Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0011700 ( Pmc/Corpus ); précédent : 0011699; suivant : 0011701 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Promoter Structure Differentiation of a MYB Transcription Factor
<italic>RLC1</italic>
Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light</title>
<author>
<name sortKey="Gao, Zhenrui" sort="Gao, Zhenrui" uniqKey="Gao Z" first="Zhenrui" last="Gao">Zhenrui Gao</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chuanliang" sort="Liu, Chuanliang" uniqKey="Liu C" first="Chuanliang" last="Liu">Chuanliang Liu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yanzhao" sort="Zhang, Yanzhao" uniqKey="Zhang Y" first="Yanzhao" last="Zhang">Yanzhao Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yi, Keke" sort="Yi, Keke" uniqKey="Yi K" first="Keke" last="Yi">Keke Yi</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xinhua" sort="Zhao, Xinhua" uniqKey="Zhao X" first="Xinhua" last="Zhao">Xinhua Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cui, Min Long" sort="Cui, Min Long" uniqKey="Cui M" first="Min-Long" last="Cui">Min-Long Cui</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24205014</idno>
<idno type="pmc">3812142</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812142</idno>
<idno type="RBID">PMC:3812142</idno>
<idno type="doi">10.1371/journal.pone.0077891</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001170</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Promoter Structure Differentiation of a MYB Transcription Factor
<italic>RLC1</italic>
Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light</title>
<author>
<name sortKey="Gao, Zhenrui" sort="Gao, Zhenrui" uniqKey="Gao Z" first="Zhenrui" last="Gao">Zhenrui Gao</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chuanliang" sort="Liu, Chuanliang" uniqKey="Liu C" first="Chuanliang" last="Liu">Chuanliang Liu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yanzhao" sort="Zhang, Yanzhao" uniqKey="Zhang Y" first="Yanzhao" last="Zhang">Yanzhao Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yi, Keke" sort="Yi, Keke" uniqKey="Yi K" first="Keke" last="Yi">Keke Yi</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xinhua" sort="Zhao, Xinhua" uniqKey="Zhao X" first="Xinhua" last="Zhao">Xinhua Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cui, Min Long" sort="Cui, Min Long" uniqKey="Cui M" first="Min-Long" last="Cui">Min-Long Cui</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The red leaf coloration of Empire Red Leaf Cotton (ERLC) (
<italic>Gossypium hirsutum</italic>
L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (
<italic>Gossypium hirsutum</italic>
L.).
<xref ref-type="sec" rid="s1">Introduction</xref>
of R2R3-MYB transcription factor
<italic>Rosea1</italic>
, the master regulator anthocyanin biosynthesis in
<italic>Antirrhinum majus</italic>
, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor
<italic>RLC1</italic>
(Red Leaf Cotton 1) which encodes the ortholog of
<italic>PAP1/Rosea1</italic>
was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of
<italic>RLC1</italic>
from ERLC and CCRI 24 in hairy roots of
<italic>Antirrhinum majus</italic>
and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of
<italic>RLC1</italic>
promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced
<italic>RLC1</italic>
expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zafar, Y" uniqKey="Zafar Y">Y Zafar</name>
</author>
<author>
<name sortKey="Asif, M" uniqKey="Asif M">M Asif</name>
</author>
<author>
<name sortKey="Kausar, A" uniqKey="Kausar A">A Kausar</name>
</author>
<author>
<name sortKey="Riaz, S" uniqKey="Riaz S">S Riaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitt, Gp" uniqKey="Fitt G">GP Fitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stephens, S" uniqKey="Stephens S">S Stephens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Killough, D" uniqKey="Killough D">D Killough</name>
</author>
<author>
<name sortKey="Horlacher, W" uniqKey="Horlacher W">W Horlacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harborne, Jb" uniqKey="Harborne J">JB Harborne</name>
</author>
<author>
<name sortKey="Williams, Ca" uniqKey="Williams C">CA Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grotewold, E" uniqKey="Grotewold E">E Grotewold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y Tanaka</name>
</author>
<author>
<name sortKey="Sasaki, N" uniqKey="Sasaki N">N Sasaki</name>
</author>
<author>
<name sortKey="Ohmiya, A" uniqKey="Ohmiya A">A Ohmiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, C" uniqKey="Martin C">C Martin</name>
</author>
<author>
<name sortKey="Prescott, A" uniqKey="Prescott A">A Prescott</name>
</author>
<author>
<name sortKey="Mackay, S" uniqKey="Mackay S">S Mackay</name>
</author>
<author>
<name sortKey="Bartlett, J" uniqKey="Bartlett J">J Bartlett</name>
</author>
<author>
<name sortKey="Vrijlandt, E" uniqKey="Vrijlandt E">E Vrijlandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelletier, Mk" uniqKey="Pelletier M">MK Pelletier</name>
</author>
<author>
<name sortKey="Shirley, Bw" uniqKey="Shirley B">BW Shirley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pelletier, Mk" uniqKey="Pelletier M">MK Pelletier</name>
</author>
<author>
<name sortKey="Murrell, Jr" uniqKey="Murrell J">JR Murrell</name>
</author>
<author>
<name sortKey="Shirley, Bw" uniqKey="Shirley B">BW Shirley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winkel Shirley, B" uniqKey="Winkel Shirley B">B Winkel-Shirley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quattrocchio, F" uniqKey="Quattrocchio F">F Quattrocchio</name>
</author>
<author>
<name sortKey="Wing, J" uniqKey="Wing J">J Wing</name>
</author>
<author>
<name sortKey="Van Der Woude, K" uniqKey="Van Der Woude K">K van der Woude</name>
</author>
<author>
<name sortKey="Souer, E" uniqKey="Souer E">E Souer</name>
</author>
<author>
<name sortKey="De Vetten, N" uniqKey="De Vetten N">N de Vetten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spelt, C" uniqKey="Spelt C">C Spelt</name>
</author>
<author>
<name sortKey="Quattrocchio, F" uniqKey="Quattrocchio F">F Quattrocchio</name>
</author>
<author>
<name sortKey="Mol, J" uniqKey="Mol J">J Mol</name>
</author>
<author>
<name sortKey="Koes, R" uniqKey="Koes R">R Koes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grotewold, E" uniqKey="Grotewold E">E Grotewold</name>
</author>
<author>
<name sortKey="Athma, P" uniqKey="Athma P">P Athma</name>
</author>
<author>
<name sortKey="Peterson, T" uniqKey="Peterson T">T Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sainz, Mb" uniqKey="Sainz M">MB Sainz</name>
</author>
<author>
<name sortKey="Grotewold, E" uniqKey="Grotewold E">E Grotewold</name>
</author>
<author>
<name sortKey="Chandler, Vl" uniqKey="Chandler V">VL Chandler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodrich, J" uniqKey="Goodrich J">J Goodrich</name>
</author>
<author>
<name sortKey="Carpenter, R" uniqKey="Carpenter R">R Carpenter</name>
</author>
<author>
<name sortKey="Coen, Es" uniqKey="Coen E">ES Coen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwinn, K" uniqKey="Schwinn K">K Schwinn</name>
</author>
<author>
<name sortKey="Venail, J" uniqKey="Venail J">J Venail</name>
</author>
<author>
<name sortKey="Shang, Yj" uniqKey="Shang Y">YJ Shang</name>
</author>
<author>
<name sortKey="Mackay, S" uniqKey="Mackay S">S Mackay</name>
</author>
<author>
<name sortKey="Alm, V" uniqKey="Alm V">V Alm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borevitz, Jo" uniqKey="Borevitz J">JO Borevitz</name>
</author>
<author>
<name sortKey="Xia, Yj" uniqKey="Xia Y">YJ Xia</name>
</author>
<author>
<name sortKey="Blount, J" uniqKey="Blount J">J Blount</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
<author>
<name sortKey="Lamb, C" uniqKey="Lamb C">C Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nesi, N" uniqKey="Nesi N">N Nesi</name>
</author>
<author>
<name sortKey="Debeaujon, I" uniqKey="Debeaujon I">I Debeaujon</name>
</author>
<author>
<name sortKey="Jond, C" uniqKey="Jond C">C Jond</name>
</author>
<author>
<name sortKey="Pelletier, G" uniqKey="Pelletier G">G Pelletier</name>
</author>
<author>
<name sortKey="Caboche, M" uniqKey="Caboche M">M Caboche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espley, Rv" uniqKey="Espley R">RV Espley</name>
</author>
<author>
<name sortKey="Hellens, Rp" uniqKey="Hellens R">RP Hellens</name>
</author>
<author>
<name sortKey="Putterill, J" uniqKey="Putterill J">J Putterill</name>
</author>
<author>
<name sortKey="Stevenson, De" uniqKey="Stevenson D">DE Stevenson</name>
</author>
<author>
<name sortKey="Kutty Amma, S" uniqKey="Kutty Amma S">S Kutty-Amma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chagne, D" uniqKey="Chagne D">D Chagné</name>
</author>
<author>
<name sortKey="Lin Wang, K" uniqKey="Lin Wang K">K Lin-Wang</name>
</author>
<author>
<name sortKey="Espley, Rv" uniqKey="Espley R">RV Espley</name>
</author>
<author>
<name sortKey="Volz, Rk" uniqKey="Volz R">RK Volz</name>
</author>
<author>
<name sortKey="How, Nm" uniqKey="How N">NM How</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, S" uniqKey="Kobayashi S">S Kobayashi</name>
</author>
<author>
<name sortKey="Goto Yamamoto, N" uniqKey="Goto Yamamoto N">N Goto-Yamamoto</name>
</author>
<author>
<name sortKey="Hirochika, H" uniqKey="Hirochika H">H Hirochika</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosinski, Ja" uniqKey="Rosinski J">JA Rosinski</name>
</author>
<author>
<name sortKey="Atchley, Wr" uniqKey="Atchley W">WR Atchley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Martin, C" uniqKey="Martin C">C Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espley, Rv" uniqKey="Espley R">RV Espley</name>
</author>
<author>
<name sortKey="Brendolise, C" uniqKey="Brendolise C">C Brendolise</name>
</author>
<author>
<name sortKey="Chagne, D" uniqKey="Chagne D">D Chagné</name>
</author>
<author>
<name sortKey="Kutty Amma, S" uniqKey="Kutty Amma S">S Kutty-Amma</name>
</author>
<author>
<name sortKey="Green, S" uniqKey="Green S">S Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, Ar" uniqKey="Walker A">AR Walker</name>
</author>
<author>
<name sortKey="Lee, E" uniqKey="Lee E">E Lee</name>
</author>
<author>
<name sortKey="Bogs, J" uniqKey="Bogs J">J Bogs</name>
</author>
<author>
<name sortKey="Mcdavid, Daj" uniqKey="Mcdavid D">DAJ McDavid</name>
</author>
<author>
<name sortKey="Thomas, Mr" uniqKey="Thomas M">MR Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aharoni, A" uniqKey="Aharoni A">A Aharoni</name>
</author>
<author>
<name sortKey="De Vos, C" uniqKey="De Vos C">C De Vos</name>
</author>
<author>
<name sortKey="Wein, M" uniqKey="Wein M">M Wein</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z Sun</name>
</author>
<author>
<name sortKey="Greco, R" uniqKey="Greco R">R Greco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
<author>
<name sortKey="Cominelli, E" uniqKey="Cominelli E">E Cominelli</name>
</author>
<author>
<name sortKey="Bailey, P" uniqKey="Bailey P">P Bailey</name>
</author>
<author>
<name sortKey="Parr, A" uniqKey="Parr A">A Parr</name>
</author>
<author>
<name sortKey="Mehrtens, F" uniqKey="Mehrtens F">F Mehrtens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamagnone, L" uniqKey="Tamagnone L">L Tamagnone</name>
</author>
<author>
<name sortKey="Merida, A" uniqKey="Merida A">A Merida</name>
</author>
<author>
<name sortKey="Parr, A" uniqKey="Parr A">A Parr</name>
</author>
<author>
<name sortKey="Mackay, S" uniqKey="Mackay S">S Mackay</name>
</author>
<author>
<name sortKey="Culianez Macia, Fa" uniqKey="Culianez Macia F">FA Culianez-Macia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsui, K" uniqKey="Matsui K">K Matsui</name>
</author>
<author>
<name sortKey="Umemura, Y" uniqKey="Umemura Y">Y Umemura</name>
</author>
<author>
<name sortKey="Ohme Takagi, M" uniqKey="Ohme Takagi M">M Ohme-Takagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Ki" uniqKey="Park K">KI Park</name>
</author>
<author>
<name sortKey="Ishikawa, N" uniqKey="Ishikawa N">N Ishikawa</name>
</author>
<author>
<name sortKey="Morita, Y" uniqKey="Morita Y">Y Morita</name>
</author>
<author>
<name sortKey="Choi, Jd" uniqKey="Choi J">JD Choi</name>
</author>
<author>
<name sortKey="Hoshino, A" uniqKey="Hoshino A">A Hoshino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Ct" uniqKey="Payne C">CT Payne</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Lloyd, Am" uniqKey="Lloyd A">AM Lloyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Gonzalez, A" uniqKey="Gonzalez A">A Gonzalez</name>
</author>
<author>
<name sortKey="Zhao, Mz" uniqKey="Zhao M">MZ Zhao</name>
</author>
<author>
<name sortKey="Payne, Ct" uniqKey="Payne C">CT Payne</name>
</author>
<author>
