Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection

Identifieur interne : 001158 ( Pmc/Corpus ); précédent : 001157; suivant : 001159

Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection

Auteurs : Liu Yang ; Dengwei Jue ; Wang Li ; Ruijie Zhang ; Min Chen ; Qing Yang

Source :

RBID : PMC:3754920

Abstract

MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (Solanum melongena L.). To identify miRNAs in eggplant and their response to Verticillium dahliae infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.


Url:
DOI: 10.1371/journal.pone.0072840
PubMed: 24015279
PubMed Central: 3754920

Links to Exploration step

PMC:3754920

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of MiRNA from Eggplant (
<italic>Solanum melongena</italic>
L.) by Small RNA Deep Sequencing and Their Response to
<italic>Verticillium dahliae</italic>
Infection</title>
<author>
<name sortKey="Yang, Liu" sort="Yang, Liu" uniqKey="Yang L" first="Liu" last="Yang">Liu Yang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jue, Dengwei" sort="Jue, Dengwei" uniqKey="Jue D" first="Dengwei" last="Jue">Dengwei Jue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Wang" sort="Li, Wang" uniqKey="Li W" first="Wang" last="Li">Wang Li</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ruijie" sort="Zhang, Ruijie" uniqKey="Zhang R" first="Ruijie" last="Zhang">Ruijie Zhang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qing" sort="Yang, Qing" uniqKey="Yang Q" first="Qing" last="Yang">Qing Yang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24015279</idno>
<idno type="pmc">3754920</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754920</idno>
<idno type="RBID">PMC:3754920</idno>
<idno type="doi">10.1371/journal.pone.0072840</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identification of MiRNA from Eggplant (
<italic>Solanum melongena</italic>
L.) by Small RNA Deep Sequencing and Their Response to
<italic>Verticillium dahliae</italic>
Infection</title>
<author>
<name sortKey="Yang, Liu" sort="Yang, Liu" uniqKey="Yang L" first="Liu" last="Yang">Liu Yang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jue, Dengwei" sort="Jue, Dengwei" uniqKey="Jue D" first="Dengwei" last="Jue">Dengwei Jue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Wang" sort="Li, Wang" uniqKey="Li W" first="Wang" last="Li">Wang Li</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Ruijie" sort="Zhang, Ruijie" uniqKey="Zhang R" first="Ruijie" last="Zhang">Ruijie Zhang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qing" sort="Yang, Qing" uniqKey="Yang Q" first="Qing" last="Yang">Qing Yang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (
<italic>Solanum melongena</italic>
L.). To identify miRNAs in eggplant and their response to
<italic>Verticillium dahliae</italic>
infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillips, Jr" uniqKey="Phillips J">JR Phillips</name>
</author>
<author>
<name sortKey="Dalmay, T" uniqKey="Dalmay T">T Dalmay</name>
</author>
<author>
<name sortKey="Bartels, D" uniqKey="Bartels D">D Bartels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Tej, Ss" uniqKey="Tej S">SS Tej</name>
</author>
<author>
<name sortKey="Luo, S" uniqKey="Luo S">S Luo</name>
</author>
<author>
<name sortKey="Haudenschild, Cd" uniqKey="Haudenschild C">CD Haudenschild</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaucheret, H" uniqKey="Vaucheret H">H Vaucheret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinhart, Bj" uniqKey="Reinhart B">BJ Reinhart</name>
</author>
<author>
<name sortKey="Weinstein, Eg" uniqKey="Weinstein E">EG Weinstein</name>
</author>
<author>
<name sortKey="Rhoades, Mw" uniqKey="Rhoades M">MW Rhoades</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peragine, A" uniqKey="Peragine A">A Peragine</name>
</author>
<author>
<name sortKey="Yoshikawa, M" uniqKey="Yoshikawa M">M Yoshikawa</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Albrecht, Hl" uniqKey="Albrecht H">HL Albrecht</name>
</author>
<author>
<name sortKey="Poethig, Rs" uniqKey="Poethig R">RS Poethig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vazquez, F" uniqKey="Vazquez F">F Vazquez</name>
</author>
<author>
<name sortKey="Blevins, T" uniqKey="Blevins T">T Blevins</name>
</author>
<author>
<name sortKey="Ailhas, J" uniqKey="Ailhas J">J Ailhas</name>
</author>
<author>
<name sortKey="Boller, T" uniqKey="Boller T">T Boller</name>
</author>
<author>
<name sortKey="Meins Jr, F" uniqKey="Meins Jr F">F Meins Jr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Kulkarni, K" uniqKey="Kulkarni K">K Kulkarni</name>
</author>
<author>
<name sortKey="Souret, Ff" uniqKey="Souret F">FF Souret</name>
</author>
<author>
<name sortKey="Muthuvalliappan, R" uniqKey="Muthuvalliappan R">R MuthuValliappan</name>
</author>
<author>
<name sortKey="Tej, Ss" uniqKey="Tej S">SS Tej</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borsani, O" uniqKey="Borsani O">O Borsani</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
<author>
<name sortKey="Verslues, Pe" uniqKey="Verslues P">PE Verslues</name>
</author>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones Rhoades, Mw" uniqKey="Jones Rhoades M">MW Jones-Rhoades</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Xy" uniqKey="Lu X">XY Lu</name>
</author>
<author>
<name sortKey="Huang, Xl" uniqKey="Huang X">XL Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Sutoh, K" uniqKey="Sutoh K">K Sutoh</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Padmanabhan, C" uniqKey="Padmanabhan C">C Padmanabhan</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
<author>
<name sortKey="Dunoyer, P" uniqKey="Dunoyer P">P Dunoyer</name>
</author>
<author>
<name sortKey="Jay, F" uniqKey="Jay F">F Jay</name>
</author>
<author>
<name sortKey="Arnold, B" uniqKey="Arnold B">B Arnold</name>
</author>
<author>
<name sortKey="Dharmasiri, N" uniqKey="Dharmasiri N">N Dharmasiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katiyar Agarwal, S" uniqKey="Katiyar Agarwal S">S Katiyar-Agarwal</name>
</author>
<author>
<name sortKey="Morgan, R" uniqKey="Morgan R">R Morgan</name>
</author>
<author>
<name sortKey="Dahlbeck, D" uniqKey="Dahlbeck D">D Dahlbeck</name>
</author>
<author>
<name sortKey="Borsani, O" uniqKey="Borsani O">O Borsani</name>
</author>
<author>
<name sortKey="Villegas Jr, A" uniqKey="Villegas Jr A">A Villegas Jr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fahlgren, N" uniqKey="Fahlgren N">N Fahlgren</name>
</author>
<author>
<name sortKey="Howell, Md" uniqKey="Howell M">MD Howell</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Chapman, Ej" uniqKey="Chapman E">EJ Chapman</name>
</author>
<author>
<name sortKey="Sullivan, Cm" uniqKey="Sullivan C">CM Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agorio, A" uniqKey="Agorio A">A Agorio</name>
</author>
<author>
<name sortKey="Vera, P" uniqKey="Vera P">P Vera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhat, R" uniqKey="Bhat R">R Bhat</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellendorff, U" uniqKey="Ellendorff U">U Ellendorff</name>
</author>
<author>
<name sortKey="Fradin, Ef" uniqKey="Fradin E">EF Fradin</name>
</author>
<author>
<name sortKey="De Jonge, R" uniqKey="De Jonge R">R De Jonge</name>
</author>
<author>
<name sortKey="Thomma, Bp" uniqKey="Thomma B">BP Thomma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Xie, C" uniqKey="Xie C">C Xie</name>
</author>
<author>
<name sortKey="Jue, D" uniqKey="Jue D">D Jue</name>
</author>
<author>
<name sortKey="Hong, Y" uniqKey="Hong Y">Y Hong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C Yu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Lam, Tw" uniqKey="Lam T">TW Lam</name>
</author>
<author>
<name sortKey="Yiu, Sm" uniqKey="Yiu S">SM Yiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffiths Jones, S" uniqKey="Griffiths Jones S">S Griffiths-Jones</name>
</author>
<author>
<name sortKey="Moxon, S" uniqKey="Moxon S">S Moxon</name>
</author>
<author>
<name sortKey="Marshall, M" uniqKey="Marshall M">M Marshall</name>
</author>
<author>
<name sortKey="Khanna, A" uniqKey="Khanna A">A Khanna</name>
</author>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffiths Jones, S" uniqKey="Griffiths Jones S">S Griffiths-Jones</name>
</author>
<author>
<name sortKey="Saini, Hk" uniqKey="Saini H">HK Saini</name>
</author>
<author>
<name sortKey="Van Dongen, S" uniqKey="Van Dongen S">S Van Dongen</name>
</author>
<author>
<name sortKey="Enright, Aj" uniqKey="Enright A">AJ Enright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Gustafson, Am" uniqKey="Gustafson A">AM Gustafson</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuker, M" uniqKey="Zuker M">M Zuker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kantar, M" uniqKey="Kantar M">M Kantar</name>
</author>
<author>
<name sortKey="Unver, T" uniqKey="Unver T">T Unver</name>
</author>
<author>
<name sortKey="Budak, H" uniqKey="Budak H">H Budak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unver, T" uniqKey="Unver T">T Unver</name>
