Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001353 ( Pmc/Corpus ); précédent : 0013529; suivant : 0013540 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review</title>
<author>
<name sortKey="El Sayed, Hanan E M" sort="El Sayed, Hanan E M" uniqKey="El Sayed H" first="Hanan E. M." last="El-Sayed">Hanan E. M. El-Sayed</name>
<affiliation>
<nlm:aff id="I1">Mechanical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Civil and Environmental Engineering Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Sayed, Mayyada M H" sort="El Sayed, Mayyada M H" uniqKey="El Sayed M" first="Mayyada M. H." last="El-Sayed">Mayyada M. H. El-Sayed</name>
<affiliation>
<nlm:aff id="I3">Chemical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Chemistry Department, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, Cairo, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">University of Maryland, Baltimore County (UMBC), 252 TRC Building, 5200 Westland Boulevard, Baltimore, MD 21227, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25110656</idno>
<idno type="pmc">4109414</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109414</idno>
<idno type="RBID">PMC:4109414</idno>
<idno type="doi">10.1155/2014/146769</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001353</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review</title>
<author>
<name sortKey="El Sayed, Hanan E M" sort="El Sayed, Hanan E M" uniqKey="El Sayed H" first="Hanan E. M." last="El-Sayed">Hanan E. M. El-Sayed</name>
<affiliation>
<nlm:aff id="I1">Mechanical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Civil and Environmental Engineering Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Sayed, Mayyada M H" sort="El Sayed, Mayyada M H" uniqKey="El Sayed M" first="Mayyada M. H." last="El-Sayed">Mayyada M. H. El-Sayed</name>
<affiliation>
<nlm:aff id="I3">Chemical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Chemistry Department, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, Cairo, Egypt</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I5">University of Maryland, Baltimore County (UMBC), 252 TRC Building, 5200 Westland Boulevard, Baltimore, MD 21227, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioMed Research International</title>
<idno type="ISSN">2314-6133</idno>
<idno type="eISSN">2314-6141</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>There is a growing need for the use of low-cost and ecofriendly adsorbents in water/wastewater treatment applications. Conventional adsorbents as well as biosorbents from different natural and agricultural sources have been extensively studied and reviewed. However, there is a lack of reviews on biosorption utilizing industrial wastes, particularly those of food processing and pharmaceuticals. The current review evaluates the potential of these wastes as biosorbents for the removal of some hazardous contaminants. Sources and applications of these biosorbents are presented, while factors affecting biosorption are discussed. Equilibrium, kinetics, and mechanisms of biosorption are also reviewed. In spite of the wide spread application of these biosorbents in the treatment of heavy metals and dyes, more research is required on other classes of pollutants. In addition, further work should be dedicated to studying scaling up of the process and its economic feasibility. More attention should also be given to enhancing mechanical strength, stability, life time, and reproducibility of the biosorbent. Environmental concerns regarding disposal of consumed biosorbents should be addressed by offering feasible biosorbent regeneration or pollutant immobilization options.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Rafatullah, M" uniqKey="Rafatullah M">M Rafatullah</name>
</author>
<author>
<name sortKey="Sulaiman, O" uniqKey="Sulaiman O">O Sulaiman</name>
</author>
<author>
<name sortKey="Hashim, R" uniqKey="Hashim R">R Hashim</name>
</author>
<author>
<name sortKey="Ahmad, A" uniqKey="Ahmad A">A Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, Vk" uniqKey="Gupta V">VK Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forgacs, E" uniqKey="Forgacs E">E Forgacs</name>
</author>
<author>
<name sortKey="Cserhati, T" uniqKey="Cserhati T">T Cserháti</name>
</author>
<author>
<name sortKey="Oros, G" uniqKey="Oros G">G Oros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kyzas, Gz" uniqKey="Kyzas G">GZ Kyzas</name>
</author>
<author>
<name sortKey="Fu, J" uniqKey="Fu J">J Fu</name>
</author>
<author>
<name sortKey="Matis, Ka" uniqKey="Matis K">KA Matis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijayaraghavan, J" uniqKey="Vijayaraghavan J">J Vijayaraghavan</name>
</author>
<author>
<name sortKey="Basha, Sjs" uniqKey="Basha S">SJS Basha</name>
</author>
<author>
<name sortKey="Jegan, J" uniqKey="Jegan J">J Jegan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aksu, Z" uniqKey="Aksu Z">Z Aksu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y F" uniqKey="Zhou Y">Y-F Zhou</name>
</author>
<author>
<name sortKey="Haynes, Rj" uniqKey="Haynes R">RJ Haynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, F" uniqKey="Fu F">F Fu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gadd, Gm" uniqKey="Gadd G">GM Gadd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gogate, Pr" uniqKey="Gogate P">PR Gogate</name>
</author>
<author>
<name sortKey="Pandit, Ab" uniqKey="Pandit A">AB Pandit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gogate, Pr" uniqKey="Gogate P">PR Gogate</name>
</author>
<author>
<name sortKey="Pandit, Ab" uniqKey="Pandit A">AB Pandit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolong, N" uniqKey="Bolong N">N Bolong</name>
</author>
<author>
<name sortKey="Ismail, Af" uniqKey="Ismail A">AF Ismail</name>
</author>
<author>
<name sortKey="Salim, Mr" uniqKey="Salim M">MR Salim</name>
</author>
<author>
<name sortKey="Matsuura, T" uniqKey="Matsuura T">T Matsuura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chojnacka, K" uniqKey="Chojnacka K">K Chojnacka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crini, G" uniqKey="Crini G">G Crini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ngah, Wsw" uniqKey="Ngah W">WSW Ngah</name>
</author>
<author>
<name sortKey="Teong, Lc" uniqKey="Teong L">LC Teong</name>
</author>
<author>
<name sortKey="Hanafiah, Makm" uniqKey="Hanafiah M">MAKM Hanafiah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demirbas, A" uniqKey="Demirbas A">A Demirbas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crini, G" uniqKey="Crini G">G Crini</name>
</author>
<author>
<name sortKey="Badot, P M" uniqKey="Badot P">P-M Badot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salleh, Mam" uniqKey="Salleh M">MAM Salleh</name>
</author>
<author>
<name sortKey="Mahmoud, Dk" uniqKey="Mahmoud D">DK Mahmoud</name>
</author>
<author>
<name sortKey="Karim, Wawa" uniqKey="Karim W">WAWA Karim</name>
</author>
<author>
<name sortKey="Idris, A" uniqKey="Idris A">A Idris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaushik, P" uniqKey="Kaushik P">P Kaushik</name>
</author>
<author>
<name sortKey="Malik, A" uniqKey="Malik A">A Malik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearce, Ci" uniqKey="Pearce C">CI Pearce</name>
</author>
<author>
<name sortKey="Lloyd, Jr" uniqKey="Lloyd J">JR Lloyd</name>
</author>
<author>
<name sortKey="Guthrie, Jt" uniqKey="Guthrie J">JT Guthrie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sud, D" uniqKey="Sud D">D Sud</name>
</author>
<author>
<name sortKey="Mahajan, G" uniqKey="Mahajan G">G Mahajan</name>
</author>
<author>
<name sortKey="Kaur, Mp" uniqKey="Kaur M">MP Kaur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lesmana, So" uniqKey="Lesmana S">SO Lesmana</name>
</author>
<author>
<name sortKey="Febriana, N" uniqKey="Febriana N">N Febriana</name>
</author>
<author>
<name sortKey="Soetaredjo, Fe" uniqKey="Soetaredjo F">FE Soetaredjo</name>
</author>
<author>
<name sortKey="Sunarso, J" uniqKey="Sunarso J">J Sunarso</name>
</author>
<author>
<name sortKey="Ismadji, S" uniqKey="Ismadji S">S Ismadji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farooq, U" uniqKey="Farooq U">U Farooq</name>
</author>
<author>
<name sortKey="Kozinski, Ja" uniqKey="Kozinski J">JA Kozinski</name>
</author>
<author>
<name sortKey="Khan, Ma" uniqKey="Khan M">MA Khan</name>
</author>
<author>
<name sortKey="Athar, M" uniqKey="Athar M">M Athar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fosso Kankeu, E" uniqKey="Fosso Kankeu E">E Fosso-Kankeu</name>
</author>
<author>
<name sortKey="Mulaba Bafubiandi, Af" uniqKey="Mulaba Bafubiandi A">AF Mulaba-Bafubiandi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahluwalia, Ss" uniqKey="Ahluwalia S">SS Ahluwalia</name>
</author>
<author>
<name sortKey="Goyal, D" uniqKey="Goyal D">D Goyal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yadanaparthi, Skr" uniqKey="Yadanaparthi S">SKR Yadanaparthi</name>
</author>
<author>
<name sortKey="Graybill, D" uniqKey="Graybill D">D Graybill</name>
</author>
<author>
<name sortKey="Von Wandruszka, R" uniqKey="Von Wandruszka R">R von Wandruszka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demirbas, A" uniqKey="Demirbas A">A Demirbas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, L" uniqKey="Yan L">L Yan</name>
</author>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H Yin</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Leng, F" uniqKey="Leng F">F Leng</name>
</author>
<author>
<name sortKey="Nan, W" uniqKey="Nan W">W Nan</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathialagan, T" uniqKey="Mathialagan T">T Mathialagan</name>
</author>
<author>
<name sortKey="Viraraghavan, T" uniqKey="Viraraghavan T">T Viraraghavan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maciel, Gm" uniqKey="Maciel G">GM Maciel</name>
</author>
<author>
<name sortKey="Souza, Cgmd" uniqKey="Souza C">CGMD Souza</name>
</author>
<author>
<name sortKey="Araujo, Cavd" uniqKey="Araujo C">CAVD Araújo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hai, Fi" uniqKey="Hai F">FI Hai</name>
</author>
<author>
<name sortKey="Modin, O" uniqKey="Modin O">O Modin</name>
</author>
<author>
<name sortKey="Yamamoto, K" uniqKey="Yamamoto K">K Yamamoto</name>
</author>
<author>
<name sortKey="Fukushi, K" uniqKey="Fukushi K">K Fukushi</name>
</author>
<author>
<name sortKey="Nakajima, F" uniqKey="Nakajima F">F Nakajima</name>
</author>
<author>
<name sortKey="Nghiem, Ld" uniqKey="Nghiem L">LD Nghiem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, Ln" uniqKey="Nguyen L">LN Nguyen</name>
</author>
<author>
<name sortKey="Hai, Fi" uniqKey="Hai F">FI Hai</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, Ak" uniqKey="Jain A">AK Jain</name>
</author>
<author>
<name sortKey="Gupta, Vk" uniqKey="Gupta V">VK Gupta</name>
</author>
<author>
<name sortKey="Jain, S" uniqKey="Jain S">S Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurniawan, Ta" uniqKey="Kurniawan T">TA Kurniawan</name>
</author>
<author>
<name sortKey="Chan, Gys" uniqKey="Chan G">GYS Chan</name>
</author>
<author>
<name sortKey="Lo, W H" uniqKey="Lo W">W-H Lo</name>
</author>
<author>
<name sortKey="Babel, S" uniqKey="Babel S">S Babel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhatnagar, A" uniqKey="Bhatnagar A">A Bhatnagar</name>
</author>
<author>
<name sortKey="Minocha, Ak" uniqKey="Minocha A">AK Minocha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saraswat, S" uniqKey="Saraswat S">S Saraswat</name>
</author>
<author>
<name sortKey="Rai, Jpn" uniqKey="Rai J">JPN Rai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Lin, Y" uniqKey="Lin Y">Y Lin</name>
</author>
<author>
<name sortKey="Guan, W" uniqKey="Guan W">W Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Y" uniqKey="Fu Y">Y Fu</name>
</author>
<author>
<name sortKey="Fu, Y" uniqKey="Fu Y">Y Fu</name>
</author>
<author>
<name sortKey="Viraraghavan, T" uniqKey="Viraraghavan T">T Viraraghavan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Y" uniqKey="Fu Y">Y Fu</name>
</author>
<author>
<name sortKey="Viraraghavan, T" uniqKey="Viraraghavan T">T Viraraghavan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bishnoi, Nr" uniqKey="Bishnoi N">NR Bishnoi</name>
</author>
<author>
<name sortKey="Pant, A" uniqKey="Pant A">A Pant</name>
</author>
<author>
<name sortKey="Garima" uniqKey="Garima">Garima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarro, Ae" uniqKey="Navarro A">AE Navarro</name>
</author>
<author>
<name sortKey="Portales, Rf" uniqKey="Portales R">RF Portales</name>
</author>
<author>
<name sortKey="Sun Kou, Mr" uniqKey="Sun Kou M">MR Sun-Kou</name>
</author>
<author>
<name sortKey="Llanos, Bp" uniqKey="Llanos B">BP Llanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kocberber, N" uniqKey="Kocberber N">N Koçberber</name>
</author>
<author>
<name sortKey="Donmez, G" uniqKey="Donmez G">G Dönmez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
<author>
<name sortKey="Ahmad, Ah" uniqKey="Ahmad A">AH Ahmad</name>
</author>
<author>
<name sortKey="Thakur, Is" uniqKey="Thakur I">IS Thakur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bishnoi, Nr" uniqKey="Bishnoi N">NR Bishnoi</name>
</author>
<author>
<name sortKey="Bajaj, M" uniqKey="Bajaj M">M Bajaj</name>
</author>
<author>
<name sortKey="Sharma, N" uniqKey="Sharma N">N Sharma</name>
</author>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, U" uniqKey="Kumar U">U Kumar</name>
</author>
<author>
<name sortKey="Bandyopadhyay, M" uniqKey="Bandyopadhyay M">M Bandyopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Kk" uniqKey="Singh K">KK Singh</name>
</author>
<author>
<name sortKey="Rastogi, R" uniqKey="Rastogi R">R Rastogi</name>
</author>
<author>
<name sortKey="Hasan, Sh" uniqKey="Hasan S">SH Hasan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tarley, Crt" uniqKey="Tarley C">CRT Tarley</name>
</author>
<author>
<name sortKey="Arruda, Maz" uniqKey="Arruda M">MAZ Arruda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohan, D" uniqKey="Mohan D">D Mohan</name>
</author>
<author>
<name sortKey="Singh, Kp" uniqKey="Singh K">KP Singh</name>
</author>
<author>
<name sortKey="Singh, Vk" uniqKey="Singh V">VK Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohan, D" uniqKey="Mohan D">D Mohan</name>
</author>
<author>
<name sortKey="Singh, Kp" uniqKey="Singh K">KP Singh</name>
</author>
<author>
<name sortKey="Singh, Vk" uniqKey="Singh V">VK Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, Ps" uniqKey="Kumar P">PS Kumar</name>
</author>
<author>
<name sortKey="Ramalingam, S" uniqKey="Ramalingam S">S Ramalingam</name>
</author>
<author>
<name sortKey="Senthamarai, C" uniqKey="Senthamarai C">C Senthamarai</name>
</author>
<author>
<name sortKey="Niranjanaa, M" uniqKey="Niranjanaa M">M Niranjanaa</name>
</author>
<author>
<name sortKey="Vijayalakshmi, P" uniqKey="Vijayalakshmi P">P Vijayalakshmi</name>
</author>
<author>
<name sortKey="Sivanesan, S" uniqKey="Sivanesan S">S Sivanesan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venkateswarlu, P" uniqKey="Venkateswarlu P">P Venkateswarlu</name>
</author>
<author>
<name sortKey="Ratnam, Mv" uniqKey="Ratnam M">MV Ratnam</name>
</author>
<author>
<name sortKey="Rao, Ds" uniqKey="Rao D">DS Rao</name>
</author>
<author>
<name sortKey="Rao, Mv" uniqKey="Rao M">MV Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahluwalia, Ss" uniqKey="Ahluwalia S">SS Ahluwalia</name>
</author>
<author>
<name sortKey="Goyal, D" uniqKey="Goyal D">D Goyal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benaissa, H" uniqKey="Benaissa H">H Benaïssa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiewer, S" uniqKey="Schiewer S">S Schiewer</name>
</author>
<author>
<name sortKey="Patil, Sb" uniqKey="Patil S">SB Patil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farajzadeh, Ma" uniqKey="Farajzadeh M">MA Farajzadeh</name>
</author>
<author>
<name sortKey="Monji, Ab" uniqKey="Monji A">AB Monji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lima, Is" uniqKey="Lima I">IS Lima</name>
</author>
<author>
<name sortKey="Ribeiro, Es" uniqKey="Ribeiro E">ES Ribeiro</name>
</author>
<author>
<name sortKey="Airoldi, C" uniqKey="Airoldi C">C Airoldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cestari, Ar" uniqKey="Cestari A">AR Cestari</name>
</author>
<author>
<name sortKey="Vieira, Efs" uniqKey="Vieira E">EFS Vieira</name>
</author>
<author>
<name sortKey="Dos Santos, Agp" uniqKey="Dos Santos A">AGP dos Santos</name>
</author>
<author>
<name sortKey="Mota, Ja" uniqKey="Mota J">JA Mota</name>
</author>
<author>
<name sortKey="De Almeida, Vp" uniqKey="De Almeida V">VP de Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, Px" uniqKey="Pinto P">PX Pinto</name>
</author>
<author>
<name sortKey="Al Abed, Sr" uniqKey="Al Abed S">SR Al-Abed</name>
</author>
<author>
<name sortKey="Reisman, Dj" uniqKey="Reisman D">DJ Reisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otero, M" uniqKey="Otero M">M Otero</name>
</author>
<author>
<name sortKey="Rozada, F" uniqKey="Rozada F">F Rozada</name>
</author>
<author>
<name sortKey="Calvo, Lf" uniqKey="Calvo L">LF Calvo</name>
</author>
<author>
<name sortKey="Garcia, Ai" uniqKey="Garcia A">AI García</name>
</author>
<author>
<name sortKey="Moran, A" uniqKey="Moran A">A Morán</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Hc" uniqKey="Chu H">HC Chu</name>
</author>
<author>
<name sortKey="Chen, Km" uniqKey="Chen K">KM Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manu, B" uniqKey="Manu B">B Manu</name>
</author>
<author>
<name sortKey="Chaudhari, S" uniqKey="Chaudhari S">S Chaudhari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramalho, Pa" uniqKey="Ramalho P">PA Ramalho</name>
</author>
<author>
<name sortKey="Scholze, H" uniqKey="Scholze H">H Scholze</name>
</author>
<author>
<name sortKey="Cardoso, Mh" uniqKey="Cardoso M">MH Cardoso</name>
</author>
<author>
<name sortKey="Ramalho, Mt" uniqKey="Ramalho M">MT Ramalho</name>
</author>
<author>
<name sortKey="Oliveira Campos, Am" uniqKey="Oliveira Campos A">AM Oliveira-Campos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basibuyuk, M" uniqKey="Basibuyuk M">M Basibuyuk</name>
</author>
<author>
<name sortKey="Forster, Cf" uniqKey="Forster C">CF Forster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jianlong, W" uniqKey="Jianlong W">W Jianlong</name>
</author>
<author>
<name sortKey="Yi, Q" uniqKey="Yi Q">Q Yi</name>
</author>
<author>
<name sortKey="Horan, N" uniqKey="Horan N">N Horan</name>
</author>
<author>
<name sortKey="Stentiford, E" uniqKey="Stentiford E">E Stentiford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Federici, F" uniqKey="Federici F">F Federici</name>
</author>
<author>
<name sortKey="Fava, F" uniqKey="Fava F">F Fava</name>
</author>
<author>
<name sortKey="Kalogerakis, N" uniqKey="Kalogerakis N">N Kalogerakis</name>
</author>
<author>
<name sortKey="Mantzavinos, D" uniqKey="Mantzavinos D">D Mantzavinos</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, R" uniqKey="Han R">R Han</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H Xiao</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaikumar, V" uniqKey="Jaikumar V">V Jaikumar</name>
</author>
<author>
<name sortKey="Ramamurthi, V" uniqKey="Ramamurthi V">V Ramamurthi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dias, Ma" uniqKey="Dias M">MA Dias</name>
</author>
<author>
<name sortKey="Rosa, Ca" uniqKey="Rosa C">CA Rosa</name>
</author>
<author>
<name sortKey="Linardi, Vr" uniqKey="Linardi V">VR Linardi</name>
</author>
<author>
<name sortKey="Conte, Ra" uniqKey="Conte R">RA Conte</name>
</author>
<author>
<name sortKey="De Castro, Hf" uniqKey="De Castro H">HF de Castro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H Lu</name>
</author>
<author>
<name sortKey="Xia, H" uniqKey="Xia H">H Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C C" uniqKey="Liu C">C-C Liu</name>
</author>
<author>
<name sortKey="Wang, M K" uniqKey="Wang M">M-K Wang</name>
</author>
<author>
<name sortKey="Chiou, C S" uniqKey="Chiou C">C-S Chiou</name>
</author>
<author>
<name sortKey="Li, Y S" uniqKey="Li Y">Y-S Li</name>
</author>
<author>
<name sortKey="Lin, Y A" uniqKey="Lin Y">Y-A Lin</name>
</author>
<author>
<name sortKey="Huang, S S" uniqKey="Huang S">S-S Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parvathi, K" uniqKey="Parvathi K">K Parvathi</name>
</author>
<author>
<name sortKey="Nagendran, R" uniqKey="Nagendran R">R Nagendran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dias, Ma" uniqKey="Dias M">MA Dias</name>
</author>
<author>
<name sortKey="Castro, Hf" uniqKey="Castro H">HF Castro</name>
</author>
<author>
<name sortKey="Pimentel, Pf" uniqKey="Pimentel P">PF Pimentel</name>
</author>
<author>
<name sortKey="Gomes, Ncm" uniqKey="Gomes N">NCM Gomes</name>
</author>
<author>
<name sortKey="Rosa, Ca" uniqKey="Rosa C">CA Rosa</name>
</author>
<author>
<name sortKey="Linardi, Vr" uniqKey="Linardi V">VR Linardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C C" uniqKey="Liu C">C-C Liu</name>
</author>
<author>
<name sortKey="Kuang Wang, M" uniqKey="Kuang Wang M">M Kuang-Wang</name>
</author>
<author>
<name sortKey="Li, Y S" uniqKey="Li Y">Y-S Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pujol, D" uniqKey="Pujol D">D Pujol</name>
</author>
<author>
<name sortKey="Bartroli, M" uniqKey="Bartroli M">M Bartrolí</name>
</author>
<author>
<name sortKey="Fiol, N" uniqKey="Fiol N">N Fiol</name>
</author>
<author>
<name sortKey="Torre, Fdl" uniqKey="Torre F">FDL Torre</name>
</author>
<author>
<name sortKey="Villaescusa, I" uniqKey="Villaescusa I">I Villaescusa</name>
</author>
<author>
<name sortKey="Poch, J" uniqKey="Poch J">J Poch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gusmao, Kag" uniqKey="Gusmao K">KAG Gusmão</name>
</author>
<author>
<name sortKey="Gurgel, Lva" uniqKey="Gurgel L">LVA Gurgel</name>
</author>
<author>
<name sortKey="Melo, Tms" uniqKey="Melo T">TMS Melo</name>
</author>
<author>
<name sortKey="Gil, Lf" uniqKey="Gil L">LF Gil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farinella, Nv" uniqKey="Farinella N">NV Farinella</name>
</author>
<author>
<name sortKey="Matos, Gd" uniqKey="Matos G">GD Matos</name>
</author>
<author>
<name sortKey="Lehmann, El" uniqKey="Lehmann E">EL Lehmann</name>
</author>
<author>
<name sortKey="Arruda, Maz" uniqKey="Arruda M">MAZ Arruda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majdik, C" uniqKey="Majdik C">C Majdik</name>
</author>
<author>
<name sortKey="Burc, S" uniqKey="Burc S">S Burcǎ</name>
</author>
<author>
<name sortKey="M Ic Neanu, A" uniqKey="M Ic Neanu A">A Mǎicǎneanu</name>
</author>
<author>
<name sortKey="Stanca, M" uniqKey="Stanca M">M Stanca</name>
</author>
<author>
<name sortKey="Tonk, S" uniqKey="Tonk S">S Tonk</name>
</author>
<author>
<name sortKey="Mezey, P" uniqKey="Mezey P">P Mezey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, W T" uniqKey="Tsai W">W-T Tsai</name>
</author>
<author>
<name sortKey="Hsu, H C" uniqKey="Hsu H">H-C Hsu</name>
</author>
<author>
<name sortKey="Su, T Y" uniqKey="Su T">T-Y Su</name>
</author>
<author>
<name sortKey="Lin, K Y" uniqKey="Lin K">K-Y Lin</name>
</author>
<author>
<name sortKey="Lin, C M" uniqKey="Lin C">C-M Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parvathi, K" uniqKey="Parvathi K">K Parvathi</name>
</author>
<author>
<name sortKey="Nagendran, R" uniqKey="Nagendran R">R Nagendran</name>
</author>
<author>
<name sortKey="Nareshkumar, R" uniqKey="Nareshkumar R">R Nareshkumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oyelude, Eo" uniqKey="Oyelude E">EO Oyelude</name>
</author>
<author>
<name sortKey="Appiah Takyi, F" uniqKey="Appiah Takyi F">F Appiah-Takyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozcan, As" uniqKey="Ozcan A">AS Özcan</name>
</author>
<author>
<name sortKey="Tunali, S" uniqKey="Tunali S">S Tunali</name>
</author>
<author>
<name sortKey="Akar, T" uniqKey="Akar T">T Akar</name>
</author>
<author>
<name sortKey="Ozcan, A" uniqKey="Ozcan A">A Özcan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozsoy, Hd" uniqKey="Ozsoy H">HD Ozsoy</name>
</author>
<author>
<name sortKey="Kumbur, H" uniqKey="Kumbur H">H Kumbur</name>
</author>
<author>
<name sortKey="Saha, B" uniqKey="Saha B">B Saha</name>
</author>
<author>
<name sortKey="Van Leeuwen, Jh" uniqKey="Van Leeuwen J">JH van Leeuwen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akar, St" uniqKey="Akar S">ST Akar</name>
</author>
<author>
<name sortKey="Ozcan, As" uniqKey="Ozcan A">AS Özcan</name>
</author>
<author>
<name sortKey="Akar, T" uniqKey="Akar T">T Akar</name>
</author>
<author>
<name sortKey="Ozcan, A" uniqKey="Ozcan A">A Özcan</name>
</author>
<author>
<name sortKey="Kaynak, Z" uniqKey="Kaynak Z">Z Kaynak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardoso, Nf" uniqKey="Cardoso N">NF Cardoso</name>
</author>
<author>
<name sortKey="Lima, Ec" uniqKey="Lima E">EC Lima</name>
</author>
<author>
<name sortKey="Pinto, Is" uniqKey="Pinto I">IS Pinto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Barak, Abs" uniqKey="Al Barak A">ABS Al-Barak</name>
</author>
<author>
<name sortKey="El Said, Sm" uniqKey="El Said S">SM El-Said</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Sahu, O" uniqKey="Sahu O">O Sahu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tunali, S" uniqKey="Tunali S">S Tunali</name>
</author>
<author>
<name sortKey="Ozcan, A" uniqKey="Ozcan A">A Ozcan</name>
</author>
<author>
<name sortKey="Kaynak, Z" uniqKey="Kaynak Z">Z Kaynak</name>
</author>
<author>
<name sortKey="Ozcan, As" uniqKey="Ozcan A">AS Ozcan</name>
</author>
<author>
<name sortKey="Akar, T" uniqKey="Akar T">T Akar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krishni, Rr" uniqKey="Krishni R">RR Krishni</name>
</author>
<author>
<name sortKey="Foo, Ky" uniqKey="Foo K">KY Foo</name>
</author>
<author>
<name sortKey="Hameed, Bh" uniqKey="Hameed B">BH Hameed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasheen, Mr" uniqKey="Lasheen M">MR Lasheen</name>
</author>
<author>
<name sortKey="Ammar, Ns" uniqKey="Ammar N">NS Ammar</name>
</author>
<author>
<name sortKey="Ibrahim, Hs" uniqKey="Ibrahim H">HS Ibrahim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marin, Abp" uniqKey="Marin A">ABP Marín</name>
</author>
<author>
<name sortKey="Aguilar, Mi" uniqKey="Aguilar M">MI Aguilar</name>
</author>
<author>
<name sortKey="Meseguer, Vf" uniqKey="Meseguer V">VF Meseguer</name>
</author>
<author>
<name sortKey="Ortu O, Jf" uniqKey="Ortu O J">JF Ortuño</name>
</author>
<author>
<name sortKey="Saez, J" uniqKey="Saez J">J Sáez</name>
</author>
<author>
<name sortKey="Llorens, M" uniqKey="Llorens M">M Lloréns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiewer, S" uniqKey="Schiewer S">S Schiewer</name>
</author>
<author>
<name sortKey="Patil, Sb" uniqKey="Patil S">SB Patil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Marin, Ab" uniqKey="Perez Marin A">AB Pérez-Marín</name>
</author>
<author>
<name sortKey="Zapata, Vm" uniqKey="Zapata V">VM Zapata</name>
</author>
<author>
<name sortKey="Ortu O, Jf" uniqKey="Ortu O J">JF Ortuño</name>
</author>
<author>
<name sortKey="Aguilar, Mi" uniqKey="Aguilar M">MI Aguilar</name>
</author>
<author>
<name sortKey="Saez, J" uniqKey="Saez J">J Sáez</name>
</author>
<author>
<name sortKey="Llorens, M" uniqKey="Llorens M">M Lloréns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Marin, Ab" uniqKey="Perez Marin A">AB Pérez Marín</name>
</author>
<author>
<name sortKey="Ortu O, Jf" uniqKey="Ortu O J">JF Ortuño</name>
</author>
<author>
<name sortKey="Aguilar, Mi" uniqKey="Aguilar M">MI Aguilar</name>
</author>
<author>
<name sortKey="Meseguer, Vf" uniqKey="Meseguer V">VF Meseguer</name>
</author>
<author>
<name sortKey="Saez, J" uniqKey="Saez J">J Sáez</name>
</author>
<author>
<name sortKey="Llorens, M" uniqKey="Llorens M">M Lloréns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rashed, Mn" uniqKey="Rashed M">MN Rashed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, Kv" uniqKey="Kumar K">KV Kumar</name>
</author>
<author>
<name sortKey="Kumaran, A" uniqKey="Kumaran A">A Kumaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alencar, Ws" uniqKey="Alencar W">WS Alencar</name>
</author>
<author>
<name sortKey="Acayanka, E" uniqKey="Acayanka E">E Acayanka</name>
</author>
<author>
