</ref>
<ref id="B323">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Denoue</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2008</year>
<volume>175</volume>
<issue>4</issue>
<fpage>585</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="other">2-s2.0-49349094502</pub-id>
</element-citation>
</ref>
<ref id="B258">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riboulet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fabre</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dénoue</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martinantä</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Lefèvre</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>QTL mapping and candidate gene research for lignin content and cell wall digestibility in a top-cross of a flint maize recombinant inbred line progeny harvested at silage stage</article-title>
<source>
<italic>Maydica</italic>
</source>
<year>2008</year>
<volume>53</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="other">2-s2.0-48249083823</pub-id>
</element-citation>
</ref>
<ref id="B324">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Méchin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Denoue</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bauland</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Laborde</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>QTL for yield, earliness, and cell wall quality traits in topcross experiments of the F838 × F286 early maize RIL progeny</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2010</year>
<volume>50</volume>
<issue>5</issue>
<fpage>1761</fpage>
<lpage>1772</lpage>
<pub-id pub-id-type="other">2-s2.0-78650082764</pub-id>
</element-citation>
</ref>
<ref id="B325">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenzana</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H-JG</given-names>
</name>
<name>
<surname>Bernardo</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2010</year>
<volume>50</volume>
<issue>2</issue>
<fpage>541</fpage>
<lpage>555</lpage>
<pub-id pub-id-type="other">2-s2.0-77749298717</pub-id>
</element-citation>
</ref>
<ref id="B326">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenz</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Hansey</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Kaeppler</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>de Leon</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (
<italic>Zea mays</italic>
L.)</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2010</year>
<volume>50</volume>
<issue>3</issue>
<fpage>842</fpage>
<lpage>852</lpage>
<pub-id pub-id-type="other">2-s2.0-77951048731</pub-id>
</element-citation>
</ref>
<ref id="B256">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Méchin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lefevre</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Maltese</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2012</year>
<volume>125</volume>
<fpage>531</fpage>
<lpage>549</lpage>
<pub-id pub-id-type="other">2-s2.0-84858597567</pub-id>
<pub-id pub-id-type="pmid">22437492</pub-id>
</element-citation>
</ref>
<ref id="B327">
<label>143</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grando</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Baum</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ceccarelli</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>QTLs for straw quality characteristics identified in recombinant inbred lines of a
<italic>Hordeum vulgare</italic>
×
<italic>H. spontaneum</italic>
cross in a Mediterranean environment</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2005</year>
<volume>110</volume>
<issue>4</issue>
<fpage>688</fpage>
<lpage>695</lpage>
<pub-id pub-id-type="other">2-s2.0-15244360957</pub-id>
<pub-id pub-id-type="pmid">15678328</pub-id>
</element-citation>
</ref>
<ref id="B328">
<label>144</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siahsar</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Peighambari</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Taleii</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Naghavi</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Nabipour</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sarrafi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>QTL analysis of forage quality traits in barley (
<italic>Hordeum vulgare</italic>
L.)</article-title>
<source>
<italic>Cereal Research Communications</italic>
</source>
<year>2009</year>
<volume>37</volume>
<fpage>479</fpage>
<lpage>488</lpage>
</element-citation>
</ref>
<ref id="B329">
<label>145</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murray</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Rooney</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>SE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2008</year>
<volume>48</volume>
<issue>6</issue>
<fpage>2180</fpage>
<lpage>2193</lpage>
<pub-id pub-id-type="other">2-s2.0-57149105906</pub-id>
</element-citation>
</ref>
<ref id="B330">
<label>146</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiringani</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Friedt</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2011</year>
<volume>123</volume>
<issue>6</issue>
<fpage>999</fpage>
<lpage>1011</lpage>
<pub-id pub-id-type="other">2-s2.0-84857084352</pub-id>
<pub-id pub-id-type="pmid">21739141</pub-id>
</element-citation>
</ref>
<ref id="B331">
<label>147</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bao</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice</article-title>
<source>
<italic>Cereal Research Communications</italic>
</source>
<year>2007</year>
<volume>35</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="other">2-s2.0-33947129087</pub-id>
</element-citation>
</ref>
<ref id="B332">
<label>148</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>J-K</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>X-L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross
<italic>Oryza sativa</italic>
×
<italic>Oryza rufipogon</italic>
</article-title>
<source>
<italic>Journal of Zhejiang University B</italic>
</source>
<year>2011</year>
<volume>12</volume>
<issue>7</issue>
<fpage>518</fpage>
<lpage>526</lpage>
<pub-id pub-id-type="other">2-s2.0-79960450441</pub-id>
</element-citation>
</ref>
<ref id="B259">
<label>149</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wittkop</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in
<italic>Brassica napus</italic>
seeds</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2012</year>
<volume>124</volume>
<fpage>1573</fpage>
<lpage>1586</lpage>
<pub-id pub-id-type="other">2-s2.0-84856799326</pub-id>
<pub-id pub-id-type="pmid">22350089</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>150</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vermerris</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>McIntyre</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2010</year>
<volume>61</volume>
<issue>9</issue>
<fpage>2479</fpage>
<lpage>2490</lpage>
<pub-id pub-id-type="other">2-s2.0-77953009444</pub-id>
<pub-id pub-id-type="pmid">20410320</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>151</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y-H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>W-K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2008</year>
<volume>227</volume>
<issue>4</issue>
<fpage>867</fpage>
<lpage>881</lpage>
<pub-id pub-id-type="other">2-s2.0-38649114739</pub-id>
<pub-id pub-id-type="pmid">18224366</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>152</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallego-Giraldo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jikumaru</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kamiya</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Selective lignin downregulation leads to constitutive defense response expression in alfalfa (
<italic>Medicago sativa</italic>
L.)</article-title>
<source>
<italic>New Phytologist</italic>
</source>
<year>2011</year>
<volume>190</volume>
<issue>3</issue>
<fpage>627</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="other">2-s2.0-79954906549</pub-id>
<pub-id pub-id-type="pmid">21251001</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>153</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schreiber</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin</article-title>
<source>
<italic>Planta</italic>
</source>
<year>1996</year>
<volume>199</volume>
<issue>4</issue>
<fpage>596</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="other">2-s2.0-0029835827</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>154</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hose</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Clarkson</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Steudle</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hartung</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>The exodermis: a variable apoplastic barrier</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2001</year>
<volume>52</volume>
<issue>365</issue>
<fpage>2245</fpage>
<lpage>2264</lpage>
<pub-id pub-id-type="other">2-s2.0-0035203397</pub-id>
<pub-id pub-id-type="pmid">11709575</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>155</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naseer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lapierre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Franke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nawrath</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Geldner</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2012</year>
<volume>109</volume>
<fpage>10101</fpage>
<lpage>10106</lpage>
<pub-id pub-id-type="pmid">22665765</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>156</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kovacik</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klejdus</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hedbavny</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stork</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gruz</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Modulation of copper uptake and toxicity by abiotic stresses in Matricaria chamomilla plants</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2012</year>
<volume>60</volume>
<fpage>6755</fpage>
<lpage>6763</lpage>
</element-citation>
</ref>
<ref id="B69">
<label>157</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van de Mortel</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Villanueva</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Schat</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2006</year>
<volume>142</volume>
<issue>3</issue>
<fpage>1127</fpage>
<lpage>1147</lpage>
<pub-id pub-id-type="other">2-s2.0-33751119021</pub-id>
<pub-id pub-id-type="pmid">16998091</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>158</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsumoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Motoda</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2012</year>
<volume>185–186</volume>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="other">2-s2.0-84856648459</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>159</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dordas</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Role of nutrients in controlling plant diseases in sustainable agriculture. A review</article-title>
<source>
<italic>Agronomy for Sustainable Development</italic>
</source>
<year>2008</year>
<volume>28</volume>
<issue>1</issue>
<fpage>33</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="other">2-s2.0-40049112863</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>160</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hames</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Kurek</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lapierre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Monties</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Interaction between MnO
<sub>2</sub>
and oxalate: formation of a natural and abiotic lignin oxidizing system</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>1998</year>
<volume>46</volume>
<issue>12</issue>
<fpage>5362</fpage>
<lpage>5367</lpage>
<pub-id pub-id-type="other">2-s2.0-0000848268</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>161</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kandlbinder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Golldack</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dietz</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Oxidative stress and ozone: perception, signalling and response</article-title>
<source>
<italic>Plant, Cell and Environment</italic>
</source>
<year>2005</year>
<volume>28</volume>
<issue>8</issue>
<fpage>1012</fpage>
<lpage>1020</lpage>
<pub-id pub-id-type="other">2-s2.0-27644598269</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>162</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiscus</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Booker</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Burkey</surname>
<given-names>KO</given-names>
</name>
</person-group>
<article-title>Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning</article-title>
<source>
<italic>Plant, Cell and Environment</italic>
</source>
<year>2005</year>
<volume>28</volume>
<issue>8</issue>
<fpage>997</fpage>
<lpage>1011</lpage>
<pub-id pub-id-type="other">2-s2.0-25444511285</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>163</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kangasjärvi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jaspers</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kollist</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Signalling and cell death in ozone-exposed plants</article-title>
<source>
<italic>Plant, Cell and Environment</italic>
</source>
<year>2005</year>
<volume>28</volume>
<issue>8</issue>
<fpage>1021</fpage>
<lpage>1036</lpage>
<pub-id pub-id-type="other">2-s2.0-27644445271</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>164</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Wissuwa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2010</year>
<volume>61</volume>
<issue>5</issue>
<fpage>1405</fpage>
<lpage>1417</lpage>
<pub-id pub-id-type="other">2-s2.0-77949374839</pub-id>
<pub-id pub-id-type="pmid">20164144</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>165</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guidi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Degl’Innocenti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Genovesi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Soldatini</surname>
<given-names>GF</given-names>
</name>
</person-group>
<article-title>Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of
<italic>Lycopersicon esculentum</italic>
L. exposed to ozone</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2005</year>
<volume>168</volume>
<issue>1</issue>
<fpage>153</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="other">2-s2.0-7944236309</pub-id>
</element-citation>
</ref>
<ref id="B89">
<label>166</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davidson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Lignin as a possible factor in lodging of cereals</article-title>
<source>
<italic>Science</italic>
</source>
<year>1930</year>
<volume>72</volume>
<issue>1868</issue>
<fpage>401</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="other">2-s2.0-37049197143</pub-id>
<pub-id pub-id-type="pmid">17819642</pub-id>
</element-citation>
</ref>
<ref id="B90">
<label>167</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>Q-H</given-names>
</name>
</person-group>
<article-title>Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2010</year>
<volume>61</volume>
<issue>10</issue>
<fpage>2735</fpage>
<lpage>2744</lpage>
<pub-id pub-id-type="other">2-s2.0-77954724479</pub-id>
<pub-id pub-id-type="pmid">20400532</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>168</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>Q-H</given-names>
</name>
</person-group>
<article-title>The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2009</year>
<volume>60</volume>
<issue>9</issue>
<fpage>2763</fpage>
<lpage>2771</lpage>