</author>
<author>
<name sortKey="Budak, H" uniqKey="Budak H">H Budak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Z" uniqKey="Yin Z">Z Yin</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X Han</name>
</author>
<author>
<name sortKey="Shen, F" uniqKey="Shen F">F Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Audic, S" uniqKey="Audic S">S Audic</name>
</author>
<author>
<name sortKey="Claverie, Jm" uniqKey="Claverie J">JM Claverie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varkonyi Gasic, E" uniqKey="Varkonyi Gasic E">E Varkonyi-Gasic</name>
</author>
<author>
<name sortKey="Wu, R" uniqKey="Wu R">R Wu</name>
</author>
<author>
<name sortKey="Wood, M" uniqKey="Wood M">M Wood</name>
</author>
<author>
<name sortKey="Walton, Ef" uniqKey="Walton E">EF Walton</name>
</author>
<author>
<name sortKey="Hellens, Rp" uniqKey="Hellens R">RP Hellens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hafner, M" uniqKey="Hafner M">M Hafner</name>
</author>
<author>
<name sortKey="Landgraf, P" uniqKey="Landgraf P">P Landgraf</name>
</author>
<author>
<name sortKey="Ludwig, J" uniqKey="Ludwig J">J Ludwig</name>
</author>
<author>
<name sortKey="Rice, A" uniqKey="Rice A">A Rice</name>
</author>
<author>
<name sortKey="Ojo, T" uniqKey="Ojo T">T Ojo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morozova, O" uniqKey="Morozova O">O Morozova</name>
</author>
<author>
<name sortKey="Marra, Ma" uniqKey="Marra M">MA Marra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, C" uniqKey="Liang C">C Liang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Zou, J" uniqKey="Zou J">J Zou</name>
</author>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D Xu</name>
</author>
<author>
<name sortKey="Su, F" uniqKey="Su F">F Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Z" uniqKey="Yin Z">Z Yin</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X Han</name>
</author>
<author>
<name sortKey="Shen, F" uniqKey="Shen F">F Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Yt" uniqKey="Zhao Y">YT Zhao</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
<author>
<name sortKey="Fu, Sx" uniqKey="Fu S">SX Fu</name>
</author>
<author>
<name sortKey="Yang, Wc" uniqKey="Yang W">WC Yang</name>
</author>
<author>
<name sortKey="Qi, Ck" uniqKey="Qi C">CK Qi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mi, S" uniqKey="Mi S">S Mi</name>
</author>
<author>
<name sortKey="Cai, T" uniqKey="Cai T">T Cai</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Hodges, E" uniqKey="Hodges E">E Hodges</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O Voinnet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Czech, B" uniqKey="Czech B">B Czech</name>
</author>
<author>
<name sortKey="Hannon, Gj" uniqKey="Hannon G">GJ Hannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arazi, T" uniqKey="Arazi T">T Arazi</name>
</author>
<author>
<name sortKey="Talmor Neiman, M" uniqKey="Talmor Neiman M">M Talmor-Neiman</name>
</author>
<author>
<name sortKey="Stav, R" uniqKey="Stav R">R Stav</name>
</author>
<author>
<name sortKey="Riese, M" uniqKey="Riese M">M Riese</name>
</author>
<author>
<name sortKey="Huijser, P" uniqKey="Huijser P">P Huijser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ambros, V" uniqKey="Ambros V">V Ambros</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
<author>
<name sortKey="Burge, Cb" uniqKey="Burge C">CB Burge</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhoades, Mw" uniqKey="Rhoades M">MW Rhoades</name>
</author>
<author>
<name sortKey="Reinhart, Bj" uniqKey="Reinhart B">BJ Reinhart</name>
</author>
<author>
<name sortKey="Lim, Lp" uniqKey="Lim L">LP Lim</name>
</author>
<author>
<name sortKey="Burge, Cb" uniqKey="Burge C">CB Burge</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, X" uniqKey="Dai X">X Dai</name>
</author>
<author>
<name sortKey="Zhao, Px" uniqKey="Zhao P">PX Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jakoby, M" uniqKey="Jakoby M">M Jakoby</name>
</author>
<author>
<name sortKey="Weisshaar, B" uniqKey="Weisshaar B">B Weisshaar</name>
</author>
<author>
<name sortKey="Droge Laser, W" uniqKey="Droge Laser W">W Dröge-Laser</name>
</author>
<author>
<name sortKey="Vicente Carbajosa, J" uniqKey="Vicente Carbajosa J">J Vicente-Carbajosa</name>
</author>
<author>
<name sortKey="Tiedemann, J" uniqKey="Tiedemann J">J Tiedemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casimiro, I" uniqKey="Casimiro I">I Casimiro</name>
</author>
<author>
<name sortKey="Marchant, A" uniqKey="Marchant A">A Marchant</name>
</author>
<author>
<name sortKey="Bhalerao, Rp" uniqKey="Bhalerao R">RP Bhalerao</name>
</author>
<author>
<name sortKey="Beeckman, T" uniqKey="Beeckman T">T Beeckman</name>
</author>
<author>
<name sortKey="Dhooge, S" uniqKey="Dhooge S">S Dhooge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Pajerowska Mukhtar, K" uniqKey="Pajerowska Mukhtar K">K Pajerowska-Mukhtar</name>
</author>
<author>
<name sortKey="Culler, Ah" uniqKey="Culler A">AH Culler</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lakshmana Reddy, D" uniqKey="Lakshmana Reddy D">D Lakshmana Reddy</name>
</author>
<author>
<name sortKey="Radhika, V" uniqKey="Radhika V">V Radhika</name>
</author>
<author>
<name sortKey="Bharadwaj, A" uniqKey="Bharadwaj A">A Bharadwaj</name>
</author>
<author>
<name sortKey="Khandagale, K" uniqKey="Khandagale K">K Khandagale</name>
</author>
<author>
<name sortKey="Aswath, C" uniqKey="Aswath C">C Aswath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gunaratne, Ph" uniqKey="Gunaratne P">PH Gunaratne</name>
</author>
<author>
<name sortKey="Coarfa, C" uniqKey="Coarfa C">C Coarfa</name>
</author>
<author>
<name sortKey="Soibam, B" uniqKey="Soibam B">B Soibam</name>
</author>
<author>
<name sortKey="Tandon, A" uniqKey="Tandon A">A Tandon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Jagadeeswaran, G" uniqKey="Jagadeeswaran G">G Jagadeeswaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Axtell, Mj" uniqKey="Axtell M">MJ Axtell</name>
</author>
<author>
<name sortKey="Snyder, Ja" uniqKey="Snyder J">JA Snyder</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallory, Ac" uniqKey="Mallory A">AC Mallory</name>
</author>
<author>
<name sortKey="Vaucheret, H" uniqKey="Vaucheret H">H Vaucheret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Huan, Q" uniqKey="Huan Q">Q Huan</name>
</author>
<author>
<name sortKey="Chong, K" uniqKey="Chong K">K Chong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simons, G" uniqKey="Simons G">G Simons</name>
</author>
<author>
<name sortKey="Groenendijk, J" uniqKey="Groenendijk J">J Groenendijk</name>
</author>
<author>
<name sortKey="Wijbrandi, J" uniqKey="Wijbrandi J">J Wijbrandi</name>
</author>
<author>
<name sortKey="Reijans, M" uniqKey="Reijans M">M Reijans</name>
</author>
<author>
<name sortKey="Groenen, J" uniqKey="Groenen J">J Groenen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ori, N" uniqKey="Ori N">N Ori</name>
</author>
<author>
<name sortKey="Eshed, Y" uniqKey="Eshed Y">Y Eshed</name>
</author>
<author>
<name sortKey="Paran, I" uniqKey="Paran I">I Paran</name>
</author>
<author>
<name sortKey="Presting, G" uniqKey="Presting G">G Presting</name>
</author>
<author>
<name sortKey="Aviv, D" uniqKey="Aviv D">D Aviv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luigi, M" uniqKey="Luigi M">M Luigi</name>
</author>
<author>
<name sortKey="Luigi, F" uniqKey="Luigi F">F Luigi</name>
</author>
<author>
<name sortKey="Raffalella, Em" uniqKey="Raffalella E">EM Raffalella</name>
</author>
<author>
<name sortKey="Sara, M" uniqKey="Sara M">M Sara</name>
</author>
<author>
<name sortKey="Walter, S" uniqKey="Walter S">S Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Gao, S" uniqKey="Gao S">S Gao</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Chellappan, P" uniqKey="Chellappan P">P Chellappan</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Xf" uniqKey="He X">XF He</name>
</author>
<author>
<name sortKey="Fang, Yy" uniqKey="Fang Y">YY Fang</name>
</author>
<author>
<name sortKey="Feng, L" uniqKey="Feng L">L Feng</name>
</author>
<author>
<name sortKey="Guo, Hs" uniqKey="Guo H">HS Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, H" uniqKey="Yi H">H Yi</name>
</author>
<author>
<name sortKey="Richards, Ej" uniqKey="Richards E">EJ Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Hm" uniqKey="Chen H">HM Chen</name>
</author>
<author>
<name sortKey="Chen, Lt" uniqKey="Chen L">LT Chen</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K Patel</name>
</author>
<author>
<name sortKey="Li, Yh" uniqKey="Li Y">YH Li</name>
</author>
<author>
<name sortKey="Baulcombe, Dc" uniqKey="Baulcombe D">DC Baulcombe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L Wu</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H Zhou</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Ni, F" uniqKey="Ni F">F Ni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khraiwesh, B" uniqKey="Khraiwesh B">B Khraiwesh</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Li, Yf" uniqKey="Li Y">YF Li</name>