<name sortKey="Lima, Ec" uniqKey="Lima E">EC Lima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johari, K" uniqKey="Johari K">K Johari</name>
</author>
<author>
<name sortKey="Saman, N" uniqKey="Saman N">N Saman</name>
</author>
<author>
<name sortKey="Song, St" uniqKey="Song S">ST Song</name>
</author>
<author>
<name sortKey="Mat, H" uniqKey="Mat H">H Mat</name>
</author>
<author>
<name sortKey="Stuckey, Dc" uniqKey="Stuckey D">DC Stuckey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malkoc, E" uniqKey="Malkoc E">E Malkoc</name>
</author>
<author>
<name sortKey="Nuhoglu, Y" uniqKey="Nuhoglu Y">Y Nuhoglu</name>
</author>
<author>
<name sortKey="Dundar, M" uniqKey="Dundar M">M Dundar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blazquez, G" uniqKey="Blazquez G">G Blázquez</name>
</author>
<author>
<name sortKey="Calero, M" uniqKey="Calero M">M Calero</name>
</author>
<author>
<name sortKey="Hernainz, F" uniqKey="Hernainz F">F Hernáinz</name>
</author>
<author>
<name sortKey="Tenorio, G" uniqKey="Tenorio G">G Tenorio</name>
</author>
<author>
<name sortKey="Martin Lara, Ma" uniqKey="Martin Lara M">MA Martín-Lara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Garcia, G" uniqKey="Martinez Garcia G">G Martinez-Garcia</name>
</author>
<author>
<name sortKey="Bachmann, Rt" uniqKey="Bachmann R">RT Bachmann</name>
</author>
<author>
<name sortKey="Williams, Cj" uniqKey="Williams C">CJ Williams</name>
</author>
<author>
<name sortKey="Burgoyne, A" uniqKey="Burgoyne A">A Burgoyne</name>
</author>
<author>
<name sortKey="Edyvean, Rgj" uniqKey="Edyvean R">RGJ Edyvean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vegli, F" uniqKey="Vegli F">F Vegliò</name>
</author>
<author>
<name sortKey="Beolchini, F" uniqKey="Beolchini F">F Beolchini</name>
</author>
<author>
<name sortKey="Prisciandaro, M" uniqKey="Prisciandaro M">M Prisciandaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiol, N" uniqKey="Fiol N">N Fiol</name>
</author>
<author>
<name sortKey="Villaescusa, I" uniqKey="Villaescusa I">I Villaescusa</name>
</author>
<author>
<name sortKey="Martinez, M" uniqKey="Martinez M">M Martínez</name>
</author>
<author>
<name sortKey="Miralles, N" uniqKey="Miralles N">N Miralles</name>
</author>
<author>
<name sortKey="Poch, J" uniqKey="Poch J">J Poch</name>
</author>
<author>
<name sortKey="Serarols, J" uniqKey="Serarols J">J Serarols</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blazquez, G" uniqKey="Blazquez G">G Blázquez</name>
</author>
<author>
<name sortKey="Hernainz, F" uniqKey="Hernainz F">F Hernáinz</name>
</author>
<author>
<name sortKey="Calero, M" uniqKey="Calero M">M Calero</name>
</author>
<author>
<name sortKey="Ruiz Nu Ez, Lf" uniqKey="Ruiz Nu Ez L">LF Ruiz-Núñez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pagnanelli, F" uniqKey="Pagnanelli F">F Pagnanelli</name>
</author>
<author>
<name sortKey="Mainelli, S" uniqKey="Mainelli S">S Mainelli</name>
</author>
<author>
<name sortKey="Vegli, F" uniqKey="Vegli F">F Vegliò</name>
</author>
<author>
<name sortKey="Toro, L" uniqKey="Toro L">L Toro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernando, A" uniqKey="Fernando A">A Fernando</name>
</author>
<author>
<name sortKey="Monteiro, S" uniqKey="Monteiro S">S Monteiro</name>
</author>
<author>
<name sortKey="Pinto, F" uniqKey="Pinto F">F Pinto</name>
</author>
<author>
<name sortKey="Mendes, B" uniqKey="Mendes B">B Mendes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banat, F" uniqKey="Banat F">F Banat</name>
</author>
<author>
<name sortKey="Al Asheh, S" uniqKey="Al Asheh S">S Al-Asheh</name>
</author>
<author>
<name sortKey="Al Ahmad, R" uniqKey="Al Ahmad R">R Al-Ahmad</name>
</author>
<author>
<name sortKey="Bni Khalid, F" uniqKey="Bni Khalid F">F Bni-Khalid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stasinakis, As" uniqKey="Stasinakis A">AS Stasinakis</name>
</author>
<author>
<name sortKey="Elia, I" uniqKey="Elia I">I Elia</name>
</author>
<author>
<name sortKey="Petalas, Av" uniqKey="Petalas A">AV Petalas</name>
</author>
<author>
<name sortKey="Halvadakis, Cp" uniqKey="Halvadakis C">CP Halvadakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbas, M" uniqKey="Abbas M">M Abbas</name>
</author>
<author>
<name sortKey="Zaini, A" uniqKey="Zaini A">A Zaini</name>
</author>
<author>
<name sortKey="Zakaria, M" uniqKey="Zakaria M">M Zakaria</name>
</author>
<author>
<name sortKey="Setapar, Shm" uniqKey="Setapar S">SHM Setapar</name>
</author>
<author>
<name sortKey="Yunus, Mac" uniqKey="Yunus M">MAC Yunus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Banks, C" uniqKey="Banks C">C Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baccar, R" uniqKey="Baccar R">R Baccar</name>
</author>
<author>
<name sortKey="Blanquez, P" uniqKey="Blanquez P">P Blánquez</name>
</author>
<author>
<name sortKey="Bouzid, J" uniqKey="Bouzid J">J Bouzid</name>
</author>
<author>
<name sortKey="Feki, M" uniqKey="Feki M">M Feki</name>
</author>
<author>
<name sortKey="Sarra, M" uniqKey="Sarra M">M Sarrà</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foo, Ky" uniqKey="Foo K">KY Foo</name>
</author>
<author>
<name sortKey="Hameed, Bh" uniqKey="Hameed B">BH Hameed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duran, C" uniqKey="Duran C">C Duran</name>
</author>
<author>
<name sortKey="Ozdes, D" uniqKey="Ozdes D">D Ozdes</name>
</author>
<author>
<name sortKey="Gundogdu, A" uniqKey="Gundogdu A">A Gundogdu</name>
</author>
<author>
<name sortKey="Imamoglu, M" uniqKey="Imamoglu M">M Imamoglu</name>
</author>
<author>
<name sortKey="Senturk, Hb" uniqKey="Senturk H">HB Senturk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karthika, C" uniqKey="Karthika C">C Karthika</name>
</author>
<author>
<name sortKey="Vennilamani, N" uniqKey="Vennilamani N">N Vennilamani</name>
</author>
<author>
<name sortKey="Pattabhi, S" uniqKey="Pattabhi S">S Pattabhi</name>
</author>
<author>
<name sortKey="Sekar, M" uniqKey="Sekar M">M Sekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, C" uniqKey="Guo C">C Guo</name>
</author>
<author>
<name sortKey="Yue, T" uniqKey="Yue T">T Yue</name>
</author>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svecova, L" uniqKey="Svecova L">L Svecova</name>
</author>
<author>
<name sortKey="Spanelova, M" uniqKey="Spanelova M">M Spanelova</name>
</author>
<author>
<name sortKey="Kubal, M" uniqKey="Kubal M">M Kubal</name>
</author>
<author>
<name sortKey="Guibal, E" uniqKey="Guibal E">E Guibal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeddou Mezenner, N" uniqKey="Yeddou Mezenner N">N Yeddou-Mezenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moussous, S" uniqKey="Moussous S">S Moussous</name>
</author>
<author>
<name sortKey="Selatnia, A" uniqKey="Selatnia A">A Selatnia</name>
</author>
<author>
<name sortKey="Merati, A" uniqKey="Merati A">A Merati</name>
</author>
<author>
<name sortKey="Junter, Ga" uniqKey="Junter G">GA Junter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prigione, V" uniqKey="Prigione V">V Prigione</name>
</author>
<author>
<name sortKey="Grosso, I" uniqKey="Grosso I">I Grosso</name>
</author>
<author>
<name sortKey="Tigini, V" uniqKey="Tigini V">V Tigini</name>
</author>
<author>
<name sortKey="Anastasi, A" uniqKey="Anastasi A">A Anastasi</name>
</author>
<author>
<name sortKey="Varese, Gc" uniqKey="Varese G">GC Varese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Kr" uniqKey="Rao K">KR Rao</name>
</author>
<author>
<name sortKey="Rashmi, K" uniqKey="Rashmi K">K Rashmi</name>
</author>
<author>
<name sortKey="Latha, Jnl" uniqKey="Latha J">JNL Latha</name>
</author>
<author>
<name sortKey="Mohan, Pm" uniqKey="Mohan P">PM Mohan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Rak" uniqKey="Rao R">RAK Rao</name>
</author>
<author>
<name sortKey="Khan, Ma" uniqKey="Khan M">MA Khan</name>
</author>
<author>
<name sortKey="Rehman, F" uniqKey="Rehman F">F Rehman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gochev, Vk" uniqKey="Gochev V">VK Gochev</name>
</author>
<author>
<name sortKey="Velkova, Zi" uniqKey="Velkova Z">ZI Velkova</name>
</author>
<author>
<name sortKey="Stoytcheva, Ms" uniqKey="Stoytcheva M">MS Stoytcheva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velkova, Z" uniqKey="Velkova Z">Z Velkova</name>
</author>
<author>
<name sortKey="Stoytcheva, M" uniqKey="Stoytcheva M">M Stoytcheva</name>
</author>
<author>
<name sortKey="Gochev, V" uniqKey="Gochev V">V Gochev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budinova, T" uniqKey="Budinova T">T Budinova</name>
</author>
<author>
<name sortKey="Petrov, N" uniqKey="Petrov N">N Petrov</name>
</author>
<author>
<name sortKey="Parra, J" uniqKey="Parra J">J Parra</name>
</author>
<author>
<name sortKey="Baloutzov, V" uniqKey="Baloutzov V">V Baloutzov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijayaraghavan, K" uniqKey="Vijayaraghavan K">K Vijayaraghavan</name>
</author>
<author>
<name sortKey="Yun, Y S" uniqKey="Yun Y">Y-S Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fomina, M" uniqKey="Fomina M">M Fomina</name>
</author>
<author>
<name sortKey="Gadd, Gm" uniqKey="Gadd G">GM Gadd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sassi, M" uniqKey="Sassi M">M Sassi</name>
</author>
<author>
<name sortKey="Bestani, B" uniqKey="Bestani B">B Bestani</name>
</author>
<author>
<name sortKey="Said, Ah" uniqKey="Said A">AH Said</name>
</author>
<author>
<name sortKey="Benderdouche, N" uniqKey="Benderdouche N">N Benderdouche</name>
</author>
<author>
<name sortKey="Guibal, E" uniqKey="Guibal E">E Guibal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="He, H" uniqKey="He H">H He</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Gao, T" uniqKey="Gao T">T Gao</name>
</author>
<author>
<name sortKey="Ma, P" uniqKey="Ma P">P Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goksungur, Y" uniqKey="Goksungur Y">Y Göksungur</name>
</author>
<author>
<name sortKey="Uren, S" uniqKey="Uren S">S Üren</name>
</author>
<author>
<name sortKey="Guvenc, U" uniqKey="Guvenc U">U Güvenç</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguayo Villarreal, Ia" uniqKey="Aguayo Villarreal I">IA Aguayo-Villarreal</name>
</author>
<author>
<name sortKey="Ramirez Montoya, La" uniqKey="Ramirez Montoya L">LA Ramírez-Montoya</name>
</author>
<author>
<name sortKey="Hernandez Montoya, V" uniqKey="Hernandez Montoya V">V Hernández-Montoya</name>
</author>
<author>
<name sortKey="Bonilla Petriciolet, A" uniqKey="Bonilla Petriciolet A">A Bonilla-Petriciolet</name>
</author>
<author>
<name sortKey="Montes Moran, Ma" uniqKey="Montes Moran M">MA Montes-Morán</name>
</author>
<author>
<name sortKey="Ramirez L Pez, Em" uniqKey="Ramirez L Pez E">EM Ramírez-López</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiewer, S" uniqKey="Schiewer S">S Schiewer</name>
</author>
<author>
<name sortKey="Balaria, A" uniqKey="Balaria A">A Balaria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreea, S" uniqKey="Andreea S">S Andreea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keskinkan, O" uniqKey="Keskinkan O">O Keskinkan</name>
</author>
<author>
<name sortKey="Goksu, Mzl" uniqKey="Goksu M">MZL Goksu</name>
</author>
<author>
<name sortKey="Yuceer, A" uniqKey="Yuceer A">A Yuceer</name>
</author>
<author>
<name sortKey="Basibuyuk, M" uniqKey="Basibuyuk M">M Basibuyuk</name>
</author>
<author>
<name sortKey="Forster, Cf" uniqKey="Forster C">CF Forster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Dd" uniqKey="Xie D">DD Xie</name>
</author>
<author>
<name sortKey="Liu, Yy" uniqKey="Liu Y">YY Liu</name>
</author>
<author>
<name sortKey="Wu, Cl" uniqKey="Wu C">CL Wu</name>
</author>
<author>
<name sortKey="Fu, Jk" uniqKey="Fu J">JK Fu</name>
</author>
<author>
<name sortKey="Xue, R" uniqKey="Xue R">R Xue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhankhar, R" uniqKey="Dhankhar R">R Dhankhar</name>
</author>
<author>
<name sortKey="Hooda, A" uniqKey="Hooda A">A Hooda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahalya, N" uniqKey="Ahalya N">N Ahalya</name>
</author>
<author>
<name sortKey="Ramachandra, Tv" uniqKey="Ramachandra T">TV Ramachandra</name>
</author>
<author>
<name sortKey="Kanamadi, Rd" uniqKey="Kanamadi R">RD Kanamadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foo, Ky" uniqKey="Foo K">KY Foo</name>
</author>
<author>
<name sortKey="Hameed, Bh" uniqKey="Hameed B">BH Hameed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Njikam, E" uniqKey="Njikam E">E Njikam</name>
</author>
<author>
<name sortKey="Schiewer, S" uniqKey="Schiewer S">S Schiewer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biomed Res Int</journal-id>
<journal-id journal-id-type="iso-abbrev">Biomed Res Int</journal-id>
<journal-id journal-id-type="publisher-id">BMRI</journal-id>
<journal-title-group>
<journal-title>BioMed Research International</journal-title>
</journal-title-group>
<issn pub-type="ppub">2314-6133</issn>
<issn pub-type="epub">2314-6141</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25110656</article-id>
<article-id pub-id-type="pmc">4109414</article-id>
<article-id pub-id-type="doi">10.1155/2014/146769</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>El-Sayed</surname>
<given-names>Hanan E. M.</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>El-Sayed</surname>
<given-names>Mayyada M. H.</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Mechanical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</aff>
<aff id="I2">
<sup>2</sup>
Civil and Environmental Engineering Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4</aff>
<aff id="I3">
<sup>3</sup>
Chemical Engineering Department, National Research Centre, Al Bohooth Station, Dokki, Giza 12622, Egypt</aff>
<aff id="I4">
<sup>4</sup>
Chemistry Department, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, Cairo, Egypt</aff>
<aff id="I5">
<sup>5</sup>
University of Maryland, Baltimore County (UMBC), 252 TRC Building, 5200 Westland Boulevard, Baltimore, MD 21227, USA</aff>
<author-notes>
<corresp id="cor1">*Mayyada M. H. El-Sayed:
<email>mayyada@aucegypt.edu</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Qaisar Mahmood</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>7</month>
<year>2014</year>
</pub-date>
<volume>2014</volume>
<elocation-id>146769</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>2</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>3</day>
<month>6</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>6</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 H. E. M. El-Sayed and M. M. H. El-Sayed.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>There is a growing need for the use of low-cost and ecofriendly adsorbents in water/wastewater treatment applications. Conventional adsorbents as well as biosorbents from different natural and agricultural sources have been extensively studied and reviewed. However, there is a lack of reviews on biosorption utilizing industrial wastes, particularly those of food processing and pharmaceuticals. The current review evaluates the potential of these wastes as biosorbents for the removal of some hazardous contaminants. Sources and applications of these biosorbents are presented, while factors affecting biosorption are discussed. Equilibrium, kinetics, and mechanisms of biosorption are also reviewed. In spite of the wide spread application of these biosorbents in the treatment of heavy metals and dyes, more research is required on other classes of pollutants. In addition, further work should be dedicated to studying scaling up of the process and its economic feasibility. More attention should also be given to enhancing mechanical strength, stability, life time, and reproducibility of the biosorbent. Environmental concerns regarding disposal of consumed biosorbents should be addressed by offering feasible biosorbent regeneration or pollutant immobilization options.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Increased industrial activities resulted in major environmental problems; one of the most challenging is water pollution and the subsequent scarcity in fresh and clean water resources available for current and future generations. Industrial wastewater contains various toxic compounds such as organics, heavy metals, and dyes which could have potential detrimental effect on human beings and aquatic lives. World Health Organization (WHO) recommended the maximum acceptable concentrations for these compounds in water streams. Dyes are one of the most polluted groups as their complex aromatic structure makes them difficult to be biologically degradable [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B3" ref-type="bibr">3</xref>
]. They are produced from different industries in large amounts such as textile, paper, leather, food, cosmetics, and pharmaceuticals. It has recently been reported that dye production reached 700,000 tons/year worldwide [
<xref rid="B4" ref-type="bibr">4</xref>
]. Dyes are classified into anionic (direct), cationic (basic), acid and reactive, and nonionic (disperse) dyes [
<xref rid="B5" ref-type="bibr">5</xref>
]. Phenols and phenolic compounds are very toxic and of potential harm to human health. Even at very low concentration (0.005 mg/L), phenols could be of significant odor and taste if present in drinking water [
<xref rid="B6" ref-type="bibr">6</xref>
]. Many industries represent the main sources of phenols such as iron and steel, petroleum, paint, paper and pulp, and pharmaceutics. Nitrophenols and chlorophenols are considered the most hazardous phenolic compounds. Heavy metals are another hazardous group of pollutants. Lead, mercury, cadmium, chromium, copper, and arsenic are examples of the most toxic and carcinogenic elements that can exist in industrial effluents. Metal ions accumulate and their amounts are increased along the food chain due to their nonbiodegradable feature [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
]. The main industrial sources of most of these metals are metal finishing and plating, automotive, semiconductor manufacturing, textile, and steel industry.</p>
<p>Removal of such pollutants from different industrial effluents may be achieved
<italic> physically, chemically, or biologically</italic>
. Physical processes include adsorption, chelation ion exchange, membrane filtration, and coagulation. Chemical methods include oxidation or advanced oxidation and electrochemical treatment, whereas biological methods could be aerobic, anaerobic, or enzymatic [
<xref rid="B8" ref-type="bibr">8</xref>
<xref rid="B10" ref-type="bibr">10</xref>
]. These processes known as
<italic> conventional</italic>
treatment methods have several disadvantages mainly, high energy requirements and capital cost and low efficiency. Conventional treatment methods have been extensively reviewed elsewhere [
<xref rid="B3" ref-type="bibr">3</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B11" ref-type="bibr">11</xref>
<xref rid="B13" ref-type="bibr">13</xref>
]. Recently, numerous approaches have been proposed by many researchers for the development of nonconventional and low-cost adsorbents.</p>
<p>Biosorption has become an attractive common technique for many reasons. Being a cost-effective, highly efficient, and easily implemented method made it a successful alternative for the conventional ones [
<xref rid="B14" ref-type="bibr">14</xref>
]. Biosorption as a process may be simply defined as an adsorption on the surface of a compound of a biological origin. Being not limited to only one mechanism and also not restricted to a specific type of pollutant offers a wide variety of applications like pollution control, element recycle, and recovery [
<xref rid="B10" ref-type="bibr">10</xref>
]. A biosorbent may be considered “low-cost” if it satisfied the following conditions: (i) abundance in nature, (ii) requirement for minor or no treatment, and (iii) being a waste material or a by-product from other industries [
<xref rid="B10" ref-type="bibr">10</xref>
]. The challenge here is to choose the appropriate biosorbent that suits the target substance. Selection criteria include, but are not limited to, nature of substance to be adsorbed, mechanism involved in the biosorption process, effectiveness of such biosorbent, cost associated with the whole process, and the possibility of biosorbent regeneration for multiple use cycles. Numerous reviews have been reported on the utilization of agricultural-based, dead or living biomass, and natural adsorbents for the removal of dyes [
<xref rid="B15" ref-type="bibr">15</xref>
<xref rid="B21" ref-type="bibr">21</xref>
] and heavy metals [
<xref rid="B22" ref-type="bibr">22</xref>
<xref rid="B28" ref-type="bibr">28</xref>
]. Few research studies have focused on the removal of organic pollutants, phenols and phenolic compounds, and pesticides using different biosorbents [
<xref rid="B29" ref-type="bibr">29</xref>
<xref rid="B34" ref-type="bibr">34</xref>
].</p>
<p>Disposal of different industrial wastes and by-products is considered a major environmental problem. The cost associated with the waste treatment or disposal, transport, and accumulation may sometimes be the most challenging problem in industry. Such problem increases especially in food industries which produce huge amount of wastes and by-products. Utilizing industrial wastes as low-cost effective biosorbents introduces a bifunctional solution from an environmental point of view. That is to say, treating wastewater effluents with these zero-cost waste materials adds value to these wastes while help solving an important environmental issue.</p>
<p>This paper reviews the state-of-the-art endeavors in utilizing industrial food processing and pharmaceutical wastes as effective low-cost biosorbents for water/wastewater treatment. The aim is to assess the potential of these wastes as biosorbents as well as highlight new options to be further explored and possibilities for improvement. To the best of the authors' knowledge, research dedicated to these particular types of waste has not been reported elsewhere. A comprehensive critical review is presented on (i) the different biosorption techniques and mechanisms, (ii) controlling factors, (iii) equilibrium and kinetics studies, and (iv) recovery and/or pretreatment options. Moreover, concluding remarks will be given at the end along with some suggestions for future work.</p>
</sec>
<sec id="sec2">
<title>2. Sources and Applications of Biosorbents</title>
<p>Adsorption as a process gained much more attention recently after the use of low-cost adsorbents became so popular especially
<italic> biosorbents</italic>
[
<xref rid="B24" ref-type="bibr">24</xref>
,
<xref rid="B35" ref-type="bibr">35</xref>
]. Sources of different types of conventional and nonconventional adsorbents are illustrated in the flow chart in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
.</p>
<p>Biosorbents are a large subclass of low-cost adsorbents that can be subdivided into [
<xref rid="B36" ref-type="bibr">36</xref>
] biomass (dead or living), agricultural wastes, and industrial solid wastes. Dead biomass has been utilized by many researchers as an effective biosorbent for the removal of different pollutants [
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B38" ref-type="bibr">38</xref>
]. It has been favored due to its viability to be applied in presence of toxic substances or with shortage of nutrients without this causing appreciable impact on its sorption efficiency. In addition, dead biomass is more readily desorbed than its living counterpart. Living biomasses including fungi [
<xref rid="B39" ref-type="bibr">39</xref>
,
<xref rid="B40" ref-type="bibr">40</xref>
], algae [
<xref rid="B41" ref-type="bibr">41</xref>
,
<xref rid="B42" ref-type="bibr">42</xref>
], and other microbial cultures with different strains [
<xref rid="B43" ref-type="bibr">43</xref>
,
<xref rid="B44" ref-type="bibr">44</xref>
] were also used as low-cost biosorbents. Agricultural-based biosorbents represent a large category of wastes that attracted the attention of many researchers worldwide Utilization of such wastes depended on their local availability. Researchers utilized rice husk and straws [
<xref rid="B45" ref-type="bibr">45</xref>
<xref rid="B48" ref-type="bibr">48</xref>
], different nut shells [
<xref rid="B49" ref-type="bibr">49</xref>
<xref rid="B51" ref-type="bibr">51</xref>
], fruit and vegetable peels or leaves [
<xref rid="B52" ref-type="bibr">52</xref>
<xref rid="B55" ref-type="bibr">55</xref>
], wheat bran [
<xref rid="B56" ref-type="bibr">56</xref>
], chitin and chitosan [
<xref rid="B57" ref-type="bibr">57</xref>
<xref rid="B60" ref-type="bibr">60</xref>
], and many other wastes of agricultural origin. Applications of industrial solid wastes in biosorption included the use of sludge whether municipal (sewage) [
<xref rid="B61" ref-type="bibr">61</xref>
] or activated sludge produced from different biological processes [
<xref rid="B62" ref-type="bibr">62</xref>
<xref rid="B66" ref-type="bibr">66</xref>
].</p>
<p>Less research has been done on industrial food processing and pharmaceutical wastes despite their huge annual worldwide production. Scarcity of relevant reviews was therefore the main motivation of this current work. Biosorbents from these origins are expected to grow by an annual rate of around 5% in the next few years [
<xref rid="B67" ref-type="bibr">67</xref>
]. For example, food processing waste produced annually in Europe has been reported to be about 2.5 × 10
<sup>8</sup>
tons [
<xref rid="B67" ref-type="bibr">67</xref>
]. About 20–60% of the processed fruits and vegetables by volume are generated as waste materials. In the United States, the food manufacturing sector is producing a huge amount of food waste; about 44.3 billion pounds have been reported as per the year 2011 [
<xref rid="B68" ref-type="bibr">68</xref>
].</p>
<p>Utilizing these wastes as biosorbents has been applied in the area of water purification and/or wastewater treatment; previous work in this regard is summarized in
<xref ref-type="table" rid="tab1">Table 1</xref>
. The table presents type and industrial source of the biosorbent, nature of feed solution, type of targeted sorbate, and operating parameters at which maximum removal was attained. These parameters are pH, temperature, adsorbent dose, and the contact time that was required to reach equilibrium. In addition, mode of operation (batch or column) and its corresponding maximum % removal are included in the table. For column systems, the flow rate (
<italic>F</italic>
) is also given. Wastes from beverages, tea or coffee, beer or wine, and brewery grains, were used as biosorbents for the removal of many heavy metals and dyes from aqueous solutions [
<xref rid="B69" ref-type="bibr">69</xref>
<xref rid="B83" ref-type="bibr">83</xref>
]. Excellent removal efficiencies of up to 99.83% for Cd and 98% for dye sorption onto yeast beer waste [
<xref rid="B80" ref-type="bibr">80</xref>
] and brewery grain wastes [
<xref rid="B76" ref-type="bibr">76</xref>
] were reported. Using beer brewery diatomite waste was recommended for wastewater treatment applications. This is because it released less COD in the industrial wastewater than did the fresh diatomite [
<xref rid="B81" ref-type="bibr">81</xref>
]. Food processing wastes from canning industries were also utilized for the removal of different dyes and heavy metals [
<xref rid="B84" ref-type="bibr">84</xref>
<xref rid="B89" ref-type="bibr">89</xref>
]. One particular study was undertaken on real textile wastewater having COD of 426 mg/L, and 97.68% dye removal was achieved when the wastewater sample was spiked with 1 mg/L dye [
<xref rid="B90" ref-type="bibr">90</xref>
]. Studies on the effect of several operating conditions on biosorption performance were also conducted. Results yielded removal efficiencies that reached up to 96.4% for the removal of Cd (II) in case of using okra waste [
<xref rid="B88" ref-type="bibr">88</xref>
] and sugar bagasse waste [
<xref rid="B89" ref-type="bibr">89</xref>
]. Wastes from fruit sources especially orange, mango, and pectin-rich fruits were obtained from juice, jam [
<xref rid="B91" ref-type="bibr">91</xref>
<xref rid="B99" ref-type="bibr">99</xref>
], and coconut milk industries [
<xref rid="B100" ref-type="bibr">100</xref>
]. Orange peel [
<xref rid="B92" ref-type="bibr">92</xref>
] and wastes [