<pub-id pub-id-type="other">2-s2.0-67649327199</pub-id>
<pub-id pub-id-type="pmid">19451187</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>169</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banniza</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hashemi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Warkentin</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Vandenberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (
<italic>Pisum sativum</italic>
)</article-title>
<source>
<italic>Canadian Journal of Botany</italic>
</source>
<year>2005</year>
<volume>83</volume>
<issue>8</issue>
<fpage>954</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="other">2-s2.0-29244462475</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>170</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inoue</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>HW</given-names>
</name>
</person-group>
<article-title>QTL analysis of lodging resistance and related traits in Italian ryegrass (
<italic>Lolium multiflorum</italic>
Lam.)</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2004</year>
<volume>109</volume>
<issue>8</issue>
<fpage>1576</fpage>
<lpage>1585</lpage>
<pub-id pub-id-type="other">2-s2.0-11144279460</pub-id>
<pub-id pub-id-type="pmid">15448899</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>171</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ookawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ishihara</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice</article-title>
<source>
<italic>Japanese Journal of Crop Science</italic>
</source>
<year>1993</year>
<volume>62</volume>
<issue>3</issue>
<fpage>378</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="other">2-s2.0-0027130630</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>172</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Travis</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Murison</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Hirst</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Chesson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Comparison of the anatomy and degradability of straw from varieties of wheat and barley that differ in susceptibility to lodging</article-title>
<source>
<italic>Journal of Agricultural Science</italic>
</source>
<year>1996</year>
<volume>127</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="other">2-s2.0-0029743151</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>173</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Investigation of cell wall composition related to stem lodging resistance in wheat (
<italic>Triticum aestivum</italic>
L. by FTIR spectroscopy)</article-title>
<source>
<italic>Plant Signaling & Behavior</italic>
</source>
<year>2012</year>
<volume>7</volume>
<fpage>856</fpage>
<lpage>863</lpage>
<pub-id pub-id-type="pmid">22751311</pub-id>
</element-citation>
</ref>
<ref id="B97">
<label>174</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sattler</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Funnell-Harris</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2010</year>
<volume>178</volume>
<issue>3</issue>
<fpage>229</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="other">2-s2.0-77549084364</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>175</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ching</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dhugga</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Appenzeller</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls</article-title>
<source>
<italic>Planta</italic>
</source>
<year>2006</year>
<volume>224</volume>
<issue>5</issue>
<fpage>1174</fpage>
<lpage>1184</lpage>
<pub-id pub-id-type="other">2-s2.0-33748934239</pub-id>
<pub-id pub-id-type="pmid">16752131</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>176</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vance</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Kirk</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Sherwood</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>Lignification as a mechanism of disease resistance</article-title>
<source>
<italic>Annual Review of Phytopathology</italic>
</source>
<year>1980</year>
<volume>18</volume>
<fpage>259</fpage>
<lpage>288</lpage>
</element-citation>
</ref>
<ref id="B100">
<label>177</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collinge</surname>
<given-names>DB</given-names>
</name>
</person-group>
<article-title>Cell wall appositions: the first line of defence</article-title>
<source>
<italic>Journal of Experimental Botany</italic>
</source>
<year>2009</year>
<volume>60</volume>
<issue>2</issue>
<fpage>351</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="other">2-s2.0-67650930086</pub-id>
<pub-id pub-id-type="pmid">19204034</pub-id>
</element-citation>
</ref>
<ref id="B101">
<label>178</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mateille</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Biology of the plant nematode relationship—physiological changes and the defence mechanism of plants</article-title>
<source>
<italic>Nematologica</italic>
</source>
<year>1994</year>
<volume>40</volume>
<issue>2</issue>
<fpage>276</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="other">2-s2.0-0028165717</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>179</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhattacharya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sood</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Citovsky</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection</article-title>
<source>
<italic>Molecular Plant Pathology</italic>
</source>
<year>2010</year>
<volume>11</volume>
<issue>5</issue>
<fpage>705</fpage>
<lpage>719</lpage>
<pub-id pub-id-type="other">2-s2.0-77956001365</pub-id>
<pub-id pub-id-type="pmid">20696007</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>180</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baker</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Orlandi</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>Active oxygen in plant pathogenesis</article-title>
<source>
<italic>Annual Review of Phytopathology</italic>
</source>
<year>1995</year>
<volume>33</volume>
<fpage>299</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="other">2-s2.0-0029197672</pub-id>
</element-citation>
</ref>
<ref id="B105">
<label>181</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angelini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tisi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rea</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Involvement of polyamine oxidase in wound healing</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2008</year>
<volume>146</volume>
<issue>1</issue>
<fpage>162</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="other">2-s2.0-40749094474</pub-id>
<pub-id pub-id-type="pmid">17993545</pub-id>
</element-citation>
</ref>
<ref id="B120">
<label>182</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cipollini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Whitehill</surname>
<given-names>JGA</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Bonello</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Herms</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer</article-title>
<source>
<italic>Journal of Chemical Ecology</italic>
</source>
<year>2011</year>
<volume>37</volume>
<issue>5</issue>
<fpage>450</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="other">2-s2.0-79955999236</pub-id>
<pub-id pub-id-type="pmid">21537902</pub-id>
</element-citation>
</ref>
<ref id="B121">
<label>183</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schrotenboer</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Malmstrom</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Modification of native grasses for biofuel production may increase virus susceptibility</article-title>
<source>
<italic>Global Change Biology Bioenergy</italic>
</source>
<year>2011</year>
<volume>3</volume>
<fpage>360</fpage>
<lpage>374</lpage>
</element-citation>
</ref>
<ref id="B122">
<label>184</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funnell-Harris</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Sattler</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum</article-title>
<source>
<italic>Phytopathology</italic>
</source>
<year>2010</year>
<volume>100</volume>
<issue>7</issue>
<fpage>671</fpage>
<lpage>681</lpage>
<pub-id pub-id-type="other">2-s2.0-77954340555</pub-id>
<pub-id pub-id-type="pmid">20528185</pub-id>
</element-citation>
</ref>
<ref id="B123">
<label>185</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gibson</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>King</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Bergstrom</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Plant pathogens as a source of diverse enzymes for lignocellulose digestion</article-title>
<source>
<italic>Current Opinion in Microbiology</italic>
</source>
<year>2011</year>
<volume>14</volume>
<issue>3</issue>
<fpage>264</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="other">2-s2.0-79959289951</pub-id>
<pub-id pub-id-type="pmid">21536481</pub-id>
</element-citation>
</ref>
<ref id="B124">
<label>186</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Degradation of non-phenolic lignin by the white-rot fungus
<italic>Pycnoporus cinnabarinus</italic>
</article-title>
<source>
<italic>Applied Microbiology and Biotechnology</italic>
</source>
<year>2002</year>
<volume>60</volume>
<issue>3</issue>
<fpage>342</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="other">2-s2.0-0037210469</pub-id>
<pub-id pub-id-type="pmid">12436317</pub-id>
</element-citation>
</ref>
<ref id="B125">
<label>187</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eggert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Temp</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>KEL</given-names>
</name>
</person-group>
<article-title>Laccase is essential for lignin degradation by the white-rot fungus
<italic>Pycnoporus cinnabarinus</italic>
</article-title>
<source>
<italic>FEBS Letters</italic>
</source>
<year>1997</year>
<volume>407</volume>
<issue>1</issue>
<fpage>89</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="other">2-s2.0-0031582240</pub-id>
<pub-id pub-id-type="pmid">9141487</pub-id>
</element-citation>
</ref>
<ref id="B126">
<label>188</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The white-rot fungus
<italic>Phanerochaete chrysosporium</italic>
: conditions for the production of lignin-degrading enzymes</article-title>
<source>
<italic>Applied Microbiology and Biotechnology</italic>
</source>
<year>2008</year>
<volume>81</volume>
<issue>3</issue>
<fpage>399</fpage>
<lpage>417</lpage>
<pub-id pub-id-type="other">2-s2.0-56349109393</pub-id>
<pub-id pub-id-type="pmid">18810426</pub-id>
</element-citation>
</ref>
<ref id="B127">
<label>189</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinis</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bezerra</surname>
<given-names>RMF</given-names>
</name>
<name>
<surname>Nunes</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modification of wheat straw lignin by solid state fermentation with white-rot fungi</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2009</year>
<volume>100</volume>
<issue>20</issue>
<fpage>4829</fpage>
<lpage>4835</lpage>
<pub-id pub-id-type="other">2-s2.0-67649216589</pub-id>
<pub-id pub-id-type="pmid">19450975</pub-id>
</element-citation>
</ref>
<ref id="B128">
<label>190</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isroi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Millati</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Syamsiah</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review</article-title>
<source>
<italic>BioResources</italic>
</source>
<year>2011</year>
<volume>6</volume>
<issue>4</issue>
<fpage>5224</fpage>
<lpage>5259</lpage>
<pub-id pub-id-type="other">2-s2.0-84856499379</pub-id>
</element-citation>
</ref>
<ref id="B129">
<label>191</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Delwiche</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Stroeve</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production</article-title>
<source>
<italic>Industrial & Engineering Chemistry Research</italic>
</source>
<year>2009</year>
<volume>48</volume>
<issue>8</issue>
<fpage>3713</fpage>
<lpage>3729</lpage>
<pub-id pub-id-type="other">2-s2.0-65249115211</pub-id>
</element-citation>
</ref>
<ref id="B130">
<label>192</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geib</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Filley</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Hatcher</surname>
<given-names>PG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lignin degradation in wood-feeding insects</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2008</year>
<volume>105</volume>
<issue>35</issue>
<fpage>12932</fpage>
<lpage>12937</lpage>
<pub-id pub-id-type="other">2-s2.0-51349150811</pub-id>
<pub-id pub-id-type="pmid">18725643</pub-id>
</element-citation>
</ref>
<ref id="B131">
<label>193</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krause</surname>
<given-names>DO</given-names>
</name>
<name>
<surname>Denman</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Mackie</surname>
<given-names>RI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics</article-title>
<source>
<italic>FEMS Microbiology Reviews</italic>
</source>
<year>2003</year>
<volume>27</volume>
<issue>5</issue>
<fpage>663</fpage>
<lpage>693</lpage>
<pub-id pub-id-type="other">2-s2.0-0345447488</pub-id>
<pub-id pub-id-type="pmid">14638418</pub-id>
</element-citation>
</ref>
<ref id="B132">
<label>194</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varga</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Kolver</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Microbial and animal limitations to fiber digestion and utilization</article-title>
<source>
<italic>Journal of Nutrition</italic>
</source>
<year>1997</year>
<volume>127, supplement 5</volume>
<fpage>S819</fpage>
<lpage>S823</lpage>
<pub-id pub-id-type="other">2-s2.0-0030951208</pub-id>
</element-citation>
</ref>
<ref id="B133">
<label>195</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novaes</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kirst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Winter-Sederoff</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sederoff</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Lignin and biomass: a negative correlation for wood formation and lignin content in trees</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2010</year>
<volume>154</volume>
<issue>2</issue>
<fpage>555</fpage>
<lpage>561</lpage>
<pub-id pub-id-type="other">2-s2.0-77957730551</pub-id>
<pub-id pub-id-type="pmid">20921184</pub-id>
</element-citation>
</ref>
<ref id="B134">
<label>196</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herrero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>do Valle</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>NRG</given-names>
</name>
<name>
<surname>de Sabatel</surname>
<given-names>VO</given-names>
</name>
<name>
<surname>Jessop</surname>
<given-names>NS</given-names>
</name>
</person-group>
<article-title>Measurements of physical strength and their relationship to the chemical composition of four species of Brachiaria</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2001</year>
<volume>92</volume>
<issue>3-4</issue>
<fpage>149</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="other">2-s2.0-0035881025</pub-id>
</element-citation>
</ref>
<ref id="B135">
<label>197</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Van Soest</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Pell</surname>
<given-names>AN</given-names>
</name>
</person-group>
<article-title>Use of animal and dietary information to predict rumen turnover</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2003</year>
<volume>106</volume>
<issue>1–4</issue>
<fpage>95</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="other">2-s2.0-0037725040</pub-id>
</element-citation>
</ref>
<ref id="B136">
<label>198</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Getachew</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Blümmel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Makkar</surname>