</author>
<author>
<name sortKey="Jagadeeswaran, G" uniqKey="Jagadeeswaran G">G Jagadeeswaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xin, M" uniqKey="Xin M">M Xin</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Xie, C" uniqKey="Xie C">C Xie</name>
</author>
<author>
<name sortKey="Peng, H" uniqKey="Peng H">H Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Llorente, F" uniqKey="Llorente F">F Llorente</name>
</author>
<author>
<name sortKey="Muskett, P" uniqKey="Muskett P">P Muskett</name>
</author>
<author>
<name sortKey="Sanchez Vallet, A" uniqKey="Sanchez Vallet A">A Sánchez-Vallet</name>
</author>
<author>
<name sortKey="L Pez, G" uniqKey="L Pez G">G López</name>
</author>
<author>
<name sortKey="Ramos, B" uniqKey="Ramos B">B Ramos</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24015279</article-id>
<article-id pub-id-type="pmc">3754920</article-id>
<article-id pub-id-type="publisher-id">PONE-D-13-00797</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0072840</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Agriculture</subject>
<subj-group>
<subject>Crops</subject>
<subj-group>
<subject>Crop Diseases</subject>
<subject>Vegetables</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Computational Biology</subject>
<subj-group>
<subject>Genomics</subject>
<subj-group>
<subject>Genome Expression Analysis</subject>
<subject>Genome Sequencing</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sequence Analysis</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Genomics</subject>
</subj-group>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Genomics</subject>
<subject>Plant Pathology</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Identification of MiRNA from Eggplant (
<italic>Solanum melongena</italic>
L.) by Small RNA Deep Sequencing and Their Response to
<italic>Verticillium dahliae</italic>
Infection</article-title>
<alt-title alt-title-type="running-head">Deep Sequencing of Eggplant Small RNAs</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Liu</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jue</surname>
<given-names>Dengwei</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Wang</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Ruijie</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Min</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Qing</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<addr-line>College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Vinatzer</surname>
<given-names>Boris Alexander</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Virginia Tech, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>qyang19@njau.edu.cn</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: LY QY. Performed the experiments: LY DJ WL RZ MC. Analyzed the data: LY DJ WL. Contributed reagents/materials/analysis tools: QY. Wrote the paper: LY QY.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>8</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>8</issue>
<elocation-id>e72840</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>12</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Yang et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (
<italic>Solanum melongena</italic>
L.). To identify miRNAs in eggplant and their response to
<italic>Verticillium dahliae</italic>
infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.</p>
</abstract>
<funding-group>
<funding-statement>This study was supported financially by grants from the Jiangsu Agricultural Science and Technology Innovation Fund (NO. cx (11)1020), the National ‘863’ High-tech Program (NO. 2010AA10A108), the National Pear Industry Technology System (NO. CARS-29) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions: Modern horticultural science (PAPD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Gene expression in plants is highly regulated to ensure proper development and appropriate responses to environmental changes. As gene expression is a multi-step process, it can be regulated at several levels. One of the most important regulatory mechanisms is post-transcriptional regulation, which involves 21–24 nucleotide (nt) small RNA (sRNA) molecules
<xref ref-type="bibr" rid="pone.0072840-Phillips1">[1]</xref>
. The sRNA content of plant cells is surprisingly complex, suggesting an extensive regulatory role for these molecules
<xref ref-type="bibr" rid="pone.0072840-Lu1">[2]</xref>
. Distinguished by their origin and biological function, several classes of small regulatory RNAs have been identified. One of these is small interfering RNAs (siRNAs), which encompasses chromatin-associated siRNAs, trans-acting siRNAs (tasiRNAs), repeat-associated siRNAs (rasiRNAs), and natural antisense transcript-associated siRNAs (nat-siRNAs)
<xref ref-type="bibr" rid="pone.0072840-Vaucheret1">[3]</xref>
. All these siRNAs derive from double-stranded RNA (dsRNA), but dsRNA can be formed through different mechanisms. MiRNAs are generated by DICER-LIKE 1 (DCL1) and/or DCL4 from single stranded (ss) hairpin RNA precursors which can be encoded in their own genes or exist in introns of protein-coding genes
<xref ref-type="bibr" rid="pone.0072840-Reinhart1">[4]</xref>
. Other endogenous sRNAs are processed from long dsRNA and often require RNA-dependent RNA polymerase 6 (RDR6) (
<italic>trans</italic>
acting siRNAs)
<xref ref-type="bibr" rid="pone.0072840-Peragine1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0072840-Vazquez1">[6]</xref>
, RDR2 (heterochromatin siRNAs)
<xref ref-type="bibr" rid="pone.0072840-Lu2">[7]</xref>
, or overlapping antisense mRNAs (natural antisense siRNAs)
<xref ref-type="bibr" rid="pone.0072840-Borsani1">[8]</xref>
. It is possible that there are other unidentified mechanisms leading to dsRNA that could be sources of new classes of sRNAs.</p>
<p>The best-characterized class of plant sRNAs is miRNA
<xref ref-type="bibr" rid="pone.0072840-JonesRhoades1">[9]</xref>
. MiRNAs are an abundant class of small endogenous RNAs, 20–25 nt in length, that regulate gene expression post-transcriptionally by targeting transcripts for cleavage or translational repression
<xref ref-type="bibr" rid="pone.0072840-JonesRhoades1">[9]</xref>
. MiRNA-guided gene silencing is now known as a conserved and essential regulatory mechanism for plant development, metabolism, as well as for adaptation to stress conditions
<xref ref-type="bibr" rid="pone.0072840-Lu3">[10]</xref>
<xref ref-type="bibr" rid="pone.0072840-Chen1">[12]</xref>
.</p>
<p>Increasing evidence indicates that miRNAs play critical roles in regulating abiotic and biotic stress responses, including disease resistance
<xref ref-type="bibr" rid="pone.0072840-Zhang1">[13]</xref>
<xref ref-type="bibr" rid="pone.0072840-KatiyarAgarwal1">[16]</xref>
. MiR393 was the first miRNA that was found to contribute to plant immune systems. In
<italic>Arabidopsis</italic>
, miR393 can be induced by bacterial elicitor flg22 and positively contributes to pathogen associated molecular pattern (PAMP)-triggered immunity (PTI) by negatively regulating messenger RNAs for the F-box auxin receptors and subsequently suppressing auxin signaling
<xref ref-type="bibr" rid="pone.0072840-Navarro1">[15]</xref>
. It has been recently demonstrated that miR393* also contributes to immunity in
<italic>Arabidopsis</italic>
, mainly effector-triggered immunity (ETI), by modulating secretion of PR1
<xref ref-type="bibr" rid="pone.0072840-Zhang1">[13]</xref>
. In addition to miR393, miR167 and miR160, which target auxin response factors (ARF) were also induced by a non-pathogenic
<italic>Pseudomonas syringae</italic>
pv. Tomato (pst) DC3000 strain with a mutated type III secretion system hrcC
<xref ref-type="bibr" rid="pone.0072840-Fahlgren1">[17]</xref>
. In turn, repression of auxin signaling was shown to restrict
<italic>P. syringae</italic>
growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in disease resistance
<xref ref-type="bibr" rid="pone.0072840-Navarro1">[15]</xref>
. Another recent study reported an endogenous
<italic>Arabidopsis</italic>
siRNA that is specifically induced by the bacterial pathogen
<italic>P. syringae</italic>
carrying AvrRpt2
<xref ref-type="bibr" rid="pone.0072840-KatiyarAgarwal1">[16]</xref>
. This siRNA contributes to RPS2-mediated disease resistance by repressing a putative negative regulator of the RPS2 resistance pathway. Positional cloning in an
<italic>Arabidopsis</italic>
mutant that was susceptible to several pathogens revealed a mutation in the Argonaute gene
<italic>ago4</italic>
, which is associated with small interfering RNAs involved in RNA-directed DNA methylation (RdDM)
<xref ref-type="bibr" rid="pone.0072840-Agorio1">[18]</xref>
.</p>
<p>Verticillium wilt is a notorious wilt disease affecting over 300 species of eudicot plants and mainly caused by a soil-borne fungal pathogen,
<italic>Verticillium dahliae</italic>
Kleb.