<xref rid="B95" ref-type="bibr">95</xref>
] were very effective in removing heavy metals, namely, Pb (II) and Cd (II), with efficiencies of 99.5% and 98%, respectively.</p>
<p>A number of researchers in the Mediterranean countries (Turkey, Spain, Italy, etc.) were interested in olive oil wastes since these countries are among the world's biggest olive producers. All types of wastes from olive oil industry such as pomace, pulp, stones, and milling sludge were used for the sorption of heavy metals and dyes from solutions [
<xref rid="B101" ref-type="bibr">101</xref>
<xref rid="B110" ref-type="bibr">110</xref>
]. Particular work [
<xref rid="B101" ref-type="bibr">101</xref>
] reported almost 100% removal efficiency for Cr (VI) from aqueous solutions using olive pomace. Only one study was found to deal with phenol removal [
<xref rid="B110" ref-type="bibr">110</xref>
] using olive oil pomace and removal efficiency was above 90% in both batch and column modes. In another study that investigated the potential of olive oil mill residues as biosorbents for Cu (II), COD release was reduced to 600 mg/L when the biosorbent was washed twice while sorption performance was not affected [
<xref rid="B104" ref-type="bibr">104</xref>
]. Other work utilized different oil industrial wastes such as palm oil waste [
<xref rid="B111" ref-type="bibr">111</xref>
] or sunflower oil waste [
<xref rid="B112" ref-type="bibr">112</xref>
] in the removal of dyes and heavy metals from aqueous solutions.</p>
<p>Commercial activated carbon has been a very common method of adsorption for a long time. Research is now shifted toward using activated carbon derived from various agricultural as well as industrial sources. In the current review, only activated carbons manufactured from food processing wastes are reported. The method of deriving activated carbon (AC) from these wastes will be explained later in the pretreatment section. AC derived from different industrial waste sources such as olive waste cake [
<xref rid="B113" ref-type="bibr">113</xref>
], empty fruit bunch from palm oil mill [
<xref rid="B114" ref-type="bibr">114</xref>
], tea industry [
<xref rid="B115" ref-type="bibr">115</xref>
], and sago waste [
<xref rid="B116" ref-type="bibr">116</xref>
] was successful in biosorption of heavy metals and dyes. In view of the above, it can be inferred that most of the reported studies dealt with the removal of heavy metals and dyes. Clearly, there is lack of work on the removal of other pollutants. One particular research investigated the use of waste cider yeast in removing low concentrations (0.1-0.2 mg/L) of the toxin patulin from apple juice solutions and about 58% removal was achieved [
<xref rid="B117" ref-type="bibr">117</xref>
].</p>
<p>As for pharmaceutical wastes, they are either fungal or bacterial biomass that could be dead or living. Examples of fungal biomass are
<italic> Aspergillus niger</italic>
,
<italic> Pleurotus mutilus</italic>
,
<italic> Trichoderma reesei</italic>
,
<italic> Rhizopus arrhizus</italic>
,
<italic> Rhizopus nigricans,</italic>
and
<italic> Penicillium chrysogenum</italic>
. Bacterial biomass could be produced from antibiotic fermentation such as
<italic> Streptomyces</italic>
spp. or during production of drugs such as
<italic> Streptomyces noursei</italic>
,
<italic> S. rimosus</italic>
, and
<italic> S. clavuligerus</italic>
or during enzyme manufacture such as the bacillus species of
<italic> B. licheniformis</italic>
and
<italic> S. subtilis</italic>
. Plenty of work was done on applications of pharmaceutical wastes as effective biosorbents for contaminant removal from wastewater [
<xref rid="B118" ref-type="bibr">118</xref>
<xref rid="B123" ref-type="bibr">123</xref>
]. For heavy metal removal, the waste
<italic> Clitopilus scyphoides</italic>
(
<italic>Pleurotus mutilus</italic>
) produced during antibiotic fermentation process was used to remove Cd (II) [
<xref rid="B120" ref-type="bibr">120</xref>
]. A high biosorption capacity of 111 mg/g was obtained within short uptake duration of about 15 min. No pretreatment for the dead biomass was required and the biosorbent was composed predominantly of Ca, Si, and P elements with a total mineral content of 13.5% (w/w). The fungal dead biomass
<italic> Aspergillus fumigatus</italic>
is also a fermentive waste of antibiotic industry that was utilized in metal biosorption. The sun-dried biomass was pretreated with 5% boiling KOH for 15 min and then thoroughly washed with distilled water till neutral pH was reached. The biosorbent was efficient in removing Cd, Co, Cu, and Ni with the highest efficiency obtained for Cu (72%). More than 90% of metal ions were removed from low-concentration mixtures (0.1 mM). At high concentration of these mixtures, Cu ion was the most competitive among other ions and 70% of which was removed. The fermentation waste mycelium of the fungal biomass,
<italic> Aspergillus awamori</italic>
, was produced industrially from an enzyme preparation process. It was then utilized for Cr (VI) removal and a maximum removal efficiency of 87% was obtained [
<xref rid="B124" ref-type="bibr">124</xref>
]. The same biomass, after being treated with 0.5 M NaOH, removed a maximum of 35.97 mg/g Cu (II) from aqueous solutions [
<xref rid="B125" ref-type="bibr">125</xref>
].
<italic> Tolypocladium</italic>
sp. biomass waste was successful in removing Cd, Pb, and Hg [
<xref rid="B118" ref-type="bibr">118</xref>
]. Three different types of fungal biomass from antibiotic industries named Fennel biomass,
<italic> Foeniculum vulgare</italic>
, which is a medicinal herb, removed 92% of Cd ion at pH 4.3. Maximum biosorption capacities obtained in batch systems were 21, 24, and 30 mg/g at 30, 40, and 50°C, respectively. Biosorption was spontaneous and endothermic. In single-component packed-bed studies, breakthrough and exhaustive capacities were 10 and 40 mg/g, respectively, while 2 and 12 mg/g were the corresponding capacities for multicomponent systems. Capacities dropped to 0.8 and 4 mg/g in multicomponent saline systems. An antibiotic waste composed of a mixture of
<italic> Streptomyces fradiae</italic>
,
<italic> Micromonospora pururea</italic>
, and
<italic> Nocardia mediterranea</italic>
was chemically activated with K
<sub>2</sub>
CO
<sub>3</sub>
to obtain activated carbon that was utilized as a biosorbent for Hg (II) [
<xref rid="B126" ref-type="bibr">126</xref>
].</p>
<p>For the removal of dyes,
<italic> Acremonium strictum</italic>
,
<italic> Acremonium</italic>
sp., and
<italic> Penicillium</italic>
sp. were examined for their potential to decolorize simulated dye baths.
<italic> A. strictum</italic>
was found to be the most efficient biosorbent with percentage removal of up to 90% in both acidic and neutral conditions. These biomasses were less active compared to
<italic> Cunninghamella elegans</italic>
which is a biomass known to be an efficient biosorbent that removed 97% of the dye color [
<xref rid="B121" ref-type="bibr">121</xref>
].
<italic> Clitopilus scyphoides</italic>
(
<italic>Pleurotus mutilus</italic>
) was also used to remove Basic Blue dye [
<xref rid="B119" ref-type="bibr">119</xref>
] and a biosorption capacity of 200 mg/g was obtained within about 60 min, while Reactive Black 5 (RB5) dye was successfully removed by
<italic> Corynebacterium glutamicum</italic>
waste produced from lysine fermentation industry [
<xref rid="B127" ref-type="bibr">127</xref>
].</p>
</sec>
<sec id="sec3">
<title>3. Operating Factors Influencing Biosorption</title>
<p>Holistically, the behavior and performance of biosorption are affected by the physical and chemical characteristics of each of the biosorbent and sorbate; in addition to the process operating conditions. Biosorbent and sorbate characteristics include composition, structure, type of charged and uncharged functional groups, and particle size. It was also reported that in biomass sorbents, the composition of the cell wall influences both sorption uptake capacity and selectivity [
<xref rid="B88" ref-type="bibr">88</xref>
,
<xref rid="B128" ref-type="bibr">128</xref>
].</p>
<p>Operating conditions are instrumental biosorption controlling parameters which include pH, temperature, initial sorbate concentration, biosorbent dose, contact time, agitation speed, sorbent particle size, mode of operation, and competition from coions. These operating parameters will be further discussed in more detail.</p>
<sec id="sec3.1">
<title>3.1. Solution pH and Ionic Strength</title>
<p>The pH of sorbate solution plays a vital role in the biosorption process since it influences the charge on the biosorbent functional groups and the dissociation of these groups on the active sites. It also affects sorbate solubility and its degree of ionization. The effect of pH on both uptake capacity and percentage removal was investigated by numerous workers. For heavy metal sorption, it was found that the increase in pH increases uptake capacity of heavy metals such as Cd, Pb, Ni, Cu, and Zn in both the acidic and the neutral range (pH 2–7). The rate of increase under highly acidic conditions (pH 2–4) was mostly higher than that observed at milder acidic conditions (pH 4–6) [
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B84" ref-type="bibr">84</xref>
,
<xref rid="B100" ref-type="bibr">100</xref>
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B104" ref-type="bibr">104</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B125" ref-type="bibr">125</xref>
,
<xref rid="B129" ref-type="bibr">129</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
]. Under basic conditions (pH > 7), heavy metal uptake decreased with pH [
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
]. Under severe acidic conditions, the very low reported uptake capacities were attributed to the fact that H
<sup>+</sup>
ions compete with the metal ions on the active sites [
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B126" ref-type="bibr">126</xref>
] which indicates that biosorption is governed by electrostatic interactions under these conditions. Increase in pH also increased the percentage of metal removal under acidic and neutral pHs [
<xref rid="B97" ref-type="bibr">97</xref>
,
<xref rid="B105" ref-type="bibr">105</xref>
,
<xref rid="B106" ref-type="bibr">106</xref>
,
<xref rid="B126" ref-type="bibr">126</xref>
] and decreased the removal under basic conditions [
<xref rid="B97" ref-type="bibr">97</xref>
]. However for the pharmaceutical waste mycelium of the
<italic> Aspergillus awamori</italic>
, the increase of pH from 2.0 to 4.0 decreased the removal efficiency of Cr (VI) by about 50% [
<xref rid="B122" ref-type="bibr">122</xref>
]. At basic pHs, biosorption uptake decreases owing to metal precipitation which leads on the contrary to increase in metal removal from solution by a possible combined microprecipitation-biosorption mechanism [
<xref rid="B105" ref-type="bibr">105</xref>
<xref rid="B108" ref-type="bibr">108</xref>
]. In case of dyes, the behavior of sorption uptake and percentage removal with pH varies according to the type of charge. For cationic dyes such as Methylene Blue (MB) and Basic Blue 41, both removal and uptake are directly proportional to pH [
<xref rid="B78" ref-type="bibr">78</xref>
,
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
] and vice versa for anionic dyes such as Acid Green (AG), Acid Red 57, Reactive Red (RR 198), and Victazol Orange 3R dyes [
<xref rid="B70" ref-type="bibr">70</xref>
,
<xref rid="B86" ref-type="bibr">86</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B99" ref-type="bibr">99</xref>
]. At high pH, the uptake and removal of cationic dyes increase due to attractive forces between the positively charged dye and the negatively charged functional groups on the biosorbent. One study on the removal of phenols by olive pomace showed that removal efficiency is enhanced by increasing pH [
<xref rid="B110" ref-type="bibr">110</xref>
].</p>
<p>Very limited studies were conducted on the effect of ionic strength where the presence of NaCl [
<xref rid="B105" ref-type="bibr">105</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
] and perchlorate salts [
<xref rid="B105" ref-type="bibr">105</xref>
] significantly reduced biosorption due to competition between the salt ions and the sorbate ions on the active sites.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Initial Sorbate Concentration</title>
<p>The increase in the initial concentration of the sorbate acts as a driving force to overcome the mass transfer resistance and hence increase the uptake. This behavior was reported for both heavy metals and dyes [
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B110" ref-type="bibr">110</xref>
,
<xref rid="B125" ref-type="bibr">125</xref>
,
<xref rid="B126" ref-type="bibr">126</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
]. In one study dealing with Hg sorption onto desiccated coconut waste, the concentration-uptake correlation was linear [
<xref rid="B100" ref-type="bibr">100</xref>
].</p>
<p>The percentage removal, on the other hand, was found to decrease with increasing in concentration for the heavy metals Cd, Zn, and Ni onto tea, olive cake wastes, and wine processing sludge, respectively [
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B76" ref-type="bibr">76</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
] as well as for Cr (VI) and Basic Blue 41 dye onto mycelium of
<italic> Aspergillus awamori</italic>
and antibiotic fungal waste, respectively [
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
]. The same behavior was encountered by Methylene Blue dye onto both fresh malted sorghum mash waste and mango seed kernel powder [
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
] and by Pb onto both activated carbons from sago waste and peach/apricot stones. With the latter adsorbent, removal was almost constant at very low concentrations of Pb (5–100 ppm) [
<xref rid="B97" ref-type="bibr">97</xref>
,
<xref rid="B116" ref-type="bibr">116</xref>
]. With higher initial concentrations, higher equilibrium concentrations in the solution were obtained possibly due to saturation of active sites and this, in turn, decreased the removal efficiency. In addition, the increase in initial concentration decreased sorption rate since it probably reduced diffusion across the boundary layer. However, a different behavior was observed for Acid Green (AG) dye sorbed onto spent brewery grains where the removal initially increased by virtue of the high concentration gradient driving force and then dropped owing to saturation of the sorption active sites [
<xref rid="B70" ref-type="bibr">70</xref>
]. Furthermore, with investigating the sorption of Cd (II), Pb (II), and Cu (II) onto orange peels the dissociation constant for the biosorption interaction decreased exponentially with increase in concentration [
<xref rid="B101" ref-type="bibr">101</xref>
] indicating stronger binding.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Biosorbent Dose</title>
<p>Generally as the biosorbent dose increases, the number of available active sites increases and thus consequently enhances the removal [
<xref rid="B70" ref-type="bibr">70</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B86" ref-type="bibr">86</xref>
,
<xref rid="B97" ref-type="bibr">97</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B110" ref-type="bibr">110</xref>
,
<xref rid="B115" ref-type="bibr">115</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
,
<xref rid="B120" ref-type="bibr">120</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
]. On the other hand, the uptake capacity decreases probably due to decrease in surface area that might be a result of having some of the sorption sites aggregated and overlapped [
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B129" ref-type="bibr">129</xref>
]. In a few cases, the removal reaches a peak value then declines [
<xref rid="B82" ref-type="bibr">82</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
] and this could be due to saturation of active sites.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Temperature</title>
<p>The effect of temperature becomes important when dealing with wastewater effluents that are discharged at high temperatures due to processing. For endothermic reactions, biosorption uptake capacity and removal efficiency increased with temperature due to increase in surface activity and hence availability of more active sites [
<xref rid="B76" ref-type="bibr">76</xref>
,
<xref rid="B80" ref-type="bibr">80</xref>
,
<xref rid="B83" ref-type="bibr">83</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B113" ref-type="bibr">113</xref>
,
<xref rid="B120" ref-type="bibr">120</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
,
<xref rid="B129" ref-type="bibr">129</xref>
] and vice versa for exothermic reactions [
<xref rid="B70" ref-type="bibr">70</xref>
,
<xref rid="B86" ref-type="bibr">86</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B100" ref-type="bibr">100</xref>
]. Sorption rate for endothermic reactions was also enhanced as temperature increased and it followed Arrhenius equation [
<xref rid="B76" ref-type="bibr">76</xref>
,
<xref rid="B106" ref-type="bibr">106</xref>
].</p>
</sec>
<sec id="sec3.5">
<title>3.5. Particle Size of The Sorbent</title>
<p>In most of the reported studies, the initial rate of sorption was rapid and it decreased gradually till it reached an approximately constant value [
<xref rid="B70" ref-type="bibr">70</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B106" ref-type="bibr">106</xref>
]. This shows that binding mostly occurs on the solid surface and that film and pore ion diffusion are not significant or have very fast rates. In cases where this did not hold true, either film (boundary layer) or pore (intraparticle) diffusion or a combination of both was the rate limiting step [
<xref rid="B91" ref-type="bibr">91</xref>
,
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B120" ref-type="bibr">120</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
] When the governing mechanism was the surface reaction, decrease in particle size was shown to improve the uptake [
<xref rid="B110" ref-type="bibr">110</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
] due to increase in surface area. In addition, the decrease in particle size enhances diffusion and sorption rates since it reduces intraparticle diffusion [
<xref rid="B108" ref-type="bibr">108</xref>
]. In case of very porous biosorbents like pectin wastes, it was found that particle size had no significant effect on Cr (III) sorption since the external surface area does not contribute much to the total surface area [
<xref rid="B102" ref-type="bibr">102</xref>
].</p>
</sec>
<sec id="sec3.6">
<title>3.6. Agitation Speed</title>
<p>The speed of agitation was found to enhance removal efficiency by reducing mass transfer resistances but only up to an optimal limit above which efficiency drops probably due to biomass fragmentation [
<xref rid="B82" ref-type="bibr">82</xref>
,
<xref rid="B103" ref-type="bibr">103</xref>
,
<xref rid="B119" ref-type="bibr">119</xref>
].</p>
</sec>
<sec id="sec3.7">
<title>3.7. Mode of Operation</title>
<p>The operational mode influences uptake and % removal because dynamics of batch systems are different from column dynamics. In most studies, dynamic capacity was lower than its batch counterpart; and the same held true for % removal [
<xref rid="B100" ref-type="bibr">100</xref>
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B104" ref-type="bibr">104</xref>
,
<xref rid="B131" ref-type="bibr">131</xref>
]. Column dynamics vary with column dimensions and flow rate. The increase in column height was found to decrease sorption efficiency and increase breakthrough time [
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B109" ref-type="bibr">109</xref>
]. An increase in initial concentration of sorbate enhanced sorption capacity and decreased breakthrough time [
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B109" ref-type="bibr">109</xref>
]. Increasing the influent flow rate also decreased the breakthrough time [
<xref rid="B109" ref-type="bibr">109</xref>
]. In a dynamic study on the sorption of phenols onto olive pomace, decreasing flow rate and particle size was found to improve sorption capacity [
<xref rid="B110" ref-type="bibr">110</xref>
].</p>
</sec>
<sec id="sec3.8">
<title>3.8. Competition From Coions</title>
<p>One additional factor affecting biosorption in multicomponent systems is competition and interference between ions in the sorbate mixture. As a result, the reported individual batch uptake and breakthrough capacities of ions in single-component systems were lower compared to their counterparts in multicomponent systems [
<xref rid="B123" ref-type="bibr">123</xref>
]. However, high removal efficiency (up to 80–90%) was achieved in multicomponent systems of heavy metals [
<xref rid="B71" ref-type="bibr">71</xref>
,
<xref rid="B103" ref-type="bibr">103</xref>
]. It was also suggested that competition is minimized at low ion concentrations [
<xref rid="B57" ref-type="bibr">57</xref>
,
<xref rid="B122" ref-type="bibr">122</xref>
]. In general, Pb ions showed more competitiveness than Cd ions onto different adsorbents such as grape bagasse [
<xref rid="B79" ref-type="bibr">79</xref>
], olive mill waste [
<xref rid="B102" ref-type="bibr">102</xref>
], biomass from sunflower oil [
<xref rid="B112" ref-type="bibr">112</xref>
], and fruit waste macrofungi [
<xref rid="B130" ref-type="bibr">130</xref>
].</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Nature and Mechanism of Biosorption</title>
<p>Food and pharmaceutical wastes contain organic compounds such as proteins, amino acids, polysaccharides, phenolics, and acids. These compounds have functional groups that bind to the sorbate cations. Groups include, but are not limited to, amines, hydroxyls, carbonyls, sulfonyls, thiols, and phosphates. Biosorption mechanisms include physical sorption by virtue of Van der Waals forces or by ion exchange electrostatic interactions, chemical sorption by chelation or complexation, and microprecipitation. Generally, a combination of these mechanisms is involved in biosorption [
<xref rid="B88" ref-type="bibr">88</xref>
,
<xref rid="B132" ref-type="bibr">132</xref>
,
<xref rid="B133" ref-type="bibr">133</xref>
].</p>
<p>There are several factors controlling sorption mechanisms, type of ligands or binding sites available on the sorbent; chemical structure and characteristics of the target ions/molecules, physicochemical conditions such as pH, ionic strength, and temperature. There are some general rules for metal binding particularly via complexation. Hard acids such as K
<sup>+</sup>
, Na
<sup>+</sup>
, Ca
<sup>2+</sup>
, and Mg
<sup>2+</sup>
prefer to bind to oxygen ligands, whereas soft acids such as the precious metal ions of Ag, Au, Hg, and Cd preferentially bind covalently to the cell wall via ligands that contain nitrogen or sulfur [
<xref rid="B132" ref-type="bibr">132</xref>
,
<xref rid="B134" ref-type="bibr">134</xref>
].</p>
<p>Sorption onto biomass can generally occur via one or more of the following mechanisms: rapid surface reaction between the sorbate and the active functional groups existing in the cell wall, intracellular accumulation, or precipitation/extracellular accumulation. Surface reaction could be either physical adsorption or chemisorption and is nonmetabolism dependent. Intracellular accumulation takes place when the sorbate migrates across the cell wall. It is a metabolism-dependent process that is influenced by adverse environmental conditions such as lack of nutrients and toxicity. It is also a function of the regular metabolic activities that change the microenvironment surrounding the cell, such as nutrient uptake, metabolic release, and respiration. In living biomass, biosorption is metabolism-dependent and occurs by sorbent uptake across the cell membrane. Therefore, it has its limitations regarding toxicity and maintaining nutrient levels. Biosorption via dead biomass does not suffer from these limitations and occurs on the cell wall where the polysaccharides and proteins have binding sites. However, lower binding capacities and higher desorption tendencies are often encountered [
<xref rid="B88" ref-type="bibr">88</xref>
,
<xref rid="B135" ref-type="bibr">135</xref>
,
<xref rid="B136" ref-type="bibr">136</xref>
].</p>
<p>To elucidate the underlying biosorption mechanism, the functional groups involved in biosorption were determined by Fourier transform infrared spectroscopy (FTIR) analysis (
<xref ref-type="table" rid="tab2">Table 2</xref>
). Generically, sorption onto pectin-rich fruit wastes involved hydroxyl and carboxyl groups [
<xref rid="B94" ref-type="bibr">94</xref>
,
<xref rid="B95" ref-type="bibr">95</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B102" ref-type="bibr">102</xref>
]; whereas sorption onto olive oil wastes involved carboxylic and phenolic groups [
<xref rid="B102" ref-type="bibr">102</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B111" ref-type="bibr">111</xref>
]. Biomass fungal wastes had additional amine groups as in
<italic> Aspergillus Fumigatus</italic>
and
<italic> Aspergillus awamori</italic>
. These groups were donated by the chitosan and chitin that are predominantly present in the fungal cell walls [
<xref rid="B122" ref-type="bibr">122</xref>
,
<xref rid="B124" ref-type="bibr">124</xref>
,
<xref rid="B125" ref-type="bibr">125</xref>
]. A two-step mechanism was suggested for sorption onto
<italic> Aspergillus awamori</italic>
where there is an initial adsorption step followed by a chromium reducing step from Cr (VI) to Cr (III). Heavy metal sorption onto okra food wastes and sugar bagasse wastes took place via a combined ion exchange/complexation mechanism where the positively charged metal interacted with the negatively charged wastes. The negative charge on the wastes was owed to the presence of lone pairs of the nitrogen and oxygen atoms that exist in the functional groups of cellulose, lignin, protein, and sugar [
<xref rid="B88" ref-type="bibr">88</xref>
,
<xref rid="B89" ref-type="bibr">89</xref>
]. The main functional groups responsible for dye sorption onto pecan nut shells and mango seeds were the sulfonyl groups. Mechanism of sorption onto the former biosorbent depended on the number of sulfonic groups present on the dye; these groups interacted with the Ca compounds belonging to the pecan nut shells [
<xref rid="B131" ref-type="bibr">131</xref>
]. The mechanism of dye sorption onto the latter biosorbent entailed association with water molecules which linked the Victazol Orange 3R sulfonic groups to the syringyl groups of the lignin cellulose present in the mango seeds [
<xref rid="B99" ref-type="bibr">99</xref>
]. A variety of functional groups played important roles in the biosorption of Pb onto waste beer yeast. The extent of contribution of these groups was in the descending order: carboxylic, lipids, amines, and phosphates [
<xref rid="B82" ref-type="bibr">82</xref>
]. For the sorption of anionic dyes onto Cupuassu shells, a 3-step mechanism was proposed. It involved an initial rapid step for protonation of the Cupuassu shells functional groups. This was followed by dissociation of the dye agglomerates and their consequent dehydration, then finally electrostatic binding between the negatively charged dye and the positively charged biosorbent. Activated carbon from the pharmaceutical antibiotic waste contained primarily oxygen-containing functional groups such as hydroxyl and carbonyl groups which formed complexes with the mercury ions [
<xref rid="B126" ref-type="bibr">126</xref>
].</p>
<p>The change in pH during sorption could be indicative of the involved mechanism. For example, the decrease in pH during the sorption of heavy metals onto
<italic> Tolypocladium</italic>
sp. is a result of proton release probably due to electrostatic interaction between the positively charged metals and the negatively charged carboxylic groups on the adsorbent [
<xref rid="B107" ref-type="bibr">107</xref>
].</p>
</sec>
<sec id="sec5">
<title>5. Equilibrium and Kinetic Modeling Studies</title>
<p>Biosorption equilibrium is governed by isotherm models that are well-known and established in literature.