<given-names>HPS</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>1998</year>
<volume>72</volume>
<issue>3-4</issue>
<fpage>261</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="other">2-s2.0-0001132560</pub-id>
</element-citation>
</ref>
<ref id="B137">
<label>199</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casler</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>HJG</given-names>
</name>
</person-group>
<article-title>Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2006</year>
<volume>125</volume>
<issue>1-2</issue>
<fpage>151</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="other">2-s2.0-28844492702</pub-id>
</element-citation>
</ref>
<ref id="B138">
<label>200</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mechin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Argillier</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Menanteau</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>2000</year>
<volume>80</volume>
<fpage>574</fpage>
<lpage>580</lpage>
</element-citation>
</ref>
<ref id="B139">
<label>201</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riboulet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lefèvre</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dénoue</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in set of 19 lines at silage harvest maturity</article-title>
<source>
<italic>Maydica</italic>
</source>
<year>2008</year>
<volume>53</volume>
<issue>1</issue>
<fpage>11</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="other">2-s2.0-48249103526</pub-id>
</element-citation>
</ref>
<ref id="B140">
<label>202</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gomes</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Detmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Valadares Filho</surname>
<given-names>SDC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2011</year>
<volume>168</volume>
<issue>3-4</issue>
<fpage>206</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="other">2-s2.0-84860390604</pub-id>
</element-citation>
</ref>
<ref id="B141">
<label>203</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>HJG</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>JFS</given-names>
</name>
</person-group>
<article-title>Identification of lucerne stem cell wall traits related to in vitro neutral detergent fibre digestibility</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2003</year>
<volume>110</volume>
<issue>1–4</issue>
<fpage>17</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="other">2-s2.0-0242486625</pub-id>
</element-citation>
</ref>
<ref id="B142">
<label>204</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabber</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Mertens</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Funk</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ralph</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>2009</year>
<volume>89</volume>
<issue>1</issue>
<fpage>122</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="other">2-s2.0-58549102500</pub-id>
</element-citation>
</ref>
<ref id="B143">
<label>205</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Boever</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Cottyn</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>de Brabander</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Vanacker</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Boucqué</surname>
<given-names>CV</given-names>
</name>
</person-group>
<article-title>Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>1996</year>
<volume>60</volume>
<issue>1-2</issue>
<fpage>103</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="other">2-s2.0-0009313549</pub-id>
</element-citation>
</ref>
<ref id="B144">
<label>206</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Mertens</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber</article-title>
<source>
<italic>Journal of Dairy Science</italic>
</source>
<year>1997</year>
<volume>80</volume>
<issue>8</issue>
<fpage>1622</fpage>
<lpage>1628</lpage>
<pub-id pub-id-type="other">2-s2.0-0031201308</pub-id>
<pub-id pub-id-type="pmid">9276801</pub-id>
</element-citation>
</ref>
<ref id="B145">
<label>207</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Traxler</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>van Soest</surname>
<given-names>PJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Predicting forage indigestible NDF from lignin concentration</article-title>
<source>
<italic>Journal of Animal Science</italic>
</source>
<year>1998</year>
<volume>76</volume>
<issue>5</issue>
<fpage>1469</fpage>
<lpage>1480</lpage>
<pub-id pub-id-type="other">2-s2.0-0032063123</pub-id>
<pub-id pub-id-type="pmid">9621956</pub-id>
</element-citation>
</ref>
<ref id="B146">
<label>208</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karakurt</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Aydin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Aydiner</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Sources and mitigation of methane emissions by sectors: a critical review</article-title>
<source>
<italic>Renewable Energy</italic>
</source>
<year>2012</year>
<volume>39</volume>
<issue>1</issue>
<fpage>40</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="other">2-s2.0-80053328418</pub-id>
</element-citation>
</ref>
<ref id="B147">
<label>209</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bodas</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Prieto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Garcia-Gonzalez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Andres</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Giraldez</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Manipulation of rumen fermentation and methane production with plant secondary metabolites</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2012</year>
<volume>176</volume>
<fpage>78</fpage>
<lpage>93</lpage>
</element-citation>
</ref>
<ref id="B148">
<label>210</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Marx</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lora</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Phillip</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Effects of purified lignin on in vitro ruminal fermentation and growth performance, carcass traits and fecal shedding of
<italic>Escherichia coli</italic>
by feedlot lambs</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2009</year>
<volume>151</volume>
<issue>1-2</issue>
<fpage>21</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="other">2-s2.0-67349259332</pub-id>
</element-citation>
</ref>
<ref id="B149">
<label>211</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hindrichsen</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Wettstein</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Machmüller</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro</article-title>
<source>
<italic>Canadian Journal of Animal Science</italic>
</source>
<year>2004</year>
<volume>84</volume>
<issue>2</issue>
<fpage>265</fpage>
<lpage>276</lpage>
<pub-id pub-id-type="other">2-s2.0-4344593121</pub-id>
</element-citation>
</ref>
<ref id="B150">
<label>212</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kushwaha</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Nag</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In vitro methane emission from Indian dry roughages in relation to chemical composition</article-title>
<source>
<italic>Current Science</italic>
</source>
<year>2011</year>
<volume>101</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="other">2-s2.0-79961117187</pub-id>
</element-citation>
</ref>
<ref id="B151">
<label>213</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hendriks</surname>
<given-names>ATWM</given-names>
</name>
<name>
<surname>Zeeman</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Pretreatments to enhance the digestibility of lignocellulosic biomass</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2009</year>
<volume>100</volume>
<issue>1</issue>
<fpage>10</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="other">2-s2.0-51349153711</pub-id>
<pub-id pub-id-type="pmid">18599291</pub-id>
</element-citation>
</ref>
<ref id="B152">
<label>214</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bugg</surname>
<given-names>TDH</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hardiman</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Rahmanpour</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Pathways for degradation of lignin in bacteria and fungi</article-title>
<source>
<italic>Natural Product Reports</italic>
</source>
<year>2011</year>
<volume>28</volume>
<issue>12</issue>
<fpage>1883</fpage>
<lpage>1896</lpage>
<pub-id pub-id-type="other">2-s2.0-81355123362</pub-id>
<pub-id pub-id-type="pmid">21918777</pub-id>
</element-citation>
</ref>
<ref id="B153">
<label>215</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Dinh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cone</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Baars</surname>
<given-names>JJP</given-names>
</name>
<name>
<surname>Sonnenberg</surname>
<given-names>ASM</given-names>
</name>
<name>
<surname>Hendriks</surname>
<given-names>WH</given-names>
</name>
</person-group>
<article-title>Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2012</year>
<volume>111</volume>
<fpage>336</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="other">2-s2.0-84858749680</pub-id>
<pub-id pub-id-type="pmid">22377477</pub-id>
</element-citation>
</ref>
<ref id="B154">
<label>216</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shrivastava</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Thakur</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Khasa</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Gupte</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Puniya</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Kuhad</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>White-rot fungal conversion of wheat straw to energy rich cattle feed</article-title>
<source>
<italic>Biodegradation</italic>
</source>
<year>2011</year>
<volume>22</volume>
<issue>4</issue>
<fpage>823</fpage>
<lpage>831</lpage>
<pub-id pub-id-type="other">2-s2.0-79957925821</pub-id>
<pub-id pub-id-type="pmid">20734121</pub-id>
</element-citation>
</ref>
<ref id="B155">
<label>217</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodrigues</surname>
<given-names>MAM</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bezerra</surname>
<given-names>RMF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2008</year>
<volume>141</volume>
<issue>3-4</issue>
<fpage>326</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="other">2-s2.0-39749138167</pub-id>
</element-citation>
</ref>
<ref id="B156">
<label>218</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarnklong</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Coneja</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Pellikaan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hendriks</surname>
<given-names>WH</given-names>
</name>
</person-group>
<article-title>Utilization of rice straw and different treatments to improve its feed value for ruminants: a review</article-title>
<source>
<italic>Asian-Australasian Journal of Animal Sciences</italic>
</source>
<year>2010</year>
<volume>23</volume>
<issue>5</issue>
<fpage>680</fpage>
<lpage>692</lpage>
<pub-id pub-id-type="other">2-s2.0-77955155900</pub-id>
</element-citation>
</ref>
<ref id="B157">
<label>219</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rahman</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Lourenço</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hassim</surname>
<given-names>HA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improving ruminal degradability of oil palm fronds using white rot fungi</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2011</year>
<volume>169</volume>
<issue>3-4</issue>
<fpage>157</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="other">2-s2.0-80053052950</pub-id>
</element-citation>
</ref>
<ref id="B158">
<label>220</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akin</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Sethuraman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>WH</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Martin</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>KEL</given-names>
</name>
</person-group>
<article-title>Microbial delignification with white rot fungi improves forage digestibility</article-title>
<source>
<italic>Applied and Environmental Microbiology</italic>
</source>
<year>1993</year>
<volume>59</volume>
<issue>12</issue>
<fpage>4274</fpage>
<lpage>4282</lpage>
<pub-id pub-id-type="other">2-s2.0-0027377703</pub-id>
<pub-id pub-id-type="pmid">16349123</pub-id>
</element-citation>
</ref>
<ref id="B159">
<label>221</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohkoshi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nishiyama</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Usagawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kitagawa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Improving the nutritive value of madake bamboo,
<italic>Phyllostachys bambusoides</italic>
, for ruminants by culturing with the white-rot fungus
<italic>Ceriporiopsis subvermispora</italic>
</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2009</year>
<volume>152</volume>
<issue>3-4</issue>
<fpage>278</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="other">2-s2.0-67650144873</pub-id>
</element-citation>
</ref>
<ref id="B160">
<label>222</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JX</given-names>
</name>
<name>
<surname>Orskov</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>XB</given-names>
</name>
</person-group>
<article-title>Optimization of steam treatment as a method for upgrading rice straw as feeds</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>1999</year>
<volume>76</volume>
<issue>3-4</issue>
<fpage>345</fpage>
<lpage>357</lpage>
<pub-id pub-id-type="other">2-s2.0-0033059913</pub-id>
</element-citation>
</ref>
<ref id="B161">
<label>223</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sewalt</surname>
<given-names>VJH</given-names>
</name>
<name>
<surname>Beauchemin</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Rode</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Acharya</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>VS</given-names>
</name>
</person-group>
<article-title>Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>1997</year>
<volume>61</volume>
<issue>3</issue>
<fpage>199</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="other">2-s2.0-0031239378</pub-id>
</element-citation>
</ref>
<ref id="B162">
<label>224</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guillet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Goffner</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pichon</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review</article-title>
<source>
<italic>Animal Research</italic>
</source>
<year>2003</year>
<volume>52</volume>
<issue>3</issue>
<fpage>193</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="other">2-s2.0-0038410481</pub-id>
</element-citation>
</ref>
<ref id="B163">
<label>225</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thorstensson</surname>
<given-names>EMG</given-names>
</name>
<name>
<surname>Buxton</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Cherney</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Apparent inhibition to digestion by lignin in normal and brown midrib stems</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>1992</year>
<volume>59</volume>
<fpage>183</fpage>
<lpage>188</lpage>
</element-citation>
</ref>
<ref id="B164">
<label>226</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ehara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Brown midrib mutant maize with reduced levels of phenolic acids ether-linked to the cell walls</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>1994</year>
<volume>48</volume>
<issue>1-2</issue>
<fpage>27</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="other">2-s2.0-0013355085</pub-id>
</element-citation>
</ref>
<ref id="B165">
