Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H2O2 Tolerances in Arabidopsis

Identifieur interne : 001165 ( Pmc/Corpus ); précédent : 001164; suivant : 001166

Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H2O2 Tolerances in Arabidopsis

Auteurs : Chao-Zeng Zhai ; Lei Zhao ; Li-Juan Yin ; Ming Chen ; Qing-Yu Wang ; Lian-Cheng Li ; Zhao-Shi Xu ; You-Zhi Ma

Source :

RBID : PMC:3788784

Abstract

Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2) involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.


Url:
DOI: 10.1371/journal.pone.0073989
PubMed: 24098330
PubMed Central: 3788784

Links to Exploration step

PMC:3788784

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H
<sub>2</sub>
O
<sub>2</sub>
Tolerances in
<italic>Arabidopsis</italic>
</title>
<author>
<name sortKey="Zhai, Chao Zeng" sort="Zhai, Chao Zeng" uniqKey="Zhai C" first="Chao-Zeng" last="Zhai">Chao-Zeng Zhai</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lei" sort="Zhao, Lei" uniqKey="Zhao L" first="Lei" last="Zhao">Lei Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>College of Plant Science, Jilin University, Changchun, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Li Juan" sort="Yin, Li Juan" uniqKey="Yin L" first="Li-Juan" last="Yin">Li-Juan Yin</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ming" sort="Chen, Ming" uniqKey="Chen M" first="Ming" last="Chen">Ming Chen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qing Yu" sort="Wang, Qing Yu" uniqKey="Wang Q" first="Qing-Yu" last="Wang">Qing-Yu Wang</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>College of Plant Science, Jilin University, Changchun, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Lian Cheng" sort="Li, Lian Cheng" uniqKey="Li L" first="Lian-Cheng" last="Li">Lian-Cheng Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Zhao Shi" sort="Xu, Zhao Shi" uniqKey="Xu Z" first="Zhao-Shi" last="Xu">Zhao-Shi Xu</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, You Zhi" sort="Ma, You Zhi" uniqKey="Ma Y" first="You-Zhi" last="Ma">You-Zhi Ma</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24098330</idno>
<idno type="pmc">3788784</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788784</idno>
<idno type="RBID">PMC:3788784</idno>
<idno type="doi">10.1371/journal.pone.0073989</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H
<sub>2</sub>
O
<sub>2</sub>
Tolerances in
<italic>Arabidopsis</italic>
</title>
<author>
<name sortKey="Zhai, Chao Zeng" sort="Zhai, Chao Zeng" uniqKey="Zhai C" first="Chao-Zeng" last="Zhai">Chao-Zeng Zhai</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lei" sort="Zhao, Lei" uniqKey="Zhao L" first="Lei" last="Zhao">Lei Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>College of Plant Science, Jilin University, Changchun, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yin, Li Juan" sort="Yin, Li Juan" uniqKey="Yin L" first="Li-Juan" last="Yin">Li-Juan Yin</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ming" sort="Chen, Ming" uniqKey="Chen M" first="Ming" last="Chen">Ming Chen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qing Yu" sort="Wang, Qing Yu" uniqKey="Wang Q" first="Qing-Yu" last="Wang">Qing-Yu Wang</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>College of Plant Science, Jilin University, Changchun, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Lian Cheng" sort="Li, Lian Cheng" uniqKey="Li L" first="Lian-Cheng" last="Li">Lian-Cheng Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Zhao Shi" sort="Xu, Zhao Shi" uniqKey="Xu Z" first="Zhao-Shi" last="Xu">Zhao-Shi Xu</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, You Zhi" sort="Ma, You Zhi" uniqKey="Ma Y" first="You-Zhi" last="Ma">You-Zhi Ma</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study,
<italic>W69</italic>
and
<italic>W106</italic>
, two putative GPX genes, were obtained by
<italic>de novo</italic>
transcriptome sequencing of salt-treated wheat (
<italic>Triticum aestivum</italic>
) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H
<sub>2</sub>
O
<sub>2</sub>
and
<italic>t</italic>
-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor
<italic>in vitro,</italic>
showing their peroxidase activity toward H
<sub>2</sub>
O
<sub>2</sub>
and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H
<sub>2</sub>
O
<sub>2,</sub>
or ABA. Isolation of the
<italic>W69</italic>
and
<italic>W106</italic>
promoters revealed some
<italic>cis</italic>
-acting elements responding to abiotic stresses. Overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
conferred strong tolerance to salt, H
<sub>2</sub>
O
<sub>2</sub>
, and ABA treatment in
<italic>Arabidopsis</italic>
. Moreover, the expression levels of key regulator genes (
<italic>SOS1, RbohD</italic>
and
<italic>ABI1/ABI2</italic>
) involved in salt, H
<sub>2</sub>
O
<sub>2</sub>
and ABA signaling were altered in the transgenic plants. These findings suggest that
<italic>W69</italic>
and
<italic>W106</italic>
not only act as scavengers of H
<sub>2</sub>
O
<sub>2</sub>
in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartoli, Cg" uniqKey="Bartoli C">CG Bartoli</name>
</author>
<author>
<name sortKey="Simontacchi, M" uniqKey="Simontacchi M">M Simontacchi</name>
</author>
<author>
<name sortKey="Tambussi, E" uniqKey="Tambussi E">E Tambussi</name>
</author>
<author>
<name sortKey="Beltrano, J" uniqKey="Beltrano J">J Beltrano</name>
</author>
<author>
<name sortKey="Montaldi, E" uniqKey="Montaldi E">E Montaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Mm" uniqKey="Rodriguez M">MM Rodriguez</name>
</author>
<author>
<name sortKey="Maurer, A" uniqKey="Maurer A">A Maurer</name>
</author>
<author>
<name sortKey="Rodriguez, Ha" uniqKey="Rodriguez H">HA Rodriguez</name>
</author>
<author>
<name sortKey="Gustafson, Jp" uniqKey="Gustafson J">JP Gustafson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
<author>
<name sortKey="Vanderauwera, S" uniqKey="Vanderauwera S">S Vanderauwera</name>
</author>
<author>
<name sortKey="Gollery, M" uniqKey="Gollery M">M Gollery</name>
</author>
<author>
<name sortKey="Van Breusegem, F" uniqKey="Van Breusegem F">F Van Breusegem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Victor, Vm" uniqKey="Victor V">VM Victor</name>
</author>
<author>
<name sortKey="Rocha, M" uniqKey="Rocha M">M Rocha</name>
</author>
<author>
<name sortKey="De La Fuente, M" uniqKey="De La Fuente M">M De la Fuente</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Cc" uniqKey="Chang C">CC Chang</name>
</author>
<author>
<name sortKey="Slesak, I" uniqKey="Slesak I">I Slesak</name>
</author>
<author>
<name sortKey="Jorda, L" uniqKey="Jorda L">L Jorda</name>
</author>
<author>
<name sortKey="Sotnikov, A" uniqKey="Sotnikov A">A Sotnikov</name>
</author>
<author>
<name sortKey="Melzer, M" uniqKey="Melzer M">M Melzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccord, Jm" uniqKey="Mccord J">JM McCord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, A" uniqKey="Levine A">A Levine</name>
</author>
<author>
<name sortKey="Tenhaken, R" uniqKey="Tenhaken R">R Tenhaken</name>
</author>
<author>
<name sortKey="Dixon, R" uniqKey="Dixon R">R Dixon</name>
</author>
<author>
<name sortKey="Lamb, C" uniqKey="Lamb C">C Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roxas, Vp" uniqKey="Roxas V">VP Roxas</name>
</author>
<author>
<name sortKey="Lodhi, Sa" uniqKey="Lodhi S">SA Lodhi</name>
</author>
<author>
<name sortKey="Garrett, Dk" uniqKey="Garrett D">DK Garrett</name>
</author>
<author>
<name sortKey="Mahan, Jr" uniqKey="Mahan J">JR Mahan</name>
</author>
<author>
<name sortKey="Allen, Rd" uniqKey="Allen R">RD Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ursini, F" uniqKey="Ursini F">F Ursini</name>
</author>
<author>
<name sortKey="Maiorino, M" uniqKey="Maiorino M">M Maiorino</name>
</author>
<author>
<name sortKey="Brigelius Flohe, R" uniqKey="Brigelius Flohe R">R Brigelius-Flohe</name>
</author>
<author>
<name sortKey="Aumann, Kd" uniqKey="Aumann K">KD Aumann</name>
</author>
<author>
<name sortKey="Roveri, A" uniqKey="Roveri A">A Roveri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Margis, R" uniqKey="Margis R">R Margis</name>
</author>
<author>
<name sortKey="Dunand, C" uniqKey="Dunand C">C Dunand</name>
</author>
<author>
<name sortKey="Teixeira, Fk" uniqKey="Teixeira F">FK Teixeira</name>
</author>
<author>
<name sortKey="Margis Pinheiro, M" uniqKey="Margis Pinheiro M">M Margis-Pinheiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhn, H" uniqKey="Kuhn H">H Kuhn</name>
</author>
<author>
<name sortKey="Borchert, A" uniqKey="Borchert A">A Borchert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vernet, P" uniqKey="Vernet P">P Vernet</name>
</author>
<author>
<name sortKey="Aitken, Rj" uniqKey="Aitken R">RJ Aitken</name>
</author>
<author>
<name sortKey="Drevet, Jr" uniqKey="Drevet J">JR Drevet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aitken, Rj" uniqKey="Aitken R">RJ Aitken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maiorino, M" uniqKey="Maiorino M">M Maiorino</name>
</author>
<author>
<name sortKey="Aumann, Kd" uniqKey="Aumann K">KD Aumann</name>
</author>
<author>
<name sortKey="Brigelius Flohe, R" uniqKey="Brigelius Flohe R">R Brigelius-Flohe</name>
</author>
<author>
<name sortKey="Doria, D" uniqKey="Doria D">D Doria</name>
</author>
<author>
<name sortKey="Van Den Heuvel, J" uniqKey="Van Den Heuvel J">J van den Heuvel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imai, H" uniqKey="Imai H">H Imai</name>
</author>
<author>
<name sortKey="Narashima, K" uniqKey="Narashima K">K Narashima</name>
</author>
<author>
<name sortKey="Arai, M" uniqKey="Arai M">M Arai</name>
</author>
<author>
<name sortKey="Sakamoto, H" uniqKey="Sakamoto H">H Sakamoto</name>
</author>
<author>
<name sortKey="Chiba, N" uniqKey="Chiba N">N Chiba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bae, Ya" uniqKey="Bae Y">YA Bae</name>
</author>
<author>
<name sortKey="Cai, Gb" uniqKey="Cai G">GB Cai</name>
</author>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Zo, Yg" uniqKey="Zo Y">YG Zo</name>
</author>
<author>
<name sortKey="Kong, Y" uniqKey="Kong Y">Y Kong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, M" uniqKey="Schneider M">M Schneider</name>
</author>
<author>
<name sortKey="Vogt, Wd" uniqKey="Vogt W">WD Vogt</name>
</author>
<author>
<name sortKey="Seiler, A" uniqKey="Seiler A">A Seiler</name>
</author>
<author>
<name sortKey="Bornkamm, Gw" uniqKey="Bornkamm G">GW Bornkamm</name>
</author>
<author>
<name sortKey="Brielmeier, M" uniqKey="Brielmeier M">M Brielmeier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baek, Ij" uniqKey="Baek I">IJ Baek</name>
</author>
<author>
<name sortKey="Jung, Ky" uniqKey="Jung K">KY Jung</name>
</author>
<author>
<name sortKey="Yon, Jm" uniqKey="Yon J">JM Yon</name>
</author>
<author>
<name sortKey="Lee, Sr" uniqKey="Lee S">SR Lee</name>
</author>
<author>
<name sortKey="Lee, Bj" uniqKey="Lee B">BJ Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Criqui, Mc" uniqKey="Criqui M">MC Criqui</name>
</author>
<author>
<name sortKey="Jamet, E" uniqKey="Jamet E">E Jamet</name>
</author>
<author>
<name sortKey="Parmentier, Y" uniqKey="Parmentier Y">Y Parmentier</name>
</author>
<author>
<name sortKey="Marbach, J" uniqKey="Marbach J">J Marbach</name>
</author>
<author>
<name sortKey="Durr, A" uniqKey="Durr A">A Durr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Depege, N" uniqKey="Depege N">N Depege</name>
</author>
<author>
<name sortKey="Drevet, J" uniqKey="Drevet J">J Drevet</name>
</author>
<author>
<name sortKey="Boyer, N" uniqKey="Boyer N">N Boyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herbette, S" uniqKey="Herbette S">S Herbette</name>
</author>
<author>
<name sortKey="Menn, Al" uniqKey="Menn A">AL Menn</name>
</author>
<author>
<name sortKey="Rousselle, P" uniqKey="Rousselle P">P Rousselle</name>
</author>
<author>
<name sortKey="Ameglio, T" uniqKey="Ameglio T">T Ameglio</name>
</author>
<author>
<name sortKey="Faltin, Z" uniqKey="Faltin Z">Z Faltin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herbette, S" uniqKey="Herbette S">S Herbette</name>
</author>
<author>
<name sortKey="Roeckel Drevet, P" uniqKey="Roeckel Drevet P">P Roeckel-Drevet</name>
</author>
<author>
<name sortKey="Drevet, Jr" uniqKey="Drevet J">JR Drevet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roeckel Drevet, P" uniqKey="Roeckel Drevet P">P Roeckel-Drevet</name>
</author>
<author>
<name sortKey="Gagne, G" uniqKey="Gagne G">G Gagne</name>
</author>
<author>
<name sortKey="De Labrouhe, Dt" uniqKey="De Labrouhe D">DT De Labrouhe</name>
</author>
<author>
<name sortKey="Dufaure, Jp" uniqKey="Dufaure J">JP Dufaure</name>
</author>
<author>
<name sortKey="Nicolas, P" uniqKey="Nicolas P">P Nicolas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avsian Kretchmer, O" uniqKey="Avsian Kretchmer O">O Avsian-Kretchmer</name>
</author>
<author>
<name sortKey="Gueta Dahan, Y" uniqKey="Gueta Dahan Y">Y Gueta-Dahan</name>
</author>
<author>
<name sortKey="Lev Yadun, S" uniqKey="Lev Yadun S">S Lev-Yadun</name>
</author>
<author>
<name sortKey="Gollop, R" uniqKey="Gollop R">R Gollop</name>
</author>
<author>
<name sortKey="Ben Hayyim, G" uniqKey="Ben Hayyim G">G Ben-Hayyim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eshdat, Y" uniqKey="Eshdat Y">Y Eshdat</name>
</author>
<author>
<name sortKey="Holland, D" uniqKey="Holland D">D Holland</name>
</author>
<author>
<name sortKey="Faltin, Z" uniqKey="Faltin Z">Z Faltin</name>
</author>
<author>
<name sortKey="Ben Hayyim, G" uniqKey="Ben Hayyim G">G Ben-Hayyim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maiorino, M" uniqKey="Maiorino M">M Maiorino</name>
</author>
<author>
<name sortKey="Gregolin, C" uniqKey="Gregolin C">C Gregolin</name>
</author>
<author>
<name sortKey="Ursini, F" uniqKey="Ursini F">F Ursini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haluskova, L" uniqKey="Haluskova L">L Haluskova</name>
</author>
<author>
<name sortKey="Valentovicova, K" uniqKey="Valentovicova K">K Valentovicova</name>
</author>
<author>
<name sortKey="Huttova, J" uniqKey="Huttova J">J Huttova</name>
</author>
<author>
<name sortKey="Mistrik, I" uniqKey="Mistrik I">I Mistrik</name>
</author>
<author>
<name sortKey="Tamas, L" uniqKey="Tamas L">L Tamas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navrot, N" uniqKey="Navrot N">N Navrot</name>
</author>
<author>
<name sortKey="Collin, V" uniqKey="Collin V">V Collin</name>
</author>
<author>
<name sortKey="Gualberto, J" uniqKey="Gualberto J">J Gualberto</name>
</author>
<author>
<name sortKey="Gelhaye, E" uniqKey="Gelhaye E">E Gelhaye</name>
</author>
<author>
<name sortKey="Hirasawa, M" uniqKey="Hirasawa M">M Hirasawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmad, P" uniqKey="Ahmad P">P Ahmad</name>
</author>
<author>
<name sortKey="Jaleel, Ca" uniqKey="Jaleel C">CA Jaleel</name>
</author>
<author>
<name sortKey="Salem, Ma" uniqKey="Salem M">MA Salem</name>
</author>
<author>
<name sortKey="Nabi, G" uniqKey="Nabi G">G Nabi</name>
</author>
<author>