<xref ref-type="table" rid="tab3"> Table 3</xref>
[
<xref rid="B82" ref-type="bibr">82</xref>
,
<xref rid="B86" ref-type="bibr">86</xref>
,
<xref rid="B87" ref-type="bibr">87</xref>
,
<xref rid="B127" ref-type="bibr">127</xref>
,
<xref rid="B131" ref-type="bibr">131</xref>
,
<xref rid="B139" ref-type="bibr">137</xref>
] summarizes the different isotherm model equations involved in the present review along with their relevant parameters. For the kinetic modeling, the reported studies herein were found to follow either pseudo-first order or pseudo-second order or Elovich models; equations thereof are presented in
<xref ref-type="table" rid="tab4">Table 4</xref>
[
<xref rid="B94" ref-type="bibr">94</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B131" ref-type="bibr">131</xref>
,
<xref rid="B139" ref-type="bibr">137</xref>
].</p>
<p>
<xref ref-type="table" rid="tab5">Table 5</xref>
compiles a summary of the sorption parameters pertaining to the studies utilizing food and pharmaceutical waste biosorbents, as predicted by the different well-established models for sorption equilibrium. The table presents only results that were obtained by the best fitting model relevant to each study. In the majority of equilibrium studies, heavy metals and dyes were shown to follow Langmuir isotherm. This indicates single-site monolayer binding where the surface of sorbent is homogenous and all sites are equally favorable or nonfavorable from the energetic point of view. Few heavy metals followed Freundlich isotherm which assumes a heterogeneous biosorbent surface; examples are Cd (II) [
<xref rid="B123" ref-type="bibr">123</xref>
] and Pb (II) [
<xref rid="B82" ref-type="bibr">82</xref>
,
<xref rid="B97" ref-type="bibr">97</xref>
,
<xref rid="B105" ref-type="bibr">105</xref>
]. Cd was also shown to follow BET [
<xref rid="B120" ref-type="bibr">120</xref>
] and Sips [
<xref rid="B94" ref-type="bibr">94</xref>
], while Pb was found to follow Sips [
<xref rid="B102" ref-type="bibr">102</xref>
] and Dubinin Astakhov [
<xref rid="B103" ref-type="bibr">103</xref>
]. Several dyes such as Reactive Red (RR 194), Direct Blue 53, Acid Blue 25, and Reactive Black 5 followed Sips isotherm [
<xref rid="B87" ref-type="bibr">87</xref>
,
<xref rid="B127" ref-type="bibr">127</xref>
,
<xref rid="B131" ref-type="bibr">131</xref>
], whereas Reactive Red dye (RR 198) and phenols followed Freundlich isotherm [
<xref rid="B86" ref-type="bibr">86</xref>
,
<xref rid="B110" ref-type="bibr">110</xref>
]. In general, it can be observed from the table that sorption capacities of pharmaceutical and fungal biomass wastes for heavy metals and dyes are higher than those of pectin-rich fruit wastes or olive oil wastes. Sorption in multicomponent systems was well described by either Langmuir as in case of simulated acid bath for wool (SABW) dye mixture [
<xref rid="B121" ref-type="bibr">121</xref>
] or extended Langmuir as in case of binary mixtures of heavy metals [
<xref rid="B105" ref-type="bibr">105</xref>
].</p>
<p>In most reported studies, the pseudo-second order model was found to be the most appropriate fitting model that describes biosorption of heavy metals and dyes onto food and pharmaceutical wastes (
<xref ref-type="table" rid="tab6">Table 6</xref>
). This indicates that the mechanism is that of chemisorption. The model takes into account the three phases of the sorption process; surface reaction, film or external diffusion, and pore or intraparticle diffusion. Generally, time versus uptake trends revealed fast kinetics where almost 90% or more of the material was sorbed within a time range from few minutes to few hours and equilibrium was almost approached. In one instance when Cr (III) was adsorbed onto orange waste, reaching very close to complete equilibrium required a few days [
<xref rid="B102" ref-type="bibr">102</xref>
]. This could be owed to a diffusion-controlled sorption taking place onto the very porous pectin-rich biosorbent as was alluded to in
<xref ref-type="sec" rid="sec3.5">Section 3.5</xref>
.</p>
</sec>
<sec id="sec6">
<title>6. Pretreatment and Regeneration/Recovery Options</title>
<p>Wastes from most fruit sources are pectin-rich biosorbents of potentially high metal binding abilities. Many studies that involved the use of such biosorbents have undertaken prior chemical pretreatment known as protonation. This process aims at removing excess cations such as Ca
<sup>2+</sup>
, Na
<sup>+</sup>
, or K
<sup>+</sup>
from the biosorbent before carrying out biosorption experiments to reduce the competition of these elements with targeted heavy metals. Moreover, it leads to the creation of negative active sites on the biosorbent surface (at specific pH values) which leads to higher metal uptake capacity [
<xref rid="B92" ref-type="bibr">92</xref>
]. Some researchers utilized HNO
<sub>3</sub>
with predetermined concentration for this chemical pretreatment step. A comparative study [
<xref rid="B101" ref-type="bibr">101</xref>
] was carried out on the performance of treated and untreated orange peel waste. Results showed higher Cd (II) uptake of 11.2 mg/g in case of chemically treated orange peel as compared to 6.94 mg/g in case of original peel. Similarly, [
<xref rid="B138" ref-type="bibr">138</xref>
] pectin waste was protonated by HNO
<sub>3</sub>
before carrying out batch biosorption experiments for heavy metal removal. It was also suggested in a different study [
<xref rid="B99" ref-type="bibr">99</xref>
] that the use of HCl was successful in acidifying the mango seeds (AMS) in order to improve its removal efficiency to dyes. A faster adsorption process accompanied by increase in adsorption capacity was encountered in case of AMS relative to the original mango seeds (MS). According to them, the protonation using HCl increased the macropore structure of the original MS allowing higher amounts of dyes to be adsorbed.</p>
<p>H
<sub>2</sub>
O
<sub>2</sub>
along with thermal treatment was used to treat wine processing sludge in order to remove organic matter before using the biosorbent for the removal of Cr (VI) [
<xref rid="B73" ref-type="bibr">73</xref>
]. This step led to the reduction of Cr (VI) to Cr (III) which reached a percentage of 2–18 at the end of the biosorption experiment. They considered pretreatment as a key factor for any future research to be performed on Cr removal using the same biosorbent. A comparison between chemically treated and untreated waste olive cake biomass during a study for Zn (II) removal from aqueous solutions was conducted [
<xref rid="B108" ref-type="bibr">108</xref>
]. This showed an increase in the removal efficiency of waste treated by NaOH and a reduction in the removal efficiency in case of H
<sub>2</sub>
SO
<sub>4</sub>
treated waste.</p>
<p>A combined chemical and physical treatment was performed for baker's yeast waste used for Cd (II) and Pb (II) removal [
<xref rid="B137" ref-type="bibr">139</xref>
]. Thermal treatment (121°C), NaOH, and ethanol were applied to separate biomass samples and the resulted treated biomass was employed in batch biosorption experiments. The best metal uptake was reported for ethanol treated biomass whereas caustic and thermal. Caustic soda and ethanol were utilized for pretreating the
<italic> Penicillium oxalicum var. Armeniaca</italic>
biomass used for heavy metal removal [
<xref rid="B107" ref-type="bibr">107</xref>
]. The purpose was to remove proteins from the biomass sites via caustic treatment which increased biosorption capacity, whereas the opposite was true in case of acidic pretreatment.</p>
<p>Other different chemical treatments either acidic or caustic were employed by other workers in their biosorption studies. Zinc chloride and potassium hydroxide were employed as chemical activating agents for palm oil sludge in a study on the removal of Methylene Blue dye [
<xref rid="B111" ref-type="bibr">111</xref>
]. Results were comparable to commercial activated carbon but chemically treated sludge was recommended for better solution to sludge disposal problems. Simulation of chemical and physical pretreatment was employed in another study on the removal of phenols from industrial wastewaters using olive pomace solid wastes produced from different stages of olive mills [
<xref rid="B110" ref-type="bibr">110</xref>
]. Dried olive pomace denoted OP-1, solvent extracted using hexane and vapor olive pomace (OP-2), solvent extracted and incompletely combusted in boilers, and olive pomace (OP-3) were utilized. Results recommended the use of OP-3 as an effective biosorbent for phenol removal as the reported removal efficiencies exceeded 90%. The use of sugarcane bagasse modified by EDTA dianhydride for the removal of MB and GV dyes was investigated by other workers [
<xref rid="B78" ref-type="bibr">78</xref>
], and there was no sign of its effectiveness as a biosorbent compared to the untreated bagasse. It has also been reported in another study that the physically and chemically treated waste cider yeast was efficient in removing patulin [
<xref rid="B84" ref-type="bibr">84</xref>
]. Heating and chemical addition of either NaOH or ethanol was done during yeast preparation for batch experiments, while calcium alginate was used to form a gel bead (cell immobilization) with and without NaOH treatment for the column study. For batch results, the highest % removal obtained was 58.29% in case of caustic treatment and 44.41% for thermal or ethanol treatment. Column results showed substantial improvement in patulin removal by caustic treated immobilized yeast matrix (100% removal) as compared to untreated yeast (71.42%). Another cell immobilization was performed during a study conducted on the removal of heavy metals using waste biomass from beverage industry [
<xref rid="B75" ref-type="bibr">75</xref>
]. Comparison between the removal efficiencies of both immobilized (on Dowex resin and Chitin) and free biomasses indicated limited improvement in uptake performance. Another study used polyvinyl alcohol for biomass immobilization [
<xref rid="B122" ref-type="bibr">122</xref>
]. This process helped in improving biomass adsorption capacity and regeneration ability. A different study compared the performance of immobilized and suspended brewery waste yeast biomass versus fresh yeast (from baker's) in the removal of Cd (II) from aqueous solutions [
<xref rid="B80" ref-type="bibr">80</xref>
]. An excellent removal efficiency of 99.83% was reported in case of suspended form of brewery waste (SBW) which confirmed its promising potential as an effective low-cost adsorbent.</p>
<p>To test the effect of different functional groups on the removal of some heavy metals (Cd
<sup>2+</sup>
, Zn
<sup>2+</sup>
, and Cr
<sup>3+</sup>
), orange waste biomass was chemically modified by specific reagents [
<xref rid="B95" ref-type="bibr">95</xref>
]. It was suggested that ester treatment was not recommended as a prior modification because it decreased biosorption capacity. Five different chemical reagents were applied to chemically treat the waste beer yeast used in biosorption of lead from electroplating effluents [
<xref rid="B82" ref-type="bibr">82</xref>
]. Lead removal efficiencies were reduced after using all five pretreatment methods with drastic effects shown in case of ethanol and HCl treatment. Similar results were reported by the same workers in their study on Cr removal [
<xref rid="B74" ref-type="bibr">74</xref>
]. Their results showed reduction in removal efficiency using all types of treating agents relative to the original biosorbent and they owed this to the creation of modified functional groups.</p>
<p>Some researchers used chemical and physical methods for the preparation of activated carbons produced from different food processing wastes. Four studies were reported for the removal of dyes or heavy metals using AC prepared from exhausted olive waste cake [
<xref rid="B113" ref-type="bibr">113</xref>
], AC prepared from oil palm empty fruit bunch [
<xref rid="B114" ref-type="bibr">114</xref>
], AC prepared from tea waste [
<xref rid="B115" ref-type="bibr">115</xref>
], and AC prepared from sago waste [
<xref rid="B116" ref-type="bibr">116</xref>
]. Chemical activation was performed using sulfuric or phosphoric acids or potassium hydroxide and this was followed by heating to relatively high temperatures or microwave assistant heating as an essential step in all four studies. Reported results showed an outstanding performance for AC from tea industrial waste in Cr (III) removal with an efficiency that almost reached 100%.</p>
<p>As for pharmaceutical wastes,
<italic> Tolypocladium</italic>
sp. was treated with methanol to improve its sorption capacity for Hg (II) [
<xref rid="B107" ref-type="bibr">107</xref>
]. Modification of the amino groups on the waste mycelium of
<italic> Aspergillus awamori</italic>
via treatment with formaldehyde, acetic anhydride, or sodium iodoacetate did not improve its removal efficiency for Cr (VI) [
<xref rid="B124" ref-type="bibr">124</xref>
]. The treatment of the same biosorbent with sodium hydroxide and dimethyl sulfoxide increased Cu (II) uptake [
<xref rid="B125" ref-type="bibr">125</xref>
]. Among different pretreatments of
<italic> Corynebacterium glutamicum</italic>
with HCl, H
<sub>2</sub>
SO
<sub>4</sub>
, HNO
<sub>3</sub>
, NaOH, Na
<sub>2</sub>
CO
<sub>3</sub>
, NaCl, and CaCl
<sub>2</sub>
, the maximum improvement in biosorption capacity for Reactive Black 5 dye was achieved with 0.1 M HNO
<sub>3</sub>
. This was attributed to the enhancement of positively charged cell surfaces that attract the negatively charged dyes [
<xref rid="B127" ref-type="bibr">127</xref>
].</p>
<p>Few researchers were interested in desorption processes for either regeneration of the biosorbent for reuse and/or for recovery of the sorbate material. Desorption can be performed by adding acids, bases, inorganic salts, or solvents [
<xref rid="B129" ref-type="bibr">129</xref>
] for metal recovery. This step usually follows the adsorption step and metal recovery rate or metal uptake is calculated to test the effectiveness of the reagent used in desorption. HCl was the most used eluent for the majority of the reported studies [
<xref rid="B100" ref-type="bibr">100</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
,
<xref rid="B103" ref-type="bibr">103</xref>
<xref rid="B105" ref-type="bibr">105</xref>
,
<xref rid="B116" ref-type="bibr">116</xref>
,
<xref rid="B122" ref-type="bibr">122</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
,
<xref rid="B129" ref-type="bibr">129</xref>
]. The most promising reported results showed that olive mill waste (OMW) maintained its adsorptive capacity for Cd (II) and Pb (II) after ten adsorption-desorption cycles [
<xref rid="B103" ref-type="bibr">103</xref>
]. HCl elution was followed by neutralization with Na
<sub>2</sub>
HCO
<sub>3</sub>
[
<xref rid="B101" ref-type="bibr">101</xref>
]. Other workers revealed that exhausted modified orange peel was able to adsorb Pb (II) up to 91.5% after the 4th cycle. It was concluded in another study that desiccated coconut waste can be used multiple times for Hg sorption and can be regenerated easily using HCl [
<xref rid="B100" ref-type="bibr">100</xref>
]. It was also found in other batch experiments that 41.7% recovery of Fennel biomass could be attained after the 5th cycle using HCl as an eluent [
<xref rid="B123" ref-type="bibr">123</xref>
]. In addition, the relevant column study was very successful and resulted in 87.8% of Cd (II) being eluted in a single-component system and almost 100% in a multicomponent system. Results of using HCl as an eluting agent showed that after the 4th cycle, 65–70% of initial Cd (II) can be retained onto
<italic> Aspergillus Fumigatus</italic>
, but the biosorbent deteriorated after the 5th cycle [
<xref rid="B122" ref-type="bibr">122</xref>
].</p>
<p>In comparing HCl with other desorping agents, higher Pb (II) desorption rate using HCl as compared to EDTA was reported [
<xref rid="B26" ref-type="bibr">26</xref>
]. However, EDTA manifested better performance than both HCl and CaCl
<sub>2</sub>
(equal desorption effect) in case of Cu (II) desorption but had the disadvantage of damaging the biosorbent sites [
<xref rid="B104" ref-type="bibr">104</xref>
]. Furthermore, the regenerated waste was able to remove 40% of Cu (II). Different results revealed that Pb (II) was better recovered by HNO
<sub>3</sub>
(desorption rate of 76.6%) while Cd (II) was better recovered by HCl (desorption rate of 62.5%) [
<xref rid="B129" ref-type="bibr">129</xref>
]. The desorping agent, HNO
<sub>3</sub>
, was utilized in another study where the results showed that the regenerated biomass was successfully capable of desorping Cd (II) even after 5 consecutive cycles [
<xref rid="B120" ref-type="bibr">120</xref>
]. The comparison between the use of HNO
<sub>3</sub>
and double deionized water (DDW) in desorbing Ni (II) showed that DDW was very poor compared to HNO
<sub>3</sub>
[
<xref rid="B76" ref-type="bibr">76</xref>
]. The same acid was also used along with another two desorbing agents, NaNO
<sub>3</sub>
and Ca(NO
<sub>3</sub>
)
<sub>2</sub>
, to regenerate peels and it was shown that regenerated peels have the same efficiency as the original peels [
<xref rid="B140" ref-type="bibr">140</xref>
]. About 90–100% of Cd (II) was recovered from the peels in 120 min or less. Additionally, HNO
<sub>3</sub>
gave superior removal efficiency of 90% in only 50 min without damaging the peels.</p>
</sec>
<sec id="sec7">
<title>7. Concluding Remarks</title>
<p>Industrial food processing and pharmaceutical wastes are promising biosorbents for treatment of wastewater effluents. They contain functional groups such as hydroxyl, carboxyl, and amine that allow them to interact with metal ions and dye pollutants via physical and/or chemical sorption. Sorption equilibrium in most of the previous studies was best described by Langmuir isotherm suggesting single-site binding. Sorption kinetics was generally fast and it predominantly followed the pseudo-second order model indicating a chemisorption mechanism. Surface reaction as well as film and pore diffusion processes were considered in the model.</p>
<p>Biosorption is influenced by the physical and chemical properties of the sorbent as well as various operating conditions. Numerous workers studied the effect of these parameters in batch systems. However, very few studies were conducted in continuous column systems. The latter is of paramount importance in scaled-up applications. Furthermore, most workers employed synthetic aqueous solutions rather that real wastewater effluents where competition and interference between ions in the mixture could significantly affect biosorption performance. One parameter that was overlooked is the physical, mechanical, and chemical stability of the sorbent. Mechanical strength of the biosorbent and its resistance to chemicals and microbial degradation are crucial parameters that ensure reproducibility of biosorbent, particularly in continuous operations where the biosorbent is regenerated and reused many times. Maintaining reproducibility for many subsequent cycles has both environmental and economic merits.</p>
<p>Desorption studies are relatively fewer compared to removal studies. The former is particularly important for both biosorbent regeneration and sorbate recovery if of value. Disposing of, landfilling and incineration could be alternatives to discarding the used biosorbent rather than regenerating it. However issues with cost and leaching of toxic compounds in the soil and ground water make them sometimes unfavorable options. Under very strong binding conditions, where the equilibrium binding constant is high, leaching and metal release are minimized.</p>
<p>Biosorbent performance could be enhanced by chemical, thermal, or chemical/thermal pretreatment and/or immobilization. Pretreatment could be performed to remove undesired organic compounds, proteins, or competing ions from the biosorbent and hence improve biosorption capacity and efficiency. In other cases, pretreatment is undertaken to add new functional groups to the biosorbent that can possibly enhance biosorption. However in some cases, pretreatment gave adverse effects. Prior characterization studies on the biosorbent may help in selecting the suitable treatment option.</p>
<p>Biosorption utilizing industrial food processing and pharmaceutical wastes could provide a cost-effective ecofriendly viable means of treating wastewater effluents, while making good use of waste materials. However, more work should focus on scaling up the proposed biosorption processes and studying their technoeconomic feasibility. Research should also be extended to using these biosorbents for treatment of different classes of contaminants such as phenolic compounds and mycotoxins.</p>
</sec>
</body>
<back>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rafatullah</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sulaiman</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hashim</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Adsorption of methylene blue on low-cost adsorbents: a review</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2010</year>
<volume>177</volume>
<issue>1–3</issue>
<fpage>70</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="other">2-s2.0-77949571251</pub-id>
<pub-id pub-id-type="pmid">20044207</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>VK</given-names>
</name>
</person-group>
<article-title>Application of low-cost adsorbents for dye removal—a review</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2009</year>
<volume>90</volume>
<issue>8</issue>
<fpage>2313</fpage>
<lpage>2342</lpage>
<pub-id pub-id-type="other">2-s2.0-67349110450</pub-id>
<pub-id pub-id-type="pmid">19264388</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forgacs</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cserháti</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Oros</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Removal of synthetic dyes from wastewaters: a review</article-title>
<source>
<italic>Environment International</italic>
</source>
<year>2004</year>
<volume>30</volume>
<issue>7</issue>
<fpage>953</fpage>
<lpage>971</lpage>
<pub-id pub-id-type="other">2-s2.0-2942637643</pub-id>
<pub-id pub-id-type="pmid">15196844</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kyzas</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Matis</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>The change from past to future for adsorbent materials in treatment of dyeing wastewaters</article-title>
<source>
<italic>Materials</italic>
</source>
<year>2013</year>
<volume>6</volume>
<fpage>5131</fpage>
<lpage>5158</lpage>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijayaraghavan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Basha</surname>
<given-names>SJS</given-names>
</name>
<name>
<surname>Jegan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A review on efficacious methods to decolorize reactive azo dye</article-title>
<source>
<italic>Journal of Urban and Environmental Engineering</italic>
</source>
<year>2013</year>
<volume>7</volume>
<issue>1</issue>
<fpage>30</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="other">2-s2.0-84881646357</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aksu</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Application of biosorption for the removal of organic pollutants: a review</article-title>
<source>
<italic>Process Biochemistry</italic>
</source>
<year>2005</year>
<volume>40</volume>
<issue>3-4</issue>
<fpage>997</fpage>
<lpage>1026</lpage>
<pub-id pub-id-type="other">2-s2.0-9644303421</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Biosorbents for heavy metals removal and their future</article-title>
<source>
<italic>Biotechnology Advances</italic>
</source>
<year>2009</year>
<volume>27</volume>
<issue>2</issue>
<fpage>195</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="other">2-s2.0-58149469491</pub-id>
<pub-id pub-id-type="pmid">19103274</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y-F</given-names>
</name>
<name>
<surname>Haynes</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents</article-title>
<source>
<italic>Critical Reviews in Environmental Science and Technology</italic>
</source>
<year>2010</year>
<volume>40</volume>
<issue>11</issue>
<fpage>909</fpage>
<lpage>977</lpage>
<pub-id pub-id-type="other">2-s2.0-78149442068</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Removal of heavy metal ions from wastewaters: a review</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2011</year>
<volume>92</volume>
<issue>3</issue>
<fpage>407</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="other">2-s2.0-78650520448</pub-id>
<pub-id pub-id-type="pmid">21138785</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gadd</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment</article-title>
<source>
<italic>Journal of Chemical Technology and Biotechnology</italic>
</source>
<year>2009</year>
<volume>84</volume>
<issue>1</issue>
<fpage>13</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="other">2-s2.0-62649105373</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gogate</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Pandit</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions</article-title>
<source>
<italic>Advances in Environmental Research</italic>
</source>
<year>2004</year>
<volume>8</volume>
<issue>3-4</issue>
<fpage>501</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="other">2-s2.0-0742285314</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gogate</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Pandit</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>A review of imperative technologies for wastewater treatment II: hybrid methods</article-title>
<source>
<italic>Advances in Environmental Research</italic>
</source>
<year>2004</year>
<volume>8</volume>
<issue>3-4</issue>
<fpage>553</fpage>
<lpage>597</lpage>
<pub-id pub-id-type="other">2-s2.0-0742266800</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolong</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ismail</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Salim</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Matsuura</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>A review of the effects of emerging contaminants in wastewater and options for their removal</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2009</year>
<volume>239</volume>
<issue>1–3</issue>
<fpage>229</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="other">2-s2.0-59649113519</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chojnacka</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Biosorption and bioaccumulation—the prospects for practical applications</article-title>
<source>
<italic>Environment International</italic>
</source>
<year>2010</year>
<volume>36</volume>
<issue>3</issue>
<fpage>299</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="other">2-s2.0-76049107821</pub-id>
<pub-id pub-id-type="pmid">20051290</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crini</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Non-conventional low-cost adsorbents for dye removal: a review</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2006</year>
<volume>97</volume>
<issue>9</issue>
<fpage>1061</fpage>
<lpage>1085</lpage>
<pub-id pub-id-type="other">2-s2.0-33645036301</pub-id>
<pub-id pub-id-type="pmid">15993052</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ngah</surname>
<given-names>WSW</given-names>
</name>
<name>
<surname>Teong</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Hanafiah</surname>
<given-names>MAKM</given-names>
</name>
</person-group>
<article-title>Adsorption of dyes and heavy metal ions by chitosan composites: a review</article-title>
<source>
<italic>Carbohydrate Polymers</italic>
</source>
<year>2011</year>
<volume>83</volume>
<issue>4</issue>
<fpage>1446</fpage>
<lpage>1456</lpage>
<pub-id pub-id-type="other">2-s2.0-78650520023</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demirbas</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2009</year>
<volume>167</volume>
<issue>1–3</issue>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="other">2-s2.0-67649261961</pub-id>
<pub-id pub-id-type="pmid">19181447</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crini</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Badot</surname>
<given-names>P-M</given-names>
</name>
</person-group>
<article-title>Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature</article-title>
<source>
<italic>Progress in Polymer Science</italic>
</source>
<year>2008</year>
<volume>33</volume>
<issue>4</issue>
<fpage>399</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="other">2-s2.0-41349097319</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salleh</surname>
<given-names>MAM</given-names>
</name>
<name>
<surname>Mahmoud</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>WAWA</given-names>
</name>
<name>
<surname>Idris</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2011</year>
<volume>280</volume>
<issue>1–3</issue>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="other">2-s2.0-80053321207</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaushik</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Fungal dye decolourization: recent advances and future potential</article-title>
<source>
<italic>Environment International</italic>
</source>
<year>2009</year>
<volume>35</volume>
<issue>1</issue>
<fpage>127</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="other">2-s2.0-56949096940</pub-id>
<pub-id pub-id-type="pmid">18617266</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pearce</surname>
<given-names>CI</given-names>
</name>
<name>
<surname>Lloyd</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Guthrie</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>The removal of colour from textile wastewater using whole bacterial cells: a review</article-title>
<source>
<italic>Dyes and Pigments</italic>
</source>
<year>2003</year>
<volume>58</volume>
<issue>3</issue>
<fpage>179</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="other">2-s2.0-0037623933</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sud</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mahajan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2008</year>
<volume>99</volume>
<issue>14</issue>
<fpage>6017</fpage>
<lpage>6027</lpage>
<pub-id pub-id-type="other">2-s2.0-43849097088</pub-id>
<pub-id pub-id-type="pmid">18280151</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lesmana</surname>
<given-names>SO</given-names>
</name>
<name>
<surname>Febriana</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Soetaredjo</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Sunarso</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ismadji</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Studies on potential applications of biomass for the separation of heavy metals from water and wastewater</article-title>
<source>
<italic>Biochemical Engineering Journal</italic>
</source>
<year>2009</year>
<volume>44</volume>
<issue>1</issue>
<fpage>19</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="other">2-s2.0-60649093132</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farooq</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Kozinski</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Athar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2010</year>
<volume>101</volume>
<issue>14</issue>
<fpage>5043</fpage>
<lpage>5053</lpage>
<pub-id pub-id-type="other">2-s2.0-77950339286</pub-id>
<pub-id pub-id-type="pmid">20223652</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fosso-Kankeu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mulaba-Bafubiandi</surname>
<given-names>AF</given-names>
</name>
</person-group>
<article-title>Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review</article-title>
<source>
<italic>Physics and Chemistry of the Earth</italic>
</source>
<year>2014</year>
<volume>67–69</volume>
<fpage>242</fpage>
<lpage>252</lpage>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahluwalia</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Goyal</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Microbial and plant derived biomass for removal of heavy metals from wastewater</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2007</year>
<volume>98</volume>
<issue>12</issue>
<fpage>2243</fpage>
<lpage>2257</lpage>
<pub-id pub-id-type="other">2-s2.0-33947118870</pub-id>
<pub-id pub-id-type="pmid">16427277</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yadanaparthi</surname>
<given-names>SKR</given-names>
</name>
<name>
<surname>Graybill</surname>
<given-names>D</given-names>
</name>
<name>
<surname>von Wandruszka</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2009</year>
<volume>171</volume>
<issue>1–3</issue>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="other">2-s2.0-70349235432</pub-id>
<pub-id pub-id-type="pmid">19540667</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demirbas</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Heavy metal adsorption onto agro-based waste materials: a review</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>157</volume>
<issue>2-3</issue>
<fpage>220</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="other">2-s2.0-46449108052</pub-id>
<pub-id pub-id-type="pmid">18291580</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Biosorption of inorganic and organic arsenic from aqueous solution by
<italic>Acidithiobacillus ferrooxidans</italic>
BY-3</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2010</year>
<volume>178</volume>
<issue>1–3</issue>
<fpage>209</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="other">2-s2.0-77951498262</pub-id>
<pub-id pub-id-type="pmid">20122794</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mathialagan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Viraraghavan</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Biosorption of pentachlorophenol by fungal biomass from aqueous solutions: a factorial design analysis</article-title>
<source>
<italic>Environmental Technology</italic>
</source>
<year>2005</year>
<volume>26</volume>
<issue>5</issue>
<fpage>571</fpage>
<lpage>579</lpage>
<pub-id pub-id-type="other">2-s2.0-21044432244</pub-id>
<pub-id pub-id-type="pmid">15974275</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maciel</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Souza</surname>
<given-names>CGMD</given-names>
</name>
<name>
<surname>Araújo</surname>
<given-names>CAVD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biosorption of herbicide picloram from aqueous solutions by live and heat-treated biomasses of
<italic>Ganoderma lucidum</italic>
(Curtis) P. Karst and
<italic>Trametes</italic>
sp.</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2013</year>
<volume>215-216</volume>
<fpage>331</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="other">2-s2.0-84873040241</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hai</surname>
<given-names>FI</given-names>
</name>
<name>
<surname>Modin</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fukushi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nghiem</surname>
<given-names>LD</given-names>
</name>
</person-group>
<article-title>Pesticide removal by a mixed culture of bacteria and white-rot fungi</article-title>
<source>
<italic>Journal of the Taiwan Institute of Chemical Engineers</italic>
</source>
<year>2012</year>
<volume>43</volume>
<issue>3</issue>
<fpage>459</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="other">2-s2.0-84860320521</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>LN</given-names>
</name>
<name>
<surname>Hai</surname>
<given-names>FI</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by
<italic>Trametes versicolor</italic>
: role of biosorption and biodegradation</article-title>
<source>
<italic>International Biodeterioration and Biodegradation</italic>
</source>
<year>2014</year>
<volume>88</volume>
<fpage>169</fpage>
<lpage>175</lpage>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jain</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Removal of chlorophenols using industrial wastes</article-title>
<source>
<italic>Environmental Science and Technology</italic>
</source>
<year>2004</year>
<volume>38</volume>
<issue>4</issue>
<fpage>1195</fpage>
<lpage>1200</lpage>
<pub-id pub-id-type="other">2-s2.0-1242320137</pub-id>
<pub-id pub-id-type="pmid">14998037</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurniawan</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>GYS</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>W-H</given-names>
</name>
<name>
<surname>Babel</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals</article-title>
<source>
<italic>Science of the Total Environment</italic>
</source>
<year>2006</year>
<volume>366</volume>
<issue>2-3</issue>
<fpage>409</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="other">2-s2.0-33746002662</pub-id>