<name sortKey="Lloyd, A" uniqKey="Lloyd A">A Lloyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramsay, Na" uniqKey="Ramsay N">NA Ramsay</name>
</author>
<author>
<name sortKey="Glover, Bj" uniqKey="Glover B">BJ Glover</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez, A" uniqKey="Gonzalez A">A Gonzalez</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Leavitt, Jm" uniqKey="Leavitt J">JM Leavitt</name>
</author>
<author>
<name sortKey="Lloyd, Am" uniqKey="Lloyd A">AM Lloyd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debeaujon, I" uniqKey="Debeaujon I">I Debeaujon</name>
</author>
<author>
<name sortKey="Nesi, N" uniqKey="Nesi N">N Nesi</name>
</author>
<author>
<name sortKey="Perez, P" uniqKey="Perez P">P Perez</name>
</author>
<author>
<name sortKey="Devic, M" uniqKey="Devic M">M Devic</name>
</author>
<author>
<name sortKey="Grandjean, O" uniqKey="Grandjean O">O Grandjean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baudry, A" uniqKey="Baudry A">A Baudry</name>
</author>
<author>
<name sortKey="Heim, Ma" uniqKey="Heim M">MA Heim</name>
</author>
<author>
<name sortKey="Dubreucq, B" uniqKey="Dubreucq B">B Dubreucq</name>
</author>
<author>
<name sortKey="Caboche, M" uniqKey="Caboche M">M Caboche</name>
</author>
<author>
<name sortKey="Weisshaar, B" uniqKey="Weisshaar B">B Weisshaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Routaboul, Jm" uniqKey="Routaboul J">JM Routaboul</name>
</author>
<author>
<name sortKey="Kerhoas, L" uniqKey="Kerhoas L">L Kerhoas</name>
</author>
<author>
<name sortKey="Debeaujon, I" uniqKey="Debeaujon I">I Debeaujon</name>
</author>
<author>
<name sortKey="Pourcel, L" uniqKey="Pourcel L">L Pourcel</name>
</author>
<author>
<name sortKey="Caboche, M" uniqKey="Caboche M">M Caboche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cominelli, E" uniqKey="Cominelli E">E Cominelli</name>
</author>
<author>
<name sortKey="Gusmaroli, G" uniqKey="Gusmaroli G">G Gusmaroli</name>
</author>
<author>
<name sortKey="Allegra, D" uniqKey="Allegra D">D Allegra</name>
</author>
<author>
<name sortKey="Galbiati, M" uniqKey="Galbiati M">M Galbiati</name>
</author>
<author>
<name sortKey="Wade, Hk" uniqKey="Wade H">HK Wade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabino, I" uniqKey="Rabino I">I Rabino</name>
</author>
<author>
<name sortKey="Mancinelli, Al" uniqKey="Mancinelli A">AL Mancinelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larkin, M" uniqKey="Larkin M">M Larkin</name>
</author>
<author>
<name sortKey="Blackshields, G" uniqKey="Blackshields G">G Blackshields</name>
</author>
<author>
<name sortKey="Brown, N" uniqKey="Brown N">N Brown</name>
</author>
<author>
<name sortKey="Chenna, R" uniqKey="Chenna R">R Chenna</name>
</author>
<author>
<name sortKey="Mcgettigan, P" uniqKey="Mcgettigan P">P McGettigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Wj" uniqKey="Shen W">WJ Shen</name>
</author>
<author>
<name sortKey="Forde, Bg" uniqKey="Forde B">BG Forde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, M" uniqKey="Cui M">M Cui</name>
</author>
<author>
<name sortKey="Takayanagi, K" uniqKey="Takayanagi K">K Takayanagi</name>
</author>
<author>
<name sortKey="Kamada, H" uniqKey="Kamada H">H Kamada</name>
</author>
<author>
<name sortKey="Nishimura, S" uniqKey="Nishimura S">S Nishimura</name>
</author>
<author>
<name sortKey="Handa, T" uniqKey="Handa T">T Handa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Yh" uniqKey="Shi Y">YH Shi</name>
</author>
<author>
<name sortKey="Zhu, Sw" uniqKey="Zhu S">SW Zhu</name>
</author>
<author>
<name sortKey="Mao, Xz" uniqKey="Mao X">XZ Mao</name>
</author>
<author>
<name sortKey="Feng, Jx" uniqKey="Feng J">JX Feng</name>
</author>
<author>
<name sortKey="Qin, Ym" uniqKey="Qin Y">YM Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Higo, K" uniqKey="Higo K">K Higo</name>
</author>
<author>
<name sortKey="Ugawa, Y" uniqKey="Ugawa Y">Y Ugawa</name>
</author>
<author>
<name sortKey="Iwamoto, M" uniqKey="Iwamoto M">M Iwamoto</name>
</author>
<author>
<name sortKey="Korenaga, T" uniqKey="Korenaga T">T Korenaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O Voinnet</name>
</author>
<author>
<name sortKey="Rivas, S" uniqKey="Rivas S">S Rivas</name>
</author>
<author>
<name sortKey="Mestre, P" uniqKey="Mestre P">P Mestre</name>
</author>
<author>
<name sortKey="Baulcombe, D" uniqKey="Baulcombe D">D Baulcombe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jefferson, Ra" uniqKey="Jefferson R">RA Jefferson</name>
</author>
<author>
<name sortKey="Kavanagh, Ta" uniqKey="Kavanagh T">TA Kavanagh</name>
</author>
<author>
<name sortKey="Bevan, Mw" uniqKey="Bevan M">MW Bevan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, Yh" uniqKey="Xiao Y">YH Xiao</name>
</author>
<author>
<name sortKey="Zhang, Zs" uniqKey="Zhang Z">ZS Zhang</name>
</author>
<author>
<name sortKey="Yin, Mh" uniqKey="Yin M">MH Yin</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Li, Xb" uniqKey="Li X">XB Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Yj" uniqKey="Li Y">YJ Li</name>
</author>
<author>
<name sortKey="Zhang, Xy" uniqKey="Zhang X">XY Zhang</name>
</author>
<author>
<name sortKey="Wang, Fx" uniqKey="Wang F">FX Wang</name>
</author>
<author>
<name sortKey="Yang, Cl" uniqKey="Yang C">CL Yang</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takos, Am" uniqKey="Takos A">AM Takos</name>
</author>
<author>
<name sortKey="Jaffe, Fw" uniqKey="Jaffe F">FW Jaffé</name>
</author>
<author>
<name sortKey="Jacob, Sr" uniqKey="Jacob S">SR Jacob</name>
</author>
<author>
<name sortKey="Bogs, J" uniqKey="Bogs J">J Bogs</name>
</author>
<author>
<name sortKey="Robinson, Sp" uniqKey="Robinson S">SP Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albert, Nw" uniqKey="Albert N">NW Albert</name>
</author>
<author>
<name sortKey="Lewis, Dh" uniqKey="Lewis D">DH Lewis</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Schwinn, Ke" uniqKey="Schwinn K">KE Schwinn</name>
</author>
<author>
<name sortKey="Jameson, Pe" uniqKey="Jameson P">PE Jameson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kui, Lw" uniqKey="Kui L">LW Kui</name>
</author>
<author>
<name sortKey="Bolitho, K" uniqKey="Bolitho K">K Bolitho</name>
</author>
<author>
<name sortKey="Grafton, K" uniqKey="Grafton K">K Grafton</name>
</author>
<author>
<name sortKey="Kortstee, A" uniqKey="Kortstee A">A Kortstee</name>
</author>
<author>
<name sortKey="Karunairetnam, S" uniqKey="Karunairetnam S">S Karunairetnam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rose, A" uniqKey="Rose A">A Rose</name>
</author>
<author>
<name sortKey="Meier, I" uniqKey="Meier I">I Meier</name>
</author>
<author>
<name sortKey="Wienand, U" uniqKey="Wienand U">U Wienand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agius, F" uniqKey="Agius F">F Agius</name>
</author>
<author>
<name sortKey="Amaya, I" uniqKey="Amaya I">I Amaya</name>
</author>
<author>
<name sortKey="Botella, Ma" uniqKey="Botella M">MA Botella</name>
</author>
<author>
<name sortKey="Valpuesta, V" uniqKey="Valpuesta V">V Valpuesta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Butelli, E" uniqKey="Butelli E">E Butelli</name>
</author>
<author>
<name sortKey="Licciardello, C" uniqKey="Licciardello C">C Licciardello</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Liu, Jj" uniqKey="Liu J">JJ Liu</name>
</author>
<author>
<name sortKey="Mackay, S" uniqKey="Mackay S">S Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, S" uniqKey="Kobayashi S">S Kobayashi</name>
</author>
<author>
<name sortKey="Ishimaru, M" uniqKey="Ishimaru M">M Ishimaru</name>
</author>
<author>
<name sortKey="Hiraoka, K" uniqKey="Hiraoka K">K Hiraoka</name>
</author>
<author>
<name sortKey="Honda, C" uniqKey="Honda C">C Honda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pattanaik, S" uniqKey="Pattanaik S">S Pattanaik</name>
</author>
<author>
<name sortKey="Kong, Q" uniqKey="Kong Q">Q Kong</name>
</author>
<author>
<name sortKey="Zaitlin, D" uniqKey="Zaitlin D">D Zaitlin</name>
</author>
<author>
<name sortKey="Werkman, Jr" uniqKey="Werkman J">JR Werkman</name>
</author>
<author>
<name sortKey="Xie, Ch" uniqKey="Xie C">CH Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zimmermann, Im" uniqKey="Zimmermann I">IM Zimmermann</name>
</author>
<author>
<name sortKey="Heim, Ma" uniqKey="Heim M">MA Heim</name>
</author>
<author>
<name sortKey="Weisshaar, B" uniqKey="Weisshaar B">B Weisshaar</name>
</author>
<author>
<name sortKey="Uhrig, Jf" uniqKey="Uhrig J">JF Uhrig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piazza, P" uniqKey="Piazza P">P Piazza</name>
</author>
<author>
<name sortKey="Procissi, A" uniqKey="Procissi A">A Procissi</name>
</author>
<author>
<name sortKey="Jenkins, Gi" uniqKey="Jenkins G">GI Jenkins</name>
</author>
<author>
<name sortKey="Tonelli, C" uniqKey="Tonelli C">C Tonelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matus, Jt" uniqKey="Matus J">JT Matus</name>
</author>
<author>
<name sortKey="Loyola, R" uniqKey="Loyola R">R Loyola</name>
</author>
<author>
<name sortKey="Vega, A" uniqKey="Vega A">A Vega</name>
</author>
<author>
<name sortKey="Pe A Neira, A" uniqKey="Pe A Neira A">A Peña-Neira</name>
</author>
<author>
<name sortKey="Bordeu, E" uniqKey="Bordeu E">E Bordeu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Page, M" uniqKey="Page M">M Page</name>
</author>
<author>
<name sortKey="Sultana, N" uniqKey="Sultana N">N Sultana</name>
</author>
<author>
<name sortKey="Paszkiewicz, K" uniqKey="Paszkiewicz K">K Paszkiewicz</name>
</author>
<author>
<name sortKey="Florance, H" uniqKey="Florance H">H Florance</name>
</author>
<author>
<name sortKey="Smirnoff, N" uniqKey="Smirnoff N">N Smirnoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Yy" uniqKey="Li Y">YY Li</name>
</author>
<author>
<name sortKey="Mao, K" uniqKey="Mao K">K Mao</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C Zhao</name>
</author>
<author>
<name sortKey="Zhao, Xy" uniqKey="Zhao X">XY Zhao</name>
</author>
<author>
<name sortKey="Zhang, Hl" uniqKey="Zhang H">HL Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cone, Kc" uniqKey="Cone K">KC Cone</name>
</author>
<author>
<name sortKey="Cocciolone, Sm" uniqKey="Cocciolone S">SM Cocciolone</name>
</author>
<author>
<name sortKey="Burr, Fa" uniqKey="Burr F">FA Burr</name>
</author>
<author>
<name sortKey="Burr, B" uniqKey="Burr B">B Burr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giuliano, G" uniqKey="Giuliano G">G Giuliano</name>
</author>
<author>
<name sortKey="Pichersky, E" uniqKey="Pichersky E">E Pichersky</name>
</author>
<author>
<name sortKey="Malik, V" uniqKey="Malik V">V Malik</name>
</author>
<author>
<name sortKey="Timko, M" uniqKey="Timko M">M Timko</name>
</author>
<author>
<name sortKey="Scolnik, P" uniqKey="Scolnik P">P Scolnik</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24205014</article-id>
<article-id pub-id-type="pmc">3812142</article-id>
<article-id pub-id-type="publisher-id">PONE-D-13-17065</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0077891</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Promoter Structure Differentiation of a MYB Transcription Factor
<italic>RLC1</italic>
Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light</article-title>
<alt-title alt-title-type="running-head">
<italic>RLC1</italic>
Regulates Leaf Coloration in Red Leaf Cotton</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Gao</surname>
<given-names>Zhenrui</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Liu</surname>
<given-names>Chuanliang</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yanzhao</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Ying</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yi</surname>
<given-names>Keke</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Xinhua</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cui</surname>
<given-names>Min-Long</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>State Key Laboratory of Cotton Biology, Anyang, China</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Zhang</surname>
<given-names>Jinfa</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>New Mexico State University, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>min-long.cui@iae.ac.cn</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: ZG YZ CL MLC. Performed the experiments: ZG YZ CL YL. Analyzed the data: KY. Wrote the paper: XZ MLC.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>10</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>10</issue>
<elocation-id>e77891</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>4</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Gao et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>The red leaf coloration of Empire Red Leaf Cotton (ERLC) (
<italic>Gossypium hirsutum</italic>
L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (
<italic>Gossypium hirsutum</italic>
L.).