<name sortKey="Sharma, S" uniqKey="Sharma S">S Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iqbal, A" uniqKey="Iqbal A">A Iqbal</name>
</author>
<author>
<name sortKey="Yabuta, Y" uniqKey="Yabuta Y">Y Yabuta</name>
</author>
<author>
<name sortKey="Takeda, T" uniqKey="Takeda T">T Takeda</name>
</author>
<author>
<name sortKey="Nakano, Y" uniqKey="Nakano Y">Y Nakano</name>
</author>
<author>
<name sortKey="Shigeoka, S" uniqKey="Shigeoka S">S Shigeoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cummins, I" uniqKey="Cummins I">I Cummins</name>
</author>
<author>
<name sortKey="Cole, Dj" uniqKey="Cole D">DJ Cole</name>
</author>
<author>
<name sortKey="Edwards, R" uniqKey="Edwards R">R Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holland, D" uniqKey="Holland D">D Holland</name>
</author>
<author>
<name sortKey="Ben Hayyim, G" uniqKey="Ben Hayyim G">G Ben-Hayyim</name>
</author>
<author>
<name sortKey="Faltin, Z" uniqKey="Faltin Z">Z Faltin</name>
</author>
<author>
<name sortKey="Camoin, L" uniqKey="Camoin L">L Camoin</name>
</author>
<author>
<name sortKey="Strosberg, Ad" uniqKey="Strosberg A">AD Strosberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herbette, S" uniqKey="Herbette S">S Herbette</name>
</author>
<author>
<name sortKey="De Labrouhe, Dt" uniqKey="De Labrouhe D">DT de Labrouhe</name>
</author>
<author>
<name sortKey="Drevet, Jr" uniqKey="Drevet J">JR Drevet</name>
</author>
<author>
<name sortKey="Roeckel Drevet, P" uniqKey="Roeckel Drevet P">P Roeckel-Drevet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaber, A" uniqKey="Gaber A">A Gaber</name>
</author>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Maruta, T" uniqKey="Maruta T">T Maruta</name>
</author>
<author>
<name sortKey="Yoshimura, K" uniqKey="Yoshimura K">K Yoshimura</name>
</author>
<author>
<name sortKey="Tamoi, M" uniqKey="Tamoi M">M Tamoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Wj" uniqKey="Li W">WJ Li</name>
</author>
<author>
<name sortKey="Feng, H" uniqKey="Feng H">H Feng</name>
</author>
<author>
<name sortKey="Fan, Jh" uniqKey="Fan J">JH Fan</name>
</author>
<author>
<name sortKey="Zhang, Rq" uniqKey="Zhang R">RQ Zhang</name>
</author>
<author>
<name sortKey="Zhao, Nm" uniqKey="Zhao N">NM Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miao, Y" uniqKey="Miao Y">Y Miao</name>
</author>
<author>
<name sortKey="Lv, D" uniqKey="Lv D">D Lv</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
<author>
<name sortKey="Wang, Xc" uniqKey="Wang X">XC Wang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaber, A" uniqKey="Gaber A">A Gaber</name>
</author>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Maruta, T" uniqKey="Maruta T">T Maruta</name>
</author>
<author>
<name sortKey="Yoshimura, K" uniqKey="Yoshimura K">K Yoshimura</name>
</author>
<author>
<name sortKey="Tamoi, M" uniqKey="Tamoi M">M Tamoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Vaghchhipawala, Z" uniqKey="Vaghchhipawala Z">Z Vaghchhipawala</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Asard, H" uniqKey="Asard H">H Asard</name>
</author>
<author>
<name sortKey="Dickman, Mb" uniqKey="Dickman M">MB Dickman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slesak, I" uniqKey="Slesak I">I Slesak</name>
</author>
<author>
<name sortKey="Libik, M" uniqKey="Libik M">M Libik</name>
</author>
<author>
<name sortKey="Karpinska, B" uniqKey="Karpinska B">B Karpinska</name>
</author>
<author>
<name sortKey="Karpinski, S" uniqKey="Karpinski S">S Karpinski</name>
</author>
<author>
<name sortKey="Miszalski, Z" uniqKey="Miszalski Z">Z Miszalski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, Z" uniqKey="Xue Z">Z Xue</name>
</author>
<author>
<name sortKey="Zhi, D" uniqKey="Zhi D">D Zhi</name>
</author>
<author>
<name sortKey="Xue, G" uniqKey="Xue G">G Xue</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mount, S" uniqKey="Mount S">S Mount</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="George, S" uniqKey="George S">S George</name>
</author>
<author>
<name sortKey="Venkataraman, G" uniqKey="Venkataraman G">G Venkataraman</name>
</author>
<author>
<name sortKey="Parida, A" uniqKey="Parida A">A Parida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, H" uniqKey="Shi H">H Shi</name>
</author>
<author>
<name sortKey="Ishitani, M" uniqKey="Ishitani M">M Ishitani</name>
</author>
<author>
<name sortKey="Kim, C" uniqKey="Kim C">C Kim</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G Miller</name>
</author>
<author>
<name sortKey="Schlauch, K" uniqKey="Schlauch K">K Schlauch</name>
</author>
<author>
<name sortKey="Tam, R" uniqKey="Tam R">R Tam</name>
</author>
<author>
<name sortKey="Cortes, D" uniqKey="Cortes D">D Cortes</name>
</author>
<author>
<name sortKey="Torres, Ma" uniqKey="Torres M">MA Torres</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leung, J" uniqKey="Leung J">J Leung</name>
</author>
<author>
<name sortKey="Merlot, S" uniqKey="Merlot S">S Merlot</name>
</author>
<author>
<name sortKey="Giraudat, J" uniqKey="Giraudat J">J Giraudat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugimoto, M" uniqKey="Sugimoto M">M Sugimoto</name>
</author>
<author>
<name sortKey="Sakamoto, W" uniqKey="Sakamoto W">W Sakamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Churin, Y" uniqKey="Churin Y">Y Churin</name>
</author>
<author>
<name sortKey="Schilling, S" uniqKey="Schilling S">S Schilling</name>
</author>
<author>
<name sortKey="Borner, T" uniqKey="Borner T">T Borner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Xd" uniqKey="Yang X">XD Yang</name>
</author>
<author>
<name sortKey="Dong, Cj" uniqKey="Dong C">CJ Dong</name>
</author>
<author>
<name sortKey="Liu, Jy" uniqKey="Liu J">JY Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toppo, S" uniqKey="Toppo S">S Toppo</name>
</author>
<author>
<name sortKey="Vanin, S" uniqKey="Vanin S">S Vanin</name>
</author>
<author>
<name sortKey="Bosello, V" uniqKey="Bosello V">V Bosello</name>
</author>
<author>
<name sortKey="Tosatto, Sc" uniqKey="Tosatto S">SC Tosatto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
<author>
<name sortKey="Kang, M" uniqKey="Kang M">M Kang</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X Guo</name>
</author>
<author>
<name sortKey="Xu, B" uniqKey="Xu B">B Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faltin, Z" uniqKey="Faltin Z">Z Faltin</name>
</author>
<author>
<name sortKey="Holland, D" uniqKey="Holland D">D Holland</name>
</author>
<author>
<name sortKey="Velcheva, M" uniqKey="Velcheva M">M Velcheva</name>
</author>
<author>
<name sortKey="Tsapovetsky, M" uniqKey="Tsapovetsky M">M Tsapovetsky</name>
</author>
<author>
<name sortKey="Roeckel Drevet, P" uniqKey="Roeckel Drevet P">P Roeckel-Drevet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jannat, R" uniqKey="Jannat R">R Jannat</name>
</author>
<author>
<name sortKey="Uraji, M" uniqKey="Uraji M">M Uraji</name>
</author>
<author>
<name sortKey="Morofuji, M" uniqKey="Morofuji M">M Morofuji</name>
</author>
<author>
<name sortKey="Islam, Mm" uniqKey="Islam M">MM Islam</name>
</author>
<author>
<name sortKey="Bloom, Re" uniqKey="Bloom R">RE Bloom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramos, J" uniqKey="Ramos J">J Ramos</name>
</author>
<author>
<name sortKey="Matamoros, Ma" uniqKey="Matamoros M">MA Matamoros</name>
</author>
<author>
<name sortKey="Naya, L" uniqKey="Naya L">L Naya</name>
</author>
<author>
<name sortKey="James, Ek" uniqKey="James E">EK James</name>
</author>
<author>
<name sortKey="Rouhier, N" uniqKey="Rouhier N">N Rouhier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parida, Ak" uniqKey="Parida A">AK Parida</name>
</author>
<author>
<name sortKey="Das, Ab" uniqKey="Das A">AB Das</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacharjee, S" uniqKey="Bhattacharjee S">S Bhattacharjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Sw" uniqKey="Li S">SW Li</name>
</author>
<author>
<name sortKey="Xue, Lg" uniqKey="Xue L">LG Xue</name>
</author>
<author>
<name sortKey="Xu, Sj" uniqKey="Xu S">SJ Xu</name>
</author>
<author>
<name sortKey="Feng, Hy" uniqKey="Feng H">HY Feng</name>
</author>
<author>
<name sortKey="An, Lz" uniqKey="An L">LZ An</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Xue, L" uniqKey="Xue L">L Xue</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S Xu</name>
</author>
<author>
<name sortKey="Feng, H" uniqKey="Feng H">H Feng</name>
</author>
<author>
<name sortKey="An, L" uniqKey="An L">L An</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qi, Yc" uniqKey="Qi Y">YC Qi</name>
</author>
<author>
<name sortKey="Liu, Wq" uniqKey="Liu W">WQ Liu</name>
</author>
<author>
<name sortKey="Qiu, Ly" uniqKey="Qiu L">LY Qiu</name>
</author>
<author>
<name sortKey="Zhang, Sm" uniqKey="Zhang S">SM Zhang</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Shabrawi, H" uniqKey="El Shabrawi H">H El-Shabrawi</name>
</author>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B Kumar</name>
</author>
<author>
<name sortKey="Kaul, T" uniqKey="Kaul T">T Kaul</name>
</author>
<author>
<name sortKey="Reddy, Mk" uniqKey="Reddy M">MK Reddy</name>
</author>
<author>
<name sortKey="Singla Pareek, Sl" uniqKey="Singla Pareek S">SL Singla-Pareek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Cai, J" uniqKey="Cai J">J Cai</name>
</author>
<author>
<name sortKey="Jiang, D" uniqKey="Jiang D">D Jiang</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rouhier, N" uniqKey="Rouhier N">N Rouhier</name>
</author>
<author>
<name sortKey="Gelhaye, E" uniqKey="Gelhaye E">E Gelhaye</name>
</author>
<author>
<name sortKey="Gualberto, Jm" uniqKey="Gualberto J">JM Gualberto</name>
</author>
<author>
<name sortKey="Jordy, Mn" uniqKey="Jordy M">MN Jordy</name>
</author>
<author>
<name sortKey="De Fay, E" uniqKey="De Fay E">E De Fay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Himmelbach, A" uniqKey="Himmelbach A">A Himmelbach</name>
</author>
<author>
<name sortKey="Iten, M" uniqKey="Iten M">M Iten</name>
</author>
<author>
<name sortKey="Grill, E" uniqKey="Grill E">E Grill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zorb, C" uniqKey="Zorb C">C Zorb</name>
</author>
<author>
<name sortKey="Geilfus, Cm" uniqKey="Geilfus C">CM Geilfus</name>
</author>
<author>
<name sortKey="Muhling, Kh" uniqKey="Muhling K">KH Muhling</name>
</author>
<author>
<name sortKey="Ludwig Muller, J" uniqKey="Ludwig Muller J">J Ludwig-Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
<author>
<name sortKey="Zhang, A" uniqKey="Zhang A">A Zhang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pei, Zm" uniqKey="Pei Z">ZM Pei</name>
</author>
<author>
<name sortKey="Murata, Y" uniqKey="Murata Y">Y Murata</name>
</author>
<author>
<name sortKey="Benning, G" uniqKey="Benning G">G Benning</name>
</author>
<author>
<name sortKey="Thomine, S" uniqKey="Thomine S">S Thomine</name>
</author>
<author>
<name sortKey="Klusener, B" uniqKey="Klusener B">B Klusener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, N" uniqKey="Ye N">N Ye</name>
</author>
<author>
<name sortKey="Zhu, G" uniqKey="Zhu G">G Zhu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miao, Y" uniqKey="Miao Y">Y Miao</name>
</author>
<author>
<name sortKey="Lv, D" uniqKey="Lv D">D Lv</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
<author>
<name sortKey="Wang, Xc" uniqKey="Wang X">XC Wang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Livak, K" uniqKey="Livak K">K Livak</name>
</author>
<author>
<name sortKey="Schmittgen, T" uniqKey="Schmittgen T">T Schmittgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Zs" uniqKey="Xu Z">ZS Xu</name>
</author>
<author>
<name sortKey="Xia, Lq" uniqKey="Xia L">LQ Xia</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Cheng, Xg" uniqKey="Cheng X">XG Cheng</name>
</author>
<author>
<name sortKey="Zhang, Ry" uniqKey="Zhang R">RY Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Zs" uniqKey="Xu Z">ZS Xu</name>
</author>
<author>
<name sortKey="Ni, Zy" uniqKey="Ni Z">ZY Ni</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Nie, Ln" uniqKey="Nie L">LN Nie</name>
</author>
<author>
<name sortKey="Li, Lc" uniqKey="Li L">LC Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonetta, D" uniqKey="Bonetta D">D Bonetta</name>
</author>
<author>
<name sortKey="Mccourt, P" uniqKey="Mccourt P">P McCourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haake, V" uniqKey="Haake V">V Haake</name>
</author>
<author>
<name sortKey="Cook, D" uniqKey="Cook D">D Cook</name>
</author>
<author>
<name sortKey="Riechmann, Jl" uniqKey="Riechmann J">JL Riechmann</name>
</author>
<author>
<name sortKey="Pineda, O" uniqKey="Pineda O">O Pineda</name>
</author>
<author>
<name sortKey="Thomashow, Mf" uniqKey="Thomashow M">MF Thomashow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamaguchi Shinozaki, K" uniqKey="Yamaguchi Shinozaki K">K Yamaguchi-Shinozaki</name>
</author>
<author>
<name sortKey="Shinozaki, K" uniqKey="Shinozaki K">K Shinozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Sy" uniqKey="Kim S">SY Kim</name>
</author>
<author>
<name sortKey="Chung, Hj" uniqKey="Chung H">HJ Chung</name>
</author>
<author>
<name sortKey="Thomas, Tl" uniqKey="Thomas T">TL Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Hc" uniqKey="Park H">HC Park</name>
</author>
<author>
<name sortKey="Kim, Ml" uniqKey="Kim M">ML Kim</name>
</author>
<author>
<name sortKey="Kang, Yh" uniqKey="Kang Y">YH Kang</name>
</author>
<author>
<name sortKey="Jeon, Jm" uniqKey="Jeon J">JM Jeon</name>
</author>
<author>
<name sortKey="Yoo, Jh" uniqKey="Yoo J">JH Yoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urao, T" uniqKey="Urao T">T Urao</name>
</author>
<author>
<name sortKey="Yamaguchi Shinozaki, K" uniqKey="Yamaguchi Shinozaki K">K Yamaguchi-Shinozaki</name>
</author>
<author>
<name sortKey="Urao, S" uniqKey="Urao S">S Urao</name>
</author>
<author>
<name sortKey="Shinozaki, K" uniqKey="Shinozaki K">K Shinozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abe, H" uniqKey="Abe H">H Abe</name>
</author>
<author>
<name sortKey="Yamaguchi Shinozaki, K" uniqKey="Yamaguchi Shinozaki K">K Yamaguchi-Shinozaki</name>
</author>
<author>
<name sortKey="Urao, T" uniqKey="Urao T">T Urao</name>
</author>
<author>
<name sortKey="Iwasaki, T" uniqKey="Iwasaki T">T Iwasaki</name>
</author>
<author>
<name sortKey="Hosokawa, D" uniqKey="Hosokawa D">D Hosokawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gurley, Wb" uniqKey="Gurley W">WB Gurley</name>
</author>
<author>
<name sortKey="Key, Jl" uniqKey="Key J">JL Key</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itzhaki, H" uniqKey="Itzhaki H">H Itzhaki</name>
</author>
<author>
<name sortKey="Woodson, Wr" uniqKey="Woodson W">WR Woodson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, D" uniqKey="Yu D">D Yu</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutliff, Td" uniqKey="Sutliff T">TD Sutliff</name>
</author>
<author>
<name sortKey="Lanahan, Mb" uniqKey="Lanahan M">MB Lanahan</name>
</author>
<author>
<name sortKey="Ho, Th" uniqKey="Ho T">TH Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rouster, J" uniqKey="Rouster J">J Rouster</name>