<pub-id pub-id-type="pmid">16300818</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhatnagar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Minocha</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Conventional and non-conventional adsorbents for removal of pollutants from water—a review</article-title>
<source>
<italic>Indian Journal of Chemical Technology</italic>
</source>
<year>2006</year>
<volume>13</volume>
<issue>3</issue>
<fpage>203</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="other">2-s2.0-33749161411</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saraswat</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rai</surname>
<given-names>JPN</given-names>
</name>
</person-group>
<article-title>Heavy metal adsorption from aqueous solution using
<italic>Eichhornia crassipes</italic>
dead biomass</article-title>
<source>
<italic>International Journal of Mineral Processing</italic>
</source>
<year>2010</year>
<volume>94</volume>
<issue>3-4</issue>
<fpage>203</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="other">2-s2.0-77950340266</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biosorption of Zn(II) by live and dead cells of
<italic>Streptomyces ciscaucasicus</italic>
strain CCNWHX 72-14</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2010</year>
<volume>179</volume>
<issue>1–3</issue>
<fpage>151</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="other">2-s2.0-77952890590</pub-id>
<pub-id pub-id-type="pmid">20307931</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Viraraghavan</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Removal of a dye from an aqueous solution by the fungus aspergillus niger</article-title>
<source>
<italic>Water Quality Research Journal of Canada</italic>
</source>
<year>2000</year>
<volume>35</volume>
<issue>1</issue>
<fpage>95</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="other">2-s2.0-0034105419</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Viraraghavan</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Removal of Congo Red from an aqueous solution by fungus
<italic>Aspergillus niger</italic>
</article-title>
<source>
<italic>Advances in Environmental Research</italic>
</source>
<year>2002</year>
<volume>7</volume>
<issue>1</issue>
<fpage>239</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="other">2-s2.0-0036837775</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bishnoi</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Garima</surname>
</name>
</person-group>
<article-title>Biosorption of copper from aqueous solution using algal biomass</article-title>
<source>
<italic>Journal of Scientific and Industrial Research</italic>
</source>
<year>2004</year>
<volume>63</volume>
<issue>10</issue>
<fpage>813</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="other">2-s2.0-5544240581</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Navarro</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Portales</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Sun-Kou</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Llanos</surname>
<given-names>BP</given-names>
</name>
</person-group>
<article-title>Effect of pH on phenol biosorption by marine seaweeds</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>156</volume>
<issue>1–3</issue>
<fpage>405</fpage>
<lpage>411</lpage>
<pub-id pub-id-type="other">2-s2.0-44949169591</pub-id>
<pub-id pub-id-type="pmid">18249490</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koçberber</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dönmez</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2007</year>
<volume>98</volume>
<issue>11</issue>
<fpage>2178</fpage>
<lpage>2183</lpage>
<pub-id pub-id-type="other">2-s2.0-33947135040</pub-id>
<pub-id pub-id-type="pmid">17049232</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Thakur</surname>
<given-names>IS</given-names>
</name>
</person-group>
<article-title>Removal of chromium and pentachlorophenol from tannery effluents</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2007</year>
<volume>98</volume>
<issue>5</issue>
<fpage>1128</fpage>
<lpage>1132</lpage>
<pub-id pub-id-type="other">2-s2.0-33750366608</pub-id>
<pub-id pub-id-type="pmid">16762546</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bishnoi</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Bajaj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Adsorption of Cr(VI) on activated rice husk carbon and activated alumina</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2004</year>
<volume>91</volume>
<issue>3</issue>
<fpage>305</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="other">2-s2.0-0242691692</pub-id>
<pub-id pub-id-type="pmid">14607491</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Sorption of cadmium from aqueous solution using pretreated rice husk</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2006</year>
<volume>97</volume>
<issue>1</issue>
<fpage>104</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="other">2-s2.0-24644436441</pub-id>
<pub-id pub-id-type="pmid">15936939</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Rastogi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hasan</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Removal of cadmium from wastewater using agricultural waste “rice polish”</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2005</year>
<volume>121</volume>
<issue>1–3</issue>
<fpage>51</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="other">2-s2.0-18844375872</pub-id>
<pub-id pub-id-type="pmid">15885406</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tarley</surname>
<given-names>CRT</given-names>
</name>
<name>
<surname>Arruda</surname>
<given-names>MAZ</given-names>
</name>
</person-group>
<article-title>Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents</article-title>
<source>
<italic>Chemosphere</italic>
</source>
<year>2004</year>
<volume>54</volume>
<issue>7</issue>
<fpage>987</fpage>
<lpage>995</lpage>
<pub-id pub-id-type="other">2-s2.0-1642476386</pub-id>
<pub-id pub-id-type="pmid">14637356</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>VK</given-names>
</name>
</person-group>
<article-title>Chromium (III) removal from wastewater using low cost activated carbon derived from agriculture waste material and activated carbon fabric filter</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2006</year>
<volume>135</volume>
<issue>1–3</issue>
<fpage>280</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="pmid">16442720</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>VK</given-names>
</name>
</person-group>
<article-title>Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2006</year>
<volume>135</volume>
<issue>1–3</issue>
<fpage>280</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="other">2-s2.0-33646840650</pub-id>
<pub-id pub-id-type="pmid">16442720</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Ramalingam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Senthamarai</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Niranjanaa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vijayalakshmi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sivanesan</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2010</year>
<volume>261</volume>
<issue>1-2</issue>
<fpage>52</fpage>
<lpage>60</lpage>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venkateswarlu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ratnam</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>MV</given-names>
</name>
</person-group>
<article-title>Removal of chromium from aqueous solution using
<italic>Azadirachta indica</italic>
(neem) leaf powder as an adsorbent</article-title>
<source>
<italic>International Journal of Physical Sciences</italic>
</source>
<year>2007</year>
<volume>2</volume>
<fpage>188</fpage>
<lpage>195</lpage>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahluwalia</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Goyal</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Removal of heavy metals by waste tea leaves from aqueous solution</article-title>
<source>
<italic>Engineering in Life Sciences</italic>
</source>
<year>2005</year>
<volume>5</volume>
<issue>2</issue>
<fpage>158</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="other">2-s2.0-18144421537</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benaïssa</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Screening of new sorbent materials for cadmium removal from aqueous solutions</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2006</year>
<volume>132</volume>
<issue>2-3</issue>
<fpage>189</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="other">2-s2.0-33646518573</pub-id>
<pub-id pub-id-type="pmid">16307844</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiewer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Modeling the effect of pH on biosorption of heavy metals by citrus peels</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>157</volume>
<issue>1</issue>
<fpage>8</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="other">2-s2.0-45449086246</pub-id>
<pub-id pub-id-type="pmid">18242837</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farajzadeh</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Monji</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>Adsorption characteristics of wheat bran towards heavy metal cations</article-title>
<source>
<italic>Separation and Purification Technology</italic>
</source>
<year>2004</year>
<volume>38</volume>
<issue>3</issue>
<fpage>197</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="other">2-s2.0-2942693891</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lima</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Airoldi</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The use of chemically modified chitosan with succinic anhydride in the methylene blue adsorption</article-title>
<source>
<italic>Quimica Nova</italic>
</source>
<year>2006</year>
<volume>29</volume>
<issue>3</issue>
<fpage>501</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="other">2-s2.0-33745121188</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cestari</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>EFS</given-names>
</name>
<name>
<surname>dos Santos</surname>
<given-names>AGP</given-names>
</name>
<name>
<surname>Mota</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>de Almeida</surname>
<given-names>VP</given-names>
</name>
</person-group>
<article-title>Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics</article-title>
<source>
<italic>Journal of Colloid and Interface Science</italic>
</source>
<year>2004</year>
<volume>280</volume>
<issue>2</issue>
<fpage>380</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="other">2-s2.0-7944232943</pub-id>
<pub-id pub-id-type="pmid">15533411</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides</article-title>
<source>
<italic>Bioreseource Technology</italic>
</source>
<year>2014</year>
<volume>160</volume>
<fpage>129</fpage>
<lpage>141</lpage>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinto</surname>
<given-names>PX</given-names>
</name>
<name>
<surname>Al-Abed</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Reisman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Biosorption of heavy metals from mining influenced water onto chitin products</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2011</year>
<volume>166</volume>
<issue>3</issue>
<fpage>1002</fpage>
<lpage>1009</lpage>
<pub-id pub-id-type="other">2-s2.0-79451475894</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rozada</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Calvo</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>García</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Morán</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges</article-title>
<source>
<italic>Biochemical Engineering Journal</italic>
</source>
<year>2003</year>
<volume>15</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="other">2-s2.0-0037612080</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass</article-title>
<source>
<italic>Process Biochemistry</italic>
</source>
<year>2002</year>
<volume>37</volume>
<issue>6</issue>
<fpage>595</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="other">2-s2.0-0037049891</pub-id>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chaudhari</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Anaerobic decolorisation of simulated textile wastewater containing azo dyes</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2002</year>
<volume>82</volume>
<issue>3</issue>
<fpage>225</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="other">2-s2.0-0036153472</pub-id>
<pub-id pub-id-type="pmid">11991070</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramalho</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Scholze</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cardoso</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Ramalho</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Oliveira-Campos</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Improved conditions for the aerobic reductive decolourisation of azo dyes by
<italic>Candida zeylanoides</italic>
</article-title>
<source>
<italic>Enzyme and Microbial Technology</italic>
</source>
<year>2002</year>
<volume>31</volume>
<issue>6</issue>
<fpage>848</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="other">2-s2.0-0036843108</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basibuyuk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Forster</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system</article-title>
<source>
<italic>Process Biochemistry</italic>
</source>
<year>2003</year>
<volume>38</volume>
<issue>9</issue>
<fpage>1311</fpage>
<lpage>1316</lpage>
<pub-id pub-id-type="other">2-s2.0-0038010558</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jianlong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Horan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Stentiford</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2000</year>
<volume>75</volume>
<issue>2</issue>
<fpage>157</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="other">2-s2.0-0034070245</pub-id>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Federici</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fava</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kalogerakis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mantzavinos</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill waste waters</article-title>
<source>
<italic>Journal of Chemical Technology and Biotechnology</italic>
</source>
<year>2009</year>
<volume>84</volume>
<issue>6</issue>
<fpage>895</fpage>
<lpage>900</lpage>
<pub-id pub-id-type="other">2-s2.0-67649215433</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="book">
<collab>BSR Report</collab>
<source>
<italic>Analysis of U.S. Food Waste among Food Manufacturers, Retailers & Wholesalers</italic>
</source>
<year>2013</year>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.bsr.org/">http://www.bsr.org/</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Biosorption of copper and lead ions by waste beer yeast</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2006</year>
<volume>137</volume>
<issue>3</issue>
<fpage>1569</fpage>
<lpage>1576</lpage>
<pub-id pub-id-type="other">2-s2.0-33748892498</pub-id>
<pub-id pub-id-type="pmid">16737773</pub-id>
</element-citation>
</ref>
<ref id="B70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaikumar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ramamurthi</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Effect of biosorption parameters kinetics isotherm and thermodynamics for acid green dye biosorption from aqueous solution by brewery waste</article-title>
<source>
<italic>International Journal of Chemistry</italic>
</source>
<year>2009</year>
<volume>1</volume>
<issue>1</issue>
<fpage>2</fpage>
<lpage>12</lpage>
</element-citation>
</ref>
<ref id="B71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dias</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Linardi</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Conte</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>de Castro</surname>
<given-names>HF</given-names>
</name>
</person-group>
<article-title>Application of factorial design to study of heavy metals biosorption by waste biomass from beverage distillery</article-title>
<source>
<italic>Applied Biochemistry and Biotechnology A: Enzyme Engineering and Biotechnology</italic>
</source>
<year>2001</year>
<volume>91-93</volume>
<fpage>413</fpage>
<lpage>422</lpage>
<pub-id pub-id-type="other">2-s2.0-0035033205</pub-id>
</element-citation>
</ref>
<ref id="B72">
<label>72</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Biosorption of cadmium from aqueous solution onto tea industry-waste</article-title>
<conf-name>Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE ’11)</conf-name>
<conf-date>May 2011</conf-date>
<fpage>1</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="other">2-s2.0-79960110399</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C-C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M-K</given-names>
</name>
<name>
<surname>Chiou</surname>
<given-names>C-S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y-S</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y-A</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S-S</given-names>
</name>
</person-group>
<article-title>Chromium removal and sorption mechanism from aqueous solutions by wine processing waste sludge</article-title>
<source>
<italic>Industrial and Engineering Chemistry Research</italic>
</source>
<year>2006</year>
<volume>45</volume>
<issue>26</issue>
<fpage>8891</fpage>
<lpage>8899</lpage>
<pub-id pub-id-type="other">2-s2.0-33846206754</pub-id>
</element-citation>
</ref>
<ref id="B74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parvathi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nagendran</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent</article-title>
<source>
<italic>World Journal of Microbiology and Biotechnology</italic>
</source>
<year>2008</year>
<volume>24</volume>
<issue>12</issue>
<fpage>2865</fpage>
<lpage>2870</lpage>
<pub-id pub-id-type="other">2-s2.0-54849412255</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dias</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Pimentel</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>NCM</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Linardi</surname>
<given-names>VR</given-names>
</name>
</person-group>
<article-title>Removal of heavy metals from stainless steel effluents by waste biomass from Brazilian alcoholic beverage production</article-title>
<source>
<italic>World Journal of Microbiology and Biotechnology</italic>
</source>
<year>2000</year>
<volume>16</volume>
<issue>1</issue>
<fpage>107</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="other">2-s2.0-0034060482</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C-C</given-names>
</name>
<name>
<surname>Kuang-Wang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y-S</given-names>
</name>
</person-group>
<article-title>Removal of nickel from aqueous solution using wine processing waste sludge</article-title>
<source>
<italic>Industrial and Engineering Chemistry Research</italic>
</source>
<year>2005</year>
<volume>44</volume>
<issue>5</issue>
<fpage>1438</fpage>
<lpage>1445</lpage>
<pub-id pub-id-type="other">2-s2.0-14344264851</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pujol</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bartrolí</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fiol</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>FDL</given-names>
</name>
<name>
<surname>Villaescusa</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Poch</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)-Cu(II) and Cr(VI)-Ni(II)</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2013</year>
<volume>230</volume>
<fpage>396</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="other">2-s2.0-84880813734</pub-id>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gusmão</surname>
<given-names>KAG</given-names>
</name>
<name>
<surname>Gurgel</surname>
<given-names>LVA</given-names>
</name>
<name>
<surname>Melo</surname>
<given-names>TMS</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2013</year>
<volume>118</volume>
<fpage>135</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="other">2-s2.0-84874379096</pub-id>
<pub-id pub-id-type="pmid">23428463</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farinella</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Matos</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Lehmann</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Arruda</surname>
<given-names>MAZ</given-names>
</name>
</person-group>
<article-title>Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>154</volume>
<issue>1–3</issue>
<fpage>1007</fpage>
<lpage>1012</lpage>
<pub-id pub-id-type="other">2-s2.0-43049115777</pub-id>
<pub-id pub-id-type="pmid">18079055</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majdik</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Burcǎ</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mǎicǎneanu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stanca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tonk</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mezey</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Suspended and immobilized brewery waste biomass and commercial yeast as biosorbents for Cd(II) removal. A thermodynamic study</article-title>
<source>
<italic>Revue Roumaine de Chimie</italic>
</source>
<year>2010</year>
<volume>55</volume>
<issue>11-12</issue>
<fpage>871</fpage>
<lpage>877</lpage>
<pub-id pub-id-type="other">2-s2.0-79957961906</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsai</surname>
<given-names>W-T</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H-C</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>T-Y</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>K-Y</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C-M</given-names>
</name>
</person-group>
<article-title>Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>154</volume>
<issue>1–3</issue>
<fpage>73</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="other">2-s2.0-43049165573</pub-id>
<pub-id pub-id-type="pmid">18006225</pub-id>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parvathi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nagendran</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nareshkumar</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry</article-title>
<source>
<italic>Electronic Journal of Biotechnology</italic>
</source>
<year>2007</year>
<volume>10</volume>
<issue>1</issue>
<fpage>92</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="other">2-s2.0-33846415500</pub-id>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oyelude</surname>
<given-names>EO</given-names>
</name>
<name>
<surname>Appiah-Takyi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Removal of methylene blue from aqueous solution using alkali-modified malted sorghum mash</article-title>
<source>
<italic>Turkish Journal of Engineering and Environmental Sciences</italic>
</source>
<year>2012</year>
<volume>36</volume>
<issue>2</issue>
<fpage>161</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="other">2-s2.0-84862299673</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Özcan</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Tunali</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Akar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Özcan</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Biosorption of lead(II) ions onto waste biomass of
<italic>Phaseolus vulgaris</italic>
L.: estimation of the equilibrium, kinetic and thermodynamic parameters</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2009</year>
<volume>244</volume>
<issue>1–3</issue>
<fpage>188</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="other">2-s2.0-67049116086</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozsoy</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Kumbur</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>B</given-names>
</name>
<name>
<surname>van Leeuwen</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Use of
<italic>Rhizopus oligosporus</italic>
produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2008</year>
<volume>99</volume>
<issue>11</issue>
<fpage>4943</fpage>
<lpage>4948</lpage>
<pub-id pub-id-type="other">2-s2.0-41849127122</pub-id>
<pub-id pub-id-type="pmid">17964150</pub-id>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akar</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Özcan</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Akar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Özcan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kaynak</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2009</year>
<volume>249</volume>
<issue>2</issue>
<fpage>757</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="other">2-s2.0-71249139782</pub-id>
</element-citation>
</ref>
<ref id="B87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardoso</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>IS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2011</year>
<volume>92</volume>
<issue>4</issue>
<fpage>1237</fpage>
<lpage>1247</lpage>
<pub-id pub-id-type="other">2-s2.0-79251640437</pub-id>
<pub-id pub-id-type="pmid">21195535</pub-id>
</element-citation>
</ref>
<ref id="B88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Barak</surname>
<given-names>ABS</given-names>
</name>
<name>
<surname>El-Said</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>The use of some food industrial by-products for waste water purification</article-title>
<source>
<italic>Research Journal of Environmental Sciences</italic>
</source>
<year>2010</year>
<volume>4</volume>
<issue>6</issue>
<fpage>566</fpage>
<lpage>572</lpage>
</element-citation>
</ref>
<ref id="B89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sahu</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Sugar industry waste as removal of toxic metals from waste water</article-title>
<source>
<italic>World Journal of Chemical Education</italic>
</source>
<year>2013</year>
<volume>1</volume>
<fpage>17</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="B90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tunali</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ozcan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kaynak</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ozcan</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Akar</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Utilization of the
<italic>Phaseolus vulgaris</italic>
L. waste biomass for decolorization of the textile dye Acid Red 57: determination of equilibrium, kinetic and thermodynamic parameters</article-title>
<source>
<italic>Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering</italic>
</source>
<year>2007</year>
<volume>42</volume>
<issue>5</issue>
<fpage>591</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="other">2-s2.0-33947578229</pub-id>
</element-citation>
</ref>
<ref id="B91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krishni</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Foo</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hameed</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions</article-title>
<source>
<italic>Desalination and Water Treatment</italic>
</source>
<year>2013</year>
<pub-id pub-id-type="other">2-s2.0-84880224561</pub-id>
</element-citation>
</ref>
<ref id="B92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lasheen</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Ammar</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Ibrahim</surname>
<given-names>HS</given-names>
</name>
</person-group>
<article-title>Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies</article-title>
<source>
<italic>Solid State Sciences</italic>
</source>
<year>2012</year>
<volume>14</volume>
<issue>2</issue>
<fpage>202</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="other">2-s2.0-84855999465</pub-id>
</element-citation>
</ref>
<ref id="B93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marín</surname>
<given-names>ABP</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Meseguer</surname>
<given-names>VF</given-names>
</name>
<name>
<surname>Ortuño</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Sáez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lloréns</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Biosorption of chromium (III) by orange (
<italic>Citrus cinensis</italic>
) waste: batch and continuous studies</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2009</year>
<volume>155</volume>
<issue>1-2</issue>
<fpage>199</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="other">2-s2.0-74249086660</pub-id>
</element-citation>
</ref>
<ref id="B94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiewer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2008</year>
<volume>99</volume>
<issue>6</issue>
<fpage>1896</fpage>
<lpage>1903</lpage>
<pub-id pub-id-type="other">2-s2.0-37549055734</pub-id>
<pub-id pub-id-type="pmid">17540559</pub-id>
</element-citation>
</ref>
<ref id="B95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pérez-Marín</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Zapata</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Ortuño</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Sáez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lloréns</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Removal of cadmium from aqueous solutions by adsorption onto orange waste</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2007</year>
<volume>139</volume>
<issue>1</issue>
<fpage>122</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">16846686</pub-id>
</element-citation>
</ref>
<ref id="B96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pérez Marín</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Ortuño</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Meseguer</surname>
<given-names>VF</given-names>
</name>
<name>
<surname>Sáez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lloréns</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Use of chemical modification to determine the binding of Cd(II), Zn(II) and Cr(III) ions by orange waste</article-title>
<source>
<italic>Biochemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>53</volume>
<fpage>2</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="B97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rashed</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Fruit stones from industrial waste for the removal of lead ions from polluted water</article-title>
<source>
<italic>Environmental Monitoring and Assessment</italic>
</source>
<year>2006</year>
<volume>119</volume>
<issue>1–3</issue>
<fpage>31</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="other">2-s2.0-33746769731</pub-id>
<pub-id pub-id-type="pmid">16770513</pub-id>
</element-citation>
</ref>
<ref id="B98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>KV</given-names>
</name>
<name>
<surname>Kumaran</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Removal of methylene blue by mango seed kernel powder</article-title>
<source>
<italic>Biochemical Engineering Journal</italic>
</source>
<year>2005</year>
<volume>27</volume>
<issue>1</issue>
<fpage>83</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="other">2-s2.0-26044460524</pub-id>
</element-citation>
</ref>
<ref id="B99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alencar</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Acayanka</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>EC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Application of
<italic>Mangifera indica</italic>
(mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2012</year>
<volume>209</volume>
<fpage>577</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="other">2-s2.0-84866138708</pub-id>
</element-citation>
</ref>
<ref id="B100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johari</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Saman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Mat</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stuckey</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Utilization of coconut milk processing waste as a low-cost mercury sorbent</article-title>
<source>
<italic>Industrial Engineering Chemistry Research</italic>
</source>
<year>2013</year>
<volume>52</volume>
<issue>44</issue>
<fpage>15648</fpage>
<lpage>15657</lpage>
</element-citation>
</ref>
<ref id="B101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malkoc</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nuhoglu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dundar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2006</year>
<volume>138</volume>
<issue>1</issue>
<fpage>142</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="other">2-s2.0-33749605482</pub-id>
<pub-id pub-id-type="pmid">16844293</pub-id>
</element-citation>
</ref>
<ref id="B102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blázquez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Calero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hernáinz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tenorio</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Martín-Lara</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>160</volume>
<issue>2</issue>
<fpage>615</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="other">2-s2.0-77954773807</pub-id>
</element-citation>
</ref>
<ref id="B103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez-Garcia</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bachmann</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Burgoyne</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Edyvean</surname>
<given-names>RGJ</given-names>
</name>
</person-group>
<article-title>Olive oil waste as a biosorbent for heavy metals</article-title>
<source>
<italic>International Biodeterioration and Biodegradation</italic>
</source>
<year>2006</year>
<volume>58</volume>
<issue>3-4</issue>
<fpage>231</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="other">2-s2.0-33751342296</pub-id>
</element-citation>
</ref>
<ref id="B104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vegliò</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Beolchini</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Prisciandaro</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Sorption of copper by olive mill residues</article-title>
<source>
<italic>Water Research</italic>
</source>
<year>2003</year>
<volume>37</volume>
<issue>20</issue>
<fpage>4895</fpage>
<lpage>4903</lpage>
<pub-id pub-id-type="other">2-s2.0-0242329781</pub-id>
<pub-id pub-id-type="pmid">14604635</pub-id>
</element-citation>
</ref>
<ref id="B105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiol</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Villaescusa</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Martínez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Miralles</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Poch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Serarols</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste</article-title>
<source>
<italic>Separation and Purification Technology</italic>
</source>
<year>2006</year>
<volume>50</volume>
<issue>1</issue>
<fpage>132</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="other">2-s2.0-33747592359</pub-id>
</element-citation>
</ref>
<ref id="B106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blázquez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hernáinz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Calero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ruiz-Núñez</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Removal of cadmium ions with olive stones: the effect of some parameters</article-title>
<source>
<italic>Process Biochemistry</italic>
</source>
<year>2005</year>
<volume>40</volume>
<issue>8</issue>
<fpage>2649</fpage>
<lpage>2654</lpage>
</element-citation>
</ref>
<ref id="B107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pagnanelli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mainelli</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vegliò</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Toro</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling</article-title>
<source>
<italic>Chemical Engineering Science</italic>
</source>
<year>2003</year>
<volume>58</volume>
<issue>20</issue>
<fpage>4709</fpage>
<lpage>4717</lpage>
<pub-id pub-id-type="other">2-s2.0-0142063020</pub-id>
</element-citation>
</ref>
<ref id="B108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernando</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Monteiro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mendes</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Production of biosorbents from waste olive cake and its adsorption characteristics for Zn