<xref ref-type="sec" rid="s1">Introduction</xref>
of R2R3-MYB transcription factor
<italic>Rosea1</italic>
, the master regulator anthocyanin biosynthesis in
<italic>Antirrhinum majus</italic>
, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor
<italic>RLC1</italic>
(Red Leaf Cotton 1) which encodes the ortholog of
<italic>PAP1/Rosea1</italic>
was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of
<italic>RLC1</italic>
from ERLC and CCRI 24 in hairy roots of
<italic>Antirrhinum majus</italic>
and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of
<italic>RLC1</italic>
promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced
<italic>RLC1</italic>
expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.</p>
</abstract>
<funding-group>
<funding-statement>This work was supported by the Chinese Academy of Sciences (grant no. KSCX3-EW-N-03), and the Yunnan Provincial Science and Technology Department (grant no. 2012IB011) to M.L.C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Red leaf cotton is an important genetic resource. The red color produced by anthocyanins is found in most tissues of the plant, except in the cotton fibers; the leaves, stems, petals, and bolls are all red. Accumulation of anthocyanins confers resistance to insect pests such as bollworm, whiteflies, and the boll weevil
<xref ref-type="bibr" rid="pone.0077891-Zafar1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Fitt1">[2]</xref>
. Previous genetic studies found that three anthocyanin-related loci – R1, R2, and R
<sub>d</sub>
– are responsible for anthocyanin accumulation in red-colored plant species
<xref ref-type="bibr" rid="pone.0077891-Stephens1">[3]</xref>
. The R1 locus affects red leaf pigmentation in red leaf cotton including ERLC, the R2 locus is responsible for the red petal spots in green leaf cotton, and the R
<sub>d</sub>
locus is involved in dwarf red cotton species
<xref ref-type="bibr" rid="pone.0077891-Stephens1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Killough1">[4]</xref>
. Anthocyanin accumulation in red leaf cotton (ERLC) is sensitized to the light environment such that the red coloration is reduced when plants are grown in shade, whereas plants of the same genotype grown in the field in the summer are solid red in appearance
<xref ref-type="bibr" rid="pone.0077891-Killough1">[4]</xref>
. Red leaf color is a morphological trait that could potentially be useful in cotton breeding. However, the molecular basis of the anthocyanin pigment synthesis mechanism in red leaf cotton remains elusive.</p>
<p>Anthocyanins are flavonoids that are produced in response to a range of environmental and developmental signals. They protect plants against UV light damage, pathogen invasion, and insect attack
<xref ref-type="bibr" rid="pone.0077891-Harborne1">[5]</xref>
<xref ref-type="bibr" rid="pone.0077891-Tanaka1">[7]</xref>
. The genetics and biochemistry of the anthocyanin biosynthetic pathway have been well characterized in plants
<xref ref-type="bibr" rid="pone.0077891-Martin1">[8]</xref>
. In
<italic>Arabidopsis</italic>
, genes participating in the anthocyanin biosynthetic pathway are divided into two groups, early biosynthetic genes (EBGs) including those for chalcone synthase (
<italic>CHS</italic>
), chalcone isomerase (
<italic>CHI</italic>
), flavonol 3-hydroxylase (
<italic>F3H</italic>
), and flavonol 3′-hydroxylase (
<italic>F3</italic>
<italic>H</italic>
), and late biosynthetic genes (LBGs) including those for dihydroflavonol 4-reductase (
<italic>DFR</italic>
), anthocyanidin synthase (
<italic>ANS</italic>
), and anthocyanidin reductase (
<italic>ANR</italic>
). Each of the two groups has been found to be co-regulated by different regulators
<xref ref-type="bibr" rid="pone.0077891-Pelletier1">[9]</xref>
<xref ref-type="bibr" rid="pone.0077891-WinkelShirley1">[11]</xref>
. This gene regulation pattern is similar to that seen in other dicot plants such as
<italic>Antirrhinum</italic>
and
<italic>Petunia</italic>
. Anthocyanin biosynthetic pathway genes are predominantly regulated at the transcriptional level, both developmentally and/or in response to various biotic and abiotic stress factors. Many regulatory genes have been identified in different species, for example
<italic>AN1</italic>
and
<italic>AN2</italic>
in
<italic>Petunia</italic>
<xref ref-type="bibr" rid="pone.0077891-Quattrocchio1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Spelt1">[13]</xref>
,
<italic>C1</italic>
and
<italic>P1</italic>
in
<italic>Zea mays</italic>
<xref ref-type="bibr" rid="pone.0077891-Grotewold2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Sainz1">[15]</xref>
,
<italic>Rosea1</italic>
and
<italic>Delila</italic>
in
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Goodrich1">[16]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
,
<italic>PAP1</italic>
and
<italic>TTG8</italic>
in
<italic>Arabidopsis</italic>
<xref ref-type="bibr" rid="pone.0077891-Borevitz1">[18]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Nesi1">[19]</xref>
,
<italic>MYB1</italic>
and
<italic>MdMYB10</italic>
in apples
<xref ref-type="bibr" rid="pone.0077891-Espley1">[20]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Chagn1">[21]</xref>
and
<italic>VvMYBA</italic>
in grape
<xref ref-type="bibr" rid="pone.0077891-Kobayashi1">[22]</xref>
.</p>
<p>The MYB transcription factors constitute the largest transcriptional factor gene family in plants and can be classified into three subfamilies based on the number of highly conserved imperfect repeats in the DNA-binding domain. R3-MYB has one repeat, R2R3-MYB has two repeats, and R1R2R3-MYB has three repeats
<xref ref-type="bibr" rid="pone.0077891-Rosinski1">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Jin1">[24]</xref>
. Of these, the R2R3-MYB transcription factors have been shown to play important roles in tissue-specific anthocyanin accumulation in many plants; these include
<italic>AN2</italic>
in
<italic>Petunia</italic>
<xref ref-type="bibr" rid="pone.0077891-Quattrocchio1">[12]</xref>
,
<italic>Rosea1</italic>
,
<italic>Rosea2</italic>
, and
<italic>Venosa</italic>
in
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
,
<italic>C1</italic>
and
<italic>P1</italic>
in Maize
<xref ref-type="bibr" rid="pone.0077891-Grotewold2">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Sainz1">[15]</xref>
, and
<italic>PAP1</italic>
in
<italic>Arabidopsis</italic>
<xref ref-type="bibr" rid="pone.0077891-Borevitz1">[18]</xref>
. Some mutant varieties display different pigment intensities, also caused by variations in the R2R3-MYB regulators. For instance, a mini-satellite-like structure insertion in the
<italic>MYB10</italic>
promoter activates its expression resulting in anthocyanin accumulation in the flesh and folium in apples
<xref ref-type="bibr" rid="pone.0077891-Espley2">[25]</xref>
. Mutations in two adjacent MYB regulators,
<italic>VvMYBA1</italic>
and
<italic>VvMYBA2</italic>
, inhibit their expression and change the skin color of grape (
<italic>Vitis vinifera</italic>
) from red to white
<xref ref-type="bibr" rid="pone.0077891-Walker1">[26]</xref>
. Several anthocyanin repressors are also MYB transcription factors, including an R2R3-MYB repressor from strawberry
<italic>FaMYB1</italic>
<xref ref-type="bibr" rid="pone.0077891-Aharoni1">[27]</xref>
,
<italic>AtMYB4</italic>
and
<italic>AtMYB6</italic>
from
<italic>Arabidopsis</italic>
<xref ref-type="bibr" rid="pone.0077891-Jin2">[28]</xref>
,
<italic>AmMYB308</italic>
from
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Tamagnone1">[29]</xref>
, and a single repeat MYB gene
<italic>AtMYBL2</italic>
from
<italic>Arabidopsis</italic>
<xref ref-type="bibr" rid="pone.0077891-Matsui1">[30]</xref>
.</p>
<p>The basic helix-loop-helix (bHLH) transcription factors are another group of regulatory genes involved in anthocyanin biosynthesis in plants. The insertion of a transposon into a bHLH regulatory gene was found to alter the flower color of morning glory
<xref ref-type="bibr" rid="pone.0077891-Park1">[31]</xref>
, and a transposon insertion altered flower color in
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Goodrich1">[16]</xref>
. bHLH factors also regulate several unrelated biosynthetic pathways, including the development of trichomes and seed coat mucilage
<xref ref-type="bibr" rid="pone.0077891-Payne1">[32]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Zhang1">[33]</xref>
.</p>
<p>In plants, regulation of the anthocyanin biosynthetic pathway is controlled by a transcriptional activation complex consisting of R2R3-MYB, bHLH transcription factors, and WD40 family proteins
<xref ref-type="bibr" rid="pone.0077891-Ramsay1">[34]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Gonzalez1">[35]</xref>
. In
<italic>Arabidopsis</italic>
, four R2R3-MYB regulators (
<italic>PAP1</italic>
,
<italic>PAP2</italic>
,
<italic>MYB113</italic>
, and
<italic>MYB114)</italic>
, three bHLH regulators (
<italic>GL3</italic>
,
<italic>EGL3</italic>
, and
<italic>TT8</italic>
), and a WD40 regulator (
<italic>TTG1</italic>
) participate in anthocyanin synthesis regulation by forming a MYB-bHLH-WD40 complex
<xref ref-type="bibr" rid="pone.0077891-Zhang1">[33]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Gonzalez1">[35]</xref>
. This complex mainly regulates the expression of LBGs in conjunction with their promoters
<xref ref-type="bibr" rid="pone.0077891-Debeaujon1">[36]</xref>
<xref ref-type="bibr" rid="pone.0077891-Cominelli1">[39]</xref>
.</p>
<p>In this study, we evidence functional characterization of an R2R3-MYB transcription factor
<italic>RLC1</italic>
from Empire Red Leaf Cotton (ERLC). Transcriptional analysis in various tissues indicated that
<italic>RLC1</italic>
was preferentially expressed in the hypocotyl (stem) and leaves. This expression was influenced by light conditions and correlated with anthocyanin accumulation in the leaves of ERLC. Ectopic expression of
<italic>RLC1</italic>
in
<italic>Antirrhinum</italic>
and green leaf cotton CCRI 24 significantly upregulated the expression of genes in the anthocyanin pathway and resulted in anthocyanin accumulation in the hairy roots. Transformation analysis of 35S::
<italic>RLC1a</italic>
(from the start codon to the stop codon in the DNA sequence of CCRI 24) in
<italic>Antirrhinum</italic>
revealed anthocyanin accumulation in the transformed hairy roots, suggesting that promoter differentiation might be an effect of the gene transcript in CCRI 24. Transient expression analysis of promoter activity revealed that the
<italic>RLC1</italic>
promoter in ERLC, which contains two 228-bp fragments forming a direct tandem repeat, normally promoted anthocyanin accumulation when introduced into the leaves of CCRI 24; however, the promoter of CCRI 24, which contains only a single 228-bp fragment in the
<italic>RLC1</italic>
promoter region did not result in anthocyanin accumulation in the leaves. Therefore, the 228-bp fragment tandem repeat is an important feature of the RLC1 promoter in cotton. Taken together, our results strongly suggest that the
<italic>RLC1</italic>
transcription factor is induced by light is a major regulatory gene controlling anthocyanin accumulation in cotton leaves.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Plant Material and Growth Conditions</title>
<p>Seeds of
<italic>Antirrhinum majus</italic>
JI 7 (provided by Professor Enrico Coen, John Innes Centre, Norwich, UK) and cotton seeds of the ERLC and CCRI 24 varieties (from the Cotton Research Institute, Chinese Academy of Agricultural Science, Anyang, China) were used in this study. The seed coats of the cotton seeds were removed and the seeds of
<italic>A. majus</italic>
JI7 were surface-sterilized with a brief rinse in 70% (v/v) ethanol followed by a wash in a 2% (v/v) solution of sodium hypochlorite for 10 min, and germinated on solid MS medium in a growth room at 25°C with a 16-h light/8-h dark photoperiod.</p>
<p>For light/shading experiments, 20 10-day old seedlings of both ERLC and CCRI 24 germinated on MS medium were divided into two groups. One group was transferred to a greenhouse in direct light conditions, and other group was transferred to a greenhouse shadowed by a double layer of black shading net. After 30 days in culture, the upper fully opened mature leaves were used to isolate RNA and carry out anthocyanin analysis.</p>
</sec>
<sec id="s2b">
<title>Quantification of Anthocyanins</title>
<p>The leaves were ground to a fine powder in liquid nitrogen, and 0.3 g of the powder was extracted with 1 mL acidic methanol (1% hydrochloric acid, w/v) at room temperature for 12 h with moderate shaking. After centrifugation at 12,000 rpm for 10 min, 800 µL of the supernatant was added to 4 mL of acidic methanol. The absorbance at 530 and 657 nm was determined using a spectrophotometer (UV757CRT, Shanghai), and the relative level of anthocyanin was calculated using the equation A530 – (0.25×A650)
<xref ref-type="bibr" rid="pone.0077891-Rabino1">[40]</xref>
. Each sample was tested three times. Error bars indicate the standard deviation (SD) values of the average anthocyanin content.</p>
</sec>
<sec id="s2c">
<title>Isolation of Full-length
<italic>RLC1</italic>
cDNA and Phylogenetic Analysis</title>
<p>Total RNA was isolated from 7-day-old hypocotyl tissues (0.3 g) of ERLC using the SV Total RNA Isolation System combined with RNase-free DNase (Promega, Madison, WI). First-strand cDNA was synthesized from 2 µg of total RNA with the Superscript III First Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA) in combination with a PCR library kit (Takara, Shiga, Japan). For the isolation of the anthocyanin-specific MYB transcription factor, a set of degenerate primers (
<xref ref-type="supplementary-material" rid="pone.0077891.s001">Table S1</xref>
) were designed from plant MYB cDNA and the conserved DNA-binding domain of R2R3-MYBs was amplified by PCR. Amplified fragments of about 240 bp were subsequently ligated into the pMD19-T cloning vector (Takara) and the insert sequenced using vector M13 primers. Nucleotide sequences were translated into amino acid sequences using DNAMAN (version 6) and compared using the BLAST network service from the National Center for Biotechnology Information (NCBI). To isolate the full-length cDNA of the candidate MYB genes, the 3′-ends were amplified using a combination of the gene-specific primer MYB3SP and the RP primer, and the 5′-end was amplified using the specific primer MYB15SP1 and the CA primer (PCR library kit, Takara,) (
<xref ref-type="supplementary-material" rid="pone.0077891.s001">Table S1</xref>
). The 3′- and 5′-RACE PCR products were ligated into the pMD19-T vector and sequenced. Additionally, based on the sequence obtained by RACE-PCR, a set of gene-specific primers, Ghi2-F2 and Ghi2-R2, were designed to amplify the full-length coding sequence using Pfu DNA polymerase (Promega). The amplified fragment was cloned into a pEASY-Blunt vector (named pEASY-RLC1) (TransGen Biotech, Beijing, China) and confirmed as the cDNA sequence. The amplified 744-bp full-length cDNA was named
<italic>RLC1</italic>
(Red Leaf Cotton 1). This identified coding region of
<italic>RLC1</italic>
was aligned with published MYB gene sequences involved in the anthocyanin biosynthetic pathway from different plants and a phylogenetic tree constructed using ClustalW (version 2.0)
<xref ref-type="bibr" rid="pone.0077891-Larkin1">[41]</xref>
and MEGA version 4.0
<xref ref-type="bibr" rid="pone.0077891-Tamura1">[42]</xref>
. The GenBank accession numbers of these proteins are as follows: AmROSEA1 (ABB83826), AtMYB75 (AAG42001), VvMYBA1 (BAD1897), AtMYB90 (AAG42002), NtAN2 (ACO52470), CsRuby (AFB73909), AmROSEA2 (ABB83827), AmVENOSA1 (ABB83828), AtMYB90 (AAG42002), AtMYB113 (NP_176811), AtWER (NP_196979), AtMYB0 (NP_189430), GhMyb10 (CAD87010), MdMYB10 (ABB84753), MdMYB1 (ABK58136), PhAN2 (AAF66727), PhPHZ (ADW94951), PhDPL (ADW94950), VvMYBA1 (BAD18977), VvMYBA2 (BAD18978), and NtAN2 (ACO52470).</p>
</sec>
<sec id="s2d">
<title>Construction of pBI35S::
<italic>RLC1</italic>
and Transformation of
<italic>A. majus</italic>
and CCRI 24</title>
<p>The full length
<italic>RLC1</italic>
cDNA coding region was amplified from the pEASY-RLC1 plasmid using an
<italic>Sma</italic>
I-Ghi2-F2 and
<italic>Sac</italic>
I-Ghi2-R2 gene-specific primer set (
<xref ref-type="supplementary-material" rid="pone.0077891.s001">Table S1</xref>
) in combination with Pfu DNA polymerase (Promega), and then sub-cloned into a pEASY-Blunt vector for confirmation by sequencing. Using the
<italic>Sma</italic>
I and
<italic>Sac</italic>
I restriction sites,
<italic>RLC1</italic>
was substituted for the GUS gene in the pBI121 vector to produce the construct pBI35S::
<italic>RLC1</italic>
, containing the
<italic>RLC1</italic>
coding region between the 35S promoter and the CaMv terminator. The pBI35S::
<italic>RLC1</italic>
binary vector was electroporated into
<italic>A</italic>
.