</author>
<author>
<name sortKey="Leah, R" uniqKey="Leah R">R Leah</name>
</author>
<author>
<name sortKey="Mundy, J" uniqKey="Mundy J">J Mundy</name>
</author>
<author>
<name sortKey="Cameron Mills, V" uniqKey="Cameron Mills V">V Cameron-Mills</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakai, T" uniqKey="Sakai T">T Sakai</name>
</author>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Nagata, T" uniqKey="Nagata T">T Nagata</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24098330</article-id>
<article-id pub-id-type="pmc">3788784</article-id>
<article-id pub-id-type="publisher-id">PONE-D-13-14752</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0073989</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H
<sub>2</sub>
O
<sub>2</sub>
Tolerances in
<italic>Arabidopsis</italic>
</article-title>
<alt-title alt-title-type="running-head">Two Wheat GPXs Improve Salt and H
<sub>2</sub>
O
<sub>2</sub>
Tolerances</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Zhai</surname>
<given-names>Chao-Zeng</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Zhao</surname>
<given-names>Lei</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yin</surname>
<given-names>Li-Juan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Ming</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Qing-Yu</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Lian-Cheng</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Zhao-Shi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>You-Zhi</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>College of Plant Science, Jilin University, Changchun, China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Bennett</surname>
<given-names>Malcolm</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Nottingham, United Kingdom</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>xuzhaoshi@caas.cn</email>
(Z-SX);
<email>mayouzhi@caas.cn</email>
(Y-ZM)</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: ZSX YZM. Performed the experiments: CZZ LZ LJY. Analyzed the data: ZSX. Contributed reagents/materials/analysis tools: MC QYW LCL. Wrote the paper: ZSX CZZ.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>10</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>10</issue>
<elocation-id>e73989</elocation-id>
<history>
<date date-type="received">
<day>8</day>
<month>4</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Zhai et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study,
<italic>W69</italic>
and
<italic>W106</italic>
, two putative GPX genes, were obtained by
<italic>de novo</italic>
transcriptome sequencing of salt-treated wheat (
<italic>Triticum aestivum</italic>
) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H
<sub>2</sub>
O
<sub>2</sub>
and
<italic>t</italic>
-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor
<italic>in vitro,</italic>
showing their peroxidase activity toward H
<sub>2</sub>
O
<sub>2</sub>
and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H
<sub>2</sub>
O
<sub>2,</sub>
or ABA. Isolation of the
<italic>W69</italic>
and
<italic>W106</italic>
promoters revealed some
<italic>cis</italic>
-acting elements responding to abiotic stresses. Overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
conferred strong tolerance to salt, H
<sub>2</sub>
O
<sub>2</sub>
, and ABA treatment in
<italic>Arabidopsis</italic>
. Moreover, the expression levels of key regulator genes (
<italic>SOS1, RbohD</italic>
and
<italic>ABI1/ABI2</italic>
) involved in salt, H
<sub>2</sub>
O
<sub>2</sub>
and ABA signaling were altered in the transgenic plants. These findings suggest that
<italic>W69</italic>
and
<italic>W106</italic>
not only act as scavengers of H
<sub>2</sub>
O
<sub>2</sub>
in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.</p>
</abstract>
<funding-group>
<funding-statement>This research was financially supported by the Natural Science Foundation of China (31171546) and the National 863 High-tech Project (2012AA10A309). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="13"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>In higher plant cells, several metabolic processes (e.g. photosynthesis and respiration) and adverse environmental conditions (e.g. high-salt, drought, mechanical stimulation, chemical toxicity, pathogen infections and extreme temperatures) promote generation of reactive oxygen species (ROS), including hydroxyl radicals (OH), superoxide radicals (O
<sub>2</sub>
<sup>·−</sup>
), and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
)
<xref ref-type="bibr" rid="pone.0073989-Bartoli1">[1]</xref>
<xref ref-type="bibr" rid="pone.0073989-Chang1">[5]</xref>
. ROS are capable of causing damage to membrane lipids, proteins and nucleic acids and these highly reactive molecules are believed to be the major contributing factors in causing rapid cell damage
<xref ref-type="bibr" rid="pone.0073989-McCord1">[6]</xref>
. Exogenous H
<sub>2</sub>
O
<sub>2</sub>
induces the expression of defense genes as well as initiating programmed cell death in plants
<xref ref-type="bibr" rid="pone.0073989-Levine1">[7]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Desikan1">[8]</xref>
. The steady-state level of ROS is mainly determined by the activity of antioxidant system in plant cells
<xref ref-type="bibr" rid="pone.0073989-Depege1">[9]</xref>
. Several endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) play important roles in protecting plants cell from oxidative injury
<xref ref-type="bibr" rid="pone.0073989-Roxas1">[10]</xref>
. GPX is a key enzyme for scavenging H
<sub>2</sub>
O
<sub>2</sub>
in plant cells
<xref ref-type="bibr" rid="pone.0073989-Mittler2">[11]</xref>
.</p>
<p>As an antioxidant enzyme, GPX in mammals reduces H
<sub>2</sub>
O
<sub>2</sub>
and organic hydroperoxides to water and correspondingly alcohols using glutathione (GSH) to protect cells from oxidative damage
<xref ref-type="bibr" rid="pone.0073989-Ursini1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Margis1">[13]</xref>
. Based on their amino acid sequences, substrate specificity, and tissue localization, the GPX family in mammals can be divided into five classes, cytosolic GPX (GPX1), gastro-intestinal GPX (GPX2), plasma GPX (GPX3), phospholipid hydroperoxide GPX (PHGPX, also called GPX4), and seleno-independent epididymis GPX (GPX5)
<xref ref-type="bibr" rid="pone.0073989-Ursini1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Kuhn1">[14]</xref>
. Among GPX isoforms, vertebrate GPX5 proteins lack the selenocysteine residue replaced by a cysteine residue in the catalytic site
<xref ref-type="bibr" rid="pone.0073989-Vernet1">[15]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Aitken1">[16]</xref>
. The selenocysteine residue in its presumed catalytic site is important for the catalytic activity of GPXs, but the replacement of selenocysteine by cysteine greatly reduces the activity of enzymes in animals
<xref ref-type="bibr" rid="pone.0073989-Maiorino1">[17]</xref>
. PHGPX is an antioxidant selenoenzyme present in a variety of adult and embryonic tissues. It is the principal basis of a defense system that intimately participates in the repair of disrupted biomembranes by interacting directly with peroxidized phospholipids in biomembranes
<xref ref-type="bibr" rid="pone.0073989-Imai1">[18]</xref>
<xref ref-type="bibr" rid="pone.0073989-Baek1">[21]</xref>
.</p>
<p>The plant GPX family shares highest sequence homology to animal PHGPXs, rather than to any of the other members of the animal GPX family
<xref ref-type="bibr" rid="pone.0073989-Criqui1">[22]</xref>
<xref ref-type="bibr" rid="pone.0073989-RoeckelDrevet1">[26]</xref>
. These proteins from plants possess a Cys residue, rather than selenoCys, in their presumed catalytic site, suggesting that GPX in plant is not a Se-dependent protein
<xref ref-type="bibr" rid="pone.0073989-AvsianKretchmer1">[27]</xref>
. However, Amino acid replacement of the catalytic selenoCys by Cys results in a relatively low activity in plants compared to homologous animal GPXs
<xref ref-type="bibr" rid="pone.0073989-Eshdat1">[28]</xref>
. GPXs are ubiquitously occurring enzymes in subcellular organelles, including the cytosol, nucleus, chloroplast, mitochondria, and peroxisome, where GPXs use GSH or thioredoxin (Trx) as a reducing agent to reduce H
<sub>2</sub>
O
<sub>2</sub>
, organic hydroperoxide, and lipid hydroperoxides
<xref ref-type="bibr" rid="pone.0073989-Rodriguez1">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Ursini1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Maiorino2">[29]</xref>
<xref ref-type="bibr" rid="pone.0073989-Ahmad1">[32]</xref>
. Plant GPX isoenzymes display an obvious preference to Trx
<xref ref-type="bibr" rid="pone.0073989-Herbette1">[24]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Iqbal1">[33]</xref>
.</p>
<p>Besides GPXs another group of enzymes capable of scavenging peroxides in plants have been studied extensively. It is known that certain plant glutathione-S-transferase (GST) displayed also strong GPX activity (GST/GPX) toward organic hydroperoxides catalysing their reduction to the less toxic alcohols
<xref ref-type="bibr" rid="pone.0073989-Cummins1">[34]</xref>
.</p>
<p>Plant GPXs are involved in responses to many abiotic stresses and hormones
<xref ref-type="bibr" rid="pone.0073989-AvsianKretchmer1">[27]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Holland1">[35]</xref>
<xref ref-type="bibr" rid="pone.0073989-Gaber1">[37]</xref>
. A rice
<italic>GPX</italic>
gene was strongly expressed in normal tissues of high photosynthetic efficiency as well as in tissues stimulated by oxidative stresses
<xref ref-type="bibr" rid="pone.0073989-Li1">[38]</xref>
. Overexpression of the tobacco
<italic>GST/GPX</italic>
gene confers salt and chilling tolerance due to enhanced ROS scavenging and reduces membrane damage in transgenic tobacco plants
<xref ref-type="bibr" rid="pone.0073989-Roxas1">[10]</xref>
. It was demonstrated that
<italic>Arabidopsis</italic>
GPX3 plays dual roles in H
<sub>2</sub>
O
<sub>2</sub>
scavenging and ABA signal transduction
<xref ref-type="bibr" rid="pone.0073989-Miao1">[39]</xref>
. Furthermore, chloroplastic GPXs in
<italic>Arabidopsis</italic>
play a role in cross talk between photooxidative stress and immune responses
<xref ref-type="bibr" rid="pone.0073989-Chang1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Gaber2">[40]</xref>
. As has been reported, expressing a tomato PHGPx in tobacco could prevent Bax induced cell death, indicating the role of GPX in PCD in plant
<xref ref-type="bibr" rid="pone.0073989-Chen1">[41]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Slesak1">[42]</xref>
.</p>
<p>Wheat (
<italic>Triticum aestivum</italic>
L.) is one of the most important cereal crops in the world; however, ROS accumulation in cells induced by environmental stresses can cause severe oxidative damage to wheat growth and grain yield
<xref ref-type="bibr" rid="pone.0073989-Xue1">[43]</xref>
. At present, there is no report on the role of GPXs in protecting wheat plants from oxidative damage. In this study, we isolated two wheat cDNAs encoding GPX proteins for the first time by
<italic>de novo</italic>
transcriptome assembly technology. The isoenzymatic characteristics, subcellular localization, and transcript accumulation of the recombinant protein when transgenic plants were subjected to different stresses were investigated.</p>
</sec>
<sec id="s2">
<title>Results</title>
<sec id="s2a">
<title>Isolation and characterization of
<italic>W69</italic>
and
<italic>W106</italic>
</title>
<p>We generated an extensive expressed gene catalog for salt-treated wheat using Illumina mRNA Sequencing technology and
<italic>de novo</italic>
assembly (unpublished data). Two up-regulated putative GPX cDNA fragments, designated as
<italic>W69</italic>
(GenBank Accession No. KF031945) and
<italic>W106</italic>
(GenBank Accession No. KF031946), were selected from the total transcript-derived assembled unigenes. Full-length cDNA of
<italic>W69</italic>
and
<italic>W106</italic>
were cloned successfully from wheat cDNA by reverse transcription PCR (RT-PCR) using special primers sets. The predicted W69 protein consists of 214 amino acids with a calculated molecular mass of 21.3 kD, and W106 protein consists of 211 amino acids and calculated molecular mass of 19.2 kD. Multiple sequence alignment of W69 and W106 with other reported GPXs from animals and plants showed that some motifs of GPXs were conserved among different species (
<xref ref-type="fig" rid="pone-0073989-g001">Fig. 1A</xref>
). Three completely conserved motifs GKVLLIVNVASRCG (GPX signature 1), LAFPCNQ (GPX signature 2), and WNF(S/T)KF) existed within most plant and mammalian GPX sequences. Cysteine residues coded by UGU located in the “GPX signature 1” are the specific structure of selenium-independent plant GPXs, whereas selenium-dependent HsGPXs from mammals possess a seleno-cysteine residue coded by UGA (
<xref ref-type="fig" rid="pone-0073989-g001">Fig. 1A</xref>
). A phylogenetic tree of GPXs from plants revealed that GST family can be classified into five classes. W69 and W106 belong to one group located to chloroplasts (
<xref ref-type="fig" rid="pone-0073989-g002">Fig. 2B</xref>
).</p>
<fig id="pone-0073989-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Alignment of W69 and W106 with other GPXs from plants and their exon-intron structures.</title>
<p>(A) Alignment of GPX protein sequences with other species:
<italic>Oryza sativa</italic>
(OsGPX01, accession number: NC008397),
<italic>Zea mays</italic>
(ZmGPX01, AY542310) and
<italic>Homo sapiens</italic>
(HsGPX04, P36969). Gray background represents strictly conserved amino acids. Boxed sequences represent highly conserved domains (G1,G2,and G3). The SeCys residues of the mammalian PHGPXs (HsGPX04) are denoted by “U”, the three conserved Cys of these isoenzymes are marked by inverted triangles. (B) Exon-intron structure of the
<italic>GPX</italic>
homologs. The chromosomal structures of the
<italic>GPXs</italic>
were constructed by comparing mRNA sequences with their respective genomic sequences. The length of each exon (square) and intron (line) is given. The
<italic>W69</italic>
gene starts with ATG at position 75 bp in exon 1 and ends with TAG at position 81 bp in exon 6; the
<italic>W106</italic>
gene starts with ATG at position 56 bp in exon 1 and ends by TGA at position 29 bp in exon 6.</p>
</caption>
<graphic xlink:href="pone.0073989.g001"></graphic>
</fig>
<fig id="pone-0073989-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Phylogenetic tree of W69 and W106 with other GPXs from plants.</title>
<p>All GPXs proteins were clustered using ClustalX, and the phylogenetic tree was generated by MEGA5 using the neighbor-joining algorithm. In addition to the sequences of W69 and W106, the tree was constructed using sequences from
<italic>Arabidopsis thaliana</italic>
: AtGPX01, At2g25080; AtGPX02, At2g31570; AtGPX03, At2g43350; AtGPX04, At2g48150; AtGPX05, At3g63080; AtGPX06, At4g11600; AtGPX07, At4g31870; AtGPX08, At1g63460.