<xref ref-type="bibr" rid="pone.0072840-Bhat1">[19]</xref>
. Many economically important plants are susceptible to this disease, including eggplants (
<italic>Solanum melongena</italic>
L.). As a common vegetable crop, eggplant suffers constantly from
<italic>Verticillium</italic>
infection, causing significant economic losses, but there remain at present no proven cures (chemical or cultural) for this disease since the mechanisms of Verticillium wilt remain poorly understood. Some recent studies on
<italic>Arabidopsis</italic>
mutants have tested the possible role of RNA-mediated gene silencing in plant defense against
<italic>Verticillium</italic>
and revealed several components that were shown to affect
<italic>Verticillium</italic>
-specific defense, suggesting that multiple RNA silencing pathways play significant roles in the regulation of pathogen defense responses
<xref ref-type="bibr" rid="pone.0072840-Ellendorff1">[20]</xref>
.</p>
<p>To date, no systematic studies of small RNAs in eggplant have been conducted. In this study, we deep-sequenced two sRNA libraries prepared from mock-infected and
<italic>Verticillium dahliae</italic>
infected seedlings of eggplants to investigate the miRNAs in eggplant and their transcriptional profile in response to
<italic>Verticillium dahliae</italic>
infection. Our work will lay the foundation for further analysis and understanding of miRNA function in the regulation of
<italic>Verticillium dahliae</italic>
-caused defense responses in eggplants.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Plants, Pathogen and Infection</title>
<p>The eggplant (
<italic>Solanum melongena</italic>
L.) cultivar Suqi was used in the experiment. Eggplant seedlings were cultured in sugar-free nutrient medium (quarter-strength MS solution) at 25°C under a 16 h light:8 h dark regime. For the NPA (N-1-naphthylphthalamic acid, Sigma-Aldrich), SA (salicylic acid, Sigma-Aldrich) and IAA (3-Indoleacetic acid, Sigma-Aldrich) treatments, seedlings were transferred to tubes containing different concentrations of the chemicals and, 24 h later, they were inoculated with pathogen.</p>
<p>
<italic>Verticillium dahliae</italic>
isolated from eggplant with Verticillium wilt was kindly provided by the College of Plant Protection, Nanjing Agricultural University (Nanjing, China). The pathogen was cultured on both potato dextrose agar (PDA) plate for 15 days at 25°C to collect spores (at a concentration of 5×10
<sup>7</sup>
spores·ml
<sup>−1</sup>
), and in Czapeck’s liquid medium to obtain crude toxin (8 mg·ml
<sup>−1</sup>
).</p>
<p>Uniform seedlings with five main leaves were infected with a mixture of spores and crude toxin for 12 h (hereafter called TR). Control (mock-inoculated) seedlings were inoculated with water (hereafter called CK). Six uniform seedlings were used in each treatment. Three of them were randomly selected for total RNA extraction and small RNA library preparation. Whole seedlings were employed for RNA extraction. The other three seedlings in each treatment were used to confirm whether the infection was successful. Both the pathogen-infected and mock-infected seedlings were frozen in liquid nitrogen immediately after inoculation.</p>
<p>The number of diseased plants and infected leaves was recorded on the seventh day post-inoculation. Disease intensity was graded using the method of Liu et al.
<xref ref-type="bibr" rid="pone.0072840-Liu1">[21]</xref>
as follows: grade 0, no disease dots on the leaves of the plants; grade 1, one to two withered leaves; grade 2, three to four withered leaves; grade 3, most leaves withered; and grade 4, the plant is withered nearly to death. A disease index was calculated according to the disease grading criterion of grades 0 to 4 using the formula: disease index = [Σ (number of diseased plants × disease grade)/(total number of investigated plants × the highest disease grade)] ×100.</p>
</sec>
<sec id="s2b">
<title>Small RNA Library Preparation and Sequencing</title>
<p>For direct comparison, eggplant seedlings used for CK and TR library construction were grown under the same conditions except for the pathogen infection. Total RNA was extracted from the above described samples using TRIzol reagent (Invitrogen), and subsequently subjected to 15% denaturing polyacrylamide gel electrophoresis, after which the sRNA fragments of 18–28 nt were isolated from the gel and purified. Next, the sRNA molecules were ligated to a 5′ adaptor and a 3′ adaptor sequentially and then converted to DNA by RT-PCR. Finally, 20 µg of RT-PCR product was sequenced directly using an Illumina/Solexa 1 G Genome Analyzer according to the manufacturer’s protocols (BGI, Shenzhen, China). The obtained sequence libraries were subjected to Illumina/Solexa’s sequencing-by-synthesis method. The two constructed cDNA libraries underwent Illumina/Solexa’s proprietary flowcell cluster generation and bridge amplification. After which the 1 G sequencer, during 36 cycles of extension, recorded fluorophore excitation and determined the sequence of bases for each cluster. After image analysis, sequence quality evaluation and summarization of data production were performed with Illumina/Solexa Pipeline.</p>
</sec>
<sec id="s2c">
<title>Small RNA Analysis</title>
<p>After removing the adaptor/acceptor sequences, filtering low quality tags and cleaning up contamination due to adaptor-adaptor ligation, the occurrences of each unique sequence read were counted as sequence tags. BLAST searching against eggplant ESTs (about 98,089 ESTs) was performed using SOAP 2.0
<xref ref-type="bibr" rid="pone.0072840-Li1">[22]</xref>
. All these sequence tags were compared with the sequences of non-coding RNAs (rRNA, tRNA, snRNA, snoRNA) available in Rfam (
<ext-link ext-link-type="uri" xlink:href="http://www.sanger.ac.uk/software/Rfam">http://www.sanger.ac.uk/software/Rfam</ext-link>
)
<xref ref-type="bibr" rid="pone.0072840-GriffithsJones1">[23]</xref>
and the GenBank noncoding RNA database (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</ext-link>
) to classify degradation fragments of noncoding RNA. The remainder of the sequences which matched eggplant ESTs were searched for miRNA sequences using miRBase 19 (
<ext-link ext-link-type="uri" xlink:href="http://www.mirbase.org/index.shtml">http://www.mirbase.org/index.shtml</ext-link>
)
<xref ref-type="bibr" rid="pone.0072840-GriffithsJones2">[24]</xref>
to identify the known miRNAs by allowing either shorter/longer or containing up to two mismatches. Subsequently, we performed extensive comparisons against known miRNAs in other plant species to investigate the evolutionary conservation of known miRNAs in eggplant versus other plants.</p>
</sec>
<sec id="s2d">
<title>Prediction of Novel miRNA</title>
<p>After searching against the Rfam, NCBI GenBank, and miRBase databases, the remaining sequences that were not associated with any annotated type were used to map the ESTs for prediction of novel miRNA candidates. Prediction of eggplant miRNAs was conducted using previously developed criteria
<xref ref-type="bibr" rid="pone.0072840-Allen1">[25]</xref>
. MiRNA precursors have characteristic fold-back structures that can be used to predict novel miRNAs. The prediction was implemented in the Mireap program developed by the BGI (Shenzhen, China). To identify atypical and novel sequences of miRNAs in eggplant, we adopted the following strategy. First, candidate miRNA sites were screened out from breakpoints defined by mapping of the sRNAs. Next, a minimal stringent criterion was used to select miRNA candidates, which ensured that the majority of sequences recovered were known miRNAs. Finally, RNA secondary structure was checked using Mfold
<xref ref-type="bibr" rid="pone.0072840-Zuker1">[26]</xref>
.</p>
</sec>
<sec id="s2e">
<title>Prediction of miRNA Targets</title>
<p>The identified known miRNAs and predicted novel miRNAs were used to query sequences for target sites on the psRNAtarget web server (
<ext-link ext-link-type="uri" xlink:href="http://biocomp5.noble.org/psRNATarget/">http://biocomp5.noble.org/psRNATarget/</ext-link>
). Target transcripts containing complementary sequences of miRNAs were determined with previously established criteria
<xref ref-type="bibr" rid="pone.0072840-Kantar1">[27]</xref>
<xref ref-type="bibr" rid="pone.0072840-Yin1">[29]</xref>
. Functional categories of obtained EST sequences were annotated against the COG database (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nih.gov/COG/">http://www.ncbi.nih.gov/COG/</ext-link>
) using BLAST with a cutoff of E value <1e-5.</p>
</sec>
<sec id="s2f">
<title>Differential Expression of Known miRNA</title>
<p>For investigation of Verticillium wilt-responsive miRNAs, the read counts of the identified known miRNAs in both of the two libraries were first normalized to the total number of miRNA reads in each given sample and multiplied by a million. Bayesian methods were then applied to infer statistical significance
<xref ref-type="bibr" rid="pone.0072840-Audic1">[30]</xref>
. MiRNAs with normalized read values less than 1 in both libraries were filtered from further expression analysis because low expression level tends to cause false results. If the normalized read counts of miRNAs in the TR library differed from those in the control CK library, and the p-value of the chi-square test was less than 0.05, this miRNA was considered a Verticillium wilt-responsive miRNA