<label>227</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ledgerwood</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>DePeters</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Heguy</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Assessment of a brown midrib (BMR) mutant gene on the nutritive value of sudangrass using in vitro and in vivo techniques</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2009</year>
<volume>150</volume>
<issue>3-4</issue>
<fpage>207</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="other">2-s2.0-63549093782</pub-id>
</element-citation>
</ref>
<ref id="B166">
<label>228</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Prasad</surname>
<given-names>SVS</given-names>
</name>
<name>
<surname>Katiyar</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Genetic variability in the fodder yield, chemical composition and disappearance of nutrients in brown midrib and white midrib sorghum genotypes</article-title>
<source>
<italic>Asian-Australasian Journal of Animal Sciences</italic>
</source>
<year>2003</year>
<volume>16</volume>
<issue>9</issue>
<fpage>1303</fpage>
<lpage>1308</lpage>
<pub-id pub-id-type="other">2-s2.0-0141478825</pub-id>
</element-citation>
</ref>
<ref id="B167">
<label>229</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baucher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bernard-Vailhé</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Chabbert</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (
<italic>Medicago sativa</italic>
L.) and the effect on lignin composition and digestibility</article-title>
<source>
<italic>Plant Molecular Biology</italic>
</source>
<year>1999</year>
<volume>39</volume>
<issue>3</issue>
<fpage>437</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="other">2-s2.0-0033082660</pub-id>
<pub-id pub-id-type="pmid">10092173</pub-id>
</element-citation>
</ref>
<ref id="B168">
<label>230</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Getachew</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ibáñez</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Pittroff</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A comparative study between lignin down regulated alfalfa lines and their respective unmodified controls on the nutritional characteristics of hay</article-title>
<source>
<italic>Animal Feed Science and Technology</italic>
</source>
<year>2011</year>
<volume>170</volume>
<issue>3-4</issue>
<fpage>192</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="other">2-s2.0-80955137671</pub-id>
</element-citation>
</ref>
<ref id="B169">
<label>231</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Gallo-Meagher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Improvement of forage quality by downregulation of maize O-methyltransferase</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2003</year>
<volume>43</volume>
<issue>6</issue>
<fpage>2240</fpage>
<lpage>2251</lpage>
<pub-id pub-id-type="other">2-s2.0-0242569483</pub-id>
</element-citation>
</ref>
<ref id="B170">
<label>232</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>HJG</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Chapple</surname>
<given-names>CCS</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant</article-title>
<source>
<italic>Journal of the Science of Food and Agriculture</italic>
</source>
<year>1999</year>
<volume>79</volume>
<fpage>922</fpage>
<lpage>928</lpage>
</element-citation>
</ref>
<ref id="B171">
<label>233</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sang</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Toward the domestication of lignocellulosic energy crops: learning from food crop domestication</article-title>
<source>
<italic>Journal of Integrative Plant Biology</italic>
</source>
<year>2011</year>
<volume>53</volume>
<issue>2</issue>
<fpage>96</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="other">2-s2.0-79251490382</pub-id>
<pub-id pub-id-type="pmid">21261812</pub-id>
</element-citation>
</ref>
<ref id="B172">
<label>234</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Tiller</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Al-Ahmad</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>CN</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Plants to power: bioenergy to fuel the future</article-title>
<source>
<italic>Trends in Plant Science</italic>
</source>
<year>2008</year>
<volume>13</volume>
<issue>8</issue>
<fpage>421</fpage>
<lpage>429</lpage>
<pub-id pub-id-type="other">2-s2.0-48149090892</pub-id>
<pub-id pub-id-type="pmid">18632303</pub-id>
</element-citation>
</ref>
<ref id="B173">
<label>235</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hodgson</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Lister</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Bridgwater</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Clifton-Brown</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Donnison</surname>
<given-names>IS</given-names>
</name>
</person-group>
<article-title>Genotypic and environmentally derived variation in the cell wall composition of
<italic>Miscanthus</italic>
in relation to its use as a biomass feedstock</article-title>
<source>
<italic>Biomass & Bioenergy</italic>
</source>
<year>2010</year>
<volume>34</volume>
<issue>5</issue>
<fpage>652</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="other">2-s2.0-77951025529</pub-id>
</element-citation>
</ref>
<ref id="B174">
<label>236</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrus</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Noordermeer</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Biomass to biofuels, a chemical perspective</article-title>
<source>
<italic>Green Chemistry</italic>
</source>
<year>2006</year>
<volume>8</volume>
<issue>10</issue>
<fpage>861</fpage>
<lpage>867</lpage>
<pub-id pub-id-type="other">2-s2.0-33749534171</pub-id>
</element-citation>
</ref>
<ref id="B175">
<label>237</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Triolo</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2012</year>
<volume>125</volume>
<fpage>226</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">23026338</pub-id>
</element-citation>
</ref>
<ref id="B176">
<label>238</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saidur</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Abdelaziz</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Demirbas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hossain</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Mekhilef</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A review on biomass as a fuel for boilers</article-title>
<source>
<italic>Renewable & Sustainable Energy Reviews</italic>
</source>
<year>2011</year>
<volume>15</volume>
<issue>5</issue>
<fpage>2262</fpage>
<lpage>2289</lpage>
<pub-id pub-id-type="other">2-s2.0-79952586409</pub-id>
</element-citation>
</ref>
<ref id="B177">
<label>239</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gary</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Frossard</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Chenevard</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Heat of combustion, degree of reduction and carbon content. 3. Interrelated methods of estimating the construction cost of plant-tissues</article-title>
<source>
<italic>Agronomie</italic>
</source>
<year>1995</year>
<volume>15</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="other">2-s2.0-0029103855</pub-id>
</element-citation>
</ref>
<ref id="B178">
<label>240</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendu</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Shearin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>JE</given-names>
<suffix>Jr.</suffix>
</name>
<etal></etal>
</person-group>
<article-title>Global bioenergy potential from high-lignin agricultural residue</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2012</year>
<volume>109</volume>
<issue>10</issue>
<fpage>4014</fpage>
<lpage>4019</lpage>
<pub-id pub-id-type="other">2-s2.0-84857970364</pub-id>
<pub-id pub-id-type="pmid">22355123</pub-id>
</element-citation>
</ref>
<ref id="B179">
<label>241</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orts</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Holtman</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Seiber</surname>
<given-names>JN</given-names>
</name>
</person-group>
<article-title>Agricultural chemistry and bioenergy</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2008</year>
<volume>56</volume>
<issue>11</issue>
<fpage>3892</fpage>
<lpage>3899</lpage>
<pub-id pub-id-type="other">2-s2.0-47049097837</pub-id>
<pub-id pub-id-type="pmid">18473470</pub-id>
</element-citation>
</ref>
<ref id="B180">
<label>242</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>X-Y</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>J-P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2012</year>
<volume>116</volume>
<fpage>114</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="pmid">22609664</pub-id>
</element-citation>
</ref>
<ref id="B181">
<label>243</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melligan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dussan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Auccaise</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterisation of the products from pyrolysis of residues after acid hydrolysis of
<italic>Miscanthus</italic>
</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2012</year>
<volume>108</volume>
<fpage>258</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="other">2-s2.0-84857239512</pub-id>
<pub-id pub-id-type="pmid">22281143</pub-id>
</element-citation>
</ref>
<ref id="B182">
<label>244</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rutkowski</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pyrolysis of cellulose, xylan and lignin with the K
<sub>2</sub>
CO
<sub>3</sub>
and ZnCl
<sub>2</sub>
addition for bio-oil production</article-title>
<source>
<italic>Fuel Processing Technology</italic>
</source>
<year>2011</year>
<volume>92</volume>
<issue>3</issue>
<fpage>517</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="other">2-s2.0-78751643909</pub-id>
</element-citation>
</ref>
<ref id="B183">
<label>245</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boateng</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Weimer</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>JFS</given-names>
</name>
</person-group>
<article-title>Response of thermochemical and biochemical conversion processes to lignin concentration in alfalfa stems</article-title>
<source>
<italic>Energy and Fuels</italic>
</source>
<year>2008</year>
<volume>22</volume>
<issue>4</issue>
<fpage>2810</fpage>
<lpage>2815</lpage>
<pub-id pub-id-type="other">2-s2.0-49649124657</pub-id>
</element-citation>
</ref>
<ref id="B184">
<label>246</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fahmi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bridgwater</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Donnison</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability</article-title>
<source>
<italic>Fuel</italic>
</source>
<year>2008</year>
<volume>87</volume>
<issue>7</issue>
<fpage>1230</fpage>
<lpage>1240</lpage>
<pub-id pub-id-type="other">2-s2.0-40249095273</pub-id>
</element-citation>
</ref>
<ref id="B185">
<label>247</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hodgson</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Nowakowski</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Shield</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Variation in
<italic>Miscanthus</italic>
chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2011</year>
<volume>102</volume>
<issue>3</issue>
<fpage>3411</fpage>
<lpage>3418</lpage>
<pub-id pub-id-type="other">2-s2.0-78650845724</pub-id>
<pub-id pub-id-type="pmid">21035327</pub-id>
</element-citation>
</ref>
<ref id="B186">
<label>248</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2011</year>
<volume>59</volume>
<issue>18</issue>
<fpage>9965</fpage>
<lpage>9971</lpage>
<pub-id pub-id-type="other">2-s2.0-80053094664</pub-id>
<pub-id pub-id-type="pmid">21851098</pub-id>
</element-citation>
</ref>
<ref id="B187">
<label>249</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pereira</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>da Silva</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Sustainable energy: a review of gasification technologies</article-title>
<source>
<italic>Renewable & Sustainable Energy Reviews</italic>
</source>
<year>2012</year>
<volume>16</volume>
<fpage>4753</fpage>
<lpage>4762</lpage>
</element-citation>
</ref>
<ref id="B188">
<label>250</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Subramani</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gangwal</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol</article-title>
<source>
<italic>Energy and Fuels</italic>
</source>
<year>2008</year>
<volume>22</volume>
<issue>2</issue>
<fpage>814</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="other">2-s2.0-42149172662</pub-id>
</element-citation>
</ref>
<ref id="B189">
<label>251</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>CG</given-names>
</name>
</person-group>
<article-title>Characteristics of hemicellulose, cellulose and lignin pyrolysis</article-title>
<source>
<italic>Fuel</italic>
</source>
<year>2007</year>
<volume>86</volume>
<issue>12-13</issue>
<fpage>1781</fpage>
<lpage>1788</lpage>
<pub-id pub-id-type="other">2-s2.0-34248638164</pub-id>
</element-citation>
</ref>
<ref id="B190">
<label>252</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barneto</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Gálvez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Conesa</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Effects of the composting and the heating rate on biomass gasification</article-title>
<source>
<italic>Energy and Fuels</italic>
</source>
<year>2009</year>
<volume>23</volume>
<issue>2</issue>
<fpage>951</fpage>
<lpage>957</lpage>
<pub-id pub-id-type="other">2-s2.0-64249149326</pub-id>
</element-citation>
</ref>
<ref id="B191">
<label>253</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barneto</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>JAC</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>MJD</given-names>
</name>
</person-group>
<article-title>Kinetic study on the thermal degradation of a biomass and its compost: composting effect on hydrogen production</article-title>
<source>
<italic>Fuel</italic>
</source>
<year>2010</year>
<volume>89</volume>
<issue>2</issue>
<fpage>462</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="other">2-s2.0-71549119212</pub-id>
</element-citation>
</ref>
<ref id="B192">
<label>254</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarkar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Bannerjee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aikat</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Bioethanol production from agricultural wastes: an overview</article-title>
<source>
<italic>Renewable Energy</italic>
</source>
<year>2012</year>
<volume>37</volume>
<issue>1</issue>
<fpage>19</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="other">2-s2.0-79961126357</pub-id>
</element-citation>
</ref>
<ref id="B193">
<label>255</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindedam</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>DeMartini</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw</article-title>
<source>
<italic>Biomass & Bioenergy</italic>
</source>
<year>2012</year>
<volume>37</volume>
<fpage>221</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="other">2-s2.0-84856253791</pub-id>
</element-citation>
</ref>
<ref id="B194">
<label>256</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lygin</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Upton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dohleman</surname>
<given-names>FG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop—
<italic>Miscanthus</italic>
</article-title>
<source>
<italic>Global Change Biology Bioenergy</italic>
</source>
<year>2011</year>
<volume>3</volume>
<fpage>333</fpage>
<lpage>345</lpage>
</element-citation>
</ref>
<ref id="B195">