<italic>Brassica napus</italic>
: BnGPx01, ADI58543; BnGPx02-1, AC189433; BnGPx04, ES268656; BnGPx08, TC10360.
<italic>Citrus sinensis</italic>
: CsGPx06, X66377.
<italic>Gossypium hirsutum</italic>
: GhGPx01, AI729829; GhGPx04, DV849230; GhGPx05, DW496848; GhGPx08, DW518187.
<italic>Helianthus annuus</italic>
: HaGPx02, CX945161; HaGPx04, CX947851.
<italic>Hevea brasiliensis</italic>
: HbGPx02, EC609359.
<italic>Hordeum vulgare</italic>
, HvGPx02, AK357226.
<italic>Lycopersicon esculentum</italic>
: LeGPX01, BI934604; LeGPx02, AY301280; LeGPX08, DB689713.
<italic>Medicago truncatula</italic>
: MtGPx01, AC143339; MchGPx02, AF346906.
<italic>Nicotiana tabacum</italic>
: NtGPx01a, DV999781.
<italic>Oryza sativa ssp japonica cv Nipponbare</italic>
: OsGPx01, NC008397; OsGPx02, NC008396; OsGPx03, NC008395; OsGPx04, NC008399; OsGPx05, NC008404.
<italic>Pisum sativum</italic>
: PsGPx01, AJ000508.
<italic>Populus trichocarpa</italic>
: PtGPX08, EEE84340.
<italic>Selaginella moellendorffii</italic>
: SmGPx01a, DN838361.
<italic>Sorghum bicolor</italic>
: SbGPx01, AAT42166;
<italic>Spinacia oleracea</italic>
: SoGPx06, D63425.
<italic>Triticum aestivum</italic>
: TaGPX01, AJ010455; TaGPx03, JP214946.
<italic>Vitis vinifera</italic>
: VvGPX08, EE064395.
<italic>Zea mays</italic>
: ZmGPx01, AY542310; ZmGPX04, EU971245.</p>
</caption>
<graphic xlink:href="pone.0073989.g002"></graphic>
</fig>
<p>Isolation of the genomic sequences of the wheat
<italic>GPX</italic>
s revealed both
<italic>W69</italic>
and
<italic>W106</italic>
comprised six exons and five introns (
<xref ref-type="fig" rid="pone-0073989-g001">Fig. 1B</xref>
). All of the exon/intron splice junctions in W69 DNA sequence conform to the canonical GT/AG boundary
<xref ref-type="bibr" rid="pone.0073989-Mount1">[44]</xref>
, intron 5 of
<italic>W106</italic>
gene has a GT/GC sequence.</p>
<p>To gain insight into the mechanism responsible for transcriptional regulation, we isolated a 1,862 bp promoter region upstream of the
<italic>W69</italic>
ATG start codon, and 1,600 bp of W106 from genomic DNA using a PCR strategy. We searched for putative
<italic>cis</italic>
-acting elements in the promoter regions using the database Plant
<italic>cis</italic>
-acting Elements, PLACE (
<ext-link ext-link-type="uri" xlink:href="http://www.dna.affrc.go.jp/PLACE/">http://www.dna.affrc.go.jp/PLACE/</ext-link>
) (
<xref ref-type="table" rid="pone-0073989-t001">Table 1</xref>
). A number of regulatory elements responsive to drought, salt, low-temperature, and ABA were recognized, including ABRE, DRE, DRE/CRT, and DPBF binding sequences. In addition, a gibberellin responsive element (GARE) and an ethylene responsive element (ERE) were identified. More importantly, the
<italic>W69</italic>
and
<italic>W106</italic>
promoter regions have antioxidant-responsive elements, ARE, which was found in plant and human promoters (
<xref ref-type="table" rid="pone-0073989-t001">Table 1</xref>
).</p>
<table-wrap id="pone-0073989-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.t001</object-id>
<label>Table 1</label>
<caption>
<title>Putative
<italic>cis</italic>
-acting elements in the wheat
<italic>W69 and W106</italic>
promoters.</title>
</caption>
<alternatives>
<graphic id="pone-0073989-t001-1" xlink:href="pone.0073989.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Element</td>
<td align="left" rowspan="1" colspan="1">Promoter</td>
<td align="left" rowspan="1" colspan="1">sequence</td>
<td align="left" rowspan="1" colspan="1">Function</td>
<td align="left" rowspan="1" colspan="1">Reference</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>ARE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">AGTGACNNNGC</td>
<td align="left" rowspan="1" colspan="1">antioxidant-responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Scandalios1">[76]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>ABRE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">ACGTG(G/T)C</td>
<td align="left" rowspan="1" colspan="1">ABA and drought responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Bonetta1">[77]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>CBF</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69</td>
<td align="left" rowspan="1" colspan="1">RYCGAC</td>
<td align="left" rowspan="1" colspan="1">Dehydration responsive element</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Haake1">[78]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>DRE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69</td>
<td align="left" rowspan="1" colspan="1">ACCGAC</td>
<td align="left" rowspan="1" colspan="1">ABA and drought responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-YamaguchiShinozaki1">[79]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>CRT/DRE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69</td>
<td align="left" rowspan="1" colspan="1">CCGAC</td>
<td align="left" rowspan="1" colspan="1">Drought, high-salt and cold responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-YamaguchiShinozaki1">[79]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>DPBF binding site</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69,W106</td>
<td align="left" rowspan="1" colspan="1">ACACNNG</td>
<td align="left" rowspan="1" colspan="1">ABA responsive and embryo specification elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Kim1">[80]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>GT1GMSCAM4</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">GAAAAA</td>
<td align="left" rowspan="1" colspan="1">Pathogen and salt responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Park1">[81]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>MYB recognition site</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69,W106</td>
<td align="left" rowspan="1" colspan="1">C/TAACNA/G</td>
<td align="left" rowspan="1" colspan="1">ABA and drought responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Urao1">[82]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>MYC recognition site</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69,W106</td>
<td align="left" rowspan="1" colspan="1">CATGTG</td>
<td align="left" rowspan="1" colspan="1">ABA and drought responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Abe1">[83]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>HSE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">
<named-content content-type="gene">AGAAAATTCG</named-content>
</td>
<td align="left" rowspan="1" colspan="1">Heat shock responsive element</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Gurley1">[84]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>TC-rich repeats</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">
<named-content content-type="gene">ATTTTCTTCA</named-content>
</td>
<td align="left" rowspan="1" colspan="1">Element involved in defense and stress</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Itzhaki1">[85]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>W-box</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">TTGAC</td>
<td align="left" rowspan="1" colspan="1">Wound and pathogen responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Yu1">[86]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>ERE element</bold>
</td>
<td align="left" rowspan="1" colspan="1">w106</td>
<td align="left" rowspan="1" colspan="1">ATTTCAAA</td>
<td align="left" rowspan="1" colspan="1">Ethylene responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Itzhaki1">[85]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>GARE-motif</bold>
</td>
<td align="left" rowspan="1" colspan="1">w106</td>
<td align="left" rowspan="1" colspan="1">AAACAGA</td>
<td align="left" rowspan="1" colspan="1">Gibberellins responsive element</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Sutliff1">[87]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>TGACG-motif</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69, W106</td>
<td align="left" rowspan="1" colspan="1">TGACG</td>
<td align="left" rowspan="1" colspan="1">MeJA responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Rouster1">[88]</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>AuxRE</bold>
</td>
<td align="left" rowspan="1" colspan="1">W69</td>
<td align="left" rowspan="1" colspan="1">GGTCCAT</td>
<td align="left" rowspan="1" colspan="1">Auxin responsive elements</td>
<td align="left" rowspan="1" colspan="1">
<xref ref-type="bibr" rid="pone.0073989-Sakai1">[89]</xref>
</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="s2b">
<title>Expression patterns of
<italic>W69</italic>
and
<italic>W106</italic>
under stress</title>
<p>The
<italic>W69</italic>
and
<italic>W106</italic>
promoter regions have multiple abiotic stress-responsive elements (
<xref ref-type="table" rid="pone-0073989-t001">Table 1</xref>
). To assess responses to abiotic stresses, we quantitatively surveyed the transcript expressions of
<italic>W69</italic>
and
<italic>W106</italic>
using quantitative real-time PCR (Q-RT-PCR). As shown in
<xref ref-type="fig" rid="pone-0073989-g003">Fig. 3</xref>
, both transcripts began to respond to environmental stress at early stages, but exhibited different expression patterns.</p>
<fig id="pone-0073989-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Expression patterns of
<italic>W69</italic>
and
<italic>W106</italic>
under various stress conditions, including salinity (A), drought (B), H
<sub>2</sub>
O
<sub>2</sub>
(C), and ABA (D).</title>
<p>Total RNA was isolated from leaves of wheat seedlings. The
<italic>actin</italic>
gene was used as an internal reference. Relative expression of
<italic>W69</italic>
and
<italic>W106</italic>
were normalized to the transcript abundances in untreated controls (normalized as 1). Error bars represent standard deviation (SD) among three biological replicates. Asterisks indicate a significant difference (*P<0.05; Student's t-test) relative to untreated control (at 0 hours).</p>
</caption>
<graphic xlink:href="pone.0073989.g003"></graphic>
</fig>
<p>Both
<italic>W69</italic>
and
<italic>W106</italic>
were rapidly activated to peak within 0.5 h after salt treatment, then declined to normal levels after 1 h, and were barely detectable within 24 h. Both were also rapidly induced by drought and ABA, reached a maximum level at 4 h and 1 h, respectively, and then declined.