<italic>rhizogenes</italic>
AR1193 cells
<xref ref-type="bibr" rid="pone.0077891-Shen1">[43]</xref>
. AR1193/pBI121 as a negative control, AR1193/pBI35S::
<italic>ROSEA1</italic>
as a positive control, and AR1193/pBI35S::
<italic>RLC1</italic>
were used to transformation of 7-day-old CCRI 24 and 4-week-old
<italic>A. majus</italic>
JI 7 hypocotyls according to the method described by Cui
<xref ref-type="bibr" rid="pone.0077891-Cui1">[44]</xref>
.</p>
</sec>
<sec id="s2e">
<title>Expression Analysis of
<italic>RLC1</italic>
and Structural Genes of the Anthocyanin Pathway</title>
<p>Total RNA was extracted from 0.1-g samples of roots, 7-day-old hypocotyls, leaves, and mature petals of both ERLC and CCRI 24 varieties, and transformed hair roots of
<italic>A. majus</italic>
and CCRI 24 using the SV Total RNA Isolation System in combination with RNase-free DNase (Promega). First-strand cDNA was synthesized from 2 µg of total RNA with a Superscript III First Strand cDNA Synthesis Kit (Invitrogen). Semi-quantitative RT-PCR for the genes of involved in this work were carried out using a ABI 2720 machine with 10 ng first cDNA and gene-specific primers (
<xref ref-type="supplementary-material" rid="pone.0077891.s002">Table S2</xref>
). The following PCR conditions were used: preliminary denaturation for 5 min at 95°C followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 55–60°C for 30 s, and extension at 72°C for 1 min, with a final extension at 72°C for 10 min. The genes AmUBI of
<italic>A. majus</italic>
and UBI 7 of cotton were used as positive controls
<xref ref-type="bibr" rid="pone.0077891-Shi1">[45]</xref>
. The RT-PCR experiments were repeated at least three times independently and the PCR products confirmed by sequencing.</p>
</sec>
<sec id="s2f">
<title>Isolation of
<italic>RLC1</italic>
Promoter Region</title>
<p>The promoters for ERLC and CCRI 24 were isolated using the Genome Walking kit (Takara) with the gene-specific primers SP1, SP2, and SP3 (
<xref ref-type="supplementary-material" rid="pone.0077891.s001">Table S1</xref>
). The PCR-amplified 2.3-kb fragment from ERLC and 2.08-kb fragment from CCRI 24 were ligated to the pMD19-T vector (the resulting constructs were named pMD-Rpro and pMD-Gpro, respectively), and M13 primers were used for sequencing. To isolate the DNA sequence between the start and stop codons, PCR was carried out using two primer sets, GhDNA-F1/GhDNA-R1 for exon 1 and exon 2, and GhDNA-F2/GhDNA-R2 for exon 2 and exon 3, and combined with the LA Tag polymerase (Takara). The products were ligated into the pMD19-T vector and sequenced. The full-length
<italic>RLC1</italic>
genomic sequence was obtained by compiling partial sequences based on overlapping regions. Analysis of the promoter sequence was performed using the PLACE database
<xref ref-type="bibr" rid="pone.0077891-Higo1">[46]</xref>
.</p>
</sec>
<sec id="s2g">
<title>Transient Analysis of
<italic>RLC1</italic>
Promoter Region</title>
<p>To compare the promoter activities of R
<sub>−pro</sub>
of ERLC and G
<sub>−pro</sub>
of CCRI 24, the two promoters were amplified using Pfu DNA polymerase (Promega) and the primers
<italic>Hin</italic>
d III-ProC-F and
<italic>Sma</italic>
I-ProC-R. The PCR product was double-digested with the restriction enzymes
<italic>Hin</italic>
d III/
<italic>Sma</italic>
I, and the 35S promoter on pBI121 and pBI35S::
<italic>RLC1</italic>
was replaced with R
<sub>−pro</sub>
and G
<sub>−pro</sub>
to construct the expression vectors R
<sub>−pro</sub>
::
<italic>RLC1</italic>
, G
<sub>−pro</sub>
::
<italic>RLC1</italic>
, R
<sub>−pro</sub>
::
<italic>GUS</italic>
, and G
<sub>−pro</sub>
::
<italic>GUS</italic>
. These vectors were electroporated into
<italic>A. tumefaciens</italic>
strain GV3101 and used for the transient assay.</p>
<p>To determine the promoter activity of
<italic>RLC1</italic>
, transient assays were performed using mature leaves of green leaf cotton CCRI 24 by infiltration
<xref ref-type="bibr" rid="pone.0077891-Voinnet1">[47]</xref>
. After infiltration, the leaves were cultured in a growth chamber at 25°C with a 16-h light/8-h dark photoperiod, illuminated with fluorescent light at an intensity of 100 µmol m
<sup>−2</sup>
s
<sup>−1</sup>
. After three days of culture, the leaves were histochemically stained for GUS, or color accumulation was observed by microscopy (Leica S8 APO).</p>
</sec>
<sec id="s2h">
<title>Histochemical GUS Assay</title>
<p>Infiltrated young leaves with GV3101/R
<sub></sub>
pro::
<italic>GUS</italic>
, GV3101/G
<sub></sub>
pro::
<italic>GUS</italic>
and GV3101/pBI121 were stained for GUS according to the method described by Jefferson
<xref ref-type="bibr" rid="pone.0077891-Jefferson1">[48]</xref>
.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Phenotypic Characterization of Empire Red Leaf Cotton (ERLC)</title>
<p>The ERLC plant exhibits red pigment accumulation throughout its growing period, displaying red coloration in most tissues except the fibers, including seedlings, stems, leaves, calyces, flowers, and bolls when grown in light conditions (
<xref ref-type="fig" rid="pone-0077891-g001">Fig. 1A–E</xref>
). The red color is more intense in the older tissues of the leaves, stems, calyces, and bolls (data not shown); however, the visible color is not apparent in tissues and organs grown in shaded conditions. Additionally, red pigmentation is not observed in fibers in any growth conditions (data not shown). In contrast, the green-leaved cotton cultivar CCRI 24 did not display any color accumulation in seedlings, stems, leaves, calyces, bolls, or fibers, regardless of light conditions (
<xref ref-type="fig" rid="pone-0077891-g001">Fig. 1F–J</xref>
).</p>
<fig id="pone-0077891-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Phenotypic comparison between Empire red leaf cotton (ERLC) (upper panel) and green leaf cotton CCRI 24 (bottom panel) cultivars grown in light.</title>
<p>A, A 7-day-old young seedling of ERLC;B, A young leaf from a 4-week-old ERLC plant; C, stems of ERLC; D, A mature flower of ERLC; E, A boll of ERLC; F, A 7-day-old seedling of CCRI 24; G, A young leaf from a 4-week-old plant of CCRI 24; H, stems of CCRI 24; I, A mature flower of CCRI 24; J, A boll of CCRI 24. Scale bar indicates 1 cm.</p>
</caption>
<graphic xlink:href="pone.0077891.g001"></graphic>
</fig>
<p>Previous research found that the red color produced by anthocyanins was distributed throughout the plant in several red leaf cotton cultivars and that the accumulation of this pigment was affected by light conditions
<xref ref-type="bibr" rid="pone.0077891-Killough1">[4]</xref>
. To determine whether the color was indicative of anthocyanin accumulation and whether light conditions affects this accumulation in ERLC, the total anthocyanin content in the leaves of both ERLC and CCRI 24 plants grown in light and shaded conditions was measured using a UV spectrometer (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2A, 2B</xref>
). High concentrations of anthocyanins were detected in the leaves of ERLC plants grown in light (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2A</xref>
, panel a). However, a lower concentration of anthocyanin was detected in the leaves of ERLC plants grown in shade, and in the leaves of CCRI 24 plants grown in light (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2A</xref>
, panels b and c and
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2B</xref>
). Anthocyanins were barely detectable in the leaves of CCRI 24 plants grown in shaded conditions (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2A</xref>
, panel d, and
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2B</xref>
). Anthocyanin content correlated with light conditions in ERLC plants, with the concentration in light being 11-fold higher than that in shade. However, no significant differences in anthocyanin content were detected between the leaves of CCRI 24 plants grown in light and shade. These results suggest that the light environment strongly affects the anthocyanin accumulation process in ERLC, but that the anthocyanin biosynthesis pathway is not influenced by light conditions in CCRI 24.</p>
<fig id="pone-0077891-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Comparison of leaf colors and analysis of total anthocyanin concentrations of leaves from ERLC and CCRI 24 cultivars grown in light and shade conditions.</title>
<p>A, Comparison of leaf colors. The cultivars are indicated on the left and conditions are indicated above. The bar indicates 1; b,A mature leaf of ERLC grown in shade; c, A mature leaf of CCRI 24 grown in light; d, A mature leaf of CCRI 24 grown in shade. B, Total anthocyanin extracted from three fully opened young leaves of each cultivar, respectively, measured using a UV spectrometer. Means of three replicates with error bars indicating standard error (± SD). C, Transient analysis was performed on the leaves of CCRI 24, the
<italic>Agrobacterium</italic>
strain GV3101/pBI35S::
<italic>ROSEA1</italic>
(left), and the negative control GV3101/pBI121 (right). The treated cotton leaves were cultured at 25°C in, 16 h light for three days, and observed for color accumulation by microscopy. Scale bar is 0.4 cm.</p>
</caption>
<graphic xlink:href="pone.0077891.g002"></graphic>
</fig>
<p>Recent studies have detected the expression of structural genes involved in the flavonoid (including anthocyanin) synthetic pathway, such as
<italic>CHS</italic>
,
<italic>CHI</italic>
,
<italic>F3H</italic>
,
<italic>DFR</italic>
,
<italic>ANS</italic>
, and
<italic>ANR</italic>
, in the cotton fibers of several cotton cultivars
<xref ref-type="bibr" rid="pone.0077891-Xiao1">[49]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Li1">[50]</xref>
. Despite no visible anthocyanin accumulation, the expression of structural genes was detected in the leaves of CCRI 24 plants grown in light conditions in our study (data not shown). These results indicate that the expression of structural genes may not directly respond to light and affect anthocyanin accumulation in cotton. Therefore, anthocyanin synthesis in leaves of cotton might be affected by light-induced regulatory genes.</p>
<p>To confirm our prediction, we performed a transient analysis using a combination of mature green young leaves of CCRI 24 and the
<italic>Agrobacterium</italic>
strain GV3101/pBI35S::
<italic>ROSEA1</italic>
, harboring the R2R3-MYB transcriptional factor
<italic>ROSEA1</italic>
, (verified to be a regulatory gene controlling the anthocyanin synthetic pathway in
<italic>Antirrhinum)</italic>
, under the control of the 35S promoter, by infiltration
<xref ref-type="bibr" rid="pone.0077891-Voinnet1">[47]</xref>
. Red anthocyanin accumulation was detected in treated leaves of CCRT 24 (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2C</xref>
, panel a), but not in GV3101/pBI121, a negative control (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2C</xref>
, panel b). This result shows that the expression of
<italic>ROSEA1</italic>
-like MYB genes affects anthocyanin biosynthesis in the leaves of cotton, and that its expression might be controlled by light.</p>
</sec>
<sec id="s3b">
<title>Isolation of
<italic>RLC1</italic>
and Phylogenetic Analysis</title>
<p>Several studies have reported that the R2R3-MYB genes regulate the anthocyanin biosynthetic pathway and that their expression is controlled by light
<xref ref-type="bibr" rid="pone.0077891-Takos1">[51]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Albert1">[52]</xref>
. In this study, we observed color accumulation in the leaves of ERLC in response to light. We designed a degenerate primer set (
<xref ref-type="supplementary-material" rid="pone.0077891.s001">Table S1</xref>
) based on the conserved regions in the R2R3 domain of anthocyanin-related MYB transcription factors and performed degenerate PCR to isolate R2R3-MYB transcription factor genes from the cDNA of 7-day-old pigmented hypocotyls of ERLC (
<xref ref-type="fig" rid="pone-0077891-g001">Fig. 1A</xref>
). A 240-bp cDNA fragment was isolated and showed 77% DNA sequence identity with the R2R3 domain of the MYB transcription factor
<italic>ROSEA1</italic>
, which has been verified to regulate the anthocyanin biosynthetic pathway in
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
. Full-length cDNAs were determined using 5′/3′-RACE PCR techniques. The isolated 744-bp candidate cDNA encodes a protein of 247 amino acids. We named this gene
<italic>RLC1</italic>
(
<underline>R</underline>
ed
<underline>L</underline>
eaf
<underline>C</underline>
otton 1).</p>
<p>Phylogenetic analysis showed that RLC1 belonged to the same cluster as VvMYB1, VvMYB2, and Ruby, which have been shown to regulate the anthocyanin synthesis pathway in grape species and in
<italic>Citrus sinensis</italic>
(
<xref ref-type="fig" rid="pone-0077891-g003">Fig. 3A</xref>
). The deduced amino acid sequence of RLC1 shared 85% and 86% identity with VvMYB1 and Ruby, respectively, in the R2R3-MYB DNA-binding domain. The completed protein sequence of RLC1 was 44% identical to VvMYB1 of
<italic>grape</italic>
, and 46% identical to Ruby of
<italic>Citrus sinensis</italic>
. The alignment of the RLC1 protein sequence with some known R2R3-MYB regulators from different plant species revealed a very conserved R2R3 repeat domain and a [DE]Lx2[RK]x3Lx6Lx3R motif for interaction with bHLH proteins (
<xref ref-type="fig" rid="pone-0077891-g003">Fig. 3B</xref>
). Additionally, another signature motif, KPXPR(S/T)F, which is specific to MYB proteins that activate anthocyanin biosynthesis, was found
<xref ref-type="bibr" rid="pone.0077891-Kui1">[53]</xref>
. Thus, sequence analysis indicated that
<italic>RLC1</italic>
is an R2R3-MYB like gene involved in the regulation of the anthocyanin synthetic pathway in ERLC.</p>
<fig id="pone-0077891-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Comparison of the deduced amino acid sequence of RLC1 with verified MYB genes of other plant species.</title>
<p>A, Phylogenetic tree of
<italic>RLC1</italic>
and selected R2R3-MYBs from other plant species. The multiple sequence alignment was performed with the R2R3 domain of MYB proteins. The tree was constructed using the neighbor-Joining method using MEGA software. Numbers along the branches indicate bootstrap support determined from 1,000 trials, and the bar indicates an evolutionary distance of 0.05%. B, Alignment of deduced amino acid sequences of RLC1 with MYB transcriptional regulators. The R2 and R3 repeat domains are indicated by lines above, and the conserved region of the bHLH interacting motif ([DE]Lx2[RK]x3Lx6Lx3R) and the conserved KPRPR[S/T]F motif are underlined.</p>
</caption>