<sup>2+</sup>
ion</article-title>
<source>
<italic>Sustainability</italic>
</source>
<year>2009</year>
<volume>1</volume>
<issue>2</issue>
<fpage>277</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="other">2-s2.0-84855759685</pub-id>
</element-citation>
</ref>
<ref id="B109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banat</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Al-Asheh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Al-Ahmad</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bni-Khalid</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2007</year>
<volume>98</volume>
<issue>16</issue>
<fpage>3017</fpage>
<lpage>3025</lpage>
<pub-id pub-id-type="other">2-s2.0-34247117016</pub-id>
<pub-id pub-id-type="pmid">17158045</pub-id>
</element-citation>
</ref>
<ref id="B110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stasinakis</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Elia</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Petalas</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Halvadakis</surname>
<given-names>CP</given-names>
</name>
</person-group>
<article-title>Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2008</year>
<volume>160</volume>
<issue>2-3</issue>
<fpage>408</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="other">2-s2.0-54549119121</pub-id>
<pub-id pub-id-type="pmid">18417287</pub-id>
</element-citation>
</ref>
<ref id="B111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abbas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zaini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zakaria</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Setapar</surname>
<given-names>SHM</given-names>
</name>
<name>
<surname>Yunus</surname>
<given-names>MAC</given-names>
</name>
</person-group>
<article-title>Sludge-adsorbents from palm oil mill effluent for methylene blue removal</article-title>
<source>
<italic>Journal of Environmental Chemical Engineering</italic>
</source>
<year>2013</year>
<volume>1</volume>
<issue>4</issue>
<fpage>1091</fpage>
<lpage>1098</lpage>
</element-citation>
</ref>
<ref id="B112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns</article-title>
<source>
<italic>Water Research</italic>
</source>
<year>2006</year>
<volume>40</volume>
<issue>4</issue>
<fpage>788</fpage>
<lpage>798</lpage>
<pub-id pub-id-type="other">2-s2.0-32544454015</pub-id>
<pub-id pub-id-type="pmid">16448685</pub-id>
</element-citation>
</ref>
<ref id="B113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baccar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Blánquez</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bouzid</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sarrà</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>165</volume>
<issue>2</issue>
<fpage>457</fpage>
<lpage>464</lpage>
<pub-id pub-id-type="other">2-s2.0-78349312839</pub-id>
</element-citation>
</ref>
<ref id="B114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foo</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hameed</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2011</year>
<volume>275</volume>
<issue>1–3</issue>
<fpage>302</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="other">2-s2.0-79958041549</pub-id>
</element-citation>
</ref>
<ref id="B115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duran</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ozdes</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gundogdu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Imamoglu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Senturk</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium</article-title>
<source>
<italic>Analytica Chimica Acta</italic>
</source>
<year>2011</year>
<volume>688</volume>
<issue>1</issue>
<fpage>75</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="other">2-s2.0-79551547006</pub-id>
<pub-id pub-id-type="pmid">21296208</pub-id>
</element-citation>
</ref>
<ref id="B116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karthika</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vennilamani</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pattabhi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sekar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Utilization of sago waste as an adsorbent for the removal of Pb(II) from aqueous solution: kinetic and isotherm studies</article-title>
<source>
<italic>International Journal of Engineering Science and Technology</italic>
</source>
<year>2010</year>
<volume>2</volume>
<fpage>1867</fpage>
<lpage>1879</lpage>
</element-citation>
</ref>
<ref id="B117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biosorption of patulin from apple juice by caustic treated waste cider yeast biomass</article-title>
<source>
<italic>Food Control</italic>
</source>
<year>2013</year>
<volume>32</volume>
<issue>1</issue>
<fpage>99</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="other">2-s2.0-84871690781</pub-id>
</element-citation>
</ref>
<ref id="B118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Svecova</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Spanelova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kubal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Guibal</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies</article-title>
<source>
<italic>Separation and Purification Technology</italic>
</source>
<year>2006</year>
<volume>52</volume>
<issue>1</issue>
<fpage>142</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="other">2-s2.0-33750967622</pub-id>
</element-citation>
</ref>
<ref id="B119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeddou-Mezenner</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Kinetics and mechanism of dye biosorption onto an untreated antibiotic waste</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2010</year>
<volume>262</volume>
<issue>1–3</issue>
<fpage>251</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="other">2-s2.0-78650311020</pub-id>
</element-citation>
</ref>
<ref id="B120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moussous</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Selatnia</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Merati</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Junter</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Batch cadmium(II) biosorption by an industrial residue of macrofungal biomass (
<italic>Clitopilus scyphoides</italic>
)</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2012</year>
<volume>197</volume>
<fpage>261</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="other">2-s2.0-84863204194</pub-id>
</element-citation>
</ref>
<ref id="B121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prigione</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Grosso</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Tigini</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Anastasi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Varese</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Fungal waste-biomasses as potential low-cost biosorbents for decolorization of textile wastewaters</article-title>
<source>
<italic>Water</italic>
</source>
<year>2012</year>
<volume>4</volume>
<issue>4</issue>
<fpage>770</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="other">2-s2.0-84878725532</pub-id>
</element-citation>
</ref>
<ref id="B122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Rashmi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Latha</surname>
<given-names>JNL</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Bioremediation of toxic metal ions using biomass of
<italic>Aspergillus fumigatus</italic>
from fermentative waste</article-title>
<source>
<italic>Indian Journal of Biotechnology</italic>
</source>
<year>2005</year>
<volume>4</volume>
<issue>1</issue>
<fpage>139</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="other">2-s2.0-13544270969</pub-id>
</element-citation>
</ref>
<ref id="B123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>RAK</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rehman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Utilization of Fennel biomass (
<italic>Foeniculum vulgari</italic>
) a medicinal herb for the biosorption of Cd(II) from aqueous phase</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>156</volume>
<issue>1</issue>
<fpage>106</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="other">2-s2.0-72049099070</pub-id>
</element-citation>
</ref>
<ref id="B124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gochev</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Velkova</surname>
<given-names>ZI</given-names>
</name>
<name>
<surname>Stoytcheva</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Hexavalent chromium removal by waste mycelium of
<italic>Aspergillus awamori</italic>
</article-title>
<source>
<italic>Journal of the Serbian Chemical Society</italic>
</source>
<year>2010</year>
<volume>75</volume>
<issue>4</issue>
<fpage>551</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="other">2-s2.0-77951846564</pub-id>
</element-citation>
</ref>
<ref id="B125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velkova</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Stoytcheva</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gochev</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Biosorption of Cu (II) onto chemically modified waste mycelium of
<italic>Aspergillus awamori</italic>
: equilibrium, kinetics and modeling studies</article-title>
<source>
<italic>Journal of Bioscience & Biotechnology</italic>
</source>
<year>2012</year>
<volume>1</volume>
<issue>2</issue>
<fpage>163</fpage>
<lpage>169</lpage>
</element-citation>
</ref>
<ref id="B126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Budinova</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Petrov</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Parra</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baloutzov</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Use of an activated carbon from antibiotic waste for the removal of Hg(II) from aqueous solution</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2008</year>
<volume>88</volume>
<issue>1</issue>
<fpage>165</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="other">2-s2.0-42949087600</pub-id>
<pub-id pub-id-type="pmid">17428604</pub-id>
</element-citation>
</ref>
<ref id="B127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijayaraghavan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>Y-S</given-names>
</name>
</person-group>
<article-title>Utilization of fermentation waste (
<italic>Corynebacterium glutamicum</italic>
) for biosorption of Reactive Black 5 from aqueous solution</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2007</year>
<volume>141</volume>
<issue>1</issue>
<fpage>45</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="other">2-s2.0-33847039972</pub-id>
<pub-id pub-id-type="pmid">16879915</pub-id>
</element-citation>
</ref>
<ref id="B128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fomina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gadd</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Biosorption: current perspectives on concept, definition and application</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2014</year>
<volume>160</volume>
<fpage>3</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">24468322</pub-id>
</element-citation>
</ref>
<ref id="B129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sassi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bestani</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Said</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Benderdouche</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Guibal</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant</article-title>
<source>
<italic>Desalination</italic>
</source>
<year>2010</year>
<volume>262</volume>
<issue>1–3</issue>
<fpage>243</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="other">2-s2.0-79952441417</pub-id>
</element-citation>
</ref>
<ref id="B130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>He</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Biosorption of cadmium(II) and lead(II) from aqueous solutions by fruiting body waste of fungus
<italic>Flammulina velutipes</italic>
</article-title>
<source>
<italic>Desalination and Water Treatment</italic>
</source>
<year>2010</year>
<volume>20</volume>
<issue>1–3</issue>
<fpage>160</fpage>
<lpage>167</lpage>
<pub-id pub-id-type="other">2-s2.0-77957991192</pub-id>
</element-citation>
</ref>
<ref id="B131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Göksungur</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Üren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Güvenç</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass</article-title>
<source>
<italic>Bioresource Technology</italic>
</source>
<year>2005</year>
<volume>96</volume>
<issue>1</issue>
<fpage>103</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="other">2-s2.0-4444252593</pub-id>
<pub-id pub-id-type="pmid">15364087</pub-id>
</element-citation>
</ref>
<ref id="B132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aguayo-Villarreal</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Ramírez-Montoya</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Hernández-Montoya</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bonilla-Petriciolet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Montes-Morán</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ramírez-López</surname>
<given-names>EM</given-names>
</name>
</person-group>
<article-title>Sorption mechanism of anionic dyes on pecan nut shells (
<italic>Carya illinoinensis</italic>
) using batch and continuous systems</article-title>
<source>
<italic>Industrial Crops and Products</italic>
</source>
<year>2013</year>
<volume>48</volume>
<fpage>89</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="other">2-s2.0-84877836508</pub-id>
</element-citation>
</ref>
<ref id="B133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiewer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Balaria</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Biosorption of Pb
<sup>2+</sup>
by original and protonated citrus peels: equilibrium, kinetics, and mechanism</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2009</year>
<volume>146</volume>
<issue>2</issue>
<fpage>211</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="other">2-s2.0-59349085351</pub-id>
</element-citation>
</ref>
<ref id="B134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andreea</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Brewer’s yeast: an alternative for heavy metal biosorption from waste waters</article-title>
<source>
<italic>ProEnvironment</italic>
</source>
<year>2013</year>
<volume>6</volume>
<issue>15</issue>
<fpage>457</fpage>
<lpage>464</lpage>
</element-citation>
</ref>
<ref id="B135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keskinkan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Goksu</surname>
<given-names>MZL</given-names>
</name>
<name>
<surname>Yuceer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Basibuyuk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Forster</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>Heavy metal adsorption characteristics of a submerged aquatic plant (
<italic>Myriophyllum spicatum</italic>
)</article-title>
<source>
<italic>Process Biochemistry</italic>
</source>
<year>2003</year>
<volume>39</volume>
<issue>2</issue>
<fpage>179</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="other">2-s2.0-0348173621</pub-id>
</element-citation>
</ref>
<ref id="B136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Studies on biosorption of Pd
<sup>2+</sup>
by the immobilized
<italic>Saccharomyces cerevisiae</italic>
waste biomass</article-title>
<source>
<italic>Microbiology</italic>
</source>
<year>2003</year>
<volume>30</volume>
<fpage>29</fpage>
<lpage>34</lpage>
</element-citation>
</ref>
<ref id="B139">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhankhar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hooda</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions</article-title>
<source>
<italic>Environmental Technology</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>5</issue>
<fpage>467</fpage>
<lpage>491</lpage>
<pub-id pub-id-type="other">2-s2.0-79956342322</pub-id>
<pub-id pub-id-type="pmid">21877528</pub-id>
</element-citation>
</ref>
<ref id="B138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahalya</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ramachandra</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Kanamadi</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Biosorption of heavy metals</article-title>
<source>
<italic>Research Journal of Chemistry and Environment</italic>
</source>
<year>2003</year>
<volume>7</volume>
<fpage>71</fpage>
<lpage>79</lpage>
</element-citation>
</ref>
<ref id="B137">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foo</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hameed</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Insights into the modeling of adsorption isotherm systems</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>156</volume>
<issue>1</issue>
<fpage>2</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="other">2-s2.0-72049131056</pub-id>
</element-citation>
</ref>
<ref id="B140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Njikam</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schiewer</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration</article-title>
<source>
<italic>Journal of Hazardous Materials</italic>
</source>
<year>2012</year>
<volume>213-214</volume>
<fpage>242</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="other">2-s2.0-84858335105</pub-id>
<pub-id pub-id-type="pmid">22342899</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>A schematic flow diagram showing the different types of available adsorbents.</p>
</caption>
<graphic xlink:href="BMRI2014-146769.001"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Summary of the different industrial food processing and pharmaceutical waste biosorbents; their sources, applications, and the relevant biosorption parameters.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Type of biosorbent</th>
<th align="center" rowspan="1" colspan="1">Source of biosorbent</th>
<th align="center" rowspan="1" colspan="1">Feed solution</th>
<th align="center" rowspan="1" colspan="1">Sorbate</th>
<th align="center" rowspan="1" colspan="1">pH</th>
<th align="center" rowspan="1" colspan="1">Contact time, min</th>
<th align="center" rowspan="1" colspan="1">Temperature, °C</th>
<th align="center" rowspan="1" colspan="1">Initial concentration of sorbate, mg/L</th>
<th align="center" rowspan="1" colspan="1">Mode of operation</th>
<th align="center" rowspan="1" colspan="1">Maximum
<break></break>
%removal</th>
<th align="center" rowspan="1" colspan="1">Biosorbent dose</th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Spent brewery grains (SBG)</td>
<td align="center" rowspan="1" colspan="1">Mohan breweries and distilleries Limited, Chennai, India</td>
<td align="center" rowspan="1" colspan="1">Synthetic dye solution</td>
<td align="center" rowspan="1" colspan="1">AG25 acid dye of commercial name Alizarin Cyanin Green G</td>
<td align="center" rowspan="1" colspan="1">3.0</td>
<td align="center" rowspan="1" colspan="1">75</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">90 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">98</td>
<td align="center" rowspan="1" colspan="1">0.2 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B70" ref-type="bibr">70</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tea industry waste</td>
<td align="center" rowspan="1" colspan="1">Local tea factory in China</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">20 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B72" ref-type="bibr">72</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exhausted coffee waste</td>
<td align="center" rowspan="1" colspan="1">Soluble coffee manufacturer, Catalonia, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)
<break></break>
Cu(II)
<break></break>
Ni(II)</td>
<td align="center" rowspan="1" colspan="1">3.0</td>
<td align="center" rowspan="1" colspan="1">8640</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">1000</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">6.67</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B77" ref-type="bibr">77</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Sugarcane bagasse waste</td>
<td align="center" rowspan="1" colspan="1">From local alcohol and sugar</td>
<td align="center" rowspan="2" colspan="1">Aqueous synthetic  solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) </td>
<td align="center" rowspan="2" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">600</td>
<td align="center" rowspan="2" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">200</td>
<td align="center" rowspan="2" colspan="1">Batch</td>
<td align="center" rowspan="2" colspan="1"></td>
<td align="center" rowspan="2" colspan="1">0.2</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B78" ref-type="bibr">78</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Industries, City of Ouro Preto, Minas Gerais, Brazil</td>
<td align="center" rowspan="1" colspan="1">Gentian Violet </td>
<td align="center" rowspan="1" colspan="1">900</td>
<td align="center" rowspan="1" colspan="1">300</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing waste sludge (WPWS)</td>
<td align="center" rowspan="1" colspan="1">Ilan Wine-Processing Company, Ilan, Taiwan</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cr(III, IV)</td>
<td align="center" rowspan="1" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">240</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B73" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing waste sludge (WPWS)</td>
<td align="center" rowspan="1" colspan="1">Ilan
<break></break>
Wine-Processing Co., Ilan, Taiwan</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Ni(II)</td>
<td align="center" rowspan="1" colspan="1">5.5</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">30 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">75</td>
<td align="center" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B76" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Grape bagasse waste residue</td>
<td align="center" rowspan="1" colspan="1">Wine production process, Styria region, Austria</td>
<td align="center" rowspan="1" colspan="1">Effluent from research laboratory</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">7.0
<break></break>
3.0</td>
<td align="center" rowspan="1" colspan="1">45</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.67</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B79" ref-type="bibr">79</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste beer yeast</td>
<td align="center" rowspan="1" colspan="1">Aoke Beer Company in Zhengzhou, Henan province, China</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cu(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">9.14
<break></break>
32.23 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B69" ref-type="bibr">69</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste beer yeast
<italic>Saccharomyces  cerevisiae </italic>
</td>
<td align="center" rowspan="1" colspan="1">Beer fermentation industry, brewery located near Chennai, India</td>
<td align="center" rowspan="1" colspan="1">Electroplating effluents</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.02 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B74" ref-type="bibr">74</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Suspended brewery yeast waste biomass
<break></break>
(SBW)</td>
<td align="center" rowspan="1" colspan="1">Brewery waste biomass collected from CIUC brewery, Miercurea-Ciuc, Romania</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">5.5</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">99.83</td>
<td align="center" rowspan="1" colspan="1">9.78</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B80" ref-type="bibr">80</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beer brewery diatomite waste (SDE)</td>
<td align="center" rowspan="1" colspan="1">Shan-Hua factory, Tobacco and Liquor Co., TainanTaiwan</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution
<break></break>
Industrial wastewater from local factory</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) basic dye</td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">1440</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">2.5</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B81" ref-type="bibr">81</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spent waste beer yeast
<break></break>
<italic>Saccharomyces  cerevisiae </italic>
</td>
<td align="center" rowspan="1" colspan="1">Fermentor at a brewery, Chennai, India</td>
<td align="center" rowspan="1" colspan="1">Battery manufacturing industrial effluent</td>
<td align="center" rowspan="1" colspan="1">Pb(II) </td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B82" ref-type="bibr">82</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fresh malted sorghum mash waste</td>
<td align="center" rowspan="1" colspan="1">local malted sorghum beer (pito) brewer at Navrongo, Ghana</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) basic dye</td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1">33 ± 1</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">>90</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B83" ref-type="bibr">83</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste biomass from sugarcane aguardente</td>
<td align="center" rowspan="1" colspan="1">Brazilian alcoholic beverage production, (Lapinha, Bocaiana, Germana and Taboroa) State of Minas Gerais, Brazil</td>
<td align="center" rowspan="1" colspan="1">Stainless steel effluent</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)
<break></break>
Fe(III)
<break></break>
Ni(II) </td>
<td align="center" rowspan="1" colspan="1">4.0</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">50
<break></break>
660
<break></break>
20</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">70
<break></break>
50
<break></break>
20</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B75" ref-type="bibr">75</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste biomass Cachaça Brazilian alcoholic beverage</td>
<td align="center" rowspan="1" colspan="1">the stillage generated by a liquor distillery (Germana), Minas Gerais, Brazil</td>
<td align="center" rowspan="1" colspan="1">Stainless steel industrial effluent from Acesita Co., Brazil</td>
<td align="center" rowspan="1" colspan="1">Fe(III)
<break></break>
Ni(II)
<break></break>
Cr(VI)</td>
<td align="center" rowspan="1" colspan="1"> 4.0</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">7.8
<break></break>
2.7
<break></break>
600</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">94
<break></break>
57
<break></break>
25</td>
<td align="center" rowspan="1" colspan="1">2 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B71" ref-type="bibr">71</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Rhizopus oligosporus</italic>
biomass</td>
<td align="center" rowspan="1" colspan="1">Food processing wastewaters</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">70</td>
<td align="center" rowspan="1" colspan="1">1 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B85" ref-type="bibr">85</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste biomass of
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">A residual biomass of a canned food factory in Bartin, Turkey</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">92</td>
<td align="center" rowspan="1" colspan="1">4 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B84" ref-type="bibr">84</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste biomass of
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">A residual biomass of a local canned food plant, Turkey</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Textile Reactive Red dye (RR 198)</td>
<td align="center" rowspan="1" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">100–300</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">99.3</td>
<td align="center" rowspan="1" colspan="1">1.6</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B86" ref-type="bibr">86</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Cupuassu shell,
<italic>Theobroma  grandiflorum</italic>
, (CS) </td>
<td align="center" rowspan="2" colspan="1">Food residue from jelly industry, Belém-PA, Brazil </td>
<td align="center" rowspan="2" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Reactive Red dye (RR 194) </td>
<td align="center" rowspan="2" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">480</td>
<td align="center" rowspan="2" colspan="1">25</td>
<td align="center" rowspan="2" colspan="1">50</td>
<td align="center" rowspan="2" colspan="1">Batch</td>
<td align="center" rowspan="2" colspan="1"></td>
<td align="center" rowspan="2" colspan="1">2.5</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B87" ref-type="bibr">87</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Direct Blue 53</td>
<td align="center" rowspan="1" colspan="1">1080</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Okra food industrial waste</td>
<td align="center" rowspan="1" colspan="1">Food waste from food canning processes</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)
<break></break>
Zn(II)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">96.4
<break></break>
93.8
<break></break>
79.8</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B88" ref-type="bibr">88</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sugar industrial waste (bagasse waste)</td>
<td align="center" rowspan="1" colspan="1">Obtained from food canning processes</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)
<break></break>
</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">96.4
<break></break>
93.8</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B89" ref-type="bibr">89</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pineapple peel, an agricultural effluent </td>
<td align="center" rowspan="1" colspan="1">Food can processing industries</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">6.0</td>
<td align="center" rowspan="1" colspan="1">400</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">300 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">47</td>
<td align="center" rowspan="1" colspan="1">1.5 </td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B91" ref-type="bibr">91</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste baker's yeast biomass</td>
<td align="center" rowspan="1" colspan="1">Pakmaya Yeast Company, Izmir, Turkey</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">6.0
<break></break>
5.0</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">60
<break></break>
70</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B131" ref-type="bibr">131</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Desiccated coconut waste sorbent (DCWS)</td>
<td align="center" rowspan="1" colspan="1">By-product of Coconut Milk Processing </td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">7.4</td>
<td align="center" rowspan="1" colspan="1">2880
<break></break>
400</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">50
<break></break>
100</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">1
<break></break>
<italic>F</italic>
= 4 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B100" ref-type="bibr">100</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Pecan nut shells (
<italic>C. illinoinensis</italic>
) biomass</td>
<td align="center" rowspan="3" colspan="1">Biomass from food factories, Nuevo Leon, Mexico</td>
<td align="center" rowspan="3" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Acid Blue 74 (AB74) </td>
<td align="center" rowspan="3" colspan="1">6.5</td>
<td align="center" rowspan="1" colspan="1">500</td>
<td align="center" rowspan="3" colspan="1">30</td>
<td align="center" rowspan="3" colspan="1">100</td>
<td align="center" rowspan="3" colspan="1">Batch
<break></break>
Column</td>
<td align="center" rowspan="3" colspan="1"></td>
<td align="center" rowspan="3" colspan="1">10
<break></break>
<italic>F</italic>
= 3 mL/min</td>
<td align="center" rowspan="3" colspan="1">[
<xref rid="B132" ref-type="bibr">132</xref>
] </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Reactive Blue 4 (RB4)</td>
<td align="center" rowspan="1" colspan="1">1000</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Acid Blue 25 (AB25)</td>
<td align="center" rowspan="1" colspan="1">500</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange peel</td>
<td align="center" rowspan="1" colspan="1">Solid waste from local fruit juice industries, Egypt</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cu(II)
<break></break>
Cd(II) </td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">20 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">99.5
<break></break>
89.57
<break></break>
81.03</td>
<td align="center" rowspan="1" colspan="1">4 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B101" ref-type="bibr">101</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange (
<italic>Citrus sinensis</italic>
) waste</td>
<td align="center" rowspan="1" colspan="1">Agrumexport, S.L., an orange juice manufacturing company
<break></break>
located in Murcia, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cr(III)</td>
<td align="center" rowspan="1" colspan="1">4.0
<break></break>
4.0</td>
<td align="center" rowspan="1" colspan="1">4320
<break></break>
1523</td>
<td align="center" rowspan="1" colspan="1">25
<break></break>
25</td>
<td align="center" rowspan="1" colspan="1">100
<break></break>
20</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">81
<break></break>
57.5</td>
<td align="center" rowspan="1" colspan="1">4 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pectin-rich fruit wastes</td>
<td align="center" rowspan="1" colspan="1">Residues from fruit juice and wine production, from a citrus-juice producer (Sunkist), USA</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">60 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1">2 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B133" ref-type="bibr">133</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">From orange juice industry, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">6.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">98</td>
<td align="center" rowspan="1" colspan="1">4 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B94" ref-type="bibr">94</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">From orange juice industry, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Zn(II)
<break></break>
Cr(III)</td>
<td align="center" rowspan="1" colspan="1">4.0</td>
<td align="center" rowspan="1" colspan="1">180
<break></break>
180
<break></break>
4320</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">15
<break></break>
15
<break></break>
15</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">86
<break></break>
90
<break></break>
95</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B95" ref-type="bibr">95</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Peach and Apricot stones</td>
<td align="center" rowspan="1" colspan="1">Solid wastes of juice and jam industries, Egypt</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">180
<break></break>
300</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">54.65</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">97.64
<break></break>
95.3</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B97" ref-type="bibr">97</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Mangifera  indica</italic>
(mango) seed kernel particles</td>
<td align="center" rowspan="1" colspan="1">Local juice manufacturing industry</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">8.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">96.17</td>
<td align="center" rowspan="1" colspan="1">0.67</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B98" ref-type="bibr">98</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mango seeds (MS)
<italic>Mangifera  indica  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">Juice producer, Ubá-MG, Brazil</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Victazol Orange 3R dye (VO-3R)</td>
<td align="center" rowspan="1" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">360</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">2.5</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B99" ref-type="bibr">99</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste cider yeast
<break></break>
biomass</td>