<italic>W69</italic>
was strongly induced by drought, but only weakly by ABA. In contrast,
<italic>W106</italic>
was highly activated by ABA, but weakly by drought. In addition,
<italic>W106</italic>
was immediately activated by H
<sub>2</sub>
O
<sub>2</sub>
and absent after 6 h; however, the transcript of
<italic>W69</italic>
was barely detectable over a 24 h treatment with H
<sub>2</sub>
O
<sub>2</sub>
. These results implied that the GPX subfamily may function mainly in oxidative responses induced by salt, H
<sub>2</sub>
O
<sub>2</sub>
and ABA stresses, but with some divergence in roles between
<italic>W69</italic>
and
<italic>W106</italic>
.</p>
</sec>
<sec id="s2c">
<title>GPX activities of
<italic>W69</italic>
and
<italic>W106 in vitro</italic>
</title>
<p>Overexpression of recombinant GPXs in
<italic>E. coli</italic>
BL21 cells was observed after IPTG induction. Samples of total proteins and purified soluble protein fractions were separated on SDS-PAGE. W69 (21 kDa) and W106 (19 kDa) were successfully expressed (
<xref ref-type="fig" rid="pone-0073989-g004">Fig. 4A</xref>
).</p>
<fig id="pone-0073989-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g004</object-id>
<label>Figure 4</label>
<caption>
<title>GPX activity analysis in pET-28a, pET-W69 and pET-W106.</title>
<p>(A) SDS-PAGE analysis of the expression of recombinant proteins in
<italic>E. coli.</italic>
The complete protein of the bacteria and purified recombinant protein from soluble crude extract were separated by 12% SDS-PAGE and stained with Coomassie Brilliant Blue. M, protein size marker (16–94 kDa). T, total proteins of the bacteria (10 μg); P, purified recombinant proteins (1 μg) from soluble crude extract. (B) Enzyme activities of the GPX isoenzymes were calculated with H
<sub>2</sub>
O
<sub>2</sub>
and t-BHP as the substrates. Data are means ±SD of three independent experiments.</p>
</caption>
<graphic xlink:href="pone.0073989.g004"></graphic>
</fig>
<p>The purified protein was prepared for enzymatic analysis. Results showed that the recombinant isoenzymes could catalyze H
<sub>2</sub>
O
<sub>2</sub>
and t-BHP using
<italic>E. coli</italic>
Trx or GSH as electron donors. However, the isoenzymes reduced hydroperoxides with Trx at a higher rate than with GSH, indicating that Trx was likely the favored electron donor (
<xref ref-type="fig" rid="pone-0073989-g004">Fig. 4B</xref>
). In contrast to t-BHP, the isoenzymes exhibited a higher affinity for H
<sub>2</sub>
O
<sub>2</sub>
and GPX activities of W69 were detected at a higher level than W106 utilizing Trx, which is the main electron donor during redox reactions. As expected, the pET-28A-transformed control had no obvious GPX activity (
<xref ref-type="fig" rid="pone-0073989-g004">Fig. 4B</xref>
).</p>
</sec>
<sec id="s2d">
<title>Chloroplast localization of W69 and W106</title>
<p>GPX proteins in plants were found in the cytosol, chloroplast, and mitochondria. The PSORT system (
<ext-link ext-link-type="uri" xlink:href="http://www.psort.org/">http://www.psort.org/</ext-link>
) program for predicting subcellular localization, indicated that both W69 and W106 with a chloroplastic N-terminal transit peptide would most probably localize in chloroplasts. To investigate the biological activity of the W69 and W106 proteins, the full-length cDNAs of W69 and W106 were fused in frame with the green fluorescent protein (
<italic>hGFP</italic>
) gene under the control of the CaMV 35S promoter, and transferred into wheat mesophyll protoplasts. Fluorescence of both W69-GFP and W106-GFP was specifically detected in chloroplasts, whereas the control expressing hGFP alone showed fluorescence distributed throughout the protoplasts (
<xref ref-type="fig" rid="pone-0073989-g005">Fig. 5</xref>
). Given their localization in chloroplasts, possible roles for W69 and W106 would be in protection of chloroplasts against oxidative damage induced by photosynthesis or external stresses
<xref ref-type="bibr" rid="pone.0073989-Mittler1">[3]</xref>
.</p>
<fig id="pone-0073989-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Subcellular localization of W69 and W106 proteins.</title>
<p>The wheat W69 and W106 GFP fusion proteins localize to the chloroplasts in transiently transformed wheat leaf cells. After 12fluorescence was detected. (A–D) control (16318hGFP) fluorescence detection; (E–H) W69-GFP fusion protein fluorescence detection; (I–L) W106-GFP fusion protein fluorescence detection. (A, E and I) bright field; (B, F and J) confocal fluorescence; (C, G and K) chloroplast autofluorescence; (D, H and L) overlay images. Scale bars  = 10 μm. Subcellular localization analysis was carried out four times with similar results.</p>
</caption>
<graphic xlink:href="pone.0073989.g005"></graphic>
</fig>
</sec>
<sec id="s2e">
<title>Improved salt tolerance in transgenic
<italic>Arabidopsis</italic>
</title>
<p>
<italic>GPX</italic>
genes are important in detoxification of many cellular degradation products formed during oxidative stress. Additionally, GPXs could impart stress tolerance through their peroxidase activities
<xref ref-type="bibr" rid="pone.0073989-George1">[45]</xref>
. To further investigate the biological functions of the two GPXs, two T3 generation transgenic
<italic>Arabidopsis</italic>
lines were chosen to examine effects on germination and growth under salt stress. Transgenic and wild-type
<italic>Arabidopsis</italic>
seeds were grown on MS medium for 3 d at 22°C, and then transferred on MS medium containing different NaCl concentrations (50–200 mM).</p>
<p>Transgenic
<italic>W69</italic>
and
<italic>W106</italic>
seedlings had similar phenotypes to wild-type seedlings under normal conditions. As expected, salt stress reduced the growth of both transgenic seedlings and wild-type seedlings to some extent (
<xref ref-type="fig" rid="pone-0073989-g006">Fig. 6</xref>
). At 150 mM NaCl, transgenic plants remained green, whereas wild-type plants displayed chlorosis and growth inhibition after 15 days. The root lengths of W69-7 lines were almost 4-fold those of wild-type plants (
<xref ref-type="fig" rid="pone-0073989-g006">Fig. 6A</xref>
). Furthermore, transgenic
<italic>W69</italic>
seedlings were more tolerant of salt stress than seedlings of
<italic>W106</italic>
at different NaCl concentrations (
<xref ref-type="fig" rid="pone-0073989-g006">Fig. 6B</xref>
). In addition, the transgenic
<italic>Arabidopsis</italic>
plants showed higher germination rates than wild-type under high salt stress. Transgenic seeds germinated in up to 200 mM NaCl, whereas wild-type seeds failed to germinate under the same conditions (data not shown). Therefore, overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
resulted in enhanced early tolerance to high salt stress.</p>
<fig id="pone-0073989-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Responses of the wild-type and transgenic plants to salt treatment.</title>
<p>(A) Phenotypes of wild-type, W69 and W106 seedlings under NaCl treatment. Three-day-old seedlings of four transgenic lines and wild-type
<italic>Arabidopsis</italic>
were planted on MS media with added NaCl (150 mM) for 15 d. (B) Comparative root lengths of wild-type, W69 and W106 seedlings grown on MS agar plates containing different concentrations of NaCl for 15 d after germination. Data are means ±SD of three independent experiments. Asterisks indicate a significant difference (*P<0.05; Student's t-test) relative to wild-type control.</p>
</caption>
<graphic xlink:href="pone.0073989.g006"></graphic>
</fig>
<p>We also examined tolerance to drought stress in the transgenic plants, but observed no detectable increases in tolerance (data not shown).</p>
</sec>
<sec id="s2f">
<title>Transgenic
<italic>Arabidopsis</italic>
has increased tolerance to H
<sub>2</sub>
O
<sub>2</sub>
</title>
<p>Three-day-old seedlings of transgenic and wild-type
<italic>Arabidopsis</italic>
were transferred to MS medium plates supplemented with 1 mM H
<sub>2</sub>
O
<sub>2</sub>
. At 15 d, the seedlings of
<italic>W69</italic>
and
<italic>W106</italic>
grew vigorously and were larger than wild-type seedlings. At 1 mM H
<sub>2</sub>
O
<sub>2</sub>
, the transgenics had longer primary roots than wild-type plants. There were also significant increases in the number and total lengths of the lateral roots compared to wild-type (
<xref ref-type="fig" rid="pone-0073989-g007">Fig. 7A</xref>
). As shown in
<xref ref-type="fig" rid="pone-0073989-g007">Fig. 7B, H</xref>
<sub>2</sub>
O
<sub>2</sub>
treatment significantly decreased the fresh and dry weights of transgenic and wild-type plants, but the transgenics were less affected by H
<sub>2</sub>
O
<sub>2</sub>
treatment than wild-type plants. In addition, leaves of wild-type plants tended to become yellow during growth under H
<sub>2</sub>
O
<sub>2</sub>
treatment whereas those of transgenic plants remained green (
<xref ref-type="fig" rid="pone-0073989-g007">Fig. 7A</xref>
). Thus the transgenic seedlings apparently had increased peroxide-scavenging capacity and enhanced tolerance to H
<sub>2</sub>
O
<sub>2</sub>
.</p>
<fig id="pone-0073989-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Responses of the wild-type and transgenic plants to H
<sub>2</sub>
O
<sub>2</sub>
treatment.</title>
<p>(A) Phenotypes of wild-type, W69 and W106 seedlings under H
<sub>2</sub>
O
<sub>2</sub>
treatment. Three-day-old seedlings of four transgenic lines and wild-type
<italic>Arabidopsis</italic>
were planted on MS media with added H
<sub>2</sub>
O
<sub>2</sub>
(1 mM) for 15 d after germination. (B) Effect of exogenous H
<sub>2</sub>
O
<sub>2</sub>
on biomass production and root development of wild-type, W69 and W106 seedlings. After growing in MS media with added H
<sub>2</sub>
O
<sub>2</sub>
(1 mM) for 15 d after germination, seedlings were collected and analysed. Data are given for the length of the primary root, lateral root number, total lateral root length, seedling fresh weight and dry weight. Data are means ±SD of three independent experiments. Asterisks indicate a significant difference (*P<0.05; Student's t-test) relative to wild-type control.</p>
</caption>
<graphic xlink:href="pone.0073989.g007"></graphic>
</fig>
</sec>
<sec id="s2g">
<title>Germination of W69 and W106-overexpressed seeds is insensitive to ABA</title>
<p>To investigate the effect of ABA on germination of
<italic>W69-</italic>
and
<italic>W106</italic>
-overexpressing seeds, we planted seeds on MS medium containing different ABA concentrations. As shown in
<xref ref-type="fig" rid="pone-0073989-g008">Fig. 8A</xref>
, there was no difference in seed germination between the wild-type and transgenic plants under normal conditions. At 0.8 μM ABA there was some inhibition of germination of both wild-type and transgenic seeds, but the latter were affected to a lesser extent. Approximately 42% of W69-7 overexpressed seeds and 39% of
<italic>W106</italic>
-2 overexpressed seeds developed cotyledons and became green compared with only 10% wild-type germination after 6 days (
<xref ref-type="fig" rid="pone-0073989-g008">Fig. 8B</xref>
). Addition of 1 μM ABA entirely arrested the emergence of cotyledons of both transgenic and wild-type seeds (
<xref ref-type="fig" rid="pone-0073989-g008">Fig. 8B</xref>
). These results indicated that
<italic>GPX</italic>
overexpression relieves the ABA-mediated inhibition during seed germination and early seedling growth.</p>
<fig id="pone-0073989-g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g008</object-id>
<label>Figure 8</label>
<caption>
<title>Responses of the wild-type and transgenic plants to ABA treatment.</title>
<p>(A) Phenotypes of wild-type, W69 and W106 seedlings under ABA treatment. Seedlings of mixed transgenic lines and wild-type
<italic>Arabidopsis</italic>
were planted on MS media for 15 d. (B) Statistical analysis of seed germination on MS plates with added ABA (0.8 μM). 60 transgenic and wild-type seeds were plated on MS plates containing 0.8 μM ABA. Asterisks indicate a significant difference (P<0.05; Student's t-test) relative to wild-type control.</p>
</caption>
<graphic xlink:href="pone.0073989.g008"></graphic>
</fig>
</sec>
<sec id="s2h">
<title>W69 and W106 displayed changed stress-responsive gene expressions</title>
<p>
<italic>SOS1</italic>
,
<italic>RbohD</italic>
and
<italic>ABI1/ABI2</italic>
are key regulators in response to salt, oxidative stress and ABA, respectively
<xref ref-type="bibr" rid="pone.0073989-Miao1">[39]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Shi1">[46]</xref>
<xref ref-type="bibr" rid="pone.0073989-Leung1">[48]</xref>
. To determine whether stress response pathways were affected by the GPX overexpression, we used Q-RT-PCR to analyse these genes in wild-type and transgenic
<italic>Arabidopsis</italic>
. Overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
indeed changed the transcript levels of these marker genes. For example,
<italic>W69</italic>
activated
<italic>SOS1</italic>
and
<italic>RbohD</italic>
expression to levels about 1.8- and 1.5-fold higher, respectively, than those in wild-type. In contrast, the expression levels of
<italic>SOS1</italic>
and
<italic>RbohD</italic>
were only slightly higher in
<italic>W106</italic>
seedlings than in wild-type. Furthermore,
<italic>ABI1</italic>
and
<italic>ABI2</italic>
transcript levels in both transgenic lines appeared to be slightly lower than in wild-type (
<xref ref-type="fig" rid="pone-0073989-g009">Fig. 9</xref>
). These findings suggest that these GPXs may be signaling components in the ROS, ABA and salt-response pathways.</p>
<fig id="pone-0073989-g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0073989.g009</object-id>
<label>Figure 9</label>
<caption>
<title>Expression effects of ABA- and stress-responsive genes in W69 and W106
<italic>Arabidopsis</italic>
using Q-RT-PCR.</title>
<p>Total RNA was isolated from leaves of 2-week-old
<italic>Arabidopsis</italic>
seedlings. The
<italic>actin2</italic>
gene was used as an internal reference. Relative expression of
<italic>W69</italic>
and
<italic>W106</italic>
were normalized to the transcript abundances in wild-type controls (normalized as 1). Error bars represent standard deviation among three biological replicates. Asterisks indicate a significant difference (P<0.05; Student's t-test) relative to wild-type control.</p>
</caption>
<graphic xlink:href="pone.0073989.g009"></graphic>
</fig>
</sec>
</sec>
<sec id="s3">
<title>Discussion</title>
<p>Animal GPXs are 20–22 kD monomer proteins, that can directly reduce phospholipid hydroperoxides, fatty acid hydroperoxides, and cholesterol hydroperoxides produced in peroxidized membranes
<xref ref-type="bibr" rid="pone.0073989-Imai1">[18]</xref>
. Animal GPXs are considered crucial for protecting membranes from oxidative stress. Though GPX-like cDNAs had been found in a diversity of plants
<xref ref-type="bibr" rid="pone.0073989-Criqui1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Depege2">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Li1">[38]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Sugimoto1">[49]</xref>
<xref ref-type="bibr" rid="pone.0073989-Yang1">[51]</xref>
, their physiological functions in plants had not been clearly resolved. Plant GPXs belong to a small GPX multigenic subfamily involved in response to various environmental stresses and had been considered to be the main defense strategy against oxidative membrane damage by detoxifying organic hydroperoxides as well as H
<sub>2</sub>
O
<sub>2</sub>
<xref ref-type="bibr" rid="pone.0073989-Navrot1">[31]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Toppo1">[52]</xref>
<xref ref-type="bibr" rid="pone.0073989-Jannat1">[55]</xref>
.</p>
<p>In the present study, we describe the identification and function of two wheat
<italic>GPX</italic>
s, designated
<italic>W69</italic>
and
<italic>W106</italic>
, that share relatively high levels of sequence similarity with other plant GPXs and human GPX04 (
<xref ref-type="fig" rid="pone-0073989-g001">Fig. 1</xref>
). Genomic sequences analysis of the two
<italic>GPX</italic>
s revealed that both comprise six exons and five introns. The nucleotide sequences and sizes of exons 2–5 of the isoenzymes genes were very similar, although the nucleotide sequences and sizes of the corresponding introns were highly divergent. These results provided evidence supporting tightly conserved exon-intron structures of
<italic>GPX</italic>
homologs across the plant kingdom
<xref ref-type="bibr" rid="pone.0073989-Margis1">[13]</xref>
. In particular, there was a high degree of conservation among plant species in the lengths of exons 2–5, whereas the lengths of exons 1 and 6 were quite divergent
<xref ref-type="bibr" rid="pone.0073989-Ramos1">[56]</xref>
. The homologous human
<italic>HsGPX04</italic>
gene contains seven exons. Plant and mammalian
<italic>GPXs</italic>
have very divergent genomic organization patterns and analogous functions, reinforcing the hypothesis of an independent evolutionary scenario accompanying the structural diversification but functional similarity
<xref ref-type="bibr" rid="pone.0073989-Margis1">[13]</xref>
.</p>
<p>Salinity stress, mainly caused by NaCl and a serious threat to crop productivity, causes osmotic and ionic imbalances in cells
<xref ref-type="bibr" rid="pone.0073989-Parida1">[57]</xref>
. On the other hand, salinity increases production and accumulation of ROS, which affects cell redox homeostasis and causes oxidative damage
<xref ref-type="bibr" rid="pone.0073989-Zhu1">[58]</xref>
. In the present work, we showed that overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
increased the seed germination rate and boosted seedling growth in transgenic
<italic>Arabidopsis</italic>
plants during exposure to salt stress conditions (
<xref ref-type="fig" rid="pone-0073989-g006">Fig. 6</xref>
). In addition, exposure of wheat seedlings to NaCl or H
<sub>2</sub>
O
<sub>2</sub>
induced rapid accumulation of
<italic>W69</italic>
and
<italic>W106</italic>
transcripts (
<xref ref-type="fig" rid="pone-0073989-g003">Fig. 3</xref>
). Therefore, it was likely that increased mRNA accumulation in
<italic>W69</italic>
and
<italic>W106</italic>
was an early response in ROS reduction or a manifestation of adjustment to environmental stress
<xref ref-type="bibr" rid="pone.0073989-Bhattacharjee1">[59]</xref>
. H
<sub>2</sub>
O
<sub>2</sub>
is a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of the cell cycle and cell death. Exogenous applications of H
<sub>2</sub>
O
<sub>2</sub>
promote the formation and development of adventitious roots in seedlings, but a relatively higher concentrations H
<sub>2</sub>
O
<sub>2</sub>
and longer times of exposure lead to inhibitory effects on rooting
<xref ref-type="bibr" rid="pone.0073989-Li2">[60]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Li3">[61]</xref>
. Measurement of GPX activities showed that the two wheat GPXs can catalyze H
<sub>2</sub>
O
<sub>2</sub>
or t-BHP
<italic>in vitro</italic>
. High level of GPX involved in the scavenging of H
<sub>2</sub>
O
<sub>2</sub>
in plants helps to protect against H
<sub>2</sub>
O
<sub>2</sub>
-induced tissue injury and increases tolerance to oxidative damage induced by salt or ROS
<xref ref-type="bibr" rid="pone.0073989-Qi1">[62]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-ElShabrawi1">[63]</xref>
. Under exogenous H
<sub>2</sub>
O
<sub>2</sub>
treatment, we found that transgenic plants became stronger than wild-type. In addition, the transgenic seedlings had greater total lateral root lengths than wild-type and improved tolerance to ROS stress (
<xref ref-type="fig" rid="pone-0073989-g007">Fig. 7</xref>
). W69 and W106 were located in the chloroplasts (
<xref ref-type="fig" rid="pone-0073989-g005">Fig. 5</xref>
), cell components with the highest production sites of ROS
<xref ref-type="bibr" rid="pone.0073989-Wang2">[64]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Rouhier1">[65]</xref>
. These results indicated that overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
conferred enhanced antioxidant capacity and protected plants against oxidative damage.</p>
<p>ABA is a phytohormone controlling seed dormancy and preventing seed germination during early embryogenesis. It also plays an essential role in stress response to drought, cold, and oxidative and osmotic stresses in the vegetative growth phase
<xref ref-type="bibr" rid="pone.0073989-Himmelbach1">[66]</xref>
,
<xref ref-type="bibr" rid="pone.0073989-Zorb1">[67]</xref>
. Some reports indicate that ABA can trigger the production of H
<sub>2</sub>
O
<sub>2</sub>
<xref ref-type="bibr" rid="pone.0073989-Hu1">[68]</xref>
<xref ref-type="bibr" rid="pone.0073989-Ye1">[70]</xref>
.