<graphic xlink:href="pone.0077891.g003"></graphic>
</fig>
</sec>
<sec id="s3c">
<title>Functional Analysis of
<italic>RLC1</italic>
</title>
<p>To determine the function of
<italic>RLC1</italic>
, an expression binary vector pBI35S::
<italic>RLC1</italic>
, harboring the full-length
<italic>RLC1</italic>
cDNA under the control of the cauliflower mosaic virus 35S promoter, was transformed into hypocotyl segments of
<italic>A. majus</italic>
JI7 by
<italic>A. rhizogenes</italic>
-mediated transformation
<xref ref-type="bibr" rid="pone.0077891-Cui1">[44]</xref>
. pBI35S::
<italic>ROSEA1</italic>
as a positive control and pBI121(35S::
<italic>GUS</italic>
) as a negative control were also transformed into
<italic>A. majus</italic>
. Two weeks after infection, transformed non-pigmented hairy roots emerged from the wounded end of hypocotyl segments of
<italic>A. majus</italic>
co-cultivated with pBI121, pBI35S::
<italic>CRL1</italic>
, and pBI35S::
<italic>ROSEA1</italic>
(
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4A</xref>
). Highly pigmented hairy roots emerged from hypocotyl segments transformed with pBI35S::
<italic>RLC1</italic>
and pBI35S::
<italic>ROSEA1</italic>
later than non-pigmented hairy roots. Pigmented hair roots were also found to elongate slower than non-pigmented hairy roots (
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4B, 4C</xref>
). The callus, hairy roots, and emerged shoots of segments transformed with pBI121 showed no pigmentation. Additionally, we obtained 11 and 14 independent pigmented hairy roots of pBI35S::
<italic>RLC1</italic>
and pBI35S::
<italic>ROSEA1</italic>
, respectively, after four weeks of culture. Transformed shoots from pigmented hairy roots consistently showed pale or dark red pigmentation in the leaves and stem (
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4D</xref>
).</p>
<fig id="pone-0077891-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Phenotypic comparison of the hairy roots of
<italic>A. majus</italic>
transformed with pBI121, pBI35S::
<italic>ROSEA1</italic>
, and pBI35S::
<italic>RLC1</italic>
, and expression analysis of genes involved in the anthocyanin pathway in
<italic>A. majus by</italic>
RT-PCR.</title>
<p>Hairy roots transformed with A, pBI121; B, pBI35S::
<italic>RLC1</italic>
; C, pBI35S::
<italic>ROSEA1</italic>
. D, A shoot regenerated from hairy roots transformed with pBI35S::
<italic>RLC1.</italic>
Anthocyanin pigmentation is apparent in the leaves and stems. E, RT-PCR analysis of gene expression in the hairy roots of
<italic>A. majus</italic>
transformed with pBI121 (negative control), pBI35S::
<italic>ROSEA 1</italic>
(positive control), and pBI35S::
<italic>RLC1</italic>
, respectively.</p>
</caption>
<graphic xlink:href="pone.0077891.g004"></graphic>
</fig>
<p>To confirm that
<italic>RLC1</italic>
activates genes of the anthocyanin biosynthetic pathway, we investigated the expression levels of the structural genes
<italic>CHS</italic>
,
<italic>F3H</italic>
,
<italic>DFR</italic>
, and
<italic>ANS</italic>
in the hairy roots of
<italic>A. majus</italic>
of transformed with pBI121, pBI35S::
<italic>RLC1</italic>
or pBI35S::
<italic>ROSEA1</italic>
by semi-quantitative reverse transcription (RT)-PCR. No visible expression of the investigated structural genes was detected in negative control hairy roots transformed with pBI121. However, the expression of structural genes was dramatically up-regulated in hair roots transformed with both pBI35S::
<italic>RLC1</italic>
and pBI35S::
<italic>ROSEA1</italic>
(
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4E</xref>
).
<italic>RLC1</italic>
and
<italic>ROSEA1</italic>
activated the expression levels of these structural genes to very similar extents, and this correlated with anthocyanin accumulation in hairy roots transformed with pBI35S::
<italic>RLC1</italic>
and pBI35S::
<italic>ROSEA1</italic>
(
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4</xref>
). These results indicate that
<italic>RLC1</italic>
has similar functions to
<italic>ROSEA1</italic>
of
<italic>A. majus</italic>
and that it is commonly involved in regulating the anthocyanin synthetic pathway in ERLC.</p>
</sec>
<sec id="s3d">
<title>Analysis of
<italic>RLC1</italic>
Expression Patterns between ERLC and CCRI 24</title>
<p>To investigate and compare
<italic>RLC1</italic>
expression between the ERLC and CCRI 24 varieties, semi-quantitative RT-PCR analysis was performed using total RNA isolated from roots, seedlings, leaves, and mature petals. Both ERLC and CCRI 24 plants were grown in light conditions. The expression pattern of
<italic>RLC1</italic>
was compared in ERLC and CCRI 24 (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5A</xref>
). Strong expression of
<italic>RLC1</italic>
was detected in the seedlings and leaves of ERLC, but
<italic>RLC1</italic>
was barely expressed in the roots and petals of ERLC. Slight expression of
<italic>RLC1</italic>
was detected in the leaves of CCRI 24, but expression of
<italic>RLC1</italic>
was silenced in the roots and seedlings of CCRI 24.</p>
<fig id="pone-0077891-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Analysis of
<italic>RLC1</italic>
and gene expression levels in cotton by RT-PCR. UBI 7 was used as a positive control.</title>
<p>
<bold>A</bold>
,
<italic>RLC1</italic>
expression analysis was performed in roots, seedlings, leaves, and mature petals of ERLC and CCRI 24 cultivars grown in light by semi-quantitative RT-PCR.
<bold>B</bold>
, Comparison of the expression levels of
<italic>RLC1</italic>
in mature leaves of ERLC grown in shade, light, and combined conditions.
<bold>C</bold>
, Comparison of color accumulation in transformed hairy roots of CCRI 24.
<bold>a</bold>
, Hairy root transformed with pBI121;
<bold>b</bold>
, Hairy root transformed with pBI35S::
<italic>RLC1.</italic>
Scale bar indicates 1 cm.
<bold>D</bold>
, Expression analysis of structural genes in hairy roots of transformed CCRI 24 with the negative controls pBI121 and pBI35S::
<italic>RLC1</italic>
, respectively.</p>
</caption>
<graphic xlink:href="pone.0077891.g005"></graphic>
</fig>
<p>To investigate the effect of light conditions on the expression level of
<italic>RLC1</italic>
, RT-PCR analysis was performed using total RNA isolated from the leaves of ERLC plants grown in light, those grown in the shade, and those transferred to light after 10 days in the shade (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5B</xref>
). Slight expression of
<italic>RLC1</italic>
was detected in the leaves of plants grown in the shade. Remarkably up-regulated expression of
<italic>RLC1</italic>
was detected in the leaves of plants 10 days after being transferred from shade to light. The expression level was very similar to that in leaves grown in light (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5B</xref>
). The
<italic>RLC1</italic>
transcript level coincided with anthocyanin content and coloration in ERLC and CCRI 24 cultivars (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2A, 2B</xref>
;
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5B</xref>
). These results indicate that light-induced
<italic>RLC1</italic>
regulates anthocyanin accumulation in the leaves of ERLC plants. Furthermore, reduced expression of
<italic>RLC1</italic>
may cause the absence of pigmentation in the leaves of CCRI 24 plants.</p>
<p>To test our hypothesis, pBI35S::
<italic>RLC1</italic>
and the negative control plasmid pBI121 were introduced into 7-day-old hypocotyls of CCRI 24 by
<italic>A. rhizogenes</italic>
–mediated transformation. After six weeks of infection, five pigmented hairy roots were obtained from 30 hypocotyl segments transformed with pBI35S::
<italic>RLC1.</italic>
Hairy roots from plants transformed with pBI121 did not show any colors (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5C</xref>
). To investigate the role of
<italic>RLC1</italic>
in the anthocyanin biosynthetic pathway in CCRI 24, we analyzed the expression levels of the structural genes
<italic>CHS</italic>
,
<italic>CHI</italic>
,
<italic>F3H</italic>
,
<italic>F3′H</italic>
,
<italic>DFR</italic>
,
<italic>ANS</italic>
, and
<italic>3GT</italic>
in hairy roots transformed with pBI12 and pBI35S::
<italic>RLC1</italic>
by semi-quantitative RT-PCR. All the investigated structural genes were expressed in negative control hairy roots transformed with pBI121; in particular,
<italic>CHI</italic>
and
<italic>3GT</italic>
were only slightly expressed. In pigmented hairy roots transformed with pBI35S::
<italic>RLC1</italic>
,
<italic>RLC1</italic>
clearly activated the expression of the investigated structural genes, with
<italic>CHI</italic>
and
<italic>3GT</italic>
expression being significantly up-regulated (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5D</xref>
). These findings clearly indicate that all the structural genes involved in the anthocyanin biosynthetic pathway in CCRI 24 were normal. The expression level of
<italic>RLC1</italic>
influences the transcription of structural genes and affects anthocyanin accumulation in the leaves of CCRI 24 plants. Differential expression patterns of
<italic>RLC1</italic>
between ERLC and CCRI 24 might be due to differences between alleles.</p>
</sec>
<sec id="s3e">
<title>Comparison of
<italic>RLC1</italic>
Alleles between ERLC and CCRI 24</title>
<p>To test this idea, a 7-kb DNA fragment was isolated from ERLC genomic DNA using a DNA Walking Kit. This fragment included a 2.3-kb promoter region, three exons, and two intron regions (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6A</xref>
, top). Based on the 7-kb DNA sequence of ERLC, a corresponding DNA fragment was amplified from the CCRI 24 genomic DNA by PCR (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6A</xref>
, bottom). On comparing the DNA coding regions of ERLC and CCRI 24, we found that the CCRI 24 sequence also showed the same structural features as that of ERLC, with the same lengths for exon 1, exon 2, exon 3, intron 1, and intron 2. We found thirteen nucleotide polymorphisms in the introns (data not shown) and 1 nucleotide difference in exon 2 where an adenine (A) instead of a guanine (G) in exon 2 resulted in an Arg-to-His change at the R2 repeat domain of the deduced amino acid sequence (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6A</xref>
, bottom). Except for an amino acid change, the coding region can be encoded as a full-length
<italic>RLC1</italic>
cDNA with 99.6% identity between ERLC and CCRI 24. A major difference between ERLC and CCRI 24 was determined in promoter regions. The 2.3-kb promoter region of ERLC (R
<sub>−pro</sub>
) has a putative TATA box at position −89 and two 228-bp length repeat fragments (R) located in sequence between positions −131 and −587. However, the promoter region of CCRI (G
<sub>−pro</sub>
) is shorter than R
<sub>−pro</sub>
by 228 bp and lacks one of the repeats (R) at position −359 to −588. We also analyzed the 228-bp fragment sequence in the Plant Cis-acting Regulatory DNA Elements (PLACE) database
<xref ref-type="bibr" rid="pone.0077891-Higo1">[46]</xref>
, and found a putative I-box and a G-box that have been identified by several groups as a cis-acting element involved in the activation of light-regulated plant genes
<xref ref-type="bibr" rid="pone.0077891-Rose1">[54]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Agius1">[55]</xref>
. However, we did not find other putative cis-acting elements or structural candidates in the sequence of the 228 bp-fragment.</p>
<fig id="pone-0077891-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Comparison of the
<italic>RLC1</italic>
alleles between ERLC and CCRI 24.</title>
<p>A, The coding sequence is shown in gray boxes and the non-coding sequence is shown as a black line. Location of the putative TATA box is shown by an empty square. Repeat fragments (R) are indicated by black squares. The exons, introns, and promoter region are labeled. The location of a nucleotide change site is also indicated in exon 2 of CCRI 24. Numbers refer to the position relative to the first nucleotide of the start codon. B, DNA sequence of the 228-bp fragment, with the location of putative I-box and G-box (underlined). C, Functional analysis of the RLC1a region of CCRI 24 (Fig. 6A, bottom) in the hairy roots of
<italic>A. majus</italic>
by
<italic>A. rhizhogenes-</italic>
mediated transformation. The pBI35S::RLC1a expression vector contained the RLC1a region on pBI121 driven by the cauliflower mosaic virus 35S promoter. a, a red pigmented mass developed on the end of hypocotyl segment of
<italic>A. majus</italic>
two weeks after infection; b, red pigmented hairy root developed from the ends of hypocotyl segments four weeks after infection. The pigmented mass (a) and hairy roots (b) are indicated by small arrows.</p>
</caption>
<graphic xlink:href="pone.0077891.g006"></graphic>
</fig>
</sec>
<sec id="s3f">
<title>The Two 228-bp Fragments Form an Important Motif in the
<italic>RLC1</italic>
Promoter</title>
<p>To detect the effects of the thirteen polymorphisms in the introns and the amino acid change for
<italic>RCL1</italic>
transcription in CCRI 24, we created an expression vector pBI35S::
<italic>RLC1a</italic>
, harboring a 5-kb DNA fragment including the three exons and two introns of CCRI 24(
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6A</xref>
, bottom), under the control of the cauliflower mosaic virus 35S promoter. This expression vector was transformed into hypocotyls of
<italic>A. majus</italic>
by
<italic>A. rhizogenes</italic>
-mediated transformation. Two weeks after infection, we observed a red colored mass growing from the end of the hypocotyl, and several red-pigmented hairy roots were obtained four weeks after culture (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6C</xref>
). This result indicated that the amino acid change and thirteen polymorphisms in the introns did not affect
<italic>RLC1</italic>
transcription in CCRI 24. This suggests that the differences in the promoter region between ERLC and CCRI 24 might affect
<italic>RLC1</italic>
expression (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6A</xref>
).</p>
<p>To confirm our expectation, we created several expression vectors R−
<sub>pro</sub>
::
<italic>RLC1</italic>
, R−
<sub>pro</sub>
::
<italic>GUS</italic>
, G
<sub>−pro</sub>
::
<italic>RLC1</italic>
, and G
<sub>−pro</sub>
::
<italic>GUS</italic>
(
<xref ref-type="fig" rid="pone-0077891-g007">Fig. 7A</xref>
) and performed transient analysis using young mature green leaves of CCRI 24 with an infiltration method
<xref ref-type="bibr" rid="pone.0077891-Voinnet1">[47]</xref>