<label>257</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenz</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Anex</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Isci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>de Leon</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Weimer</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Forage quality and composition measurements as predictors of ethanol yield from maize (
<italic>Zea mays</italic>
L.) stover</article-title>
<source>
<italic>Biotechnology for Biofuels</italic>
</source>
<year>2009</year>
<volume>2, article 5</volume>
<pub-id pub-id-type="other">2-s2.0-63549104722</pub-id>
</element-citation>
</ref>
<ref id="B196">
<label>258</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Dien</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H-JG</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Weimer</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Effects of forage quality and cell wall constituents of Bermuda grass on biochemical conversion to ethanol</article-title>
<source>
<italic>Bioenergy Research</italic>
</source>
<year>2010</year>
<volume>3</volume>
<issue>3</issue>
<fpage>225</fpage>
<lpage>237</lpage>
<pub-id pub-id-type="other">2-s2.0-77955581593</pub-id>
</element-citation>
</ref>
<ref id="B197">
<label>259</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Lignin modification improves fermentable sugar yields for biofuel production</article-title>
<source>
<italic>Nature Biotechnology</italic>
</source>
<year>2007</year>
<volume>25</volume>
<issue>7</issue>
<fpage>759</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="other">2-s2.0-34447319626</pub-id>
</element-citation>
</ref>
<ref id="B198">
<label>260</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mielenz</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2011</year>
<volume>108</volume>
<issue>9</issue>
<fpage>3803</fpage>
<lpage>3808</lpage>
<pub-id pub-id-type="other">2-s2.0-79952762070</pub-id>
<pub-id pub-id-type="pmid">21321194</pub-id>
</element-citation>
</ref>
<ref id="B199">
<label>261</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kusiima</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Powers</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks</article-title>
<source>
<italic>Energy Policy</italic>
</source>
<year>2010</year>
<volume>38</volume>
<issue>6</issue>
<fpage>2785</fpage>
<lpage>2796</lpage>
<pub-id pub-id-type="other">2-s2.0-77951259259</pub-id>
</element-citation>
</ref>
<ref id="B200">
<label>262</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Minu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jiby</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Kishore</surname>
<given-names>VVN</given-names>
</name>
</person-group>
<article-title>Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw</article-title>
<source>
<italic>Biomass & Bioenergy</italic>
</source>
<year>2012</year>
<volume>39</volume>
<fpage>210</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="other">2-s2.0-84857781491</pub-id>
</element-citation>
</ref>
<ref id="B201">
<label>263</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monlau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sambusiti</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Barakat</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials</article-title>
<source>
<italic>Environmental Science & Technology</italic>
</source>
<year>2012</year>
<volume>46</volume>
<fpage>12217</fpage>
<lpage>12225</lpage>
<pub-id pub-id-type="pmid">23050634</pub-id>
</element-citation>
</ref>
<ref id="B202">
<label>264</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsavkelova</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Netrusov</surname>
<given-names>AI</given-names>
</name>
</person-group>
<article-title>Biogas production from cellulose-containing substrates: a review</article-title>
<source>
<italic>Applied Biochemistry and Microbiology</italic>
</source>
<year>2012</year>
<volume>48</volume>
<fpage>421</fpage>
<lpage>433</lpage>
</element-citation>
</ref>
<ref id="B203">
<label>265</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klimiuk</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pokój</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Budzyński</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dubis</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Theoretical and observed biogas production from plant biomass of different fibre contents</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2010</year>
<volume>101</volume>
<issue>24</issue>
<fpage>9527</fpage>
<lpage>9535</lpage>
<pub-id pub-id-type="other">2-s2.0-77956174881</pub-id>
<pub-id pub-id-type="pmid">20696568</pub-id>
</element-citation>
</ref>
<ref id="B204">
<label>266</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grieder</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dhillon</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Schipprack</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Melchinger</surname>
<given-names>AE</given-names>
</name>
</person-group>
<article-title>Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2012</year>
<volume>124</volume>
<fpage>981</fpage>
<lpage>988</lpage>
<pub-id pub-id-type="other">2-s2.0-83055198358</pub-id>
<pub-id pub-id-type="pmid">22159757</pub-id>
</element-citation>
</ref>
<ref id="B205">
<label>267</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Triolo</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Møller</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Weisbjerg</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>XY</given-names>
</name>
</person-group>
<article-title>A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2011</year>
<volume>102</volume>
<issue>20</issue>
<fpage>9395</fpage>
<lpage>9402</lpage>
<pub-id pub-id-type="other">2-s2.0-80052707626</pub-id>
<pub-id pub-id-type="pmid">21868219</pub-id>
</element-citation>
</ref>
<ref id="B206">
<label>268</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Komilis</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Ham</surname>
<given-names>RK</given-names>
</name>
</person-group>
<article-title>The effect of lignin and sugars to the aerobic decomposition of solid wastes</article-title>
<source>
<italic>Waste Management</italic>
</source>
<year>2003</year>
<volume>23</volume>
<issue>5</issue>
<fpage>419</fpage>
<lpage>423</lpage>
<pub-id pub-id-type="other">2-s2.0-0042169006</pub-id>
<pub-id pub-id-type="pmid">12893014</pub-id>
</element-citation>
</ref>
<ref id="B207">
<label>269</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buffiere</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Loisel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bernet</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Delgenes</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Towards new indicators for the prediction of solid waste anaerobic digestion properties</article-title>
<source>
<italic>Water Science and Technology</italic>
</source>
<year>2006</year>
<volume>53</volume>
<issue>8</issue>
<fpage>233</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="other">2-s2.0-33745180216</pub-id>
<pub-id pub-id-type="pmid">16784208</pub-id>
</element-citation>
</ref>
<ref id="B208">
<label>270</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taherzadeh</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Karimi</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review</article-title>
<source>
<italic>International Journal of Molecular Sciences</italic>
</source>
<year>2008</year>
<volume>9</volume>
<issue>9</issue>
<fpage>1621</fpage>
<lpage>1651</lpage>
<pub-id pub-id-type="other">2-s2.0-53549084887</pub-id>
<pub-id pub-id-type="pmid">19325822</pub-id>
</element-citation>
</ref>
<ref id="B209">
<label>271</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carlsson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lagerkvist</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morgan-Sagastume</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The effects of substrate pre-treatment on anaerobic digestion systems: a review</article-title>
<source>
<italic>Waste Management</italic>
</source>
<year>2012</year>
<volume>32</volume>
<fpage>1634</fpage>
<lpage>1650</lpage>
<pub-id pub-id-type="pmid">22633466</pub-id>
</element-citation>
</ref>
<ref id="B210">
<label>272</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackulak</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Prousek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Svorc</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Drtil</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Increase of biogas production from pretreated hay and leaves using wood-rotting fungi</article-title>
<source>
<italic>Chemical Papers</italic>
</source>
<year>2012</year>
<volume>66</volume>
<fpage>649</fpage>
<lpage>653</lpage>
</element-citation>
</ref>
<ref id="B211">
<label>273</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ziemiński</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Romanowska</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kowalska</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Enzymatic pretreatment of lignocellulosic wastes to improve biogas production</article-title>
<source>
<italic>Waste Management</italic>
</source>
<year>2012</year>
<volume>32</volume>
<issue>6</issue>
<fpage>1131</fpage>
<lpage>1137</lpage>
<pub-id pub-id-type="other">2-s2.0-84860176049</pub-id>
<pub-id pub-id-type="pmid">22342637</pub-id>
</element-citation>
</ref>
<ref id="B212">
<label>274</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion</article-title>
<source>
<italic>BioResources</italic>
</source>
<year>2012</year>
<volume>7</volume>
<fpage>3223</fpage>
<lpage>3236</lpage>
</element-citation>
</ref>
<ref id="B213">
<label>275</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monlau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Barakat</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steyer</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Carrere</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2012</year>
<volume>120</volume>
<fpage>241</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="pmid">22820113</pub-id>
</element-citation>
</ref>
<ref id="B214">
<label>276</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanholme</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Morreel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Darrah</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic engineering of novel lignin in biomass crops</article-title>
<source>
<italic>New Phytologist</italic>
</source>
<year>2012</year>
<volume>196</volume>
<fpage>978</fpage>
<lpage>1000</lpage>
<pub-id pub-id-type="pmid">23035778</pub-id>
</element-citation>
</ref>
<ref id="B215">
<label>277</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weng</surname>
<given-names>J-K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bonawitz</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Chapple</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Emerging strategies of lignin engineering and degradation for cellulosic biofuel production</article-title>
<source>
<italic>Current Opinion in Biotechnology</italic>
</source>
<year>2008</year>
<volume>19</volume>
<issue>2</issue>
<fpage>166</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="other">2-s2.0-42249110184</pub-id>
<pub-id pub-id-type="pmid">18403196</pub-id>
</element-citation>
</ref>
<ref id="B216">
<label>278</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuomela</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vikman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hatakka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Itävaara</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Biodegradation of lignin in a compost environment: a review</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2000</year>
<volume>72</volume>
<issue>2</issue>
<fpage>169</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="other">2-s2.0-0034174658</pub-id>
</element-citation>
</ref>
<ref id="B217">
<label>279</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zech</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Senesi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Guggenberger</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Factors controlling humification and mineralization of soil organic matter in the tropics</article-title>
<source>
<italic>Geoderma</italic>
</source>
<year>1997</year>
<volume>79</volume>
<issue>1–4</issue>
<fpage>117</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="other">2-s2.0-0030726860</pub-id>
</element-citation>
</ref>
<ref id="B218">
<label>280</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marschner</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brodowski</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dreves</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>How relevant is recalcitrance for the stabilization of organic matter in soils?</article-title>
<source>
<italic>Journal of Plant Nutrition and Soil Science</italic>
</source>
<year>2008</year>
<volume>171</volume>
<issue>1</issue>
<fpage>91</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="other">2-s2.0-43649083358</pub-id>
</element-citation>
</ref>
<ref id="B219">
<label>281</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amelung</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Flach</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Zech</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Climatic effects on soil organic matter composition in the Great Plains</article-title>
<source>
<italic>Soil Science Society of America Journal</italic>
</source>
<year>1997</year>
<volume>61</volume>
<issue>1</issue>
<fpage>115</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="other">2-s2.0-0030614120</pub-id>
</element-citation>
</ref>
<ref id="B220">
<label>282</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiem</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kögel-Knabner</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2003</year>
<volume>35</volume>
<issue>1</issue>
<fpage>101</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="other">2-s2.0-0037230122</pub-id>
</element-citation>
</ref>
<ref id="B221">
<label>283</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gleixner</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Poirier</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bol</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Balesdent</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Molecular dynamics of organic matter in a cultivated soil</article-title>
<source>
<italic>Organic Geochemistry</italic>
</source>
<year>2002</year>
<volume>33</volume>
<issue>3</issue>
<fpage>357</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="other">2-s2.0-0036275890</pub-id>
</element-citation>
</ref>
<ref id="B222">
<label>284</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrington</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Hernes</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Dyda</surname>
<given-names>RY</given-names>
</name>
<name>
<surname>Plante</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Six</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Biochemical changes across a carbon saturation gradient: lignin, cutin, and suberin decomposition and stabilization in fractionated carbon pools</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2012</year>
<volume>47</volume>
<fpage>179</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="other">2-s2.0-84856050052</pub-id>
</element-citation>
</ref>
<ref id="B223">
<label>285</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amelung</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Flach</surname>
<given-names>K-W</given-names>
</name>
<name>
<surname>Zech</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Lignin in particle-size fractions of native grassland soils as influenced by climate</article-title>
<source>
<italic>Soil Science Society of America Journal</italic>
</source>
<year>1999</year>
<volume>63</volume>
<issue>5</issue>
<fpage>1222</fpage>
<lpage>1228</lpage>
<pub-id pub-id-type="other">2-s2.0-0032737659</pub-id>
</element-citation>
</ref>
<ref id="B224">