<italic>Arabidopsis</italic>
seeds overexpressing
<italic>W69</italic>
and
<italic>W106</italic>
displayed higher germination rates than wild-type after ABA treatment, suggesting that transgenic seedlings have weakenedsABA control due to the scavenging effects of H
<sub>2</sub>
O
<sub>2</sub>
(
<xref ref-type="fig" rid="pone-0073989-g008">Fig. 8</xref>
). Therefore, W69 and W106 might play an important role in the ABA signal transduction. It was reported that mutation of
<italic>AtGPX3</italic>
affected the expression of ABA-responsive genes and that the
<italic>AtGPX3</italic>
gene might act as an oxidative signal transducer in ABA and drought stress signaling
<xref ref-type="bibr" rid="pone.0073989-Miao2">[71]</xref>
. Q-RT-PCR indicated that overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
also affected the transcriptional levels of key regulator genes involved in ABA, H
<sub>2</sub>
O
<sub>2</sub>
and salt signaling. This was in agreement with the important role of the GPX gene family in responding to environment stresses.</p>
<p>Analysis of upstream
<italic>cis</italic>
-regulating elements of
<italic>W69</italic>
and
<italic>W106</italic>
provided a way for us to understand how
<italic>GPX</italic>
expression was controlled. For instance, ABRE and other ABA-related elements (such as the DRE and DPBF binding sites) found in the promoters of
<italic>W69</italic>
and
<italic>W106</italic>
might be responsible for the responses of genes to ABA. The CRT/DRE and GT1GMSCAM4 elements present in the promoters of the two isoenzymes might be responsible for genetic responses to NaCl. More importantly, ARE, an antioxidant-responsive element in rat is also present in the promoters of the two isoenzymes, and might be related to genetic response to oxidative stress (
<xref ref-type="table" rid="pone-0073989-t001">Table 1</xref>
). Collectively,
<italic>W69</italic>
and
<italic>W106</italic>
were not only participated directly in ROS signaling, but were also involved in ABA and salt signaling cascades.</p>
<p>In summary, overexpression of
<italic>W69</italic>
and
<italic>W106</italic>
in
<italic>Arabidopsis</italic>
seedlings provided protection from salinity stress during germination and seedling growth. This protective effect appeared to allow transgenic plants to retain high levels of metabolic activity and growth due to increased GPX expression and reduced levels of oxidative damage compared to wild-type seedlings. Our study should be beneficial for obtaining detailed insights into the complex function of plant GPXs, and for analyzing specialized physiological characteristics of this antioxidant system in other organisms
<xref ref-type="bibr" rid="pone.0073989-Bae1">[19]</xref>
. The GPXs might be excellent candidates for genetical engineering of crop plants with improved salt tolerance.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and Methods</title>
<sec id="s4a">
<title>Plant materials and stress treatments</title>
<p>Wheat (
<italic>T. aestivum</italic>
cv. Xiaobaimai) seedlings grown hydroponically at 25°C for 10 d were subjected to various abiotic stresses. Seedlings were exposed to air on filter paper for rapid induction of water stress. To mimic salinity and ABA treatments, roots were submerged in 100 mM NaCl or 100 µM ABA, respectively. For hydrogen peroxide treatment, seedlings were transferred to solutions containing 0.1 mM H
<sub>2</sub>
O
<sub>2</sub>
. Materials were collected at 0, 1, 2, 4, 16, 12, and 24 h after various treatments. Harvested plants were dropped immediately into liquid nitrogen and stored at –80°C for RNA extraction.</p>
</sec>
<sec id="s4b">
<title>General bioinformation</title>
<p>Putative amino acid sequences used in this study were from GenBank databases. Conserved motifs were investigated by multiple alignments using DNAMAN version 6.0. Phylogenetic trees were constructed with ClustalX using the neighbor-joining (NJ) method.</p>
</sec>
<sec id="s4c">
<title>Quantitative real-time PCR</title>
<p>Expression patterns for the two
<italic>GPX</italic>
genes were measured by Quantitative real-time PCR (Q-RT-PCR), using the ABI Prism 7300 system (Applied Biosystems, USA). Total RNA was extracted from young leaves of 2-week-old wheat plants using Trizol reagent according to the manufacturer's protocol (TianGen, Beijing, China) and DNase I digestions were applied (TaKaRa, Japan). First-strand cDNA was synthesized with AMV Reverse Transcriptase (TaKaRa, Japan). Each PCR was repeated three times in total volumes of 20 μl containing primer (4 μM), cDNA (40 ng) and 9 μl RealMasterMix (TianGen, Beijing, China). Quantification of the target gene expression under each stress was carried out by the relative 2−△△CT method
<xref ref-type="bibr" rid="pone.0073989-Livak1">[72]</xref>
. The
<italic>actin</italic>
gene was used as an internal control for normalization of template cDNA. The gene-specific primers were as follows:
<italic>W69</italic>
,
<named-content content-type="gene">5'- ACAGAGGATTCGGGAGGACT-3'</named-content>
and
<named-content content-type="gene">5'- AGGAGGACCTTCCCCTTGTA-3'</named-content>
;
<italic>W106</italic>
,
<named-content content-type="gene">5'-ACAAGGGGAAAGTCCTGCTT-3'</named-content>
and W106-RTR
<named-content content-type="gene">5'-CTGGTTCCTGTCCAGCAAAT-3'</named-content>
; wheat
<italic>actin</italic>
,
<named-content content-type="gene">5'- CTCCCTCACAACAACCGC-3'</named-content>
and
<named-content content-type="gene">5'- TACCAGGAACTTCCATACCAAC-3'</named-content>
. Q-RT-PCR was also performed to analysis the expression of stress- and ABA-responsive genes, using 2-week-old transgenic and wild-type
<italic>Arabidopsis</italic>
seedlings. The
<italic>actin</italic>
gene was used as an internal control. The specific primers were as follows:
<italic>RbohD</italic>
(At5g47910),
<named-content content-type="gene">5'-CCTCAACAACACCACCTCCT-3'</named-content>
and
<named-content content-type="gene">5'-GTAAGAGGCCGTTGGAATCA-3'</named-content>
;
<italic>ABI1</italic>
(At4g26080),
<named-content content-type="gene">5'-TGAAGAAGCGTGTGAGATGG-3'</named-content>
and
<named-content content-type="gene">5'-CTGTATCGCCAGCTTTGACA-3'</named-content>
<italic>ABI2</italic>
(At5g57050), 5’-TGCGGCGAGTAAAAGAAGAT-3' and
<named-content content-type="gene">5'-TTCCTTTTTGCAAAGCCATC-3'</named-content>
;
<italic>SOS1</italic>
(At2g01980): 5'-ACCGGCAGATCTAATGAACG-3'and
<named-content content-type="gene">5'-CTCCGCTACTGTCGATGTCA-3'</named-content>
;
<italic>Actin2</italic>
in
<italic>Arabidopsis</italic>
,
<named-content content-type="gene">5'-GGTAACATTGTGCTCAGTGGTG-3'</named-content>
and 5'-C GACCTTAATCTTCATGCTGC-3'.</p>
</sec>
<sec id="s4d">
<title>Detection of enzyme activities of the GPX isoenzymes</title>
<p>The two GPX cDNAs were amplified by reverse transcription PCR (RT-PCR) using the primer sets W69-PET (
<named-content content-type="gene">5'-TACGGATCCATGGGGGCGTCCGAATCT-3'</named-content>
and
<named-content content-type="gene">5'-TAGCTCGAGCTTCTGCGAGTCGGAAGATTCC-3'</named-content>
) and W106-PET (
<named-content content-type="gene">5'-TACGGATCCAACATGGGTGCGGCAGAGT-3'</named-content>
and
<named-content content-type="gene">5'-TAGCTCGAGAACCTCCAACAGCTTCTTGATG-3'</named-content>
). The PCR product was cut by
<italic>Bam</italic>
HI and
<italic>Xho</italic>
I and then subcloned into corresponding sites of pET-28a (Novagen) with a Histidine-tag at the N-terminus. The fusion plasmids and empty vector (PET-28a) were transformed into
<italic>E. coli</italic>
BL21 (DE3) strain.
<italic>E. coli</italic>
cells carrying pET-W69, pET-W106, and PET-28a were grown in 40 ml LB medium containing 50 mg/ml kanamycin at 37°C to D
<sub>600</sub>
 = 0.5 and induced with 0.8 mM isopropyl-1-thio-bD-galactopyranoside (IPTG) at 22°C. Cells were extracted at 4 h and were collected by centrifugation at 3000 g for 10 min, resuspended in pre-chilled sodium phosphate buffer (14 mM NaCl, 0.27 mM KCl, mM Na
<sub>2</sub>
HPO
<sub>4</sub>
, 0.18 mM KH
<sub>2</sub>
PO
<sub>4</sub>
, 1 mM EDTA-2Na and 1% polyvinylpyrrolidone, pH 7.0), and disrupted by sonication. His-tag fusion pET-W69/pET-W106/and/PET-28a proteins were purified using Ni-NTA Agarose (Qiagen, Tokyo, Japan) according to the manufacturer's instructions. Protein concentrations were quantified using the Bradford method. Purified proteins from each sample were loaded for sodium dodecyl sulfate polyacrylamide gel electrophoresis.</p>
<p>Enzyme activity was measured spectrophotometrically using a Glutathione Peroxidase Assay Kit (BioAssay systems, USA) with minor modifications.
<italic>E. coli</italic>
Trx and t-BHP were purchased from Sigma Aldrich (St. Louis, MO, USA). The reaction was started by addition of H
<sub>2</sub>
O
<sub>2</sub>
or
<italic>t</italic>
-butyl hydroperoxide. The absorbance was immediately read at OD
<sub>340 nm</sub>
and again at 4 min using a Perkin-Elmer Lambda 35 UV/VIS spectrometer (Perkin-Elmer Instruments, USA). The unit activity (U/L) is the amount of GPX that produces 1 μM of oxidized glutathione (GSSG) per min at pH 7.6 and room temperature.</p>
</sec>
<sec id="s4e">
<title>Transient expression of green fluorescent protein-fused GPXs</title>
<p>Green fluorescent protein (GFP)-fused GPXs, coexpression plasmids was constructed for the expression studies. The full open reading frames of the
<italic>W69</italic>
and
<italic>W106</italic>
genes were respectively cloned into 16318hGFP vectors, fused with the
<italic>GFP</italic>
reporter gene under the control of the 35S promoter
<xref ref-type="bibr" rid="pone.0073989-Xu1">[73]</xref>
. The recombinant
<italic>W69-hGFP</italic>
and
<italic>W106-hGFP</italic>
fusion plasmids were transformed to common wheat mesophyll protoplasts by the PEG-mediated method
<xref ref-type="bibr" rid="pone.0073989-Sheen1">[74]</xref>
. The expression of fusion proteins was monitored after 12 h of incubation in a dark room, and images were captured under a laser scanning confocal microscope (Zeiss LSM700, Germany). GFP fluorescence was collected in the 500–570 nm wavelength range. For chloroplast autofluorescence, the wavelength range was 630–700 nm.</p>
</sec>
<sec id="s4f">
<title>Generation of transgenic
<italic>Arabidopsis</italic>
lines with
<italic>GPX</italic>
genes</title>
<p>Fragments of
<italic>W69</italic>
and
<italic>W106</italic>
were separately ligated into the modified pBI121 vector under control of the CaMV 35S promoter
<xref ref-type="bibr" rid="pone.0073989-Xu2">[75]</xref>
. Kanamycin-resistant
<italic>Arabidopsis</italic>
transformants carrying
<italic>W69</italic>
or
<italic>W106</italic>
were generated using the vacuum infiltration method. Transformed plants were cultured on Murashige and Skoog (MS) medium containing 0.8% agar and 50 μM Kanamycin in a day/night regime of 16/8 h under white light (50 photons m
<sup>−1</sup>
s
<sup>−1</sup>
) at 22°C for 2 weeks and were then transferred to soil. The T3 generation seeds obtained were used for further analysis.</p>
</sec>
<sec id="s4g">
<title>Stress treatments</title>
<p>Seeds of transgenic (T3 generation) and wild-type
<italic>Arabidopsis</italic>
plants were grown on 10×10 cm MS agar plates. They were routinely kept for 3 days in the dark at 4°C to break dormancy and transferred to a tissue culture room under a day/night of 16/8 h under white light (with 50 photons m
<sup>−1</sup>
s
<sup>−1</sup>
) at 22°C for 3 d.</p>
<p>For salt treatment, 7-day-old seedlings were transferred to MS agar plates containing 150 mM NaCl for 7 days. For drought treatment, the seedlings were placed on MS agar plates with mannitol (100–200 mM) for 7 days. For H
<sub>2</sub>
O
<sub>2</sub>
treatment, the plants were placed on MS agar plates supplemented with H
<sub>2</sub>
O
<sub>2</sub>
(1–5 mM) for 7 days. For ABA treatment, the seeds of transgenic and wild-type
<italic>Arabidopsis</italic>
were grown on MS agar plates supplemented with 0.5–1 μM ABA for 7–14 days. Seeds were considered germinated when radicles had completely emerged from the seed coat.</p>
<p>The root lengths of
<italic>Arabidopsis</italic>
were measured with a ruler, and lateral roots were counted and measured with a dissection microscope. The fresh weight was measured on an analytical balance immediately after plant harvest. The samples used for dry weight determinations were measured after 48 h at 70°C.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We are grateful to Dr RA McIntosh (Plant Breeding Institute, University of Sydney) for critically reading the manuscript.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0073989-Bartoli1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bartoli</surname>
<given-names>CG</given-names>
</name>
,
<name>
<surname>Simontacchi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tambussi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Beltrano</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Montaldi</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>1999</year>
)
<article-title>Drought and watering-dependent oxidative stress: Effect on antioxidant content in
<italic>Triticum aestivum</italic>
L. leaves</article-title>
.
<source>J Exp Bot</source>
<volume>50</volume>
:
<fpage>375</fpage>
<lpage>383</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Rodriguez1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodriguez</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Maurer</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Rodriguez</surname>
<given-names>HA</given-names>
</name>
,
<name>
<surname>Gustafson</surname>
<given-names>JP</given-names>
</name>
(
<year>2003</year>
)
<article-title>Glutathione peroxidase genes in
<italic>Arabidopsis</italic>
are ubiquitous and regulated by abiotic stresses through diverse signaling pathways</article-title>
.