<td align="center" rowspan="1" colspan="1">Fermentation Lab at the College of Food Science and Engineering of Northwest A & F University (Yangling, China)</td>
<td align="center" rowspan="1" colspan="1">Apple juice solution</td>
<td align="center" rowspan="1" colspan="1">Patulin (PAT)</td>
<td align="center" rowspan="1" colspan="1">4.5</td>
<td align="center" rowspan="1" colspan="1">2160</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">0.1
<break></break>
0.2</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">58.29</td>
<td align="center" rowspan="1" colspan="1">5
<break></break>
<italic>F</italic>
= 2 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B117" ref-type="bibr">117</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dairy sludge</td>
<td align="center" rowspan="1" colspan="1">Dairy plant, France</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">500</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">200
<break></break>
100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">>90</td>
<td align="center" rowspan="1" colspan="1">0.5–4.0 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B129" ref-type="bibr">129</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">The waste pomace of olive oil factory (WPOOF)</td>
<td align="center" rowspan="1" colspan="1">Turkish
<break></break>
Prina, Aegean region, Manisa, Turkey</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)</td>
<td align="center" rowspan="1" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">50
<break></break>
100</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">100
<break></break>
21.74</td>
<td align="center" rowspan="1" colspan="1">5
<break></break>
<italic>F</italic>
= 5 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B101" ref-type="bibr">101</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Solid waste from
<break></break>
olive oil production</td>
<td align="center" rowspan="1" colspan="1">The OS and OMS wastes were provided by the “Cooperativa Nuestra Se
<sup>~</sup>
nora desl Castillo” extraction plant located in Vilches, in the province of Jaen (Spain)</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">10 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive mill waste (OMW) two-phase decanter</td>
<td align="center" rowspan="1" colspan="1">Mixture of pulp and olive
<break></break>
stones from the crushing of olives to obtain the oil, UK</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cd(II)
<break></break>
Cu(II)
<break></break>
Hg(II)
<break></break>
Fe(II)</td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">80
<break></break>
75</td>
<td align="center" rowspan="1" colspan="1">10 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B103" ref-type="bibr">103</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive mill residues (OMR)</td>
<td align="center" rowspan="1" colspan="1">Solid residues of oil production, provided by an olive mill in Abruzzo, Italy.</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">5.5
<break></break>
4-5</td>
<td align="center" rowspan="1" colspan="1">150–1440</td>
<td align="center" rowspan="1" colspan="1">Room temperature</td>
<td align="center" rowspan="1" colspan="1">40
<break></break>
40 </td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">60%
<break></break>
</td>
<td align="center" rowspan="1" colspan="1">10
<break></break>
80 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B104" ref-type="bibr">104</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Palm oil mill effluent (POME) sludge</td>
<td align="center" rowspan="1" colspan="1">Waste sludge from palm oil mill, Felda Taib Andak, Johor, Malaysia</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">7.5</td>
<td align="center" rowspan="1" colspan="1">4320</td>
<td align="center" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B111" ref-type="bibr">111</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sunflower oil
<break></break>
Waste biomass</td>
<td align="center" rowspan="1" colspan="1">Biomass obtained from a sunflower oil production
<break></break>
Facility, Seville, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution
<break></break>
(mixed solution)</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Ni(II)
<break></break>
Zn(II)
<break></break>
Cu(II)</td>
<td align="center" rowspan="1" colspan="1">4.0</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">Column</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>F</italic>
= 2 L/h</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B112" ref-type="bibr">112</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Crushed olive stone wastes</td>
<td align="center" rowspan="1" colspan="1">Supplied by an olive oil
<break></break>
Producer, Cordoba, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous
<break></break>
synthetic
<break></break>
solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Ni(II)
<break></break>
Cu(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">5.5</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">18.86
<break></break>
4.20
<break></break>
4.35
<break></break>
4.80</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">79
<break></break>
70
<break></break>
81
<break></break>
95</td>
<td align="center" rowspan="1" colspan="1">13.3 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B105" ref-type="bibr">105</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waste olive cake (OC)</td>
<td align="center" rowspan="1" colspan="1">Supplied by “ProBeira” an olive oil producer, Envendos Portugal</td>
<td align="center" rowspan="1" colspan="1">Aqueous
<break></break>
synthetic
<break></break>
solution</td>
<td align="center" rowspan="1" colspan="1">Zn(II)</td>
<td align="center" rowspan="1" colspan="1">6.0-7.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">93</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B108" ref-type="bibr">108</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive stones
<break></break>
</td>
<td align="center" rowspan="1" colspan="1">From the orujo oil extraction plant ‘‘Orujera
<break></break>
Ubetense, Sociedad Cooperativa Andaluza,” Jaen, Spain</td>
<td align="center" rowspan="1" colspan="1">Aqueous
<break></break>
synthetic
<break></break>
Solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1">360</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">10 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1">0.01 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B106" ref-type="bibr">106</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace</td>
<td align="center" rowspan="1" colspan="1">Supplied by an Italian olive oil production
<break></break>
plant</td>
<td align="center" rowspan="1" colspan="1">Aqueous
<break></break>
synthetic
<break></break>
Solution</td>
<td align="center" rowspan="1" colspan="1">Cu(II)
<break></break>
Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">10 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B107" ref-type="bibr">107</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace
<break></break>
</td>
<td align="center" rowspan="1" colspan="1">Supplied by one of the olive oil production
<break></break>
Plants, Jordan</td>
<td align="center" rowspan="1" colspan="1">Aqueous
<break></break>
synthetic
<break></break>
Solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) dye</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">240</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">10
<break></break>
40</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">80
<break></break>
62.25</td>
<td align="center" rowspan="1" colspan="1">2
<break></break>
<italic>F</italic>
= 20 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B109" ref-type="bibr">109</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace
<break></break>
OP-1
<break></break>
OP-2
<break></break>
OP-3</td>
<td align="center" rowspan="1" colspan="1">Solid by-products of olive oil processing mills, the island of Lesvos, Greece.</td>
<td align="center" rowspan="1" colspan="1">Oil mill waste water (OMWW)</td>
<td align="center" rowspan="1" colspan="1">Phenol</td>
<td align="center" rowspan="1" colspan="1">10.0</td>
<td align="center" rowspan="1" colspan="1">120</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">50
<break></break>
500</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">>90
<break></break>
90</td>
<td align="center" rowspan="1" colspan="1">10
<break></break>
<italic>F</italic>
= 1 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B110" ref-type="bibr">110</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon derived from exhausted olive waste cake</td>
<td align="center" rowspan="1" colspan="1">Olive waste cake from oil factory “Agrozitex” Sfax, Tunisia</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution
<break></break>
Industrial wastewater from local factory</td>
<td align="center" rowspan="1" colspan="1">Lanaset Grey G </td>
<td align="center" rowspan="1" colspan="1">6.0</td>
<td align="center" rowspan="1" colspan="1">3000</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">93</td>
<td align="center" rowspan="1" colspan="1">1.67</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B113" ref-type="bibr">113</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon derived from empty fruit bunch (EFB)</td>
<td align="center" rowspan="1" colspan="1">Industrial waste from united palm oil mill, Nibong, Tebal, Malaysia</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue dye (MB)</td>
<td align="center" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">200</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B114" ref-type="bibr">114</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from tea industry waste (TIWAC)</td>
<td align="center" rowspan="1" colspan="1">Tea waste from tea processing plant, Black Sea region, Trabzon, Turkey</td>
<td align="center" rowspan="1" colspan="1">Real water samples</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)
<break></break>
Cr(III)</td>
<td align="center" rowspan="1" colspan="1">6.0</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.2</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">0
<break></break>
95–100</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B115" ref-type="bibr">115</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from sago waste</td>
<td align="center" rowspan="1" colspan="1">Sago waste is collected from sago industry, Salem district, Tamilnadu, India</td>
<td align="center" rowspan="1" colspan="1">Synthetic aqueous solution
<break></break>
Industrial wastewater from radiator industry</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">3.5 ± 0.3</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">87.34</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B116" ref-type="bibr">116</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="2" colspan="1">Canned food factory</td>
<td align="center" rowspan="2" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Acid Red 57 dye</td>
<td align="center" rowspan="2" colspan="1">2.0</td>
<td align="center" rowspan="2" colspan="1">20</td>
<td align="center" rowspan="2" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="center" rowspan="2" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="2" colspan="1">1.6</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B91" ref-type="bibr">91</xref>
] </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Textile wastewater</td>
<td align="center" rowspan="1" colspan="1">1 (spiked wastewater sample)</td>
<td align="center" rowspan="1" colspan="1">97.68</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Industrial fungi
<italic>Penicillium oxalicum var. Armeniaca </italic>
</td>
<td align="center" rowspan="1" colspan="1">Ascolor Biotec (Pardubice, Czech Republic)
<break></break>
and Ivax Pharmaceuticals (Opava, Czech Republic)</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Hg(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">10
<break></break>
50
<break></break>
50</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">Up to 85 for Hg</td>
<td align="center" rowspan="1" colspan="1">0.3 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B118" ref-type="bibr">118</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fruit waste macrofungi
<italic>Flammulina  velutipes </italic>
</td>
<td align="center" rowspan="1" colspan="1">Mushroom processing factory</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">6.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">75
<break></break>
70</td>
<td align="center" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B130" ref-type="bibr">130</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Tolypocladium</italic>
sp.</td>
<td align="center" rowspan="1" colspan="1">Czech Industrial Partners</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)
<break></break>
Hg(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.3</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B118" ref-type="bibr">118</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Antibiotic waste
<italic>P</italic>
.
<italic>mutilus </italic>
</td>
<td align="center" rowspan="1" colspan="1">SAIDAL antibiotic
<break></break>
production complex at Medea (Algeria)</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Basic Blue 41, cationic dye</td>
<td align="center" rowspan="1" colspan="1">8.0-9.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">75</td>
<td align="center" rowspan="1" colspan="1">0.5</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B119" ref-type="bibr">119</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Industrial waste of
<italic>Clitopilus  scyphoides </italic>
(
<italic>Pleurotus  mutilus</italic>
) fungal biomass</td>
<td align="center" rowspan="1" colspan="1">Antibiotic
<break></break>
production plant, SAIDAL antibiotic
<break></break>
production complex in Médéa (Algeria)</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II) </td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">200</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">41</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B120" ref-type="bibr">120</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fungal waste biomass</td>
<td align="center" rowspan="1" colspan="1">Pharmaceutical companies, Italy</td>
<td align="center" rowspan="1" colspan="1">Textile wastewater effluents</td>
<td align="center" rowspan="1" colspan="1">Dye mixtures</td>
<td align="center" rowspan="1" colspan="1">3.0</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">60–5000 </td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1">16.7 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B121" ref-type="bibr">121</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  fumigatus </italic>
</td>
<td align="center" rowspan="1" colspan="1">Fermentation industry, Artemis Pharmaceuticals Limited, HAD, Jeedimetla, Hyderabad, India</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">perse
<break></break>
mixture
<break></break>
Cu(II)
<break></break>
Cd(II)
<break></break>
Co(II)
<break></break>
Ni(II) </td>
<td align="center" rowspan="1" colspan="1">7.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">4.8
<break></break>
2.9
<break></break>
4.8
<break></break>
2.7
<break></break>
2.8</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">70
<break></break>
90</td>
<td align="center" rowspan="1" colspan="1">20
<break></break>
8 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B122" ref-type="bibr">122</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  awamori </italic>
</td>
<td align="center" rowspan="1" colspan="1">Industrial complex enzyme preparation</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)</td>
<td align="center" rowspan="1" colspan="1">2.0</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">1152</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1">87</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B124" ref-type="bibr">124</xref>
] </td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  awamori </italic>
</td>
<td align="center" rowspan="1" colspan="1">Industrial complex enzyme preparation</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">5.0</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">180</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B125" ref-type="bibr">125</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Corynebacterium</italic>
<break></break>
<italic> glutamicum </italic>
</td>
<td align="center" rowspan="1" colspan="1">Fermentation industry
<break></break>
(BASF-Korea)</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Reactive Black 5 (RB5)</td>
<td align="center" rowspan="1" colspan="1">1.0</td>
<td align="center" rowspan="1" colspan="1">35</td>
<td align="center" rowspan="1" colspan="1">500</td>
<td align="center" rowspan="1" colspan="1">500</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">2.5</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B127" ref-type="bibr">127</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from antibiotic waste</td>
<td align="center" rowspan="1" colspan="1">Industrial antibiotic production</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">5.5</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">Batch</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.2</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B126" ref-type="bibr">126</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="12" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fennel biomass (
<italic>Foeniculum  vulgare</italic>
)</td>
<td align="center" rowspan="1" colspan="1">Medical herb, local Unani medicine manufacturing unit at Aligarh, India</td>
<td align="center" rowspan="1" colspan="1">Aqueous synthetic solution</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Mixture
<break></break>
Cd(II)
<break></break>
Ni(II)
<break></break>
Zn(II)
<break></break>
Cu(II)</td>
<td align="center" rowspan="1" colspan="1">4.3</td>
<td align="center" rowspan="1" colspan="1">50
<break></break>
50 each</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">Batch Column</td>
<td align="center" rowspan="1" colspan="1">92
<break></break>
97</td>
<td align="center" rowspan="1" colspan="1">10
<break></break>
<italic>F</italic>
= 1 mL/min</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B123" ref-type="bibr">123</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Suggested biosorption mechanisms based on interacting functional groups.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Biosorbent</th>
<th align="center" rowspan="1" colspan="1">Sorbate</th>
<th align="center" rowspan="1" colspan="1">Functional group</th>
<th align="center" rowspan="1" colspan="1">Mechanism</th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Orange peel</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cu(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Carboxylic</td>
<td align="center" rowspan="1" colspan="1">IEX/H-bonding</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B101" ref-type="bibr">101</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Carboxyl/hydroxyl</td>
<td align="center" rowspan="1" colspan="1">Chemisorption</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Carboxyl/hydroxyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B94" ref-type="bibr">94</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Zn(II)
<break></break>
Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Mainly carboxyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B95" ref-type="bibr">95</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Desiccated coconut</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carboxyl/amine</td>
<td align="center" rowspan="1" colspan="1">Chelation</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B100" ref-type="bibr">100</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pecan nut shells
<break></break>
(
<italic>C. illinoinensis</italic>
) biomass</td>
<td align="center" rowspan="1" colspan="1">Acid Blue
<break></break>
Reactive Blue
<break></break>
Acid Blue </td>
<td align="center" rowspan="1" colspan="1">Sulfonyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B132" ref-type="bibr">132</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cupuassu shell,
<italic>Theobroma  grandiflorum</italic>
, (CS) </td>
<td align="center" rowspan="1" colspan="1">Reactive red dye
<break></break>
Direct blue </td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carboxylic</td>
<td align="center" rowspan="1" colspan="1">IEX</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B87" ref-type="bibr">87</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mango seeds (MS)
<italic>Mangifera  indica  L</italic>
.</td>
<td align="center" rowspan="1" colspan="1">Victazol orange </td>
<td align="center" rowspan="1" colspan="1">Sulfonyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B99" ref-type="bibr">99</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Okra food industrial waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)
<break></break>
Zn((II)</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carbonyl/amide</td>
<td align="center" rowspan="1" colspan="1">IEX/complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B88" ref-type="bibr">88</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sugar industrial waste (bagasse waste)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carbonyl/amide</td>
<td align="center" rowspan="1" colspan="1">IEX/complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B89" ref-type="bibr">89</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pineapple peel</td>
<td align="center" rowspan="1" colspan="1">MB dye</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carboxyl/amine</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B91" ref-type="bibr">91</xref>
]
<break></break>
</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cu(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Carboxylic/phenolic</td>
<td align="center" rowspan="1" colspan="1">Surface complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B108" ref-type="bibr">108</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive mill stone</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Carboxylic</td>
<td align="center" rowspan="1" colspan="1">IEX</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Palm oil mill effluent (POME) sludge</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue </td>
<td align="center" rowspan="1" colspan="1">Carboxylic</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B111" ref-type="bibr">111</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing sludge</td>
<td align="center" rowspan="1" colspan="1">Ni(II)</td>
<td align="center" rowspan="1" colspan="1">Amino/carboxyl</td>
<td align="center" rowspan="1" colspan="1">Physical adsorption/chemical complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B76" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spent waste beer yeast
<break></break>
<italic>Saccharomyces  cerevisiae </italic>
</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Amine/carboxylic/
<break></break>
phosphates/sulfhydryl</td>
<td align="center" rowspan="1" colspan="1">IEX/complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B82" ref-type="bibr">82</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Grape bagasse waste residue</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II) </td>
<td align="center" rowspan="1" colspan="1">Carbonyl/hydroxyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B79" ref-type="bibr">79</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Phaseolus vulgaris</italic>
biomass</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Amino/hydroxyl</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B84" ref-type="bibr">84</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from antibiotic waste</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/carbonyl</td>
<td align="center" rowspan="1" colspan="1">Complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B126" ref-type="bibr">126</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  awamori </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)</td>
<td align="center" rowspan="1" colspan="1">Amine</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B124" ref-type="bibr">124</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  Fumigatus </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cd (II)
<italic>perse</italic>
<break></break>
mixture
<break></break>
Cu(II)
<break></break>
Cd(II)
<break></break>
Co(II)
<break></break>
Ni(II)</td>
<td align="center" rowspan="1" colspan="1">Hydroxyl/amine</td>
<td align="center" rowspan="1" colspan="1">Complexation</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B122" ref-type="bibr">122</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fennel biomass
<break></break>
(
<italic>Foeniculum vulgare</italic>
)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Carboxylic/phenolic</td>
<td align="center" rowspan="1" colspan="1">IEX∗</td>
<td align="center" rowspan="1" colspan="1"> [
<xref rid="B123" ref-type="bibr">123</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>*IEX: ion exchange adsorption.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Main adsorption isotherm models involved in the present study.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Adsorption isotherm model</th>
<th align="center" rowspan="1" colspan="1">Model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Freundlich  
<break></break>
<italic>q</italic>
=
<italic>K</italic>
<sub>
<italic>F</italic>
</sub>
C
<sup>1/
<italic>n</italic>
</sup>
     
<break></break>
Linear form  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M1">
<mml:mi>log</mml:mi>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>log</mml:mi>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
<mml:msub>
<mml:mrow>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>F</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mi>log</mml:mi>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
<mml:mi>C</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>F</italic>
</sub>
: Freundlich isotherm constant that indicates adsorption capacity
<break></break>
(mg/g) (L/mg)
<sup>
<italic>n</italic>
</sup>
<break></break>
<italic>n</italic>
: measure of adsorption intensity or surface heterogeneity (dimensionless)
<break></break>
<italic>q</italic>
: amount adsorbed at equilibrium, mg/g
<break></break>
<italic>C</italic>
: adsorbate concentration at equilibrium, mg/L</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Langmuir  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M2">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi></mml:mi>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi></mml:mi>
<mml:mi>C</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mi></mml:mi>
<mml:mi>  </mml:mi>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
Linear form  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M3">
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mi>  </mml:mi>
<mml:mo></mml:mo>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>q</italic>
<sub>
<italic>m</italic>
</sub>
: maximum binding capacity, mg/g
<break></break>
<italic>K</italic>
<sub>
<italic>L</italic>
</sub>
: Langmuir binding (adsorption) constant, L/mg</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sips  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M4">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi></mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>/</mml:mo>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>K</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>/</mml:mo>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mi>  </mml:mi>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M5">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi></mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>β</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>a</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>β</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mi>  </mml:mi>
<mml:mo></mml:mo>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>s</italic>
</sub>
: Sips binding (adsorption) constant, (L/mg)
<sup>
<italic>n</italic>
</sup>
<break></break>
<italic>n</italic>
: dimensionless exponent constant
<break></break>
<italic>β</italic>
<sub>
<italic>s</italic>
</sub>
= Sips sorption exponent
<break></break>
<italic>a</italic>
<sub>
<italic>s</italic>
</sub>
= Sips sorption constant (L/mg)</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dubinin-Astakhov  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M6">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mi>exp</mml:mi>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>T</mml:mi>
<mml:mi>ln</mml:mi>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msup>
<mml:mi>  </mml:mi>
<mml:mi>  </mml:mi>
<mml:mi>  </mml:mi>
<mml:mo></mml:mo>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>E</italic>
: mean free energy of adsorption, KJ/mol
<break></break>
<italic>n</italic>
: Dubinin-Astakhov dimensionless exponent
<break></break>
<italic>T</italic>
: temperature, K
<break></break>
<italic>R</italic>
: universal gas constant, KJ/mol
<italic>·</italic>
K</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BET  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M7">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mtext>BET</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo stretchy="false">[</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mtext>BET</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>C</mml:mi>
<mml:mo>/</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo stretchy="false">]</mml:mo>
</mml:mrow>
</mml:mfrac>
<mml:mi>  </mml:mi>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
Linear form  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M8">
<mml:mfrac>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mtext>BET</mml:mtext>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mtext>BET</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mtext>BET</mml:mtext>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>·</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mi>  </mml:mi>
<mml:mo></mml:mo>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
Alternative form  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M9">
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>L</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>C</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>C</italic>
<sub>BET</sub>
: BET isotherm constant which indicates energy of surface interaction, L/mg
<break></break>
<italic>C</italic>
<sub>
<italic>s</italic>
</sub>
: saturation concentration of adsorbate, mg/L
<break></break>
<italic>b</italic>
<sub>
<italic>s</italic>
</sub>
: isotherm constant for BET adsorption in the first layer, L/mg
<break></break>
<italic>b</italic>
<sub>
<italic>L</italic>
</sub>
: isotherm constant for BET adsorption in upper layers, mg/L</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<p>Equations of kinetic models involved in the current study.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Kinetic Model</th>
<th align="center" rowspan="1" colspan="1">Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Pseudo-first order
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M10">
<mml:mfrac>
<mml:mrow>
<mml:mi>d</mml:mi>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mi>d</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mi></mml:mi>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
Linear Form
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M11">
<mml:mi>log</mml:mi>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>log</mml:mi>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
<mml:mi>q</mml:mi>
<mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mn>2.303</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>k</italic>
<sub>1</sub>
: rate constant of pseudo-first order model, min
<sup>−1</sup>
<break></break>
<italic>q</italic>
: amount adsorbed at equilibrium, mg/g
<break></break>
<italic>q</italic>
<sub>
<italic>t</italic>
</sub>
: amount adsorbed at time
<italic>t</italic>
, mg/g</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pseudo-second order
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M12">
<mml:mfrac>
<mml:mrow>
<mml:mi>d</mml:mi>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="bold-italic">t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mi>d</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi></mml:mi>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math>
</inline-formula>
</inline-formula>
<break></break>
Linear Form
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M13">
<mml:mfrac>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mi>t</mml:mi>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>k</italic>
<sub>2</sub>
: rate constant of pseudo-second order model, g/mg
<italic>·</italic>
min</td>
</tr>
<tr>
<td align="center" colspan="2" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Elovich  
<break></break>
<inline-formula>
<inline-formula>
<mml:math id="M14">
<mml:msub>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>β</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mi>ln</mml:mi>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>α</mml:mi>
<mml:mo>·</mml:mo>
<mml:mi>β</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>β</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mi>ln</mml:mi>
<mml:mo></mml:mo>
<mml:mi>t</mml:mi>
</mml:math>
</inline-formula>
</inline-formula>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
: initial adsorption rate, mmol/g
<italic>·</italic>
min
<break></break>
<italic>β</italic>
: Elovich constant, related to extent of surface coverage and activation energy, g/mmol</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab5" orientation="portrait" position="float">
<label>Table 5</label>
<caption>
<p>Equilibrium parameters as predicted by the well-established sorption models.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Biosorbent</th>
<th align="center" rowspan="1" colspan="1">Target ion/compound</th>
<th align="center" rowspan="1" colspan="1">Equilibrium model</th>
<th align="center" rowspan="1" colspan="1">Maximum sorption capacity (mg/g)</th>
<th align="center" rowspan="1" colspan="1">Sorption constant∗</th>
<th align="center" rowspan="1" colspan="1">pH/temperature (°C)</th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Local dairy sludge</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">178.6
<break></break>
69.90</td>
<td align="center" rowspan="1" colspan="1">0.03
<break></break>
0.05</td>
<td align="center" rowspan="1" colspan="1">5/40</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B129" ref-type="bibr">129</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Baker's yeast biomass</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">31.75
<break></break>
60.24</td>
<td align="center" rowspan="1" colspan="1">0.092
<break></break>
0.066</td>
<td align="center" rowspan="1" colspan="1">6.0/30
<break></break>
5.0/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B131" ref-type="bibr">131</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cider yeast</td>
<td align="center" rowspan="1" colspan="1">Patulin</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">0.0082</td>
<td align="center" rowspan="1" colspan="1">0.064</td>
<td align="center" rowspan="1" colspan="1">4.5/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B117" ref-type="bibr">117</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beer yeast</td>
<td align="center" rowspan="1" colspan="1">Cu(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">0.66
<break></break>
2.27</td>
<td align="center" rowspan="1" colspan="1">0.314
<break></break>
0.259</td>
<td align="center" rowspan="1" colspan="1">5.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B69" ref-type="bibr">69</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spent waste beer yeast
<break></break>
<italic>Saccharomyces  cerevisiae </italic>
</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Freundlich</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 0.515  
<break></break>
<italic>n</italic>
= 0.842</td>
<td align="center" rowspan="1" colspan="1">5.0/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B82" ref-type="bibr">82</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spent brewery grains (SBG)</td>
<td align="center" rowspan="1" colspan="1">AG25 dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">212.76</td>
<td align="center" rowspan="1" colspan="1">0.036</td>
<td align="center" rowspan="1" colspan="1">3.0/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B70" ref-type="bibr">70</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing sludge</td>
<td align="center" rowspan="1" colspan="1">Ni(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">3.91</td>
<td align="center" rowspan="1" colspan="1">0.113</td>
<td align="center" rowspan="1" colspan="1">5.5/50</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B76" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Antibiotic waste
<italic>P</italic>
.