<label>286</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thevenot</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dignac</surname>
<given-names>M-F</given-names>
</name>
<name>
<surname>Rumpel</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Fate of lignins in soils: a review</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2010</year>
<volume>42</volume>
<issue>8</issue>
<fpage>1200</fpage>
<lpage>1211</lpage>
<pub-id pub-id-type="other">2-s2.0-77954801863</pub-id>
</element-citation>
</ref>
<ref id="B225">
<label>287</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osono</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Ecology of ligninolytic fungi associated with leaf litter decomposition</article-title>
<source>
<italic>Ecological Research</italic>
</source>
<year>2007</year>
<volume>22</volume>
<issue>6</issue>
<fpage>955</fpage>
<lpage>974</lpage>
<pub-id pub-id-type="other">2-s2.0-36148980100</pub-id>
</element-citation>
</ref>
<ref id="B226">
<label>288</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sinsabaugh</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Phenol oxidase, peroxidase and organic matter dynamics of soil</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2010</year>
<volume>42</volume>
<issue>3</issue>
<fpage>391</fpage>
<lpage>404</lpage>
<pub-id pub-id-type="other">2-s2.0-74149092002</pub-id>
</element-citation>
</ref>
<ref id="B227">
<label>289</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Austin</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Ballaré</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Dual role of lignin in plant litter decomposition in terrestrial ecosystems</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2010</year>
<volume>107</volume>
<issue>10</issue>
<fpage>4618</fpage>
<lpage>4622</lpage>
<pub-id pub-id-type="other">2-s2.0-77949537754</pub-id>
<pub-id pub-id-type="pmid">20176940</pub-id>
</element-citation>
</ref>
<ref id="B228">
<label>290</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simpson</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>The chemical ecology of soil organic matter molecular constituents</article-title>
<source>
<italic>Journal of Chemical Ecology</italic>
</source>
<year>2012</year>
<volume>38</volume>
<issue>6</issue>
<fpage>768</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="other">2-s2.0-84860584982</pub-id>
<pub-id pub-id-type="pmid">22549555</pub-id>
</element-citation>
</ref>
<ref id="B229">
<label>291</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adair</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Parton</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>del Grosso</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates</article-title>
<source>
<italic>Global Change Biology</italic>
</source>
<year>2008</year>
<volume>14</volume>
<issue>11</issue>
<fpage>2636</fpage>
<lpage>2660</lpage>
<pub-id pub-id-type="other">2-s2.0-54449096534</pub-id>
</element-citation>
</ref>
<ref id="B230">
<label>292</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Parkinson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>WFJ</given-names>
</name>
</person-group>
<article-title>Nitrogen and lignin content as predictors of litter decay rates—a microcosm test</article-title>
<source>
<italic>Ecology</italic>
</source>
<year>1989</year>
<volume>70</volume>
<issue>1</issue>
<fpage>97</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="other">2-s2.0-0024874464</pub-id>
</element-citation>
</ref>
<ref id="B231">
<label>293</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ladha</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Ottow</surname>
<given-names>JCG</given-names>
</name>
</person-group>
<article-title>Nitrogen losses and lowland rice yield as affected by residue nitrogen release</article-title>
<source>
<italic>Soil Science Society of America Journal</italic>
</source>
<year>1994</year>
<volume>58</volume>
<issue>6</issue>
<fpage>1660</fpage>
<lpage>1665</lpage>
<pub-id pub-id-type="other">2-s2.0-0028321147</pub-id>
</element-citation>
</ref>
<ref id="B232">
<label>294</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ladha</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>Ottow</surname>
<given-names>JCG</given-names>
</name>
</person-group>
<article-title>Parameters affecting residue nitrogen mineralization in flooded soils</article-title>
<source>
<italic>Soil Science Society of America Journal</italic>
</source>
<year>1994</year>
<volume>58</volume>
<issue>6</issue>
<fpage>1666</fpage>
<lpage>1671</lpage>
<pub-id pub-id-type="other">2-s2.0-0028160024</pub-id>
</element-citation>
</ref>
<ref id="B233">
<label>295</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cobo</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Barrios</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kass</surname>
<given-names>DCL</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Decomposition and nutrient release by green manures in a tropical hillside agroecosystem</article-title>
<source>
<italic>Plant and Soil</italic>
</source>
<year>2002</year>
<volume>240</volume>
<issue>2</issue>
<fpage>331</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="other">2-s2.0-0036292286</pub-id>
</element-citation>
</ref>
<ref id="B234">
<label>296</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cornelissen</surname>
<given-names>JHC</given-names>
</name>
<name>
<surname>Quested</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Gwynn-Jones</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types</article-title>
<source>
<italic>Functional Ecology</italic>
</source>
<year>2004</year>
<volume>18</volume>
<issue>6</issue>
<fpage>779</fpage>
<lpage>786</lpage>
<pub-id pub-id-type="other">2-s2.0-11144309690</pub-id>
</element-citation>
</ref>
<ref id="B235">
<label>297</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palm</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>1991</year>
<volume>23</volume>
<issue>1</issue>
<fpage>83</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="other">2-s2.0-0025994545</pub-id>
</element-citation>
</ref>
<ref id="B236">
<label>298</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalbitz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bargholz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dardenne</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter</article-title>
<source>
<italic>European Journal of Soil Science</italic>
</source>
<year>2006</year>
<volume>57</volume>
<issue>4</issue>
<fpage>504</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="other">2-s2.0-33745667960</pub-id>
</element-citation>
</ref>
<ref id="B237">
<label>299</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Machinet</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chabbert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Recous</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Impact of plant cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in roots from 16 maize genotypes</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2011</year>
<volume>43</volume>
<issue>7</issue>
<fpage>1544</fpage>
<lpage>1552</lpage>
<pub-id pub-id-type="other">2-s2.0-79955952629</pub-id>
</element-citation>
</ref>
<ref id="B238">
<label>300</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liebner</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Four</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>de la Rosa Arranz</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hilseher</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rosenau</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Knicker</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Ammonoxidised lignins as slow nitrogen-releasing soil amendments and CO
<sub>2</sub>
-binding matrix</article-title>
<source>
<italic>Angewandte Chemie</italic>
</source>
<year>2011</year>
<volume>50</volume>
<issue>37</issue>
<fpage>A34</fpage>
<lpage>A39</lpage>
<pub-id pub-id-type="other">2-s2.0-80052482864</pub-id>
<pub-id pub-id-type="pmid">22022715</pub-id>
</element-citation>
</ref>
<ref id="B239">
<label>301</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Batjes</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Total carbon and nitrogen in the soils of the world</article-title>
<source>
<italic>European Journal of Soil Science</italic>
</source>
<year>1996</year>
<volume>47</volume>
<issue>2</issue>
<fpage>151</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="other">2-s2.0-0030302293</pub-id>
</element-citation>
</ref>
<ref id="B240">
<label>302</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanco-Canqui</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Mechanisms of carbon sequestration in soil aggregates</article-title>
<source>
<italic>Critical Reviews in Plant Sciences</italic>
</source>
<year>2004</year>
<volume>23</volume>
<issue>6</issue>
<fpage>481</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="other">2-s2.0-11144290049</pub-id>
</element-citation>
</ref>
<ref id="B241">
<label>303</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dijkstra</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Hobbie</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Knops</surname>
<given-names>JMH</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>PB</given-names>
</name>
</person-group>
<article-title>Nitrogen deposition and plant species interact to influence soil carbon stabilization</article-title>
<source>
<italic>Ecology Letters</italic>
</source>
<year>2004</year>
<volume>7</volume>
<issue>12</issue>
<fpage>1192</fpage>
<lpage>1198</lpage>
<pub-id pub-id-type="other">2-s2.0-9944237899</pub-id>
</element-citation>
</ref>
<ref id="B242">
<label>304</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mandal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Majumder</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Adhya</surname>
<given-names>TK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate</article-title>
<source>
<italic>Global Change Biology</italic>
</source>
<year>2008</year>
<volume>14</volume>
<issue>9</issue>
<fpage>2139</fpage>
<lpage>2151</lpage>
<pub-id pub-id-type="other">2-s2.0-48849102923</pub-id>
</element-citation>
</ref>
<ref id="B243">
<label>305</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davidson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Janssens</surname>
<given-names>IA</given-names>
</name>
</person-group>
<article-title>Temperature sensitivity of soil carbon decomposition and feedbacks to climate change</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2006</year>
<volume>440</volume>
<issue>7081</issue>
<fpage>165</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="other">2-s2.0-33644866828</pub-id>
<pub-id pub-id-type="pmid">16525463</pub-id>
</element-citation>
</ref>
<ref id="B244">
<label>306</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Increased cuticular carbon sequestration and lignin oxidation in response to soil warming</article-title>
<source>
<italic>Nature Geoscience</italic>
</source>
<year>2008</year>
<volume>1</volume>
<issue>12</issue>
<fpage>836</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="other">2-s2.0-65349093409</pub-id>
</element-citation>
</ref>
<ref id="B245">
<label>307</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barriere</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Argillier</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Brown-midrib genes of maize—a review</article-title>
<source>
<italic>Agronomie</italic>
</source>
<year>1993</year>
<volume>13</volume>
<issue>10</issue>
<fpage>865</fpage>
<lpage>876</lpage>
<pub-id pub-id-type="other">2-s2.0-0027140083</pub-id>
</element-citation>
</ref>
<ref id="B246">
<label>308</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vignols</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rigau</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Capellades</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Puigdomenech</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<year>1995</year>
<volume>7</volume>
<issue>4</issue>
<fpage>407</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="other">2-s2.0-0029278933</pub-id>
<pub-id pub-id-type="pmid">7773015</pub-id>
</element-citation>
</ref>
<ref id="B247">
<label>309</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (
<italic>Zea mays</italic>
L.) to a 180 kb region on chromosome 2</article-title>
<source>
<italic>Theoretical and Applied Genetics</italic>
</source>
<year>2012</year>
<volume>125</volume>
<fpage>1223</fpage>
<lpage>1235</lpage>
<pub-id pub-id-type="pmid">22714805</pub-id>
</element-citation>
</ref>
<ref id="B248">
<label>310</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tjardes</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Buskirk</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Ames</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Bourquin</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Rust</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Brown midrib-3 corn silage improves digestion but not performance of growing beef steers</article-title>
<source>
<italic>Journal of Animal Science</italic>
</source>
<year>2000</year>
<volume>78</volume>
<issue>11</issue>
<fpage>2957</fpage>
<lpage>2965</lpage>
<pub-id pub-id-type="other">2-s2.0-0034331721</pub-id>
<pub-id pub-id-type="pmid">11063322</pub-id>
</element-citation>
</ref>
<ref id="B249">
<label>311</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliver</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>O’Rear</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows</article-title>
<source>
<italic>Journal of Dairy Science</italic>
</source>
<year>2004</year>
<volume>87</volume>
<issue>3</issue>
<fpage>637</fpage>
<lpage>644</lpage>
<pub-id pub-id-type="other">2-s2.0-3142775107</pub-id>
<pub-id pub-id-type="pmid">15202648</pub-id>
</element-citation>
</ref>
<ref id="B250">
<label>312</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dien</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Sarath</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improved sugar conversion and ethanol yield for forage sorghum (
<italic>Sorghum bicolor</italic>
L. Moench) lines with reduced lignin contents</article-title>
<source>
<italic>Bioenergy Research</italic>
</source>
<year>2009</year>
<volume>2</volume>
<issue>3</issue>
<fpage>153</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="other">2-s2.0-70349428329</pub-id>
</element-citation>
</ref>
<ref id="B251">
<label>313</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenz</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Coors</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>de Leon</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>2009</year>
<volume>49</volume>
<issue>1</issue>
<fpage>85</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="other">2-s2.0-59249100770</pub-id>
</element-citation>
</ref>
<ref id="B252">
<label>314</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saballos</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vermerris</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rivera</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ejeta</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (
<italic>Sorghum bicolor</italic>
(L.) Moench)</article-title>
<source>
<italic>Bioenergy Research</italic>
</source>
<year>2008</year>
<volume>1</volume>
<fpage>193</fpage>
<lpage>204</lpage>
</element-citation>
</ref>
<ref id="B253">
<label>315</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Baldock</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tuinstra</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Soil biological properties following additions of bmr mutant grain sorghum</article-title>
<source>
<italic>Soil Biology & Biochemistry</italic>
</source>
<year>2007</year>
<volume>39</volume>
<issue>7</issue>
<fpage>1518</fpage>
<lpage>1532</lpage>
<pub-id pub-id-type="other">2-s2.0-34247267192</pub-id>
</element-citation>
</ref>
<ref id="B254">
<label>316</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrière</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Méchin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lafarguette</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production</article-title>
<source>
<italic>Maydica</italic>
</source>
<year>2009</year>
<volume>54</volume>
<issue>2-3</issue>