. At three days post-infiltration, red color was observed at the infiltrated points in cotton leaves with R−
<sub>pro</sub>
::
<italic>RLC1</italic>
and 35S::
<italic>RLC1</italic>
respectively (
<xref ref-type="fig" rid="pone-0077891-g007">Fig. 7B</xref>
, panels a and b). However, the red color was not observed in leaves infiltrated with G
<sub>−pro</sub>
::
<italic>RLC1</italic>
(
<xref ref-type="fig" rid="pone-0077891-g007">Fig. 7B</xref>
, panel c). Similar results were also observed in the transient analysis using the β-glucuronidase (GUS) gene as the reporter, driven by the R−
<sub>pro</sub>
or G
<sub>−pro</sub>
promoter (
<xref ref-type="fig" rid="pone-0077891-g007">Fig. 7B</xref>
, panels d–f). These experiments strongly support the hypothesis that the repeat structure is necessary as a putative donor motif on the promoter to regulate
<italic>RLC1</italic>
expression in cotton in light conditions.</p>
<fig id="pone-0077891-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0077891.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Analysis of
<italic>RLC1</italic>
promoter activity by infiltration.</title>
<p>
<bold>A</bold>
, Diagrams of constructs for the analysis of
<italic>RLC1</italic>
promoter activity. R
<sub>−pro</sub>
: 2300-bp promoter region of
<italic>RLC1</italic>
of ERLC; G
<sub>−pro</sub>
: 2080-bp promoter region of
<italic>RLC1</italic>
of CCRI 24 (
<xref ref-type="fig" rid="pone-0077891-g006">Fig. 6</xref>
).
<bold>B</bold>
, promoter activity tests were performed using mature young leaves of CCRI 24 using the combination of expression vectors described above. Treated cotton leaves were cultured at 25°C with 16-h light periods for three days, and the leaves were used for color observation or GUS staining.
<bold>a</bold>
, A leaf infiltrated with 35::
<italic>RLC1</italic>
and cultured for three days in light;
<bold>b</bold>
, A leaf infiltrated with R−pro::
<italic>RLC1</italic>
and cultured for three days in light;
<bold>c</bold>
, A leaf infiltrated with G
<sub></sub>
pro::
<italic>RLC1</italic>
and cultured for three days in light;
<bold>d</bold>
, A GUS-stained leaf infiltrated with pBI121 and cultured for three days in light;
<bold>e</bold>
, A GUS stained leaf infiltrated with R−pro::
<italic>GUS</italic>
and cultured for three days in light;
<bold>f</bold>
, A leaf infiltrated with G
<sub></sub>
pro::
<italic>GUS</italic>
and cultured for three days in light. Scale bar is 0.1 cm.</p>
</caption>
<graphic xlink:href="pone.0077891.g007"></graphic>
</fig>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<sec id="s4a">
<title>
<italic>RLC1</italic>
is an R2R3-MYB Transcription Factor</title>
<p>In this study, using degenerate PCR based on a R2R3-MYB domain-specific sequence, we isolated a transcriptional factor, named
<italic>RLC1</italic>
, from ERLC.
<italic>RLC1</italic>
encoded a R2R3-MYB protein clearly placed in a clade with many anthocyanin-regulating MYB transcription factors from different species such as
<italic>PhAN2</italic>
<xref ref-type="bibr" rid="pone.0077891-Quattrocchio1">[12]</xref>
, Rosea1
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
, PAP1
<xref ref-type="bibr" rid="pone.0077891-Borevitz1">[18]</xref>
, MdMYB1
<xref ref-type="bibr" rid="pone.0077891-Takos1">[51]</xref>
, Ruby
<xref ref-type="bibr" rid="pone.0077891-Butelli1">[56]</xref>
, VvMYBAs
<xref ref-type="bibr" rid="pone.0077891-Kobayashi1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Walker1">[26]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Kobayashi2">[57]</xref>
and NtAN2
<xref ref-type="bibr" rid="pone.0077891-Pattanaik1">[58]</xref>
. Alignment of the amino acid sequence of RLC1 showed significant similarity to structures with Ruby and PhAN2, which harbored very conserved R2R3 domains, a conserved ([DE]Lx2[RK]x3-Lx6Lx3R) motif thought to be responsible for the interaction between bHLH and MYB proteins (
<xref ref-type="fig" rid="pone-0077891-g003">Fig. 3</xref>
)
<xref ref-type="bibr" rid="pone.0077891-Zimmermann1">[59]</xref>
, and a KPRPR[S/T]F motif specific to R2R3-MYB regulators in anthocyanin synthesis
<xref ref-type="bibr" rid="pone.0077891-Kui1">[53]</xref>
. Genomic DNA sequence analysis also showed that
<italic>RLC1</italic>
has three exons. The R2 domain spans exons 1 and 2, and the R3 domain spans exons 2 and 3. The genomic organization and R2R3 domain distribution of
<italic>RLC1</italic>
was similar to that of other R2R3-MYBs
<xref ref-type="bibr" rid="pone.0077891-Quattrocchio1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Borevitz1">[18]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Pattanaik1">[58]</xref>
. These structural similarities in the DNA and amino acid sequences suggest that
<italic>RLC1</italic>
is likely to have similar functions to the anthocyanin -specific MYB regulators and a common evolutionary origin.</p>
</sec>
<sec id="s4b">
<title>
<italic>RLC1</italic>
is
<italic>PAP1/ROSEA1/</italic>
Ortholog Gene</title>
<p>In this study, we confirmed that
<italic>RLC1</italic>
is a positive regulator of anthocyanin synthesis through the transformation of
<italic>Antirrhinum</italic>
and green leaf cotton CCRI 24. Overexpression of
<italic>RLC1</italic>
resulted in anthocyanin accumulation in the transformed hairy roots of
<italic>Antirrhinum</italic>
and cotton.</p>
<p>In the hairy roots of
<italic>Antirrhinum</italic>
, 35S::
<italic>GUS</italic>
did not affect expression of the endogenous anthocyanin synthesis genes
<italic>Am CHS</italic>
,
<italic>AmF3H</italic>
,
<italic>AmDFR</italic>
, and
<italic>AmANS</italic>
, and the hairy roots lacked coloration. However, the expression of
<italic>Am CHS</italic>
,
<italic>AmF3H</italic>
,
<italic>AmDFR</italic>
, and
<italic>AmANS</italic>
was significantly upregulated by 35S::
<italic>RLC1</italic>
, and strong anthocyanin accumulation was observed in the hairy roots in contrast to those of plants transformed with 35S::
<italic>GUS</italic>
, which lacked anthocyanin. 35S::
<italic>RLC1</italic>
-activated expression levels of anthocyanin synthetic genes showed patterns similar to those activated by 35S::
<italic>ROSEA1</italic>
in transformed hairy roots (
<xref ref-type="fig" rid="pone-0077891-g004">Fig. 4</xref>
). These results suggest that
<italic>RLC1</italic>
is an ortholog of
<italic>ROSEA1</italic>
in
<italic>Antirrhinum</italic>
, and is mainly involved in the regulation of anthocyanin synthesis in cotton.</p>
<p>In cotton, despite the negative control in hairy roots transformed with 35S::
<italic>GUS</italic>
that lacked anthocyanin accumulation, the endogenous structural genes
<italic>GhCHS</italic>
,
<italic>GhCHI</italic>
,
<italic>GhF3H</italic>
,
<italic>GhF3′H</italic>
,
<italic>GHDFR</italic>
,
<italic>GhANS</italic>
, and
<italic>Gh3G</italic>
T in the anthocyanin pathway showed detectable expression. Recent studies have detected the expression of these structural genes in white fibers
<xref ref-type="bibr" rid="pone.0077891-Xiao1">[49]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Li1">[50]</xref>
. Therefore, we determined which structural genes are commonly expressed in most tissues and organs of green leaf cotton, and whether they might be involved in the production of other flavonoids, such as proanthocyanidins. We also found that the structural genes
<italic>GhCHI</italic>
and
<italic>Gh3GT</italic>
were significantly upregulated in the transformed hairy roots of 35S:
<italic>:RLC1</italic>
as well; these hairy roots showed notable anthocyanin accumulation (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5C, 5D</xref>
). Therefore, the expression levels of
<italic>GhCHI</italic>
, an EBG, and
<italic>Gh3GT</italic>
, an LBG, may affect anthocyanin biosynthesis and which genes expression is controlled by
<italic>RLC1</italic>
expression. Although the R2R3-MYB genes mostly regulate LBG expression in the flavonoid pathway
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
, similar disagreements regarding the regulation of EBGs and LBGs have been reported in the over-expression of
<italic>PAP1</italic>
in transgenic
<italic>Arabidopsis</italic>
and
<italic>NtAN2</italic>
in tobacco. Over-expression of the
<italic>PAP1</italic>
and
<italic>NtAN2</italic>
MYB regulators results in the up-regulation of genes across the entire phenylpropanoid pathway in
<italic>Arabidopsis</italic>
and tobacco
<xref ref-type="bibr" rid="pone.0077891-Gonzalez1">[35]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Pattanaik1">[58]</xref>
. Therefore,
<italic>RLC1</italic>
and
<italic>PAP1</italic>
may redundantly regulate the transcription of EBGs in a manner similar to MYB regulators in
<italic>Arabidopsis</italic>
and cotton. Additionally, the elevated expression of EBGs may be related to a metabolite feedback phenomenon, induced by the up-regulation of LBGs.</p>
<p>Since the transcription of structural genes in the anthocyanin pathway was affected, the genetic basis of cotton color is probably due to the activity of a common regulator of the
<italic>RLC1</italic>
gene. This would be analogous to
<italic>PAP1</italic>
in
<italic>Arabidopsis</italic>
and
<italic>ROSEA1</italic>
in
<italic>Antirrhinum</italic>
<xref ref-type="bibr" rid="pone.0077891-Schwinn1">[17]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Borevitz1">[18]</xref>
.</p>
</sec>
<sec id="s4c">
<title>Promoter Differentiation Affects
<italic>RLC1</italic>
Expression between ERLC and CCRI 24</title>
<p>In this study, we investigated
<italic>RLC1</italic>
alleles between red leaf cotton ERLC and green leaf cotton CCRI 24. We found a 228-bp fragment spanning positions −131 to −359 bp in the
<italic>RLC1</italic>
promoter of CCRI 24 (G
<sub>−pro</sub>
), and two 228-bp fragments were detected from position −131 to −587 bp forming a near-perfect direct tandem repeat in the
<italic>RLC1</italic>
promoter of ERLC (R
<sub>−pro</sub>
). Further, through transient expression analysis of
<italic>RLC1</italic>
promoter activity in both ERLC and CCRI 24, we found out that the promoter of ERLC (R−
<sub>pro</sub>
) normally drove fused genes (
<xref ref-type="fig" rid="pone-0077891-g007">Fig. 7</xref>
). These results suggested that the repeat structure is a putative donor motif of the promoter region that acts to promote
<italic>RLC1</italic>
gene expression in leaves of cotton.</p>
</sec>
<sec id="s4d">
<title>Light Stimulation Causes
<italic>RLC1</italic>
Expression in ERLC</title>
<p>Environmental conditions control the anthocyanin biosynthetic pathway in plants. In
<italic>Arabidopsis</italic>
, maize, apple, and grape, anthocyanin biosynthesis is enhanced by sunlight stimulation
<xref ref-type="bibr" rid="pone.0077891-Cominelli1">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Kui1">[53]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Piazza1">[60]</xref>
<xref ref-type="bibr" rid="pone.0077891-Li2">[63]</xref>
. In mature grape plants, light and sugar content affect MYB regulation of flavonoid biosynthesis
<xref ref-type="bibr" rid="pone.0077891-Matus1">[61]</xref>
. Furthermore, in apple, MYB activation of anthocyanin synthesis is affected by light. When the fruit are bagged, MdMYB1 expression is prevented in the red-skinned apple “Cripps Pink”
<xref ref-type="bibr" rid="pone.0077891-Takos1">[51]</xref>
. High light exposure also upregulates the
<italic>Arabidopsis</italic>
R2R3-MYB activators
<italic>PAP1</italic>
and
<italic>PAP2</italic>
and their bHLH partner
<italic>TT8</italic>
<xref ref-type="bibr" rid="pone.0077891-Cominelli1">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Cone1">[64]</xref>
. Moreover, it has been previously reported that the expression of specific maize
<italic>MYB</italic>
genes is strongly light induced and is closely correlated with the light induction of structural genes and anthocyanin biosynthesis
<xref ref-type="bibr" rid="pone.0077891-Piazza1">[60]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Cone1">[64]</xref>
.</p>
<p>In this study, we have shown that anthocyanin biosynthesis in the leaves of cotton plant is also controlled by light. The expression level of
<italic>RLC1</italic>
and anthocyanin accumulation in leaves of ERLC was affected by light conditions (
<xref ref-type="fig" rid="pone-0077891-g002">Fig. 2</xref>
;
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5B</xref>
). When grown in light,
<italic>RLC1</italic>
was strongly expressed in leaves and seedlings. However, when grown in shaded conditions,
<italic>RLC1</italic>
was scarcely expressed in leaves, but when plants were transferred to light, expression of
<italic>RLC1</italic>
recovered to normal levels and the leaves developed a deep red color (
<xref ref-type="fig" rid="pone-0077891-g005">Fig. 5B</xref>
). The
<italic>RLC1</italic>
expression pattern also correlated with the expression of other anthocyanin biosynthetic genes.</p>
<p>In addition, we also analyzed the 228-bp fragment sequence against the PLACE database
<xref ref-type="bibr" rid="pone.0077891-Higo1">[46]</xref>
, and found several putative cis elements. Among them, we detected a putative I-box and G-box identified by several groups as a cis-acting element involved in the activation of light-regulated plant genes
<xref ref-type="bibr" rid="pone.0077891-Rose1">[54]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Agius1">[55]</xref>
,
<xref ref-type="bibr" rid="pone.0077891-Giuliano1">[65]</xref>
. Therefore, a light signal might interact with a light-responsive element in the promoter region of the
<italic>RLC1</italic>
gene, and enhance the expression of
<italic>RLC1</italic>
, which would then regulate the expression of anthocyanin structural genes and the anthocyanin pathway in cotton. Although most genes in the anthocyanin biosynthesis pathway are known, it is not known how the MYB genes regulate anthocyanin biosynthesis in cotton. We have shown that the R2R3-MYB gene
<italic>RLC1</italic>
regulates anthocyanin structural genes in response to light induction. However, the influence of other bHLH and WD40 cofactors required for anthocyanin synthesis have not been determined and so their role in light regulation remains to be determined.</p>
<p>In summary,in ERLC the anthocyanin pathway is constitutively regulated but is also responsive to light. We have identified an R2R3-MYB transcriptional factor
<italic>RLC1</italic>
that has an expression pattern correlating with that of anthocyanin accumulation in the leaf and in response to light. The MYB regulator
<italic>RLC1</italic>
can enhance the expression of structural genes in transformed hairy roots of
<italic>Antirrhinum</italic>
and cotton. This expression is due to a motif of two 228-bp fragments forming tandem repeats more than −131 bp upstream of the promoter region of
<italic>RLC1</italic>