<xref ref-type="bibr" rid="pone.0072840-Chen1">[12]</xref>
The absolute value of |log
<sub>2</sub>
<sup>Ratio</sup>
|>1 was used as the threshold to judge the statistical significance of miRNA expression.</p>
</sec>
<sec id="s2g">
<title>Confirmation of Mature miRNAs and their Targets Expression</title>
<p>Expression profiles of mature miRNAs and their target genes were assayed by RT-PCR and performed as described previously
<xref ref-type="bibr" rid="pone.0072840-VarkonyiGasic1">[31]</xref>
. The primers used for stem-loop reverse transcription and other PCR programs were designed following previously described methods
<xref ref-type="bibr" rid="pone.0072840-VarkonyiGasic1">[31]</xref>
and are listed in
<xref ref-type="supplementary-material" rid="pone.0072840.s003">Table S1</xref>
. To standardize the results, the relative abundance of U6 and
<italic>EF-1α</italic>
were used as the internal standard for miRNAs and target genes respectively.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>High-throughput Sequencing of Eggplant Small RNAs</title>
<p>Two sRNA libraries prepared from mock-infected (CK) and
<italic>Verticillium dahliae</italic>
-infected (TR) eggplants were sequenced by Illumina/Solexa, a high throughput sequencing technology producing highly accurate, reproducible and quantitative readouts of sRNAs
<xref ref-type="bibr" rid="pone.0072840-Hafner1">[32]</xref>
,
<xref ref-type="bibr" rid="pone.0072840-Morozova1">[33]</xref>
, which can be used as a tool for miRNA expression profiling
<xref ref-type="bibr" rid="pone.0072840-Liang1">[34]</xref>
<xref ref-type="bibr" rid="pone.0072840-Zhao1">[36]</xref>
. The sequencing data were deposited at Gene Expression Omnibus (accession number: GSE46330).</p>
<p>Illumina/Solexa sequencing of CK and TR libraries generated a total of 10,364,226 and 20,758,478 raw reads, respectively. After filtering, 10,258,739 clean reads in the CK library and 20,572,053 clean reads in the TR library ranging from 18 to 30 nt were obtained, representing 2,759,845 and 5,973,124 unique sequences, respectively (
<xref ref-type="table" rid="pone-0072840-t001">Table 1</xref>
). Since the eggplant genome is unknown, BLAST searching against eggplant ESTs (about 98,089 ESTs) was performed, resulting in a total of 256,426 (2.50%) sequences in the CK library and 706,892 (3.44%) sequences in the TR library that could match at least one EST. 33,400 unique sequences from the CK library and 59,481 unique sequences from the TR library were similar to known miRNAs from other plant species that had previously been deposited in miRBase 19. Annotation of rRNAs, scRNAs, snoRNAs, snRNAs and tRNAs was carried out by BLASTn to NCBI Genbank and Rfam databases (
<xref ref-type="table" rid="pone-0072840-t001">Table 1</xref>
).</p>
<table-wrap id="pone-0072840-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.t001</object-id>
<label>Table 1</label>
<caption>
<title>Statistics of small RNA sequences from CK and TR libraries of eggplant.</title>
</caption>
<alternatives>
<graphic id="pone-0072840-t001-1" xlink:href="pone.0072840.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Total reads</td>
<td align="left" rowspan="1" colspan="1">Percent (%)</td>
<td align="left" rowspan="1" colspan="1">Unique reads</td>
<td align="left" rowspan="1" colspan="1">Percent (%)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">CK</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Raw reads</td>
<td align="left" rowspan="1" colspan="1">10,364,226</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Clean reads (18–30 nt sRNA)</td>
<td align="left" rowspan="1" colspan="1">10,258,739</td>
<td align="left" rowspan="1" colspan="1">100%</td>
<td align="left" rowspan="1" colspan="1">2,759,845</td>
<td align="left" rowspan="1" colspan="1">100%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">miRNA</td>
<td align="left" rowspan="1" colspan="1">3,133,527</td>
<td align="left" rowspan="1" colspan="1">30.54%</td>
<td align="left" rowspan="1" colspan="1">33,400</td>
<td align="left" rowspan="1" colspan="1">1.21%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">rRNA/tRNA/snRNA/snoRNA</td>
<td align="left" rowspan="1" colspan="1">648,545</td>
<td align="left" rowspan="1" colspan="1">6.33%</td>
<td align="left" rowspan="1" colspan="1">42,650</td>
<td align="left" rowspan="1" colspan="1">1.55%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Un-annotation</td>
<td align="left" rowspan="1" colspan="1">6,476,661</td>
<td align="left" rowspan="1" colspan="1">63.13%</td>
<td align="left" rowspan="1" colspan="1">2,683,789</td>
<td align="left" rowspan="1" colspan="1">97.24%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sRNA mapping to genome</td>
<td align="left" rowspan="1" colspan="1">256,426</td>
<td align="left" rowspan="1" colspan="1">2.50%</td>
<td align="left" rowspan="1" colspan="1">21,906</td>
<td align="left" rowspan="1" colspan="1">0.79%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TR</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Raw reads</td>
<td align="left" rowspan="1" colspan="1">20,758,478</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Clean reads (18–30 nt sRNA)</td>
<td align="left" rowspan="1" colspan="1">20,572,053</td>
<td align="left" rowspan="1" colspan="1">100%</td>
<td align="left" rowspan="1" colspan="1">5,973,124</td>
<td align="left" rowspan="1" colspan="1">100%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">miRNA</td>
<td align="left" rowspan="1" colspan="1">4,395,136</td>
<td align="left" rowspan="1" colspan="1">21.36%</td>
<td align="left" rowspan="1" colspan="1">59,481</td>
<td align="left" rowspan="1" colspan="1">1.00%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">rRNA/tRNA/snRNA/snoRNA</td>
<td align="left" rowspan="1" colspan="1">1,604,454</td>
<td align="left" rowspan="1" colspan="1">7.8%</td>
<td align="left" rowspan="1" colspan="1">88,656</td>
<td align="left" rowspan="1" colspan="1">1.49%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Un-annotation</td>
<td align="left" rowspan="1" colspan="1">14,572,433</td>
<td align="left" rowspan="1" colspan="1">70.84%</td>
<td align="left" rowspan="1" colspan="1">5,824,970</td>
<td align="left" rowspan="1" colspan="1">97.52%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">sRNA mapping to genome</td>
<td align="left" rowspan="1" colspan="1">706,892</td>
<td align="left" rowspan="1" colspan="1">3.44%</td>
<td align="left" rowspan="1" colspan="1">36,619</td>
<td align="left" rowspan="1" colspan="1">0.61%</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>The majority of the obtained sRNA sequences from the two libraries were 20–24 nt in size, which is the typical size range for Dicer-derived products (
<xref ref-type="fig" rid="pone-0072840-g001">Figure 1</xref>
). In the CK library, most miRNA sequences, especially those 21-nt long, start with uridine (U), similar to previous results from other plants. However, the majority of 23-nt and 24-nt siRNAs have adenosines (A) and guanine (G) as their 5′ first nucleotide respectively (
<xref ref-type="fig" rid="pone-0072840-g002">Figure 2</xref>
), which differs from some previous studies
<xref ref-type="bibr" rid="pone.0072840-Mi1">[37]</xref>
<xref ref-type="bibr" rid="pone.0072840-Czech1">[39]</xref>
. The same trends were also observed in the TR library.</p>
<fig id="pone-0072840-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Size distribution of eggplant small RNAs in CK and TR libraries.</title>
</caption>
<graphic xlink:href="pone.0072840.g001"></graphic>
</fig>
<fig id="pone-0072840-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g002</object-id>
<label>Figure 2</label>
<caption>
<title>First nucleotide bias of CK library.</title>
</caption>
<graphic xlink:href="pone.0072840.g002"></graphic>
</fig>
</sec>
<sec id="s3b">
<title>Known miRNAs and Evolutionary Conservation</title>
<p>Since miRNAs have been shown to play critical roles in many aspects of plant responses to biotic and abiotic stress, we compared our combined (CK and TR libraries) sRNA dataset to known miRNAs in miRBase 19 to analyze the presence of miRNAs in eggplant. Although 5,940 plant miRNAs have been identified in miRBase 19, only 220 miRNAs belong to Solanaceae, which include 165 miRNAs of
<italic>Nicotiana tabacum</italic>
, 44 miRNAs of
<italic>Solanum lycopersicum</italic>
, 11 miRNAs of
<italic>Solanum tuberosum</italic>
, and no available data for eggplant. Among the 30,830,792 clean reads obtained by deep sequencing in both libraries, we found 3,306 sequences from the CK library and 4,255 sequences from the TR library matching 99 known miRNA families (
<xref ref-type="supplementary-material" rid="pone.0072840.s004">Table S2</xref>
).</p>
<p>In order to investigate the evolutionary roles of the identified known miRNAs, we performed extensive comparisons against known miRNAs in other plant species, including
<italic>Nicotiana tabacum</italic>
,
<italic>Solanum lycopersicum</italic>
,
<italic>Solanum tuberosum</italic>
,
<italic>Arabidopsis thaliana</italic>
,
<italic>Chlamydomonas reinhardtii</italic>
,
<italic>Pinus taeda</italic>
,
<italic>Physcomitrella patens</italic>
,
<italic>Medicago truncatula</italic>
,