<fpage>161</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="other">2-s2.0-72449128279</pub-id>
</element-citation>
</ref>
<ref id="B255">
<label>317</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dimov</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Suprianto</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hermann</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Möllers</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (
<italic>Brassica napus</italic>
L.) and development of NIRS calibrations</article-title>
<source>
<italic>Plant Breeding</italic>
</source>
<year>2012</year>
<volume>131</volume>
<fpage>361</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="other">2-s2.0-84857523306</pub-id>
</element-citation>
</ref>
<ref id="B260">
<label>318</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Uzarowska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ouzunova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Landbeck</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wenzel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lübberstedt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population</article-title>
<source>
<italic>BMC Genomics</italic>
</source>
<year>2007</year>
<volume>8, article 22</volume>
<pub-id pub-id-type="other">2-s2.0-33846985266</pub-id>
</element-citation>
</ref>
<ref id="B261">
<label>319</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morrell</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Buckler</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Ross-Ibarra</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Crop genomics: advances and applications</article-title>
<source>
<italic>Nature Reviews Genetics</italic>
</source>
<year>2012</year>
<volume>13</volume>
<issue>2</issue>
<fpage>85</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="other">2-s2.0-84855970757</pub-id>
</element-citation>
</ref>
<ref id="B262">
<label>320</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riedelsheimer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lisec</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Czedik-Eysenberg</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2012</year>
<volume>109</volume>
<fpage>8872</fpage>
<lpage>8877</lpage>
<pub-id pub-id-type="pmid">22615396</pub-id>
</element-citation>
</ref>
<ref id="B263">
<label>321</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hisano</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nandakumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z-Y</given-names>
</name>
</person-group>
<article-title>Genetic modification of lignin biosynthesis for improved biofuel production</article-title>
<source>
<italic>In Vitro Cellular & Developmental Biology</italic>
</source>
<year>2009</year>
<volume>45</volume>
<issue>3</issue>
<fpage>306</fpage>
<lpage>313</lpage>
<pub-id pub-id-type="other">2-s2.0-68649120176</pub-id>
</element-citation>
</ref>
<ref id="B264">
<label>322</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fornale</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Capellades</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Encina</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase</article-title>
<source>
<italic>Molecular Plant</italic>
</source>
<year>2012</year>
<volume>5</volume>
<fpage>817</fpage>
<lpage>830</lpage>
<pub-id pub-id-type="pmid">22147756</pub-id>
</element-citation>
</ref>
<ref id="B265">
<label>323</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piquemal</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chamayou</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nadaud</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach</article-title>
<source>
<italic>Plant Physiology</italic>
</source>
<year>2002</year>
<volume>130</volume>
<issue>4</issue>
<fpage>1675</fpage>
<lpage>1685</lpage>
<pub-id pub-id-type="other">2-s2.0-12244269747</pub-id>
<pub-id pub-id-type="pmid">12481050</pub-id>
</element-citation>
</ref>
<ref id="B266">
<label>324</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wheeler</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases</article-title>
<source>
<italic>Transgenic Research</italic>
</source>
<year>2001</year>
<volume>10</volume>
<issue>5</issue>
<fpage>457</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="other">2-s2.0-0034779150</pub-id>
<pub-id pub-id-type="pmid">11708655</pub-id>
</element-citation>
</ref>
<ref id="B267">
<label>325</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Fouad</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Vermerris</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Altpeter</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass</article-title>
<source>
<italic>Plant Biotechnology Journal</italic>
</source>
<year>2012</year>
<volume>10</volume>
<fpage>1067</fpage>
<lpage>1076</lpage>
<pub-id pub-id-type="pmid">22924974</pub-id>
</element-citation>
</ref>
<ref id="B268">
<label>326</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reddy</surname>
<given-names>MSS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Shadle</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Aljoe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (
<italic>Medicago sativa</italic>
L.)</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2005</year>
<volume>102</volume>
<issue>46</issue>
<fpage>16573</fpage>
<lpage>16578</lpage>
<pub-id pub-id-type="other">2-s2.0-28044451538</pub-id>
<pub-id pub-id-type="pmid">16263933</pub-id>
</element-citation>
</ref>
<ref id="B269">
<label>327</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fornal</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux</article-title>
<source>
<italic>Plant Journal</italic>
</source>
<year>2010</year>
<volume>64</volume>
<issue>4</issue>
<fpage>633</fpage>
<lpage>644</lpage>
<pub-id pub-id-type="other">2-s2.0-78449255457</pub-id>
<pub-id pub-id-type="pmid">21070416</pub-id>
</element-citation>
</ref>
<ref id="B270">
<label>328</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rastogi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dwivedi</surname>
<given-names>UN</given-names>
</name>
</person-group>
<article-title>Manipulation of lignin in plants with special reference to O-methyltransferase</article-title>
<source>
<italic>Plant Science</italic>
</source>
<year>2008</year>
<volume>174</volume>
<issue>3</issue>
<fpage>264</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="other">2-s2.0-39149145538</pub-id>
</element-citation>
</ref>
<ref id="B271">
<label>329</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fonseca</surname>
<given-names>CEL</given-names>
</name>
<name>
<surname>Viands</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Pell</surname>
<given-names>AN</given-names>
</name>
</person-group>
<article-title>Associations among forage quality traits, vigor, and disease resistance in alfalfa</article-title>
<source>
<italic>Crop Science</italic>
</source>
<year>1999</year>
<volume>39</volume>
<issue>5</issue>
<fpage>1271</fpage>
<lpage>1276</lpage>
<pub-id pub-id-type="other">2-s2.0-0032823658</pub-id>
</element-citation>
</ref>
<ref id="B272">
<label>330</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zein</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (
<italic>Zea mays</italic>
L.)</article-title>
<source>
<italic>BMC Plant Biology</italic>
</source>
<year>2010</year>
<volume>10, article 12</volume>
<pub-id pub-id-type="other">2-s2.0-77649286745</pub-id>
</element-citation>
</ref>
<ref id="B273">
<label>331</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabber</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Ress</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ralph</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls</article-title>
<source>
<italic>Journal of Agricultural and Food Chemistry</italic>
</source>
<year>2012</year>
<volume>60</volume>
<fpage>5152</fpage>
<lpage>5160</lpage>
<pub-id pub-id-type="pmid">22475000</pub-id>
</element-citation>
</ref>
<ref id="B274">
<label>332</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabber</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Schatz</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ralph</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability</article-title>
<source>
<italic>BMC Plant Biology</italic>
</source>
<year>2010</year>
<volume>10, article 114</volume>
<pub-id pub-id-type="other">2-s2.0-77953553243</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Simplified model of lignin biosynthesis in vascular plants. PAL: phenylalanine ammonia lyase, POX: peroxidases, LAC: laccases, and ROS: reactive oxygen species.</p>
</caption>
<graphic xlink:href="TSWJ2013-436517.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Overview of different lignin analysis methods.</p>
</caption>
<graphic xlink:href="TSWJ2013-436517.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Conceptual model of factors influencing the lignification of crops and its implications for different agricultural applications. </p>
</caption>
<graphic xlink:href="TSWJ2013-436517.003"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Effect of abiotic stresses on lignin concentration of different morphological fractions of crops.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Species/morphological fraction</th>
<th align="center" rowspan="1" colspan="1">Effect on lignin </th>
<th align="center" rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3" align="center" rowspan="1">Drought</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Forage legumes</td>
<td align="center" rowspan="1" colspan="1">↓↑</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B48">48</xref>
<xref ref-type="bibr" rid="B278">52</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Forage grasses</td>
<td align="center" rowspan="1" colspan="1">↓↑—</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B49">53</xref>
<xref ref-type="bibr" rid="B280">55</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize leaves,
<italic>Zea mays</italic>
L.</td>
<td align="center" rowspan="1" colspan="1">↓↑—</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B50">56</xref>
,
<xref ref-type="bibr" rid="B53">57</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Barley straw,
<italic>Hordeum vulgare</italic>
L. </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B281">58</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Salinity</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lettuce roots,
<italic>Lactuca sativa</italic>
L.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B282">59</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato roots,
<italic> Solanum lycopersicon </italic>
L.</td>
<td align="center" rowspan="1" colspan="1">↑—</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B56">60</xref>
,
<xref ref-type="bibr" rid="B283">61</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bean roots
<italic>, Phaseolus vulgaris</italic>
L.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B57">62</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize roots,
<italic>Zea mays</italic>
L.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B58">63</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice root,
<italic>Oryza sativa</italic>
L.</td>
<td align="center" rowspan="1" colspan="1">↓↑</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B55">64</xref>
,
<xref ref-type="bibr" rid="B284">65</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean root,
<italic>Glycine max</italic>
L.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B62">66</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Mineral toxicities (Al, B, Cd, Cu, Mn)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chamomile root,
<italic>Matricaria chamomilla</italic>
L.</td>
<td align="center" rowspan="1" colspan="1">↓↑—</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B285">67</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice roots</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B64">68</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wheat roots,
<italic>Triticum aestivum</italic>
L.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B65">69</xref>
,
<xref ref-type="bibr" rid="B286">70</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Flax roots
<italic>, Linum usitatissimum</italic>
L</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B66">71</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean roots </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B68">72</xref>
,
<xref ref-type="bibr" rid="B287">73</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato roots</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B67">74</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Mineral deficiencies (Ca, K, Mn, N, P, Si)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wheat root and shoot</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B74">75</xref>
,
<xref ref-type="bibr" rid="B75">76</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chamomile root</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B288">77</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tobacco root/shoot,
<italic>Nicotiana tabacum</italic>
L. </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B71">78</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean root</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B72">79</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Potato tubers,
<italic>Solanum tuberosum</italic>
L. </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B73">80</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice shoot</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B289">81</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Ozone</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice straw</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B34">34</xref>
,
<xref ref-type="bibr" rid="B290">82</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Forage legumes</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B291">83</xref>
,
<xref ref-type="bibr" rid="B292">84</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Forage grasses</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B293">85</xref>
<xref ref-type="bibr" rid="B295">87</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">UV</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Forage grasses</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B83">88</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato fruit</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B84">89</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cucumber seedlings,
<italic>Cucumis sativus</italic>
L. </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B85">90</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Quinoa seedlings;
<italic>Chenopodium quinoa</italic>
Willd.</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B86">91</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean leaves</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B87">92</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>↑ indicates that exposure to stress induced an increase in lignin content, ↓ indicates that exposure to stress induced a decrease in lignin content; — indicates that exposure to stress had no clear effect on lignin content. </p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Summary of studies suggesting lignification as an effective defense mechanism against biotic stresses in agricultural crops.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Crop species </th>
<th align="left" rowspan="1" colspan="1">Pathogen species</th>
<th align="center" rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3" align="center" rowspan="1">Fungi</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange fruits
<italic>, Citrus sinensis </italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Penicillium digitatum </italic>
(Pers.: Fr.) Sacc.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B119">93</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Apple fruit
<italic>, Malus domestica </italic>
L
<italic>. </italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>Penicillium expansum </italic>
Link</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B296">94</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Einkorn wheat,