<italic>mutilus </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">106.38</td>
<td align="center" rowspan="1" colspan="1">0.007</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B119" ref-type="bibr">119</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Antibiotic waste
<italic>P</italic>
.
<italic>mutilus </italic>
</td>
<td align="center" rowspan="1" colspan="1">Basic Blue 41</td>
<td align="center" rowspan="1" colspan="1">Langmuir
<break></break>
Freundlich</td>
<td align="center" rowspan="1" colspan="1">111.00
<break></break>
</td>
<td align="center" rowspan="1" colspan="1">0.097
<break></break>
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 24.1  
<break></break>
<italic>n</italic>
= 2.89</td>
<td align="center" rowspan="1" colspan="1">(8.0-9.0)/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B119" ref-type="bibr">119</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">Acid Red 57 dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">215.13</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">2.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B91" ref-type="bibr">91</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">Reactive Red 198</td>
<td align="center" rowspan="1" colspan="1">Freundlich</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 1.99  
<break></break>
<italic>n</italic>
= 10.037</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B86" ref-type="bibr">86</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fruit waste macrofungi
<italic>Flammulina  velutipes </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1"> 8.43
<break></break>
18.35</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">6.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B130" ref-type="bibr">130</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Industrial fungi
<italic>Penicillium oxalicum var. Armeniaca </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)
<break></break>
Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">35.90
<break></break>
47.40
<break></break>
269.3</td>
<td align="center" rowspan="1" colspan="1">0.05
<break></break>
1.01
<break></break>
0.07</td>
<td align="center" rowspan="1" colspan="1">5.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B107" ref-type="bibr">107</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Industrial fungi
<break></break>
<italic>Tolypocladium</italic>
sp.</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Pb(II)
<break></break>
Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">11.90
<break></break>
28.40
<break></break>
161.0</td>
<td align="center" rowspan="1" colspan="1">1.03
<break></break>
0.61
<break></break>
0.50</td>
<td align="center" rowspan="1" colspan="1">5.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B107" ref-type="bibr">107</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">industrial waste of
<italic>Clitopilus  scyphoides</italic>
  
<break></break>
<italic>(Pleurotus  mutilus)</italic>
fungal biomass</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">BET</td>
<td align="center" rowspan="1" colspan="1">45.3</td>
<td align="center" rowspan="1" colspan="1">16
<break></break>
<italic>b</italic>
<sub>
<italic>s</italic>
</sub>
= 0.03  
<break></break>
<italic>b</italic>
<sub>
<italic>L</italic>
</sub>
= 0.00</td>
<td align="center" rowspan="1" colspan="1">5.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B120" ref-type="bibr">120</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fungal waste biomass</td>
<td align="center" rowspan="1" colspan="1">Simulated acid bath for wool (SABW) dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">289.5</td>
<td align="center" rowspan="1" colspan="1">0.0114</td>
<td align="center" rowspan="1" colspan="1">3.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B121" ref-type="bibr">121</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">biomass of
<break></break>
<italic>Phaseolus  vulgaris  L</italic>
.</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">19.93</td>
<td align="center" rowspan="1" colspan="1">0.498</td>
<td align="center" rowspan="1" colspan="1">5.0/50</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B84" ref-type="bibr">84</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fennel biomass (Foeniculum vulgare)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir
<break></break>
Freundlich</td>
<td align="center" rowspan="1" colspan="1">26.59</td>
<td align="center" rowspan="1" colspan="1">0.080
<break></break>
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 3.16  
<break></break>
<italic>n</italic>
= 2.29</td>
<td align="center" rowspan="1" colspan="1">4.3/50</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B123" ref-type="bibr">123</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  awamori </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">35.97</td>
<td align="center" rowspan="1" colspan="1">0.136</td>
<td align="center" rowspan="1" colspan="1">5.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B125" ref-type="bibr">125</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Corynebacterium </italic>
<break></break>
<italic>glutamicum </italic>
</td>
<td align="center" rowspan="1" colspan="1">Reactive Black 5
<break></break>
RB5</td>
<td align="center" rowspan="1" colspan="1">Langmuir
<break></break>
Sips</td>
<td align="center" rowspan="1" colspan="1">419</td>
<td align="center" rowspan="1" colspan="1">0.042
<break></break>
<italic>k</italic>
<sub>
<italic>s</italic>
</sub>
= 108  
<break></break>
<italic>a</italic>
<sub>
<italic>s</italic>
</sub>
= 0.171</td>
<td align="center" rowspan="1" colspan="1">1.0/35</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B127" ref-type="bibr">127</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Rhizopus oligosporus</italic>
biomass</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">79.37</td>
<td align="center" rowspan="1" colspan="1">0.282</td>
<td align="center" rowspan="1" colspan="1">5.0/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B85" ref-type="bibr">85</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pectin-rich fruit wastes (lemon peels)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">22.32</td>
<td align="center" rowspan="1" colspan="1">0.015</td>
<td align="center" rowspan="1" colspan="1">5.0/—</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B133" ref-type="bibr">133</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Sips</td>
<td align="center" rowspan="1" colspan="1">20.64</td>
<td align="center" rowspan="1" colspan="1">0.038 (
<italic>n</italic>
= 1.21)</td>
<td align="center" rowspan="1" colspan="1">6.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B94" ref-type="bibr">94</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Zn(II)
<break></break>
Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">17.66
<break></break>
14.61
<break></break>
22.50</td>
<td align="center" rowspan="1" colspan="1">0.004
<break></break>
0.067
<break></break>
0.372</td>
<td align="center" rowspan="1" colspan="1">4.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B95" ref-type="bibr">95</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange (
<italic>Citrus sinensis</italic>
)</td>
<td align="center" rowspan="1" colspan="1">Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">36.48</td>
<td align="center" rowspan="1" colspan="1">0.403</td>
<td align="center" rowspan="1" colspan="1">5.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pineapple peel, an agricultural effluent</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">97.09</td>
<td align="center" rowspan="1" colspan="1">0.074</td>
<td align="center" rowspan="1" colspan="1">6.0/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B91" ref-type="bibr">91</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Peach stones
<break></break>
Apricot stones</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Freundlich</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 0.64  
<break></break>
(
<italic>n</italic>
= 3.57)
<break></break>
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 0.636  
<break></break>
(
<italic>n</italic>
= 3.54) </td>
<td align="center" rowspan="1" colspan="1">7.0/—</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B97" ref-type="bibr">97</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Mangifera  indica</italic>
(mango) seed kernel particles</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">153.846</td>
<td align="center" rowspan="1" colspan="1">0.8227</td>
<td align="center" rowspan="1" colspan="1">8.0/50</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B98" ref-type="bibr">98</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Desiccated coconut</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">500.00</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">7.4/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B100" ref-type="bibr">100</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Pecan nut shells (
<italic>C. illinoinensis</italic>
) biomass</td>
<td align="center" rowspan="1" colspan="1">Acid Blue 74 (AB74) </td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1"> 4.851</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
<td align="center" rowspan="3" colspan="1">6.5/30</td>
<td align="center" rowspan="3" colspan="1">[
<xref rid="B132" ref-type="bibr">132</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Reactive Blue 4 (RB4)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">13.410</td>
<td align="center" rowspan="1" colspan="1">0.001</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Acid Blue 25 (AB25)</td>
<td align="center" rowspan="1" colspan="1">Sips</td>
<td align="center" rowspan="1" colspan="1"> 7.576</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>s</italic>
</sub>
= 0.0014  
<break></break>
(
<italic>n</italic>
= 0.98)</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Crushed olive stone wastes</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Ni(II)
<break></break>
Cu(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Freundlich</td>
<td align="center" rowspan="2" colspan="1"></td>
<td align="center" rowspan="2" colspan="1"></td>
<td align="center" rowspan="2" colspan="1">5.5/20</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B105" ref-type="bibr">105</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Binary mixtures</td>
<td align="center" rowspan="1" colspan="1">Extended Langmuir</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace</td>
<td align="center" rowspan="1" colspan="1">Cu(II)
<break></break>
Cd(II)
<break></break>
Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">1.94
<break></break>
2.98
<break></break>
6.23</td>
<td align="center" rowspan="1" colspan="1">0.138
<break></break>
0.046
<break></break>
1.829</td>
<td align="center" rowspan="1" colspan="1">5.0/60</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B108" ref-type="bibr">108</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace</td>
<td align="center" rowspan="1" colspan="1">Phenols</td>
<td align="center" rowspan="1" colspan="1">Freudlich</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>f</italic>
</sub>
= 0.267  
<break></break>
<italic>n</italic>
= 1.75</td>
<td align="center" rowspan="1" colspan="1">10.0/20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B110" ref-type="bibr">110</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pomace from olive oil</td>
<td align="center" rowspan="1" colspan="1">Cr(IV)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">18.69</td>
<td align="center" rowspan="1" colspan="1">0.055</td>
<td align="center" rowspan="1" colspan="1">2.0/60</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B101" ref-type="bibr">101</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">olive mill residues (OMR)</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">13.50</td>
<td align="center" rowspan="1" colspan="1">0.080</td>
<td align="center" rowspan="1" colspan="1">5.0/23</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B104" ref-type="bibr">104</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Solid olive stone</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Sips</td>
<td align="center" rowspan="1" colspan="1">6.57</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>s</italic>
</sub>
= 0.057</td>
<td align="center" rowspan="1" colspan="1">5.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive oil mill</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Dubinin-Astakhov</td>
<td align="center" rowspan="1" colspan="1">23.69</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">5.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B103" ref-type="bibr">103</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Palm oil mill effluent (POME) sludge</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1"> 23.50</td>
<td align="center" rowspan="1" colspan="1">0.208</td>
<td align="center" rowspan="1" colspan="1">7.6/27</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B111" ref-type="bibr">111</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Sugarcane bagasse waste</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) </td>
<td align="center" rowspan="2" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">202.43</td>
<td align="center" rowspan="1" colspan="1">0.031</td>
<td align="center" rowspan="2" colspan="1">8.0/25</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B78" ref-type="bibr">78</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Gentian Violet (GV)</td>
<td align="center" rowspan="1" colspan="1">327.83</td>
<td align="center" rowspan="1" colspan="1">0.047</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fresh malted sorghum mash waste</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) basic dye</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">384.6</td>
<td align="center" rowspan="1" colspan="1">0.011</td>
<td align="center" rowspan="1" colspan="1">7.0/53</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B83" ref-type="bibr">83</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Cupuassu shell, T
<italic>heobroma  grandiflorum</italic>
, (CS) </td>
<td align="center" rowspan="1" colspan="1">Reactive Red dye (RR 194)</td>
<td align="center" rowspan="2" colspan="1">Sips</td>
<td align="center" rowspan="1" colspan="1">64.1</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>s</italic>
</sub>
= 0.214  
<break></break>
(
<italic>n</italic>
= 0.89)</td>
<td align="center" rowspan="2" colspan="1">2.0/25</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B87" ref-type="bibr">87</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Direct Blue 53</td>
<td align="center" rowspan="1" colspan="1">37.5</td>
<td align="center" rowspan="1" colspan="1">
<italic>K</italic>
<sub>
<italic>s</italic>
</sub>
= 1.560  
<break></break>
(
<italic>n</italic>
= 0.55) </td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon derived from exhausted olive waste cake</td>
<td align="center" rowspan="1" colspan="1">Lanaset Grey G</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">108.70</td>
<td align="center" rowspan="1" colspan="1">0.031</td>
<td align="center" rowspan="1" colspan="1">6.0/25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B113" ref-type="bibr">113</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon derived from empty fruit bunch (EFB)</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue dye (MB)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">344.83</td>
<td align="center" rowspan="1" colspan="1">0.060</td>
<td align="center" rowspan="1" colspan="1">—/30</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B114" ref-type="bibr">114</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from sago waste</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Langmuir</td>
<td align="center" rowspan="1" colspan="1">14.35</td>
<td align="center" rowspan="1" colspan="1">0.095</td>
<td align="center" rowspan="1" colspan="1">3.5/27</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B116" ref-type="bibr">116</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>*Units depend on the fitting isotherm model and are indicated in
<xref ref-type="table" rid="tab3">Table 3</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab6" orientation="portrait" position="float">
<label>Table 6</label>
<caption>
<p>Kinetic parameters as predicted by the well-established sorption models.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Biosorbent</th>
<th align="center" rowspan="1" colspan="1">Target ion/compound</th>
<th align="center" rowspan="1" colspan="1">Kinetic model</th>
<th align="center" rowspan="1" colspan="1">
<italic>q</italic>
(mg/g)</th>
<th align="center" rowspan="1" colspan="1">Rate constant∗</th>
<th align="center" rowspan="1" colspan="1">pH/temperature (°C)/time (min)</th>
<th align="center" rowspan="1" colspan="1">C
<sub>o</sub>
(mg/L)</th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Local dairy sludge</td>
<td align="center" rowspan="1" colspan="1">Pb(II)
<break></break>
Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">117.6
<break></break>
44.4</td>
<td align="center" rowspan="1" colspan="1">0.27
<break></break>
4.2</td>
<td align="center" rowspan="1" colspan="1">5.0/20°C/500</td>
<td align="center" rowspan="1" colspan="1">200
<break></break>
100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B129" ref-type="bibr">129</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing sludge</td>
<td align="center" rowspan="1" colspan="1">Cr(VI)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">2.42</td>
<td align="center" rowspan="1" colspan="1">0.070</td>
<td align="center" rowspan="1" colspan="1">4.2/50/240</td>
<td align="center" rowspan="1" colspan="1">100 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B73" ref-type="bibr">73</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Wine processing sludge</td>
<td align="center" rowspan="1" colspan="1">Ni(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">3.11</td>
<td align="center" rowspan="1" colspan="1">0.226</td>
<td align="center" rowspan="1" colspan="1">5.5/50/120</td>
<td align="center" rowspan="1" colspan="1">45</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B76" ref-type="bibr">76</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Desiccated coconut</td>
<td align="center" rowspan="1" colspan="1">Hg(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">447.03</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">7.4/30/60</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B100" ref-type="bibr">100</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Pecan nut shells (
<italic>C. illinoinensis</italic>
) biomass</td>
<td align="center" rowspan="1" colspan="1">Acid Blue 74 (AB74) </td>
<td align="center" rowspan="1" colspan="1">Pseudo-first</td>
<td align="center" rowspan="1" colspan="1">3.271</td>
<td align="center" rowspan="1" colspan="1">0.02</td>
<td align="center" rowspan="1" colspan="1">6.5/30/500</td>
<td align="center" rowspan="3" colspan="1">1000</td>
<td align="center" rowspan="3" colspan="1">[
<xref rid="B132" ref-type="bibr">132</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Reactive Blue 4 (RB4)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second</td>
<td align="center" rowspan="1" colspan="1">10.010</td>
<td align="center" rowspan="1" colspan="1">4.35∗10
<sup>−4</sup>
</td>
<td align="center" rowspan="1" colspan="1">6.5/30/1000</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Acid Blue 25 (AB25)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second-order</td>
<td align="center" rowspan="1" colspan="1">4.892</td>
<td align="center" rowspan="1" colspan="1">7.15∗10
<sup>−3</sup>
</td>
<td align="center" rowspan="1" colspan="1">6.5/30/500</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Spent brewery grains</td>
<td align="center" rowspan="1" colspan="1">AG25 dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">74.63</td>
<td align="center" rowspan="1" colspan="1">0.038</td>
<td align="center" rowspan="1" colspan="1">3.0/30/75</td>
<td align="center" rowspan="1" colspan="1">90</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B70" ref-type="bibr">70</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beer brewery diatomite waste (SDE)</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue basic dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">4.92</td>
<td align="center" rowspan="1" colspan="1">1.24</td>
<td align="center" rowspan="1" colspan="1">7.0/25/1440</td>
<td align="center" rowspan="1" colspan="1">2.5</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B81" ref-type="bibr">81</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Antibiotic waste
<italic>P</italic>
.
<italic>mutilus </italic>
</td>
<td align="center" rowspan="1" colspan="1">Basic Blue 41</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">90.91</td>
<td align="center" rowspan="1" colspan="1">0.0042</td>
<td align="center" rowspan="1" colspan="1">8.0-9.0/30/60</td>
<td align="center" rowspan="1" colspan="1">70</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B119" ref-type="bibr">119</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Macrofungal waste from antibiotics</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">82.8</td>
<td align="center" rowspan="1" colspan="1">0.0014</td>
<td align="center" rowspan="1" colspan="1">5.0/20/15</td>
<td align="center" rowspan="1" colspan="1">200</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B120" ref-type="bibr">120</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fennel biomass (
<italic>Foeniculum  vulgare</italic>
)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">9.30</td>
<td align="center" rowspan="1" colspan="1">0.476</td>
<td align="center" rowspan="1" colspan="1">5.0/30/50</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B123" ref-type="bibr">123</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">Reactive Red 198</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">81.97</td>
<td align="center" rowspan="1" colspan="1">0.036</td>
<td align="center" rowspan="1" colspan="1">2.0/20/20</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B86" ref-type="bibr">86</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nonliving biomass
<italic>Aspergillus  awamori </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-first order</td>
<td align="center" rowspan="1" colspan="1">35.00</td>
<td align="center" rowspan="1" colspan="1">0.077</td>
<td align="center" rowspan="1" colspan="1">5.0/20/180</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B125" ref-type="bibr">125</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Corynebacterium</italic>
  
<break></break>
<italic>glutamicum </italic>
</td>
<td align="center" rowspan="1" colspan="1">Reactive Black 5
<break></break>
RB5</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">370.00</td>
<td align="center" rowspan="1" colspan="1">9.4∗10
<sup>−5</sup>
</td>
<td align="center" rowspan="1" colspan="1">1.0/25/500</td>
<td align="center" rowspan="1" colspan="1">2000</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B127" ref-type="bibr">127</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Phaseolus  vulgaris  L. </italic>
</td>
<td align="center" rowspan="1" colspan="1">Acid Red 57 dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">89.49</td>
<td align="center" rowspan="1" colspan="1">0.21</td>
<td align="center" rowspan="1" colspan="1">2.0/20/20</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B91" ref-type="bibr">91</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Fruit waste macrofungi
<italic>Flammulina  velutipes </italic>
</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-first </td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B130" ref-type="bibr">130</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">13.04</td>
<td align="center" rowspan="1" colspan="1">2.17</td>
<td align="center" rowspan="1" colspan="1">6.0/25/60</td>
<td align="center" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange (
<italic>Citrus sinensis</italic>
)</td>
<td align="center" rowspan="1" colspan="1">Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">10.97</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">5.0/25/4320</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B102" ref-type="bibr">102</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pectin-rich fruit wastes (lemon peels)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">13.92</td>
<td align="center" rowspan="1" colspan="1">0.021</td>
<td align="center" rowspan="1" colspan="1">5.0/—/50</td>
<td align="center" rowspan="1" colspan="1">19.2</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B133" ref-type="bibr">133</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Orange waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Elovich</td>
<td align="center" rowspan="1" colspan="1">333.33 (1/
<italic>α</italic>
)</td>
<td align="center" rowspan="1" colspan="1">0.004 (1/
<italic>β</italic>
)</td>
<td align="center" rowspan="1" colspan="1">6.0/25/60</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B94" ref-type="bibr">94</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Mangifera  indica</italic>
(mango) seed kernel particles</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-first order</td>
<td align="center" rowspan="1" colspan="1">115</td>
<td align="center" rowspan="1" colspan="1">0.0461</td>
<td align="center" rowspan="1" colspan="1">8.0/30/120</td>
<td align="center" rowspan="1" colspan="1">175</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B98" ref-type="bibr">98</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Rhizopus oligosporus</italic>
biomass</td>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">69.82</td>
<td align="center" rowspan="1" colspan="1">0.002</td>
<td align="center" rowspan="1" colspan="1">5.0/30/120</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B85" ref-type="bibr">85</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">Crushed olive stone wastes</td>
<td align="center" rowspan="1" colspan="1">Pb(II)</td>
<td align="center" rowspan="4" colspan="1">Pseudo-second
<break></break>
order</td>
<td align="center" rowspan="1" colspan="1">1.12</td>
<td align="center" rowspan="1" colspan="1">0.141</td>
<td align="center" rowspan="4" colspan="1">5.5/20/60</td>
<td align="center" rowspan="1" colspan="1">18.86</td>
<td align="center" rowspan="4" colspan="1">[
<xref rid="B105" ref-type="bibr">105</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ni(II)</td>
<td align="center" rowspan="1" colspan="1">0.25</td>
<td align="center" rowspan="1" colspan="1">3.000</td>
<td align="center" rowspan="1" colspan="1">4.48</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Cu(II)</td>
<td align="center" rowspan="1" colspan="1">0.26</td>
<td align="center" rowspan="1" colspan="1">7.497</td>
<td align="center" rowspan="1" colspan="1">4.35</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">0.72</td>
<td align="center" rowspan="1" colspan="1">0.121</td>
<td align="center" rowspan="1" colspan="1">10.56</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive stones</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">0.903</td>
<td align="center" rowspan="1" colspan="1">3.196</td>
<td align="center" rowspan="1" colspan="1">11.0/80/20</td>
<td align="center" rowspan="1" colspan="1">10 </td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B106" ref-type="bibr">106</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Palm oil mill effluent (POME) sludge</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">5.54</td>
<td align="center" rowspan="1" colspan="1">0.0072</td>
<td align="center" rowspan="1" colspan="1">7.6/27/4320</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B111" ref-type="bibr">111</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Olive pomace</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">0.0906</td>
<td align="center" rowspan="1" colspan="1">—/25/240</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B109" ref-type="bibr">109</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Tea industry waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">10.6</td>
<td align="center" rowspan="1" colspan="1">0.02</td>
<td align="center" rowspan="1" colspan="1">7.0/25/180</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B72" ref-type="bibr">72</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pineapple peel, an agricultural effluent</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) cationic dye</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">104.17</td>
<td align="center" rowspan="1" colspan="1">0.22 × 10
<sup>−3</sup>
</td>
<td align="center" rowspan="1" colspan="1">6.0/30/400</td>
<td align="center" rowspan="1" colspan="1">300</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B91" ref-type="bibr">91</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Okra food waste</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)
<break></break>
Zn(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">17.54
<break></break>
20.42
<break></break>
14.99</td>
<td align="center" rowspan="1" colspan="1">0.009
<break></break>
0.008
<break></break>
0.013</td>
<td align="center" rowspan="1" colspan="1">—/20/90</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B88" ref-type="bibr">88</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon derived from exhausted olive waste cake</td>
<td align="center" rowspan="1" colspan="1">Lanaset Grey G </td>
<td align="center" rowspan="1" colspan="1">Pseudo-first order</td>
<td align="center" rowspan="1" colspan="1">106.4</td>
<td align="center" rowspan="1" colspan="1">0.0019</td>
<td align="center" rowspan="1" colspan="1">6.0/25/3000</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B113" ref-type="bibr">113</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Activated carbon from tea industry waste (TIWAC)</td>
<td align="center" rowspan="1" colspan="1">Cr(III)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-second order</td>
<td align="center" rowspan="1" colspan="1">0.464</td>
<td align="center" rowspan="1" colspan="1">1.52</td>
<td align="center" rowspan="1" colspan="1">6.0/—/30</td>
<td align="center" rowspan="1" colspan="1">0.01</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B115" ref-type="bibr">115</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sugar industry (waste bagasse)</td>
<td align="center" rowspan="1" colspan="1">Cd(II)
<break></break>
Fe(II)</td>
<td align="center" rowspan="1" colspan="1">Pseudo-first order</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">9.3∗10
<sup>−5</sup>
<break></break>
7.2∗10
<sup>−5</sup>
</td>
<td align="center" rowspan="1" colspan="1">—/20/90</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B89" ref-type="bibr">89</xref>
]</td>
</tr>
<tr>
<td align="center" colspan="8" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Sugarcane bagasse waste</td>
<td align="center" rowspan="1" colspan="1">Methylene Blue (MB) </td>
<td align="center" rowspan="2" colspan="1">Pseudo-second
<break></break>
order</td>
<td align="center" rowspan="1" colspan="1">192.31</td>
<td align="center" rowspan="1" colspan="1">0.0012</td>
<td align="center" rowspan="1" colspan="1">8.0/25/600</td>
<td align="center" rowspan="1" colspan="1">200</td>
<td align="center" rowspan="2" colspan="1">[
<xref rid="B78" ref-type="bibr">78</xref>
]</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Gentian Violet </td>
<td align="center" rowspan="1" colspan="1">357.14</td>
<td align="center" rowspan="1" colspan="1">0.00005</td>
<td align="center" rowspan="1" colspan="1">8.0/25/900</td>
<td align="center" rowspan="1" colspan="1">300</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>*Units depend on the fitting kinetic model and are indicated in
<xref ref-type="table" rid="tab4">Table 4</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001353  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001353  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024