<italic>Glycine max</italic>
,
<italic>Gossypium hirsutum</italic>
,
<italic>Populus trichocarpa</italic>
,
<italic>Brassica napus</italic>
,
<italic>Vitis vinifer</italic>
,
<italic>Citrus sinensis</italic>
,
<italic>Malus domestica</italic>
,
<italic>Cucumis melo</italic>
,
<italic>Zea mays</italic>
,
<italic>Oryza sativa</italic>
,
<italic>Sorghum bicolor</italic>
and
<italic>Triticum aestivum</italic>
(
<xref ref-type="supplementary-material" rid="pone.0072840.s004">Table S2</xref>
).</p>
<p>Among the identified known miRNAs of eggplant, 8 out of 99 families were not deeply conserved, as no orthologs were detected in the 20 other plant species used for comparison. 38 conserved miRNA families were shared between eggplant and the other three identified species in Solanaceae (
<italic>Nicotiana tabacum</italic>
,
<italic>Solanum lycopersicum</italic>
and
<italic>Solanum tuberosum</italic>
). 13 of these 38 miRNAs had no orthologs in the other selected plants, indicating that these 13 miRNAs were probably involved in regulation of
<italic>Solanaceae</italic>
-specific processes. In addition, some miRNAs including miR156, miR160, miR166, miR167 and miR171, which are deeply conserved even in lower plants such as
<italic>Physcomitrella patens</italic>
<xref ref-type="bibr" rid="pone.0072840-Arazi1">[40]</xref>
, and others, including miR158 and miR170, which were considered specific to
<italic>Arabidopsis thaliana</italic>
, were also found in eggplant.</p>
<p>The sequence counts of miRNAs in the libraries were used for estimating the relative abundance of miRNAs. We analyzed the number of reads for detected miRNAs and found a large divergence in expression. The counts of the identified known miRNAs varied from 1 to 3,062,423, with miR157 family being the most abundant miRNA in both of our two sequencing datasets, accounting for about 17% of the clean reads. As it is a deeply conserved miRNA family detected, miR157 is also abundant in other plant families including Brassicaceae, Solanaceae, Malvaceae and Fabaceae.</p>
</sec>
<sec id="s3c">
<title>Novel miRNAs Detected in Eggplant</title>
<p>An important feature that distinguishes miRNAs from other sRNAs is the ability of the miRNA flanking sequences to fold back in a hairpin structure
<xref ref-type="bibr" rid="pone.0072840-Ambros1">[41]</xref>
. As the eggplant genome remains unknown, we have to rely on EST sequences to predict the hairpin structure. Since sequence information for eggplant is limited, our search for new miRNAs revealed only 2 sequences that perfectly matched eggplant ESTs and were able to fold into stem-loop structures, and were considered as such to be novel miRNAs (
<xref ref-type="table" rid="pone-0072840-t002">Table 2</xref>
,
<xref ref-type="supplementary-material" rid="pone.0072840.s001">Figure S1</xref>
), which we denoted m0001 and m0002. Both of them had miRNA star (miRNA*) sequences that were detected in their libraries, and were both 21 nt in length. According to Mfold (
<ext-link ext-link-type="uri" xlink:href="http://mfold.rna.albany.edu/?q=mfold">http://mfold.rna.albany.edu/?q=mfold</ext-link>
), the negative folding free energies of their precursors were −28.10 and −48.90 kcal/mol, respectively.</p>
<table-wrap id="pone-0072840-t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.t002</object-id>
<label>Table 2</label>
<caption>
<title>List of putative novel miRNAs in eggplant.</title>
</caption>
<alternatives>
<graphic id="pone-0072840-t002-2" xlink:href="pone.0072840.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Name</td>
<td align="left" rowspan="1" colspan="1">Sequence</td>
<td align="left" rowspan="1" colspan="1">Length</td>
<td align="left" rowspan="1" colspan="1">Arm</td>
<td align="left" rowspan="1" colspan="1">Gene ID</td>
<td align="left" rowspan="1" colspan="1">Precursor Length (nt)</td>
<td align="left" rowspan="1" colspan="1">Energy (kcal/mol)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">m0001</td>
<td align="left" rowspan="1" colspan="1">
<named-content content-type="gene">TTTGGTTTGAAAGATTGGGTT</named-content>
</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">5p</td>
<td align="left" rowspan="1" colspan="1">DQ206075</td>
<td align="left" rowspan="1" colspan="1">107</td>
<td align="left" rowspan="1" colspan="1">−28.10</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">m0002</td>
<td align="left" rowspan="1" colspan="1">
<named-content content-type="gene">CTTGTGAAGGTAGAGATAGCA</named-content>
</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">5p</td>
<td align="left" rowspan="1" colspan="1">FJ597628</td>
<td align="left" rowspan="1" colspan="1">194</td>
<td align="left" rowspan="1" colspan="1">−48.90</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>Searching against eggplant ESTs, m0001 matched a pseudogene, while m0002 matched a protein-coding gene. This pseudogene derived from
<italic>I2</italic>
, a disease resistance gene, which has been
<italic>detected</italic>
previously in
<italic>many</italic>
Solanum
<italic>species.</italic>
This observation indicated that the putative novel miRNA m0001 identified in this study may be specific to eggplant or to Solanaceae more generally. Whereas the putative novel miRNA m0001 was detected in both CK and TR libraries, m0002 was detected only in the TR library.</p>
</sec>
<sec id="s3d">
<title>Prediction of miRNA Targets in Eggplant</title>
<p>An important step in understanding the biological functions of miRNAs is the identification of their targets. It was demonstrated previously that plant miRNAs have perfect or near-perfect complementarity to their target-site, allowing effective prediction of the target sequences by computation
<xref ref-type="bibr" rid="pone.0072840-Rhoades1">[42]</xref>
. A total of 320 putative targets were predicted for 99 identified known miRNAs and two new miRNAs by the web tool psRNATarget (
<ext-link ext-link-type="uri" xlink:href="http://plantgrn.noble.org/psRNATarget/">http://plantgrn.noble.org/psRNATarget/</ext-link>
)
<xref ref-type="bibr" rid="pone.0072840-Dai1">[43]</xref>
using the
<italic>Solanum melongena</italic>
(eggplant) DFCI gene index (SOMEGI) release 1 for target search, with a setting of 3 as the maximum expectation (
<xref ref-type="supplementary-material" rid="pone.0072840.s005">Table S3</xref>
). Most of these target-sites are located in coding regions as previously reported in plants.</p>
<p>All the putative targets were classified into dozens of biological processes according to the COG database (
<xref ref-type="fig" rid="pone-0072840-g003">Figure 3</xref>
). As shown in
<xref ref-type="fig" rid="pone-0072840-g003">Figure 3</xref>
, more than one- third of the target genes were involved in cellular processes and signaling, while more than 15% of the target genes were involved in post-translational modification. We also determined that 15.9% of the predicted targets were poorly characterized genes, suggesting possible new roles for these miRNAs in eggplant. Notably, only three of these predicted targets are transcription factor genes. MiR2950 and miR5284 were predicted to target bZIP transcription factor, which has been reported to play a crucial role in pathogen defense, signaling, seed maturation, and flower development
<xref ref-type="bibr" rid="pone.0072840-Jakoby1">[44]</xref>
.</p>
<fig id="pone-0072840-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g003</object-id>
<label>Figure 3</label>
<caption>
<title>COG function classification of predicted target genes.</title>
</caption>
<graphic xlink:href="pone.0072840.g003"></graphic>
</fig>
</sec>
<sec id="s3e">
<title>Differentially Expressed miRNAs between CK and TR Libraries</title>
<p>To detect which miRNAs were involved in the response to
<italic>Verticillium dahliae</italic>
infection, we employed Illumina/Solexa technology to examine expression of miRNAs in eggplant seedlings with (TR library) and without (CK library)
<italic>Verticillium dahliae</italic>
treatment. The two libraries shared 22,666,440 (73.52%) sequences among the total sRNAs representing 1,016,641 (13.18%) unique sRNAs, which indicated that the sequences present in both libraries were more highly expressed than library-specific sequences (
<xref ref-type="supplementary-material" rid="pone.0072840.s006">Table S4</xref>
). In these unique sRNAs, the count of TR-specific sRNA was 4,956,483 (64.23%), which is approximately 3-fold higher than CK-specific sRNAs (1,743,204 reads, 22.59%). These library-specific sRNAs showed which miRNAs were expressed in response to
<italic>Verticillium dahliae</italic>
infection.</p>
<p>We also compared the size distribution of sRNAs between the two libraries. Approximately 75% of total sRNAs were 20–24 nt in length, with modes of 21 and 24 nt, (
<xref ref-type="fig" rid="pone-0072840-g001">Figure 1</xref>
), consistent with being products of cleavage by DCL enzymes. For CK libraries, the sRNA distribution showed a primary mode at 21 nt (47.26%), and a secondary mode at 24 nt (20.75%). Contrastingly, the primary mode in TR was at 24 nt (34.19%), and secondary mode was 21 nt (33.02%). Assuming that the overall amount of 24-nt sRNA is related to the extent of transcriptional regulation, and given that longer sRNAs are often associated with DNA methylation and heterochromatin formation, this observation suggests more extensive regulation of gene expression by sRNAs at the transcriptional level in TR versus CK.</p>