<source>Plant J</source>
<volume>36</volume>
:
<fpage>602</fpage>
<lpage>615</lpage>
<pub-id pub-id-type="pmid">14617062</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Mittler1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Vanderauwera</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gollery</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Van Breusegem</surname>
<given-names>F</given-names>
</name>
(
<year>2004</year>
)
<article-title>Reactive oxygen gene network of plants</article-title>
.
<source>Trends Plant Sci</source>
<volume>9</volume>
:
<fpage>490</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="pmid">15465684</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Victor1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Victor</surname>
<given-names>VM</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>De la Fuente</surname>
<given-names>M</given-names>
</name>
(
<year>2004</year>
)
<article-title>Immune cells: free radicals and antioxidants in sepsis</article-title>
.
<source>Int Immunopharmacol</source>
<volume>4</volume>
:
<fpage>327</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="pmid">15037211</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Chang1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chang</surname>
<given-names>CC</given-names>
</name>
,
<name>
<surname>Slesak</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Jorda</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Sotnikov</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Melzer</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>
<italic>Arabidopsis</italic>
chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses</article-title>
.
<source>Plant Physiol</source>
<volume>150</volume>
:
<fpage>670</fpage>
<lpage>683</lpage>
<pub-id pub-id-type="pmid">19363092</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-McCord1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCord</surname>
<given-names>JM</given-names>
</name>
(
<year>2000</year>
)
<article-title>The evolution of free radicals and oxidative stress</article-title>
.
<source>Am J Med</source>
<volume>108</volume>
:
<fpage>652</fpage>
<lpage>659</lpage>
<pub-id pub-id-type="pmid">10856414</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Levine1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levine</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tenhaken</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Dixon</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Lamb</surname>
<given-names>C</given-names>
</name>
(
<year>1994</year>
)
<article-title>H
<sub>2</sub>
O
<sub>2</sub>
from the oxidative burst orchestrates the plant hypersensitive disease resistance response</article-title>
.
<source>Cell</source>
<volume>79</volume>
:
<fpage>583</fpage>
<lpage>593</lpage>
<pub-id pub-id-type="pmid">7954825</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Desikan1">
<label>8</label>
<mixed-citation publication-type="other">Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures.</mixed-citation>
</ref>
<ref id="pone.0073989-Depege1">
<label>9</label>
<mixed-citation publication-type="other">Depege N, Varenne M, Boyer N (2000) Induction of oxidative stress and GPX-like protein activation in tomato plants after mechanical stimulation. Physiol Plantarum: 209–214.</mixed-citation>
</ref>
<ref id="pone.0073989-Roxas1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roxas</surname>
<given-names>VP</given-names>
</name>
,
<name>
<surname>Lodhi</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Garrett</surname>
<given-names>DK</given-names>
</name>
,
<name>
<surname>Mahan</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Allen</surname>
<given-names>RD</given-names>
</name>
(
<year>2000</year>
)
<article-title>Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase</article-title>
.
<source>Plant Cell Physiol</source>
<volume>41</volume>
:
<fpage>1229</fpage>
<lpage>1234</lpage>
<pub-id pub-id-type="pmid">11092907</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Mittler2">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
(
<year>2002</year>
)
<article-title>Oxidative stress, antioxidants and stress tolerance</article-title>
.
<source>Trends Plant Sci</source>
<volume>7</volume>
:
<fpage>405</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">12234732</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Ursini1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ursini</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Maiorino</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Brigelius-Flohe</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Aumann</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Roveri</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>1995</year>
)
<article-title>Diversity of glutathione peroxidases</article-title>
.
<source>Methods Enzymol</source>
<volume>252</volume>
:
<fpage>38</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">7476373</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Margis1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Margis</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Dunand</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Teixeira</surname>
<given-names>FK</given-names>
</name>
,
<name>
<surname>Margis-Pinheiro</surname>
<given-names>M</given-names>
</name>
(
<year>2008</year>
)
<article-title>Glutathione peroxidase family-an evolutionary overview</article-title>
.
<source>FEBS J</source>
<volume>275</volume>
:
<fpage>3959</fpage>
<lpage>3970</lpage>
<pub-id pub-id-type="pmid">18616466</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Kuhn1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kuhn</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Borchert</surname>
<given-names>A</given-names>
</name>
(
<year>2002</year>
)
<article-title>Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes</article-title>
.
<source>Free Radic Biol Med</source>
<volume>33</volume>
:
<fpage>154</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="pmid">12106812</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Vernet1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vernet</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Aitken</surname>
<given-names>RJ</given-names>
</name>
,
<name>
<surname>Drevet</surname>
<given-names>JR</given-names>
</name>
(
<year>2004</year>
)
<article-title>Antioxidant strategies in the epididymis</article-title>
.
<source>Mol Cell Endocrinol</source>
<volume>216</volume>
:
<fpage>31</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">15109742</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Aitken1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aitken</surname>
<given-names>RJ</given-names>
</name>
(
<year>2009</year>
)
<article-title>Gpx5 protects the family jewels</article-title>
.
<source>J Clin Invest</source>
<volume>119</volume>
:
<fpage>1849</fpage>
<lpage>1851</lpage>
<pub-id pub-id-type="pmid">19603539</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Maiorino1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Maiorino</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Aumann</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Brigelius-Flohe</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Doria</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>van den Heuvel</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>1995</year>
)
<article-title>Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx)</article-title>
.
<source>Biol Chem Hoppe Seyler</source>
<volume>376</volume>
:
<fpage>651</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="pmid">8962674</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Imai1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Imai</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Narashima</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Arai</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sakamoto</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Chiba</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase</article-title>
.
<source>J Biol Chem</source>
<volume>273</volume>
:
<fpage>1990</fpage>
<lpage>1997</lpage>
<pub-id pub-id-type="pmid">9442035</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Bae1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bae</surname>
<given-names>YA</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>SH</given-names>
</name>
,
<name>
<surname>Zo</surname>
<given-names>YG</given-names>
</name>
,
<name>
<surname>Kong</surname>
<given-names>Y</given-names>
</name>
(
<year>2009</year>
)
<article-title>Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals</article-title>
.
<source>BMC Evol Biol</source>
<volume>9</volume>
:
<fpage>72</fpage>
<pub-id pub-id-type="pmid">19344533</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Schneider1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schneider</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Vogt</surname>
<given-names>WD</given-names>
</name>
,
<name>
<surname>Seiler</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bornkamm</surname>
<given-names>GW</given-names>
</name>
,
<name>
<surname>Brielmeier</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Embryonic expression profile of phospholipid hydroperoxide glutathione peroxidase</article-title>
.
<source>Gene Expr Patterns</source>
<volume>6</volume>
:
<fpage>489</fpage>
<lpage>494</lpage>
<pub-id pub-id-type="pmid">16458079</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Baek1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Baek</surname>
<given-names>IJ</given-names>
</name>
,
<name>
<surname>Jung</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Yon</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>BJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Phospholipid hydroperoxide glutathione peroxidase gene is regulated via an estrogen and estrogen receptor signaling in cultured mouse fetuses</article-title>
.
<source>In Vitro Cell Dev Biol Anim</source>
<volume>47</volume>
:
<fpage>535</fpage>
<lpage>540</lpage>
<pub-id pub-id-type="pmid">21717270</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Criqui1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Criqui</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Jamet</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Parmentier</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Marbach</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Durr</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>1992</year>
)
<article-title>Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases</article-title>
.
<source>Plant Mol Biol</source>
<volume>18</volume>
:
<fpage>623</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="pmid">1536938</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Depege2">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Depege</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Drevet</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Boyer</surname>
<given-names>N</given-names>
</name>
(
<year>1998</year>
)
<article-title>Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins</article-title>
.
<source>Eur J Biochem</source>
<volume>253</volume>
:
<fpage>445</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="pmid">9654095</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Herbette1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Herbette</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Menn</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Rousselle</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ameglio</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Faltin</surname>
<given-names>Z</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase</article-title>
.
<source>Biochim Biophys Acta</source>
<volume>1724</volume>
:
<fpage>108</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">15921856</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Herbette2">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Herbette</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Roeckel-Drevet</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Drevet</surname>
<given-names>JR</given-names>
</name>
(
<year>2007</year>
)
<article-title>Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers</article-title>
.
<source>FEBS J</source>
<volume>274</volume>
:
<fpage>2163</fpage>
<lpage>2180</lpage>
<pub-id pub-id-type="pmid">17419737</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-RoeckelDrevet1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roeckel-Drevet</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Gagne</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>De Labrouhe</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Dufaure</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Nicolas</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Molecular characterization, organ distribution and stress-mediated induction of two glutathione peroxidase-encoding mRNAs in sunflower (
<italic>Helianthus annuus</italic>
)</article-title>
.
<source>Physiol Plantarum</source>
<volume>103</volume>
:
<fpage>385</fpage>
<lpage>394</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-AvsianKretchmer1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Avsian-Kretchmer</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Gueta-Dahan</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lev-Yadun</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gollop</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ben-Hayyim</surname>
<given-names>G</given-names>
</name>
(
<year>2004</year>
)
<article-title>The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H
<sub>2</sub>
O
<sub>2</sub>
, different from the pathway induced by extracellular H
<sub>2</sub>
O
<sub>2</sub>
</article-title>
.
<source>Plant Physiol</source>
<volume>135</volume>
:
<fpage>1685</fpage>
<lpage>1696</lpage>
<pub-id pub-id-type="pmid">15247370</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Eshdat1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Eshdat</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Holland</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Faltin</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Ben-Hayyim</surname>
<given-names>G</given-names>
</name>
(
<year>1997</year>
)
<article-title>Plant glutathione peroxidases</article-title>
.
<source>Physiol. Plant</source>
<volume>100</volume>
:
<fpage>234</fpage>
<lpage>240</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Maiorino2">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Maiorino</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gregolin</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Ursini</surname>
<given-names>F</given-names>
</name>
(
<year>1990</year>
)
<article-title>Phospholipid hydroperoxide glutathione peroxidase</article-title>
.
<source>Methods Enzymol</source>
<volume>186</volume>
:
<fpage>448</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="pmid">2233312</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Haluskova1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Haluskova</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Valentovicova</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Huttova</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mistrik</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Tamas</surname>
<given-names>L</given-names>
</name>
(
<year>2009</year>
)
<article-title>Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips</article-title>
.
<source>Plant Physiol Biochem</source>
<volume>47</volume>
:
<fpage>1069</fpage>
<lpage>1074</lpage>
<pub-id pub-id-type="pmid">19733091</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Navrot1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Navrot</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Collin</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Gualberto</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Gelhaye</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Hirasawa</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses</article-title>
.
<source>Plant Physiol</source>
<volume>142</volume>
:
<fpage>1364</fpage>
<lpage>1379</lpage>
<pub-id pub-id-type="pmid">17071643</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Ahmad1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ahmad</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Jaleel</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Salem</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Nabi</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>S</given-names>
</name>
(
<year>2010</year>
)
<article-title>Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress</article-title>
.
<source>Crit Rev Biotechnol</source>
<volume>30</volume>
:
<fpage>161</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="pmid">20214435</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Iqbal1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Iqbal</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Yabuta</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Takeda</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Nakano</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Shigeoka</surname>
<given-names>S</given-names>
</name>
(
<year>2006</year>
)
<article-title>Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>FEBS J</source>
<volume>273</volume>
:
<fpage>5589</fpage>
<lpage>5597</lpage>
<pub-id pub-id-type="pmid">17096689</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Cummins1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cummins</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Cole</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
(
<year>1999</year>
)
<article-title>A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass</article-title>
.
<source>Plant J</source>
<volume>18</volume>
:
<fpage>285</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="pmid">10377994</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Holland1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Holland</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Ben-Hayyim</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Faltin</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Camoin</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Strosberg</surname>
<given-names>AD</given-names>
</name>
,
<etal>et al</etal>
(
<year>1993</year>
)
<article-title>Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases</article-title>
.
<source>Plant Mol Biol</source>
<volume>21</volume>
:
<fpage>923</fpage>
<lpage>927</lpage>
<pub-id pub-id-type="pmid">8467085</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Herbette3">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Herbette</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>de Labrouhe</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Drevet</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Roeckel-Drevet</surname>
<given-names>P</given-names>
</name>
(
<year>2011</year>
)
<article-title>Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses</article-title>
.
<source>Plant Sci</source>
<volume>180</volume>
:
<fpage>548</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="pmid">21421403</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Gaber1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gaber</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Maruta</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Yoshimura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Tamoi</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>The involvement of
<italic>Arabidopsis</italic>
glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol</article-title>
.
<source>Plant Cell Physiol</source>
<volume>53</volume>
:
<fpage>1596</fpage>
<lpage>1606</lpage>
<pub-id pub-id-type="pmid">22773682</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Li1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Fan</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>RQ</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>NM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in
<italic>Oryza sativa</italic>
</article-title>
.
<source>Biochim Biophys Acta</source>
<volume>1493</volume>
:
<fpage>225</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="pmid">10978528</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Miao1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lv</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>XC</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>An
<italic>Arabidopsis</italic>
glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
:
<fpage>2749</fpage>
<lpage>2766</lpage>
<pub-id pub-id-type="pmid">16998070</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Gaber2">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gaber</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Maruta</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Yoshimura</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Tamoi</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>The Involvement of
<italic>Arabidopsis</italic>
Glutathione Peroxidase 8 in the Suppression of Oxidative Damage in the Nucleus and Cytosol</article-title>
.
<source>Plant Cell Physiol</source>
<volume>53</volume>
:
<fpage>1596</fpage>
<lpage>1606</lpage>
<pub-id pub-id-type="pmid">22773682</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Chen1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Vaghchhipawala</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Asard</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Dickman</surname>
<given-names>MB</given-names>
</name>
(
<year>2004</year>
)
<article-title>Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants</article-title>
.
<source>Plant Physiol</source>
<volume>135</volume>
:
<fpage>1630</fpage>
<lpage>1641</lpage>
<pub-id pub-id-type="pmid">15235116</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Slesak1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Slesak</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Libik</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Karpinska</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Karpinski</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Miszalski</surname>
<given-names>Z</given-names>
</name>
(
<year>2007</year>
)
<article-title>The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses</article-title>
.
<source>Acta Biochim Pol</source>
<volume>54</volume>
:
<fpage>39</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">17325747</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Xue1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xue</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Zhi</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Xue</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Enhanced salt tolerance of transgenic wheat (
<italic>Tritivum aestivum</italic>
L.) expressing a vacuolar Na
<sup>+</sup>
/H
<sup>+</sup>
antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na
<sup>+</sup>
</article-title>
.
<source>Plant Sci</source>
<volume>167</volume>
:
<fpage>849</fpage>
<lpage>859</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Mount1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mount</surname>
<given-names>S</given-names>
</name>
(
<year>1982</year>
)
<article-title>A catalog of splice junction sequences</article-title>
.
<source>Nucleic Acids Res</source>
<volume>10</volume>
:
<fpage>459</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="pmid">7063411</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-George1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>George</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Venkataraman</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Parida</surname>
<given-names>A</given-names>
</name>
(
<year>2010</year>
)
<article-title>A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco</article-title>
.
<source>J Plant Physiol</source>
<volume>167</volume>
:
<fpage>311</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">19800709</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Shi1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Ishitani</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
(
<year>2000</year>
)
<article-title>The
<italic>Arabidopsis thaliana</italic>
salt tolerance gene
<italic>SOS1</italic>
encodes a putative Na
<sup>+</sup>
/H
<sup>+</sup>
antiporter</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>97</volume>
:
<fpage>6896</fpage>
<lpage>6901</lpage>
<pub-id pub-id-type="pmid">10823923</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Miller1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miller</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Schlauch</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Tam</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cortes</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Torres</surname>
<given-names>MA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli</article-title>
.