. These results suggest that
<italic>RLC1</italic>
regulates by light induction structural genes across the anthocyanin pathway in red leaf cotton. This provides the potential to modulate leaf color by altering the expression of this regulatory gene. It will be of great interest to determine how the response to light mediated through this key regulator controls anthocyanin accumulation in cotton leaf.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0077891.s001">
<label>Table S1</label>
<caption>
<p>
<bold>Primers used for gene cloning in this study.</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0077891.s001.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0077891.s002">
<label>Table S2</label>
<caption>
<p>
<bold>Primers used for quantitative RT-PCR analysis in this study.</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0077891.s002.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors thank Professor Enrico Coen from John Innes Centre, United Kingdom for providing the
<italic>Antirrhinum majus</italic>
seeds.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0077891-Zafar1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zafar</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Asif</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kausar</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Riaz</surname>
<given-names>S</given-names>
</name>
(
<year>2009</year>
)
<collab>Niaz</collab>
(
<year>2009</year>
)
<article-title>Development of genetic linkage map of leaf red colour in cotton (
<italic>Gossypium hirsutum</italic>
) using DNA markers</article-title>
.
<source>Pak J Bot</source>
<volume>41</volume>
:
<fpage>1127</fpage>
<lpage>1136</lpage>
</mixed-citation>
</ref>
<ref id="pone.0077891-Fitt1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitt</surname>
<given-names>GP</given-names>
</name>
(
<year>1994</year>
)
<article-title>Cotton pest management: part 3. An Australian perspective</article-title>
.
<source>Annu Rev Entomol</source>
<volume>39</volume>
:
<fpage>543</fpage>
<lpage>562</lpage>
</mixed-citation>
</ref>
<ref id="pone.0077891-Stephens1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stephens</surname>
<given-names>S</given-names>
</name>
(
<year>1974</year>
)
<article-title>Geographic and taxonomic distribution of anthocyanin genes in New World cottons</article-title>
.
<source>J Genet</source>
<volume>61</volume>
:
<fpage>128</fpage>
<lpage>141</lpage>
</mixed-citation>
</ref>
<ref id="pone.0077891-Killough1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Killough</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Horlacher</surname>
<given-names>W</given-names>
</name>
(
<year>1933</year>
)
<article-title>The inheritance of virescent yellow and red plant colors in cotton</article-title>
.
<source>Genetics</source>
<volume>18</volume>
:
<fpage>329</fpage>
<pub-id pub-id-type="pmid">17246695</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Harborne1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harborne</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>CA</given-names>
</name>
(
<year>2000</year>
)
<article-title>Advances in flavonoid research since 1992</article-title>
.
<source>Phytochemistry</source>
<volume>55</volume>
:
<fpage>481</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="pmid">11130659</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Grotewold1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Grotewold</surname>
<given-names>E</given-names>
</name>
(
<year>2006</year>
)
<article-title>The genetics and biochemistry of floral pigments</article-title>
.
<source>Annu Rev Plant Biol</source>
<volume>57</volume>
:
<fpage>761</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="pmid">16669781</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Tanaka1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Sasaki</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Ohmiya</surname>
<given-names>A</given-names>
</name>
(
<year>2008</year>
)
<article-title>Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids</article-title>
.
<source>Plant J</source>
<volume>54</volume>
:
<fpage>733</fpage>
<lpage>749</lpage>
<pub-id pub-id-type="pmid">18476875</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Martin1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Martin</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Prescott</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mackay</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bartlett</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Vrijlandt</surname>
<given-names>E</given-names>
</name>
(
<year>1991</year>
)
<article-title>Control of anthocyanin biosynthesis in flowers of
<italic>Antirrhinum majus</italic>
</article-title>
.
<source>Plant J</source>
<volume>1</volume>
:
<fpage>37</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">1844879</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Pelletier1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pelletier</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Shirley</surname>
<given-names>BW</given-names>
</name>
(
<year>1996</year>
)
<article-title>Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase)</article-title>
.
<source>Plant Physiol</source>
<volume>111</volume>
:
<fpage>339</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="pmid">8685272</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Pelletier2">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pelletier</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Murrell</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Shirley</surname>
<given-names>BW</given-names>
</name>
(
<year>1997</year>
)
<article-title>Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (Further evidence for differential regulation of “early” and “late” genes)</article-title>
.
<source>Plant Physiol</source>
<volume>113</volume>
:
<fpage>1437</fpage>
<lpage>1445</lpage>
<pub-id pub-id-type="pmid">9112784</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-WinkelShirley1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Winkel-Shirley</surname>
<given-names>B</given-names>
</name>
(
<year>2001</year>
)
<article-title>Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology</article-title>
.
<source>Plant Physiol</source>
<volume>126</volume>
:
<fpage>485</fpage>
<lpage>493</lpage>
<pub-id pub-id-type="pmid">11402179</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Quattrocchio1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Quattrocchio</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Wing</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>van der Woude</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Souer</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>de Vetten</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Molecular analysis of the
<italic>anthocyanin2</italic>
gene of petunia and its role in the evolution of flower color</article-title>
.
<source>Plant Cell</source>
<volume>11</volume>
:
<fpage>1433</fpage>
<lpage>1444</lpage>
<pub-id pub-id-type="pmid">10449578</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Spelt1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Spelt</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Quattrocchio</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Mol</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Koes</surname>
<given-names>R</given-names>
</name>
(
<year>2002</year>
)
<article-title>ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms</article-title>
.
<source>Plant Cell</source>
<volume>14</volume>
:
<fpage>2121</fpage>
<lpage>2135</lpage>
<pub-id pub-id-type="pmid">12215510</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Grotewold2">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Grotewold</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Athma</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Peterson</surname>
<given-names>T</given-names>
</name>
(
<year>1991</year>
)
<article-title>Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>88</volume>
:
<fpage>4587</fpage>
<lpage>4591</lpage>
<pub-id pub-id-type="pmid">2052542</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Sainz1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sainz</surname>
<given-names>MB</given-names>
</name>
,
<name>
<surname>Grotewold</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Chandler</surname>
<given-names>VL</given-names>
</name>
(
<year>1997</year>
)
<article-title>Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins</article-title>
.
<source>Plant Cell</source>
<volume>9</volume>
:
<fpage>611</fpage>
<lpage>625</lpage>
<pub-id pub-id-type="pmid">9144964</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Goodrich1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goodrich</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Coen</surname>
<given-names>ES</given-names>
</name>
(
<year>1992</year>
)
<article-title>A common gene regulates pigmentation pattern in diverse plant species</article-title>
.
<source>Cell</source>
<volume>68</volume>
:
<fpage>955</fpage>
<pub-id pub-id-type="pmid">1547495</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Schwinn1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schwinn</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Venail</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Shang</surname>
<given-names>YJ</given-names>
</name>
,
<name>
<surname>Mackay</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Alm</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
:
<fpage>831</fpage>
<lpage>851</lpage>
<pub-id pub-id-type="pmid">16531495</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Borevitz1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Borevitz</surname>
<given-names>JO</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>YJ</given-names>
</name>
,
<name>
<surname>Blount</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Lamb</surname>
<given-names>C</given-names>
</name>
(
<year>2000</year>
)
<article-title>Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis</article-title>
.
<source>Plant Cell</source>
<volume>12</volume>
:
<fpage>2383</fpage>
<lpage>2393</lpage>
<pub-id pub-id-type="pmid">11148285</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Nesi1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nesi</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Debeaujon</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Jond</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Pelletier</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Caboche</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>The
<italic>TT8</italic>
gene encodes a basic helix-loop-helix domain protein required for expression of
<italic>DFR</italic>
and
<italic>BAN</italic>
genes in Arabidopsis siliques</article-title>
.
<source>Plant Cell</source>
<volume>12</volume>
:
<fpage>1863</fpage>
<lpage>1878</lpage>
<pub-id pub-id-type="pmid">11041882</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Espley1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Espley</surname>
<given-names>RV</given-names>
</name>
,
<name>
<surname>Hellens</surname>
<given-names>RP</given-names>
</name>
,
<name>
<surname>Putterill</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Stevenson</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Kutty-Amma</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10</article-title>
.
<source>Plant J</source>
<volume>49</volume>
:
<fpage>414</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="pmid">17181777</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Chagn1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chagné</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Lin-Wang</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Espley</surname>
<given-names>RV</given-names>
</name>
,
<name>
<surname>Volz</surname>
<given-names>RK</given-names>
</name>
,
<name>
<surname>How</surname>
<given-names>NM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes</article-title>
.
<source>Plant Physiol</source>
<volume>161</volume>
:
<fpage>225</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="pmid">23096157</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Kobayashi1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kobayashi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Goto-Yamamoto</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Hirochika</surname>
<given-names>H</given-names>
</name>
(
<year>2004</year>
)
<article-title>Retrotransposon-induced mutations in grape skin color</article-title>
.
<source>Science</source>
<volume>304</volume>
:
<fpage>982</fpage>
<lpage>982</lpage>
<pub-id pub-id-type="pmid">15143274</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Rosinski1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rosinski</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Atchley</surname>
<given-names>WR</given-names>
</name>
(
<year>1998</year>
)
<article-title>Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin</article-title>
.
<source>J Mol Evol</source>
<volume>46</volume>
:
<fpage>74</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">9419227</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Jin1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Martin</surname>
<given-names>C</given-names>
</name>
(
<year>1999</year>
)
<article-title>Multifunctionality and diversity within the plant MYB-gene family</article-title>
.
<source>Plant Mol Biol</source>
<volume>41</volume>
:
<fpage>577</fpage>
<lpage>585</lpage>
<pub-id pub-id-type="pmid">10645718</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Espley2">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Espley</surname>
<given-names>RV</given-names>
</name>
,
<name>
<surname>Brendolise</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Chagné</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Kutty-Amma</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Green</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples</article-title>
.
<source>Plant Cell</source>
<volume>21</volume>
:
<fpage>168</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="pmid">19151225</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Walker1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Walker</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Bogs</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>McDavid</surname>
<given-names>DAJ</given-names>
</name>
,
<name>
<surname>Thomas</surname>
<given-names>MR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>White grapes arose through the mutation of two similar and adjacent regulatory genes</article-title>
.