<p>Expression of miRNAs spanned a very broad range which varied from several reads to several hundred thousand reads between libraries. MiRNA expression abundance in data sets was analyzed by counting the number of transcripts per million (TPM) clean reads in libraries. The distribution of miRNA counts showed similar tendencies for the two libraries (
<xref ref-type="fig" rid="pone-0072840-g004">Figure 4</xref>
). In the total data set, miR156, miR157, miR166, and miR167 had the largest numbers of reads across both libraries.</p>
<fig id="pone-0072840-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Distribution of miRNA counts over different tag abundance categories from CK and TR library.</title>
</caption>
<graphic xlink:href="pone.0072840.g004"></graphic>
</fig>
<p>The variation in sequence counts between miRNA families suggests distinct physiological roles in Verticillium wilt. Differentially-expressed miRNAs between libraries are indicative of molecular events involved in responses to
<italic>Verticillium dahliae</italic>
infection. Overall, 33 miRNAs were identified to be
<italic>Verticillium dahliae-</italic>
responsive miRNAs (
<xref ref-type="supplementary-material" rid="pone.0072840.s002">Figure S2</xref>
and
<xref ref-type="supplementary-material" rid="pone.0072840.s007">Table S5</xref>
). Among these, 28 miRNAs were down-regulated and 5 miRNAs were up-regulated after 12 h treatment (
<xref ref-type="fig" rid="pone-0072840-g005">Figure 5</xref>
), which indicated that the expression levels of many miRNAs were reduced during
<italic>Verticillium dahliae</italic>
infection. 6 known miRNAs showed significant differential expression (
<italic>P</italic>
<0.05 and |log
<sub>2</sub>
<sup>Ratio</sup>
|>1) in response to
<italic>Verticillium dahliae</italic>
infection (
<xref ref-type="fig" rid="pone-0072840-g005">Figure 5</xref>
). Expression levels for all of the significantly changed miRNAs were down-regulated. The most obvious alteration was observed in miR399, whose expression level was about 4-fold lower in the TR library compared to the CK library. Separately, although it has been shown previously that miR393 can be induced by pathogens in
<italic>Arabidopsis</italic>
, in our study, miR393 decreased significantly in the
<italic>Verticillium dahliae</italic>
-infected eggplant seedlings. When the eggplant seedlings were exposed to
<italic>Verticillium dahliae</italic>
for 12 h, many deeply-conserved miRNAs (eg. miR156, miR159, miR160, miR162, miR166, miR167, miR169, miR171, miR172, miR319 and miR396) were all slightly down-regulated, but showed no significant changes. Although the expression of putative novel miRNA m0001 varied from 2,670 in the CK library to 3,708 in the TR library, it did not show a significant change after 12 h of infection by
<italic>Verticillium dahliae</italic>
. By contrast, the putative miRNA m0002 was detected only in the TR library.</p>
<fig id="pone-0072840-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Differential expression of Verticillium wilt-responsive miRNAs.</title>
<p>MiRNAs with significantly changed (P<0.05 and |log
<sub>2</sub>
<sup>Ratio</sup>
|>1) expression are highlighted in boldface.</p>
</caption>
<graphic xlink:href="pone.0072840.g005"></graphic>
</fig>
<p>Validation and expression patterns of miRNAs and their target genes in eggplants.</p>
<p>To confirm the results obtained from small-RNA deep sequencing, we examined the expression patterns of the selected miRNAs and their target transcripts. By using the stem-loop primers in the reverse transcriptase reaction, we measured mature miRNA expression in mock-infected and infected seedlings of eggplants at different times. The stem-loop RT-PCR results of the seven selected miRNAs were similar in magnitude to those obtained by deep sequencing, and confirmed the changes in miRNA expression in response to
<italic>Verticillium dahliae</italic>
infection (
<xref ref-type="fig" rid="pone-0072840-g006">Figure 6</xref>
). For example, the expression of miR393 continuously decreased after infection with
<italic>Verticillium dahliae</italic>
, which was consistent with results from the deep sequencing data.</p>
<fig id="pone-0072840-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Expression profiles of selected miRNAs in response to
<italic>Verticillium dahliae</italic>
infection.</title>
<p>The number below the band indicates the relative expression level of each gene. Raw values were normalized against loading control U6. The expression level of plant at “0 h” was considered as background level and set to 1.</p>
</caption>
<graphic xlink:href="pone.0072840.g006"></graphic>
</fig>
<p>We also examined the expression patterns of eight chosen targets to evaluate if the observed differential expression in miRNA had a direct effect on their target transcript abundance. As shown in
<xref ref-type="fig" rid="pone-0072840-g007">Figure 7</xref>
, miRNA-mediated regulation of target gene expression level appears to be occurring, except for TC4976. This might indicate that TC4976 was not the target of miRNA395, or its expression was also regulated by other factors
<xref ref-type="bibr" rid="pone.0072840-Yin2">[35]</xref>
. Previously,
<italic>TIR1</italic>
and
<italic>PHO2</italic>
genes had been identified as targets of miR393 and miR399, respectively.
<xref ref-type="fig" rid="pone-0072840-g007">Figure 7</xref>
shows that, in most cases,
<italic>TIR1</italic>
and
<italic>PHO2</italic>
levels are negatively regulated by their corresponding miRNAs during
<italic>Verticillium dahliae</italic>
infection.</p>
<fig id="pone-0072840-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g007</object-id>
<label>Figure 7</label>
<caption>
<title>Expression profiles of selected target genes.</title>
<p>
<italic>TIR1</italic>
, the target of miR393; TC4976 and FS072237, targets of miR395;
<italic>PHO2</italic>
, target of miR399; FS082687 and TC14175, targets of m0001; TC5469 and TC9181, targets of m0002. The number below the band indicates the relative expression level of each gene. The raw values were normalized against loading control
<italic>EF-1α</italic>
. The expression level of plant at “0 h” was considered as background level and set to 1.</p>
</caption>
<graphic xlink:href="pone.0072840.g007"></graphic>
</fig>
</sec>
<sec id="s3f">
<title>Pharmacological Inhibition of Auxin Transport Leads to Increased
<italic>Verticillium dahliae</italic>
Infection</title>
<p>The changes in miR393 expression observed here point to a general transcriptional induction of the auxin response to
<italic>Verticillium dahliae</italic>
infection. To test this hypothesis, we pretreated eggplant seedlings with different concentrations (10 and 20 µM) of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA)
<xref ref-type="bibr" rid="pone.0072840-Casimiro1">[45]</xref>
for 24 h. Plants were then mock-inoculated and inoculated with
<italic>Verticillium dahliae</italic>
. Susceptibility was determined after 7 d of treatment. As expected, the disease index was higher in seedlings pretreated with 10 and 20 µM NPA than seedlings without NPA pretreatment (
<xref ref-type="fig" rid="pone-0072840-g008">Figure 8</xref>
). Moreover, there was no difference between seedlings pretreated with NPA alone and control group. In previous studies, salicylic acid (SA) was reported to inhibit pathogen growth in plants through repression of auxin signaling pathway
<xref ref-type="bibr" rid="pone.0072840-Wang1">[46]</xref>
. Thus we also used different concentrations of SA (50 and 200 µM) to inhibit auxin signaling pathway. Similar results were also observed. Seedlings pretreated with SA exhibited enhanced susceptibility to
<italic>Verticillium dahliae</italic>
infection compared to un-pretreated seedlings. These results indicate that reduced miRNA393 expression in response to
<italic>Verticillium dahliae</italic>
infection might be a protective response in plants. We also tested the effect of exogenous treatment with different concentrations (10 and 100 µM) of auxin before
<italic>Verticillium dahliae</italic>
inoculation, but only slight changes in plant susceptibility were observed.</p>
<fig id="pone-0072840-g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0072840.g008</object-id>
<label>Figure 8</label>
<caption>
<title>Effects of NPA, SA and IAA on eggplant response to
<italic>Verticillium dahliae</italic>
infection.</title>
<p>Eggplant seedlings with five main leaves were pretreated with different concentrations of NPA, SA, or IAA for 24 h and then infected with
<italic>Verticillium dahliae</italic>
for 7 days. Representative leaves were subsequently photographed (A) and the disease index was calculated (B).</p>
</caption>
<graphic xlink:href="pone.0072840.g008"></graphic>
</fig>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<sec id="s4a">
<title>Evolutionary Conservation of miRNA in Eggplant</title>
<p>MiRNAs are a group of small non-coding RNAs that play important roles in various developmental and stress response processes through negatively regulation of gene expression
<xref ref-type="bibr" rid="pone.0072840-Chen2">[47]</xref>
. MiRNAs have been identified experimentally in many plant species, especially in model plants. However, to our knowledge, only six miRNAs have been identified in