<source>Sci Signal</source>
<volume>2</volume>
:
<fpage>a45</fpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Leung1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Leung</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Merlot</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Giraudat</surname>
<given-names>J</given-names>
</name>
(
<year>1997</year>
)
<article-title>The
<italic>Arabidopsis</italic>
ABSCISIC
<italic>ACID-INSENSITIVE2</italic>
(
<italic>ABI2</italic>
) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction</article-title>
.
<source>Plant Cell</source>
<volume>9</volume>
:
<fpage>759</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="pmid">9165752</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Sugimoto1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sugimoto</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Sakamoto</surname>
<given-names>W</given-names>
</name>
(
<year>1997</year>
)
<article-title>Putative phospholipid hydroperoxide glutathione peroxidase gene from
<italic>Arabidopsis thaliana</italic>
induced by oxidative stress</article-title>
.
<source>Genes Genet Syst</source>
<volume>72</volume>
:
<fpage>311</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="pmid">9511228</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Churin1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Churin</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Schilling</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Borner</surname>
<given-names>T</given-names>
</name>
(
<year>1999</year>
)
<article-title>A gene family encoding glutathione peroxidase homologues in
<italic>Hordeum vulgare</italic>
(barley)</article-title>
.
<source>FEBS Lett</source>
<volume>459</volume>
:
<fpage>33</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">10508912</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Yang1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>XD</given-names>
</name>
,
<name>
<surname>Dong</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>JY</given-names>
</name>
(
<year>2006</year>
)
<article-title>A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity</article-title>
.
<source>Plant Mol Biol</source>
<volume>62</volume>
:
<fpage>951</fpage>
<lpage>962</lpage>
<pub-id pub-id-type="pmid">16944266</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Toppo1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Toppo</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Vanin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bosello</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Tosatto</surname>
<given-names>SC</given-names>
</name>
(
<year>2008</year>
)
<article-title>Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily</article-title>
.
<source>Antioxid Redox Signal</source>
<volume>10</volume>
:
<fpage>1501</fpage>
<lpage>1514</lpage>
<pub-id pub-id-type="pmid">18498225</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Wang1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>B</given-names>
</name>
(
<year>2010</year>
)
<article-title>Identification and characterization of two phospholipid hydroperoxide glutathione peroxidase genes from Apis cerana cerana</article-title>
.
<source>Comp Biochem Physiol C Toxicol Pharmacol</source>
<volume>152</volume>
:
<fpage>75</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">20226266</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Faltin1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faltin</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Holland</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Velcheva</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tsapovetsky</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Roeckel-Drevet</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation</article-title>
.
<source>Plant Cell Physiol</source>
<volume>51</volume>
:
<fpage>1151</fpage>
<lpage>1162</lpage>
<pub-id pub-id-type="pmid">20530511</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Jannat1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jannat</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Uraji</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Morofuji</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Islam</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Bloom</surname>
<given-names>RE</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in
<italic>Arabidopsis</italic>
guard cells</article-title>
.
<source>J Plant Physiol</source>
<volume>168</volume>
:
<fpage>1919</fpage>
<lpage>1926</lpage>
<pub-id pub-id-type="pmid">21665322</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Ramos1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ramos</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Matamoros</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Naya</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>James</surname>
<given-names>EK</given-names>
</name>
,
<name>
<surname>Rouhier</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes</article-title>
.
<source>New Phytol</source>
<volume>181</volume>
:
<fpage>103</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="pmid">18826485</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Parida1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parida</surname>
<given-names>AK</given-names>
</name>
,
<name>
<surname>Das</surname>
<given-names>AB</given-names>
</name>
(
<year>2005</year>
)
<article-title>Salt tolerance and salinity effects on plants: a review</article-title>
.
<source>Ecotoxicol Environ Saf</source>
<volume>60</volume>
:
<fpage>324</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="pmid">15590011</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Zhu1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
(
<year>2001</year>
)
<article-title>Plant salt tolerance</article-title>
.
<source>Trends Plant Sci</source>
<volume>6</volume>
:
<fpage>66</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">11173290</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Bhattacharjee1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bhattacharjee</surname>
<given-names>S</given-names>
</name>
(
<year>2005</year>
)
<article-title>Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants</article-title>
.
<source>Curr Sci</source>
<volume>89</volume>
:
<fpage>1113</fpage>
<lpage>1121</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Li2">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>SW</given-names>
</name>
,
<name>
<surname>Xue</surname>
<given-names>LG</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>HY</given-names>
</name>
,
<name>
<surname>An</surname>
<given-names>LZ</given-names>
</name>
(
<year>2007</year>
)
<article-title>Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber</article-title>
.
<source>Plant Growth Regul</source>
<volume>52</volume>
:
<fpage>173</fpage>
<lpage>180</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Li3">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Xue</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>An</surname>
<given-names>L</given-names>
</name>
(
<year>2009</year>
)
<article-title>Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings</article-title>
.
<source>Environ Exp Bot</source>
<volume>65</volume>
:
<fpage>63</fpage>
<lpage>71</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Qi1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Qi</surname>
<given-names>YC</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>WQ</given-names>
</name>
,
<name>
<surname>Qiu</surname>
<given-names>LY</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Ma</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Overexpression of
<italic>glutathione S-transferase</italic>
gene increases salt tolerance of
<italic>Arabidopsis</italic>
</article-title>
.
<source>Russ J of Plant Physl</source>
<volume>57</volume>
:
<fpage>233</fpage>
<lpage>240</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-ElShabrawi1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>El-Shabrawi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Kaul</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Reddy</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Singla-Pareek</surname>
<given-names>SL</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice</article-title>
.
<source>Protoplasma</source>
<volume>245</volume>
:
<fpage>85</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">20419461</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Wang2">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Dai</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat</article-title>
.
<source>J Plant Physiol</source>
<volume>168</volume>
:
<fpage>585</fpage>
<lpage>593</lpage>
<pub-id pub-id-type="pmid">21247658</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Rouhier1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rouhier</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Gelhaye</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Gualberto</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Jordy</surname>
<given-names>MN</given-names>
</name>
,
<name>
<surname>De Fay</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense</article-title>
.
<source>Plant Physiol</source>
<volume>134</volume>
:
<fpage>1027</fpage>
<lpage>1038</lpage>
<pub-id pub-id-type="pmid">14976238</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Himmelbach1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Himmelbach</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Iten</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Grill</surname>
<given-names>E</given-names>
</name>
(
<year>1998</year>
)
<article-title>Signalling of abscisic acid to regulate plant growth</article-title>
.
<source>Philos Trans R Soc Lond B Biol Sci</source>
<volume>353</volume>
:
<fpage>1439</fpage>
<lpage>1444</lpage>
<pub-id pub-id-type="pmid">9800207</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Zorb1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zorb</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Geilfus</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Muhling</surname>
<given-names>KH</given-names>
</name>
,
<name>
<surname>Ludwig-Muller</surname>
<given-names>J</given-names>
</name>
(
<year>2013</year>
)
<article-title>The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance</article-title>
.
<source>J Plant Physiol</source>
<volume>170</volume>
:
<fpage>220</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="pmid">23181973</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Hu1">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jiang</surname>
<given-names>M</given-names>
</name>
(
<year>2006</year>
)
<article-title>Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress</article-title>
.
<source>Plant Cell Physiol</source>
<volume>47</volume>
:
<fpage>1484</fpage>
<lpage>1495</lpage>
<pub-id pub-id-type="pmid">16990290</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Pei1">
<label>69</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pei</surname>
<given-names>ZM</given-names>
</name>
,
<name>
<surname>Murata</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Benning</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Thomine</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Klusener</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells</article-title>
.
<source>Nature</source>
<volume>406</volume>
:
<fpage>731</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="pmid">10963598</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Ye1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ye</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
(
<year>2011</year>
)
<article-title>ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress</article-title>
.
<source>Plant Cell Physiol</source>
<volume>52</volume>
:
<fpage>689</fpage>
<lpage>698</lpage>
<pub-id pub-id-type="pmid">21398647</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Miao2">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lv</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>XC</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>An
<italic>Arabidopsis</italic>
glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
:
<fpage>2749</fpage>
<lpage>2766</lpage>
<pub-id pub-id-type="pmid">16998070</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Livak1">
<label>72</label>
<mixed-citation publication-type="journal">
<name>
<surname>Livak</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Schmittgen</surname>
<given-names>T</given-names>
</name>
(
<year>2001</year>
)
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method</article-title>
.
<source>Methods</source>
<volume>25</volume>
:
<fpage>402</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="pmid">11846609</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Xu1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>ZS</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>LQ</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>XG</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>RY</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Isolation and molecular characterization of the
<italic>Triticum aestivum</italic>
L. ethylene-responsive factor 1 (
<italic>TaERF1</italic>
) that increases multiple stress tolerance</article-title>
.
<source>Plant Mol Biol</source>
<volume>65</volume>
:
<fpage>719</fpage>
<lpage>732</lpage>
<pub-id pub-id-type="pmid">17874224</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Sheen1">
<label>74</label>
<mixed-citation publication-type="other">Sheen J (2002) A transient expression assay using
<italic>Arabidopsis</italic>
mesophyll protoplasts.
<ext-link ext-link-type="uri" xlink:href="http://genetics.mgh.harvard.edu/sheenweb/">http://genetics.mgh.harvard.edu/sheenweb/</ext-link>
</mixed-citation>
</ref>
<ref id="pone.0073989-Xu2">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>ZS</given-names>
</name>
,
<name>
<surname>Ni</surname>
<given-names>ZY</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Nie</surname>
<given-names>LN</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>LC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Characterization of the
<italic>TaAIDFa</italic>
gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat</article-title>
.
<source>Mol Genet Genomics</source>
<volume>280</volume>
:
<fpage>497</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="pmid">18800227</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Scandalios1">
<label>76</label>
<mixed-citation publication-type="other">Scandalios JG, Guan L, Polidoros AN (1997) Catalases in Plants: gene structure, properties, regulation,and expression, Oxidative Stress and the Molecular Biology of Antioxidant Defences. New York: Cold Spring Harbor Laboratory Press. pp. 343–406.</mixed-citation>
</ref>
<ref id="pone.0073989-Bonetta1">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bonetta</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>McCourt</surname>
<given-names>P</given-names>
</name>
(
<year>1998</year>
)
<article-title>Genetic analysis of ABA signal transduction pathways</article-title>
.
<source>Trends Plant Sci</source>
<volume>3</volume>
:
<fpage>231</fpage>
<lpage>235</lpage>
</mixed-citation>
</ref>
<ref id="pone.0073989-Haake1">
<label>78</label>
<mixed-citation publication-type="journal">
<name>
<surname>Haake</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Cook</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Riechmann</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Pineda</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Thomashow</surname>
<given-names>MF</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis</article-title>
.
<source>Plant Physiol</source>
<volume>130</volume>
:
<fpage>639</fpage>
<lpage>648</lpage>
<pub-id pub-id-type="pmid">12376631</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-YamaguchiShinozaki1">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yamaguchi-Shinozaki</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Shinozaki</surname>
<given-names>K</given-names>
</name>
(
<year>1994</year>
)
<article-title>A novel cis-acting element in an
<italic>Arabidopsis</italic>
gene is involved in responsiveness to drought, low-temperature, or high-salt stress</article-title>
.
<source>Plant Cell</source>
<volume>6</volume>
:
<fpage>251</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">8148648</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Kim1">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>SY</given-names>
</name>
,
<name>
<surname>Chung</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Thomas</surname>
<given-names>TL</given-names>
</name>
(
<year>1997</year>
)
<article-title>Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system</article-title>
.
<source>Plant J</source>
<volume>11</volume>
:
<fpage>1237</fpage>
<lpage>1251</lpage>
<pub-id pub-id-type="pmid">9225465</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Park1">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>HC</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>YH</given-names>
</name>
,
<name>
<surname>Jeon</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Yoo</surname>
<given-names>JH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor</article-title>
.
<source>Plant Physiol</source>
<volume>135</volume>
:
<fpage>2150</fpage>
<lpage>2161</lpage>
<pub-id pub-id-type="pmid">15310827</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Urao1">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Urao</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Yamaguchi-Shinozaki</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Urao</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Shinozaki</surname>
<given-names>K</given-names>
</name>
(
<year>1993</year>
)
<article-title>An
<italic>Arabidopsis</italic>
myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence</article-title>
.
<source>Plant Cell</source>
<volume>5</volume>
:
<fpage>1529</fpage>
<lpage>1539</lpage>
<pub-id pub-id-type="pmid">8312738</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Abe1">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Abe</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Yamaguchi-Shinozaki</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Urao</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Iwasaki</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hosokawa</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>1997</year>
)
<article-title>Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression</article-title>
.
<source>Plant Cell</source>
<volume>9</volume>
:
<fpage>1859</fpage>
<lpage>1868</lpage>
<pub-id pub-id-type="pmid">9368419</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Gurley1">
<label>84</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gurley</surname>
<given-names>WB</given-names>
</name>
,
<name>
<surname>Key</surname>
<given-names>JL</given-names>
</name>
(
<year>1991</year>
)
<article-title>Transcriptional regulation of the heat-shock response: a plant perspective</article-title>
.
<source>Biochemistry</source>
<volume>30</volume>
:
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">1988009</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Itzhaki1">
<label>85</label>
<mixed-citation publication-type="journal">
<name>
<surname>Itzhaki</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Woodson</surname>
<given-names>WR</given-names>
</name>
(
<year>1993</year>
)
<article-title>Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation</article-title>
.
<source>Plant Mol Biol</source>
<volume>22</volume>
:
<fpage>43</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="pmid">8499618</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Yu1">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yu</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
(
<year>2001</year>
)
<article-title>Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression</article-title>
.
<source>Plant Cell</source>
<volume>13</volume>
:
<fpage>1527</fpage>
<lpage>1540</lpage>
<pub-id pub-id-type="pmid">11449049</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Sutliff1">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sutliff</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Lanahan</surname>
<given-names>MB</given-names>
</name>
,
<name>
<surname>Ho</surname>
<given-names>TH</given-names>
</name>
(
<year>1993</year>
)
<article-title>Gibberellin treatment stimulates nuclear factor binding to the gibberellin response complex in a barley alpha-amylase promoter</article-title>
.
<source>Plant Cell</source>
<volume>5</volume>
:
<fpage>1681</fpage>
<lpage>1692</lpage>
<pub-id pub-id-type="pmid">8312745</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Rouster1">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rouster</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Leah</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Mundy</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Cameron-Mills</surname>
<given-names>V</given-names>
</name>
(
<year>1997</year>
)
<article-title>Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain</article-title>
.
<source>Plant J</source>
<volume>11</volume>
:
<fpage>513</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="pmid">9107039</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0073989-Sakai1">
<label>89</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sakai</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Nagata</surname>
<given-names>T</given-names>
</name>
(
<year>1996</year>
)
<article-title>Analysis of the promoter of the auxin-inducible gene, parC, of tobacco</article-title>
.
<source>Plant Cell Physiol</source>
<volume>37</volume>
:
<fpage>906</fpage>
<lpage>913</lpage>
<pub-id pub-id-type="pmid">8979393</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3788784
   |texte=   Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H2O2 Tolerances in Arabidopsis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24098330" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024