<source>Plant J</source>
<volume>49</volume>
:
<fpage>772</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="pmid">17316172</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Aharoni1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aharoni</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>De Vos</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Wein</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Greco</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco</article-title>
.
<source>Plant J</source>
<volume>28</volume>
:
<fpage>319</fpage>
<lpage>332</lpage>
<pub-id pub-id-type="pmid">11722774</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Jin2">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Cominelli</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Bailey</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Parr</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mehrtens</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis</article-title>
.
<source>The EMBO J</source>
<volume>19</volume>
:
<fpage>6150</fpage>
<lpage>6161</lpage>
</mixed-citation>
</ref>
<ref id="pone.0077891-Tamagnone1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamagnone</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Merida</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Parr</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mackay</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Culianez-Macia</surname>
<given-names>FA</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco</article-title>
.
<source>Plant Cell</source>
<volume>10</volume>
:
<fpage>135</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="pmid">9490739</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Matsui1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matsui</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Umemura</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Ohme-Takagi</surname>
<given-names>M</given-names>
</name>
(
<year>2008</year>
)
<article-title>AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis</article-title>
.
<source>Plant J</source>
<volume>55</volume>
:
<fpage>954</fpage>
<lpage>967</lpage>
<pub-id pub-id-type="pmid">18532977</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Park1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>KI</given-names>
</name>
,
<name>
<surname>Ishikawa</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Morita</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Hoshino</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation</article-title>
.
<source>Plant J</source>
<volume>49</volume>
:
<fpage>641</fpage>
<lpage>654</lpage>
<pub-id pub-id-type="pmid">17270013</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Payne1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Payne</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Lloyd</surname>
<given-names>AM</given-names>
</name>
(
<year>2000</year>
)
<article-title>
<italic>GL3</italic>
encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1</article-title>
.
<source>Genetics</source>
<volume>156</volume>
:
<fpage>1349</fpage>
<lpage>1362</lpage>
<pub-id pub-id-type="pmid">11063707</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Zhang1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Gonzalez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>MZ</given-names>
</name>
,
<name>
<surname>Payne</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Lloyd</surname>
<given-names>A</given-names>
</name>
(
<year>2003</year>
)
<article-title>A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis</article-title>
.
<source>Development</source>
<volume>130</volume>
:
<fpage>4859</fpage>
<lpage>4869</lpage>
<pub-id pub-id-type="pmid">12917293</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Ramsay1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ramsay</surname>
<given-names>NA</given-names>
</name>
,
<name>
<surname>Glover</surname>
<given-names>BJ</given-names>
</name>
(
<year>2005</year>
)
<article-title>MYB–bHLH–WD40 protein complex and the evolution of cellular diversity</article-title>
.
<source>Trends Plant Sci</source>
<volume>10</volume>
:
<fpage>63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">15708343</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Gonzalez1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gonzalez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Leavitt</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Lloyd</surname>
<given-names>AM</given-names>
</name>
(
<year>2008</year>
)
<article-title>Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings</article-title>
.
<source>Plant J</source>
<volume>53</volume>
:
<fpage>814</fpage>
<lpage>827</lpage>
<pub-id pub-id-type="pmid">18036197</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Debeaujon1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Debeaujon</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Nesi</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Perez</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Devic</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Grandjean</surname>
<given-names>O</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>Proanthocyanidin -accumulating cells in Arabidopsis testa: Regulation of differentiation and role in seed development</article-title>
.
<source>Plant Cell</source>
<volume>15</volume>
:
<fpage>2514</fpage>
<lpage>2531</lpage>
<pub-id pub-id-type="pmid">14555692</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Baudry1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Baudry</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Heim</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Dubreucq</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Caboche</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Weisshaar</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>TT2, TT8, and TTG1 synergistically specify the expression of
<italic>BANYULS</italic>
and proanthocyanidin biosynthesis in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Plant J</source>
<volume>39</volume>
:
<fpage>366</fpage>
<lpage>380</lpage>
<pub-id pub-id-type="pmid">15255866</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Routaboul1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Routaboul</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Kerhoas</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Debeaujon</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Pourcel</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Caboche</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Flavonoid diversity and biosynthesis in seed of
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Planta</source>
<volume>224</volume>
:
<fpage>96</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="pmid">16395586</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Cominelli1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cominelli</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Gusmaroli</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Allegra</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Galbiati</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wade</surname>
<given-names>HK</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana</article-title>
.
<source>J Plant Physiol</source>
<volume>165</volume>
:
<fpage>886</fpage>
<lpage>894</lpage>
<pub-id pub-id-type="pmid">17766004</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Rabino1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rabino</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Mancinelli</surname>
<given-names>AL</given-names>
</name>
(
<year>1986</year>
)
<article-title>Light, temperature, and anthocyanin production</article-title>
.
<source>Plant Physiol</source>
<volume>81</volume>
:
<fpage>922</fpage>
<lpage>924</lpage>
<pub-id pub-id-type="pmid">16664926</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Larkin1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Larkin</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Blackshields</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Chenna</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>McGettigan</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Clustal W and Clustal X version 2.0</article-title>
.
<source>Bioinformatics</source>
<volume>23</volume>
:
<fpage>2947</fpage>
<lpage>2948</lpage>
<pub-id pub-id-type="pmid">17846036</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Tamura1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
(
<year>2007</year>
)
<article-title>MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0</article-title>
.
<source>Mol Biol Evol</source>
<volume>24</volume>
:
<fpage>1596</fpage>
<lpage>1599</lpage>
<pub-id pub-id-type="pmid">17488738</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Shen1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shen</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Forde</surname>
<given-names>BG</given-names>
</name>
(
<year>1989</year>
)
<article-title>Efficient transformation of
<italic>Agrobacterium</italic>
spp. by high voltage electroporation</article-title>
.
<source>Nucleic Acids Res</source>
<volume>17</volume>
:
<fpage>8385</fpage>
<pub-id pub-id-type="pmid">2682529</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Cui1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cui</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Takayanagi</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kamada</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Nishimura</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Handa</surname>
<given-names>T</given-names>
</name>
(
<year>2001</year>
)
<article-title>Efficient shoot regeneration from hairy roots of
<italic>Antirrhinum majus</italic>
L. transformed by the rol type MAT vector system</article-title>
.
<source>Plant Cell Rep</source>
<volume>20</volume>
:
<fpage>55</fpage>
<lpage>59</lpage>
</mixed-citation>
</ref>
<ref id="pone.0077891-Shi1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shi</surname>
<given-names>YH</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>SW</given-names>
</name>
,
<name>
<surname>Mao</surname>
<given-names>XZ</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>JX</given-names>
</name>
,
<name>
<surname>Qin</surname>
<given-names>YM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
:
<fpage>651</fpage>
<lpage>664</lpage>
<pub-id pub-id-type="pmid">16461577</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Higo1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Higo</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Ugawa</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Iwamoto</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Korenaga</surname>
<given-names>T</given-names>
</name>
(
<year>1999</year>
)
<article-title>Plant cis-acting regulatory DNA elements (PLACE) database: 1999</article-title>
.
<source>Nucleic Acids Res</source>
<volume>27</volume>
:
<fpage>297</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="pmid">9847208</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Voinnet1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Voinnet</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Rivas</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mestre</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Baulcombe</surname>
<given-names>D</given-names>
</name>
(
<year>2003</year>
)
<article-title>An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus</article-title>
.
<source>Plant J</source>
<volume>33</volume>
:
<fpage>949</fpage>
<lpage>956</lpage>
<pub-id pub-id-type="pmid">12609035</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Jefferson1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jefferson</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Kavanagh</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Bevan</surname>
<given-names>MW</given-names>
</name>
(
<year>1987</year>
)
<article-title>GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants</article-title>
.
<source>EMBO J</source>
<volume>6</volume>
:
<fpage>3901</fpage>
<pub-id pub-id-type="pmid">3327686</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Xiao1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xiao</surname>
<given-names>YH</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>ZS</given-names>
</name>
,
<name>
<surname>Yin</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>XB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Cotton flavonoid structural genes related to the pigmentation in brown fibers</article-title>
.
<source>Biochem Biophys Res Commun</source>
<volume>358</volume>
:
<fpage>73</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">17482578</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Li1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>YJ</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>FX</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>A comparative proteomic analysis provides insights into pigment biosynthesis in brown colored fiber</article-title>
.
<source>J proteomics</source>
<volume>78</volume>
:
<fpage>374</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="pmid">23079072</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Takos1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Takos</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Jaffé</surname>
<given-names>FW</given-names>
</name>
,
<name>
<surname>Jacob</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Bogs</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Robinson</surname>
<given-names>SP</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples</article-title>
.
<source>Plant Physiol</source>
<volume>142</volume>
:
<fpage>1216</fpage>
<lpage>1232</lpage>
<pub-id pub-id-type="pmid">17012405</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Albert1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Albert</surname>
<given-names>NW</given-names>
</name>
,
<name>
<surname>Lewis</surname>
<given-names>DH</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Schwinn</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Jameson</surname>
<given-names>PE</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning</article-title>
.
<source>Plant J</source>
<volume>65</volume>
:
<fpage>771</fpage>
<lpage>784</lpage>
<pub-id pub-id-type="pmid">21235651</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Kui1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kui</surname>
<given-names>LW</given-names>
</name>
,
<name>
<surname>Bolitho</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Grafton</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kortstee</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Karunairetnam</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae</article-title>
.
<source>BMC Plant Biol</source>
<volume>10</volume>
:
<fpage>50</fpage>
<pub-id pub-id-type="pmid">20302676</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Rose1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rose</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Meier</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Wienand</surname>
<given-names>U</given-names>
</name>
(
<year>1999</year>
)
<article-title>The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins</article-title>
.
<source>Plant J</source>
<volume>20</volume>
:
<fpage>641</fpage>
<lpage>652</lpage>
<pub-id pub-id-type="pmid">10652136</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Agius1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agius</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Amaya</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Botella</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Valpuesta</surname>
<given-names>V</given-names>
</name>
(
<year>2005</year>
)
<article-title>Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression</article-title>
.
<source>J Exp Bot</source>
<volume>56</volume>
:
<fpage>37</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">15533885</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Butelli1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Butelli</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Licciardello</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Mackay</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges</article-title>
.
<source>Plant Cell</source>
<volume>24</volume>
:
<fpage>1242</fpage>
<lpage>1255</lpage>
<pub-id pub-id-type="pmid">22427337</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Kobayashi2">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kobayashi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ishimaru</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Hiraoka</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Honda</surname>
<given-names>C</given-names>
</name>
(
<year>2002</year>
)
<article-title>Myb-related genes of the Kyoho grape (
<italic>Vitis labruscana</italic>
) regulate anthocyanin biosynthesis</article-title>
.
<source>Planta</source>
<volume>215</volume>
:
<fpage>924</fpage>
<lpage>933</lpage>
<pub-id pub-id-type="pmid">12355152</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Pattanaik1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pattanaik</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kong</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Zaitlin</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Werkman</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Xie</surname>
<given-names>CH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco</article-title>
.
<source>Planta</source>
<volume>231</volume>
:
<fpage>1061</fpage>
<lpage>1076</lpage>
<pub-id pub-id-type="pmid">20157728</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Zimmermann1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zimmermann</surname>
<given-names>IM</given-names>
</name>
,
<name>
<surname>Heim</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Weisshaar</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Uhrig</surname>
<given-names>JF</given-names>
</name>
(
<year>2004</year>
)
<article-title>Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins</article-title>
.
<source>Plant J</source>
<volume>40</volume>
:
<fpage>22</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">15361138</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Piazza1">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Piazza</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Procissi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Jenkins</surname>
<given-names>GI</given-names>
</name>
,
<name>
<surname>Tonelli</surname>
<given-names>C</given-names>
</name>
(
<year>2002</year>
)
<article-title>Members of the
<italic>c1/pl1</italic>
regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins</article-title>
.
<source>Plant Physiol</source>
<volume>128</volume>
:
<fpage>1077</fpage>
<lpage>1086</lpage>
<pub-id pub-id-type="pmid">11891262</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Matus1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matus</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Loyola</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Vega</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Peña-Neira</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bordeu</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of
<italic>Vitis vinifera</italic>
</article-title>
.
<source>J Exp Bot</source>
<volume>60</volume>
:
<fpage>853</fpage>
<lpage>867</lpage>
<pub-id pub-id-type="pmid">19129169</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Page1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Page</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sultana</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Paszkiewicz</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Florance</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Smirnoff</surname>
<given-names>N</given-names>
</name>
(
<year>2011</year>
)
<article-title>The influence of ascorbate on anthocyanin accumulation during high light acclimation in
<italic>Arabidopsis thaliana</italic>
: further evidence for redox control of anthocyanin synthesis</article-title>
.
<source>Plant Cell Environ</source>
<volume>35</volume>
:
<fpage>388</fpage>
<lpage>404</lpage>
<pub-id pub-id-type="pmid">21631536</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Li2">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>YY</given-names>
</name>
,
<name>
<surname>Mao</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>HL</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple</article-title>
.
<source>Plant Physiol</source>
<volume>160</volume>
:
<fpage>1011</fpage>
<lpage>1022</lpage>
<pub-id pub-id-type="pmid">22855936</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Cone1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cone</surname>
<given-names>KC</given-names>
</name>
,
<name>
<surname>Cocciolone</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Burr</surname>
<given-names>FA</given-names>
</name>
,
<name>
<surname>Burr</surname>
<given-names>B</given-names>
</name>
(
<year>1993</year>
)
<article-title>Maize anthocyanin regulatory gene
<italic>pl</italic>
is a duplicate of
<italic>c1</italic>
that functions in the plant</article-title>
.
<source>Plant Cell</source>
<volume>5</volume>
:
<fpage>1795</fpage>
<lpage>1805</lpage>
<pub-id pub-id-type="pmid">8305872</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0077891-Giuliano1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Giuliano</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Pichersky</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Malik</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Timko</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Scolnik</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>1988</year>
)
<article-title>An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>85</volume>
:
<fpage>7089</fpage>
<lpage>7093</lpage>
<pub-id pub-id-type="pmid">2902624</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0011700 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0011700 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024