<italic>Triticum monococcum </italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Blumeria graminis</italic>
f. sp. tritici (Bgt).</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B103">95</xref>
,
<xref ref-type="bibr" rid="B106">96</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wheat,
<italic>Triticum aestivum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Fusarium graminearum </italic>
Schwabe
<break></break>
Pyrenophora tritici-repentis (Died) Drechsler</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B297">97</xref>
]
<break></break>
[
<xref ref-type="bibr" rid="B298">98</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice,
<italic>Oryza sativa</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Magnaporthe grisea </italic>
(T.T. Hebert) M.E. Barr</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B88">99</xref>
,
<xref ref-type="bibr" rid="B299">100</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Perennial ryegrass,
<italic>Lolium perenne </italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Puccinia coronata </italic>
Corda f.sp. lolii Brown</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B300">101</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Camelina
<italic>, Camelina sativa </italic>
L. Crantz</td>
<td align="left" rowspan="1" colspan="1">
<italic>Sclerotinia sclerotiorum </italic>
(Lib.) de Bary</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B301">102</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tobacco,
<italic>Nicotiana tabacum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Botrytis cinerea </italic>
(De Bary) Whetzel,
<italic>Pythium </italic>
ssp.,
<italic>Alternaria </italic>
ssp.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B107">103</xref>
,
<xref ref-type="bibr" rid="B108">104</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
Gaertn.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Phoma medicaginis</italic>
Malbr. & Roum.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B302">105</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Raspberry,
<italic>Rubus </italic>
ssp.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Didymella applanata</italic>
(Niessl) Sacc.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B303">106</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean,
<italic>Glycine max</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Phakopsora pachyrhizi </italic>
Syd. & P. Syd</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B304">107</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cotton,
<italic>Gossypium hirsutum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Fusarium oxysporum </italic>
Schlechtend 
<break></break>
<italic>Pythium debaryanum </italic>
R. Hesse 
<break></break>
<italic>Verticillium dahliae </italic>
Kleb. </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B111">108</xref>
<xref ref-type="bibr" rid="B305">110</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Potato,
<italic>Solanum tuberosum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Phytophtora infestans </italic>
(Mont.) De Bary
<break></break>
<italic>Alternaria solani </italic>
Sorauer. </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B112">111</xref>
,
<xref ref-type="bibr" rid="B306">112</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Carrot,
<italic>Daucus carota</italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Mycocentrospora acerina </italic>
(R. Hartig) Deighton
<break></break>
<italic>Alternaria radicina </italic>
Meier, Drechsler & E.D. Eddy</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B113">113</xref>
,
<xref ref-type="bibr" rid="B307">114</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato,
<italic>Lycopersicon esculentum</italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Fusarium oxysporum </italic>
f. sp. lycopersici</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B116">115</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pearl millet
<italic>, Pennisetum glaucum (L.) R.Br </italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>Sclerospora graminicola </italic>
(Sacc.) J. Schröt. </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B308">116</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Peanut,
<italic>Arachis hypogea</italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Sclerotium rolfsii </italic>
(Curzi) C.C.Tu & Kimbr.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B115">117</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pepper,
<italic>Capsicum annuum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Verticillium dahliae </italic>
Kleb.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B309">118</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cucumber,
<italic>Cucumis sativus</italic>
L.</td>
<td align="left" rowspan="1" colspan="1">
<italic>Colletotrichum orbiculare </italic>
(Berk. & Mont.)</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B117">119</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Bacteria</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice</td>
<td align="left" rowspan="1" colspan="1">
<italic>Xanthomonas oryzae </italic>
</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B114">120</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tobacco,
<italic>Nicotiana tabacum</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Erwinia carotovora </italic>
</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B109">121</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato</td>
<td align="left" rowspan="1" colspan="1">
<italic>Ralstonia solanacearum </italic>
</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B310">122</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Nematodes</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Banana,
<italic>Musa paradisiaca</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Radopholus similis </italic>
(Cobb) Thorne
<italic>, Pratylenchus coffeae </italic>
Goodey</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B311">123</xref>
<xref ref-type="bibr" rid="B313">125</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tomato</td>
<td align="left" rowspan="1" colspan="1">
<italic>Meloidogyne incognita </italic>
</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B314">126</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soybean</td>
<td align="left" rowspan="1" colspan="1">
<italic>Heterodera glycines </italic>
Ichinohe</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B315">127</xref>
]</td>
</tr>
<tr>
<td align="left" colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3" align="center" rowspan="1">Insects</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice </td>
<td align="left" rowspan="1" colspan="1">
<italic>Sogatella furcifera </italic>
Horváth</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B88">99</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize,
<italic>Zea mays</italic>
L. </td>
<td align="left" rowspan="1" colspan="1">
<italic>Ostrinia nubilalis </italic>
Hübner,
<italic>Sesamia nonagrioides </italic>
Lefèbre</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B316">128</xref>
,
<xref ref-type="bibr" rid="B317">129</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tobacco roots</td>
<td align="left" rowspan="1" colspan="1">
<italic>Agriotes </italic>
spp.</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B110">130</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">51 grassland species</td>
<td align="left" rowspan="1" colspan="1">Multiple</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B318">131</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Summary of studies reporting QTL for lignin content of different crop species.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Species </th>
<th align="left" rowspan="1" colspan="1">Population</th>
<th align="center" rowspan="1" colspan="1">Marker type </th>
<th align="center" rowspan="1" colspan="1">Lignin type </th>
<th align="center" rowspan="1" colspan="1">No. of QTLs detected (partial
<italic>R</italic>
<sup>2</sup>
)</th>
<th align="center" rowspan="1" colspan="1">Primary breeding aim </th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">100 RIL of F2 (—) X Io (—)</td>
<td align="center" rowspan="1" colspan="1">152 RFLP</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">1 (7.6)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B319">132</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize</td>
<td align="left" rowspan="1" colspan="1">131 RIL of F288 X F271</td>
<td align="center" rowspan="1" colspan="1">341 SSR</td>
<td align="center" rowspan="1" colspan="1">ADL/KL</td>
<td align="center" rowspan="1" colspan="1">21 (6.6–20.4)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B320">133</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">200 RIL of B73 (↓) X B52 (↑)</td>
<td align="center" rowspan="1" colspan="1">120 RFLP, 65 SSR</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">Sheath 8 (0.2–12.2)
<break></break>
Stalks 12 (0.3–10.4)</td>
<td align="center" rowspan="1" colspan="1">Forage quality </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B321">134</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize</td>
<td align="left" rowspan="1" colspan="1">191 RIL of B73 (↓) X De811 (↑)</td>
<td align="center" rowspan="1" colspan="1">113 RFLP, 33 SSR</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">10 (6–17)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B257">135</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">200 RIL of B73 (↓) X De811 (↑)</td>
<td align="center" rowspan="1" colspan="1">113 RFLP, 33 SSR</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">12 (4–17)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B322">136</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize</td>
<td align="left" rowspan="1" colspan="1">242 RIL of F838 (↑) X F286 (↓)</td>
<td align="center" rowspan="1" colspan="1">249 SSR</td>
<td align="center" rowspan="1" colspan="1">KL/ADL</td>
<td align="center" rowspan="1" colspan="1">15 (5.9–16.5)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B323">137</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">140 RIL of Fl1 (↓) X Fl2 (↑)</td>
<td align="center" rowspan="1" colspan="1">189 SSR </td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">4 (10.7–19.7)</td>
<td align="center" rowspan="1" colspan="1">Forage quality </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B258">138</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize</td>
<td align="left" rowspan="1" colspan="1">240 RIL of F838 X F286</td>
<td align="center" rowspan="1" colspan="1">101 SSR</td>
<td align="center" rowspan="1" colspan="1">KL/ADL</td>
<td align="center" rowspan="1" colspan="1">14 (5.6–21.2)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B324">139</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">223 RIL of B73 (—) X Mo17 (—)</td>
<td align="center" rowspan="1" colspan="1">Maize GDB map
<sup>§</sup>
</td>
<td align="center" rowspan="1" colspan="1">KL</td>
<td align="center" rowspan="1" colspan="1">4 (5-6)</td>
<td align="center" rowspan="1" colspan="1">Biofuel production</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B325">140</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize</td>
<td align="left" rowspan="1" colspan="1">206 RIL of B73 (—) X Mo17 (—)</td>
<td align="center" rowspan="1" colspan="1">IBM2 framework map
<sup>#</sup>
</td>
<td align="center" rowspan="1" colspan="1">NIRS</td>
<td align="center" rowspan="1" colspan="1">6 (18.7–28.1)</td>
<td align="center" rowspan="1" colspan="1">Biofuel production</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B326">141</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Maize </td>
<td align="left" rowspan="1" colspan="1">163 RIL of RIo (↑) X WM13 (↓)</td>
<td align="center" rowspan="1" colspan="1">108 SSR</td>
<td align="center" rowspan="1" colspan="1">KL/ADL</td>
<td align="center" rowspan="1" colspan="1">15 (8.5–43)</td>
<td align="center" rowspan="1" colspan="1">Diverse</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B256">142</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Barley </td>
<td align="left" rowspan="1" colspan="1">494 RIL of Arta (↓) x
<italic>H. spontaneum</italic>
41-1 (↑)</td>
<td align="center" rowspan="1" colspan="1">158 RFLP, 30SSR</td>
<td align="center" rowspan="1" colspan="1">NIRS</td>
<td align="center" rowspan="1" colspan="1">11 (4.2–8.9)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B327">143</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Barley </td>
<td align="left" rowspan="1" colspan="1">72 DH of Steptoe (—) X Morex (—)</td>
<td align="center" rowspan="1" colspan="1">327 markers
<sup>$</sup>
</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">4 (8.6–14.2)</td>
<td align="center" rowspan="1" colspan="1">Forage quality </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B328">144</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sorghum </td>
<td align="left" rowspan="1" colspan="1">176 RIL of BTx623 (—) X Rio (—)</td>
<td align="center" rowspan="1" colspan="1">68 SSR and 222 AFLP</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">Stem 5 (n.a.)
<break></break>
Leaf 5 (n.a.)</td>
<td align="center" rowspan="1" colspan="1">Biofuel production </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B329">145</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sorghum </td>
<td align="left" rowspan="1" colspan="1">188 RIL of SS79 (↓) X M71 (↑)</td>
<td align="center" rowspan="1" colspan="1">157 SSR and AFLP </td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">15 (7.1–18.9)</td>
<td align="center" rowspan="1" colspan="1">Biofuel production</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B330">146</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice</td>
<td align="left" rowspan="1" colspan="1">127 DH of ZYQ8 (↑) X JX17 (↓)</td>
<td align="center" rowspan="1" colspan="1">243 RFLP</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">1 (23.8)</td>
<td align="center" rowspan="1" colspan="1">Forage quality</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B331">147</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rice </td>
<td align="left" rowspan="1" colspan="1">202 BIL of Xieqingzao (↑) X DWR (↓)</td>
<td align="center" rowspan="1" colspan="1">149 markers</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">5 (4.9–12.6)</td>
<td align="center" rowspan="1" colspan="1">Forage quality </td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B332">148</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rape seed</td>
<td align="left" rowspan="1" colspan="1">232 RIL of GH06 (↓) X P174 (↑)</td>
<td align="center" rowspan="1" colspan="1">RFLP/SSR</td>
<td align="center" rowspan="1" colspan="1">ADL</td>
<td align="center" rowspan="1" colspan="1">1 (39.3)</td>
<td align="center" rowspan="1" colspan="1">Feed value</td>
<td align="center" rowspan="1" colspan="1">[
<xref ref-type="bibr" rid="B259">149</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>RIL: recombinant inbred lines; DH: doubled haploids; BIL: backcross inbred lines; (↓) denotes parent with lower lignin content, (↑) denotes parent with higher lignin content, (—) denotes no consistent difference in lignin content between parents; RFLP: restricted fragment length polymorphism; SSR: simple sequence repeat; AFLP: amplified fragment length polymorphism;
<sup>§</sup>
marker data were obtained from
<ext-link ext-link-type="uri" xlink:href="http://www.maizegdb.org/">http://www.maizegdb.org/</ext-link>
;
<sup>#</sup>
marker data were obtained from
<ext-link ext-link-type="uri" xlink:href="www.maizemap.org">www.maizemap.org</ext-link>
;
<sup>$</sup>
marker data were obtained from
<ext-link ext-link-type="uri" xlink:href="http://barleygenomics.wsu.edu/">http://barleygenomics.wsu.edu/</ext-link>
; ABSL: acetyl bromide soluble lignin; ADL: acid detergent lignin; KL: Klason lignin; NIRS: lignin content was determined by near-infrared spectroscopy; partial
<italic>R</italic>
<sup>2</sup>
indicates the proportion of phenotypic variation explained by individual QTL; n.a.: not available.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3848262
   |texte=   Lignin: Characterization of a Multifaceted Crop Component
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24348159" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024