<italic>Solanum melongena</italic>
(brinjal, eggplant) using bioinformatic methods
<xref ref-type="bibr" rid="pone.0072840-LakshmanaReddy1">[48]</xref>
, and no experimental studies have been performed on identifying and analyzing miRNAs in eggplant. In this study, the investigation of entire sets of sRNAs was performed with high-throughput sequencing technology and their response to
<italic>Verticillium dahliae</italic>
infection was also analyzed, providing useful information to deepen our understanding of the function and regulatory mechanisms of miRNAs in
<italic>Verticillium</italic>
-defense response. Our study revealed the existence of 99 known miRNA families as well as 2 new predicted miRNAs by Illumina/Solexa technology, which is very useful in investigating miRNA expression profiles
<xref ref-type="bibr" rid="pone.0072840-Gunaratne1">[49]</xref>
. Also, we identified a number of miRNAs which were previously described as species/lineage-specific miRNAs.</p>
<p>To date, more than 21 miRNA families have been found in more than 20 plant species, and they are conserved between dicots and monocots, as well as in mosses
<xref ref-type="bibr" rid="pone.0072840-Sunkar1">[50]</xref>
. Well-conserved miRNAs often retain homologous target interactions and perform analogous molecular functions across phyla over evolutionary time
<xref ref-type="bibr" rid="pone.0072840-Axtell1">[51]</xref>
. For instance, many previous studies have shown that the most conserved miRNAs (eg. miR156, miR159, miR164, miR166, miR167, miR169, miR171, miR172, miR319 and miR396) directly regulate their target mRNAs which encode diverse families of transcription factors such as TCPs, ARFs, MYBs, SPLs, NACs, HD-ZIPs, SCLs, GRFs, NFY subunits and AP2-like factors. This kind of regulation is significant for plant development
<xref ref-type="bibr" rid="pone.0072840-JonesRhoades1">[9]</xref>
,
<xref ref-type="bibr" rid="pone.0072840-Mallory1">[52]</xref>
. Thus, it is plausible to assume that the conservation of these miRNAs and their targets is greatly associated with basic functions for normal growth and development of plants, and could be mobilized to adaptive responses to stress when growth and development are stalled under adverse circumstances. Thus, we can infer the functions of some miRNAs in eggplant based on the functions known in other plants, as these miRNAs have been reported to remain functionally conserved during plant diversification
<xref ref-type="bibr" rid="pone.0072840-Axtell1">[51]</xref>
.</p>
</sec>
<sec id="s4b">
<title>Putative Novel miRNAs in Eggplant</title>
<p>High-throughput sequencing technology and whole-genome-scale data mining have enabled and enhanced the discovery of miRNAs in plants. Some miRNAs have not been reported in other plants before, possibly because they are not expressed in normal growth and development, or their expression levels are low and need deeper sequencing to be discovered. Despite lack of genomic sequences from eggplant, the available ESTs helped us to identify two novel miRNAs, m0001 and m0002. Although these predicted miRNAs satisfied most of the criteria, they still require further investigation to fully verify their nature. As non-conserved miRNAs are often expressed at a lower level than conserved miRNAs, our results imply that m0002 is a non-conserved miRNA
<xref ref-type="bibr" rid="pone.0072840-Zhang2">[53]</xref>
.</p>
<p>BLASTN against eggplant ESTs showed that m0001 matched an
<italic>I2-</italic>
derived pseudogene, while m0002 matched a protein-coding gene of ARF. The generation of pseudogene-derived sRNAs depends on RDR2, while protein-coding gene-derived sRNAs are generated by several distinct pathways. The
<italic>I2</italic>
pseudogene is derived from the resistance gene (R gene)
<italic>I2</italic>
which has been identified in many
<italic>Solanum</italic>
species
<xref ref-type="bibr" rid="pone.0072840-Simons1">[54]</xref>
and encodes an NBS-LRR protein that confers resistance to vascular wilt disease caused by
<italic>Fusarium oxysporum</italic>
or
<italic>Phytophthora infestans</italic>
<xref ref-type="bibr" rid="pone.0072840-Ori1">[55]</xref>
. The evolution of R genes allows plants to generate novel resistance to match changing patterns of pathogen virulence
<xref ref-type="bibr" rid="pone.0072840-Luigi1">[56]</xref>
. Notably, bra-miR1885 was reported to be a newly discovered miRNAs that derived from an R gene, which could be induced specifically by
<italic>Turnip mosaic virus</italic>
(TuMV) infection
<xref ref-type="bibr" rid="pone.0072840-Zhang3">[57]</xref>
,
<xref ref-type="bibr" rid="pone.0072840-He1">[58]</xref>
. Bra-miR1885 originated through inverted duplication events from protein-coding disease-resistance genes of the TIR-NBS-LRR class, which became bra-miR1885 targets
<xref ref-type="bibr" rid="pone.0072840-He1">[58]</xref>
. Similarly, as m0001 derived from a pseudogene of R gene, we may conclude that this new miRNA might play a role in Verticillium wilt response of eggplant. However, the expression of m0001 did not show significant change at 12 h treatment, which indicates that it may not play a role at this stage of pathogen infection.</p>
</sec>
<sec id="s4c">
<title>The Verticillium Wilt-responsive sRNAs and their Targets in Eggplant</title>
<p>It has been reported that plant disease resistance gene families are comprised of hundreds of members, which are usually targeted by sRNAs
<xref ref-type="bibr" rid="pone.0072840-He1">[58]</xref>
<xref ref-type="bibr" rid="pone.0072840-Chen3">[60]</xref>
. Since little sRNA information is available for eggplant, a global survey of sRNAs in eggplant seedlings with and without
<italic>Verticillium dahliae</italic>
infection will enhance our understanding of the regulatory mechanisms of eggplant Verticillium wilt, and provide useful information for improving the Verticillium wilt resistance of economically important crops.</p>
<p>Comparison of the two sequence libraries’ data showed that the size distributions of sRNAs were strikingly different. The CK distribution had a high concentration in 21-nt sRNAs, but the TR distribution was skewed towards 24-nt sRNAs. This may indicate that 24-nt sRNAs were induced by
<italic>Verticillium dahliae</italic>
, whereas the 21-nt sRNAs were suppressed. The same phenomenon has also been observed in
<italic>Verticillium</italic>
-inoculated cotton roots
<xref ref-type="bibr" rid="pone.0072840-Yin2">[35]</xref>
. The 21-nt miRNAs and 24-nt miRNAs were sorted into AGO1 and AGO4 clade proteins, respectively. AGO4 was shown to play a role in non-host resistance, basal defense, and effecter-triggered immunity against bacterial pathogens
<xref ref-type="bibr" rid="pone.0072840-Agorio1">[18]</xref>
. In our study, more 24-nt miRNAs were obtained in the TR library, which indicated that an AGO4-involved pathway was induced after
<italic>Verticillium dahliae</italic>
infection, while the AGO1-involved pathway was suppressed. In contrast to 21-nt miRNAs which directly target mRNAs for cleavage, experimental data showed that a 24-nt miRNA could act to direct DNA methylation of their target genes within an 80-nt region around the target sites in association with AGO4 clade proteins
<xref ref-type="bibr" rid="pone.0072840-Wu1">[61]</xref>
. The distribution of kinds of sRNA classes showed the regulatory basis of epigenetic adjustment. Previous studies on several
<italic>Arabidopsis</italic>
mutants which were implicated in different RNA-silencing pathways suggested that the alteration of
<italic>Verticillium</italic>
susceptibility is not due to one single RNA-silencing pathway
<xref ref-type="bibr" rid="pone.0072840-Ellendorff1">[20]</xref>
. The different distributions of 21-nt and 24-nt sRNAs between the two libraries provided explicit evidence to support the notion that cross-interaction of multiple RNA-silencing pathways is involved in
<italic>Verticillium</italic>
-defense response.</p>
<p>After analyzing the 7,716,328 sRNAs obtained from high-throughput sequencing in our study, 99 miRNA families were identified by comparison with known miRNA data in miRBase 19. One third of these miRNA families exhibited altered expression after infection with
<italic>Verticillium dahliae</italic>
. Among them, 6 miRNA families showed significant changes. These pathogen-regulated miRNAs might contribute to species-specific regulation and act as ‘early’ regulators of signal transduction in stress response. MiR399 and miR395, which are highly induced in nutrition stress
<xref ref-type="bibr" rid="pone.0072840-Khraiwesh1">[62]</xref>
, were the most strongly down-regulated miRNA families, indicating that they also played an important role in plant defense, but this requires further experimental study. Some highly-conserved, pathogen-responsive miRNAs including miR393, miR160 and miR167, play important roles in regulating perception and signaling of auxin, an important plant hormone that has a central role in plant growth, development, and environmental responses. MiR393 down-regulates
<italic>TIR1</italic>
,
<italic>AFB2</italic>
, and
<italic>AFB3</italic>
transcripts and represses
<italic>AFB1</italic>
transcription
<xref ref-type="bibr" rid="pone.0072840-Navarro1">[15]</xref>
while miR160 and miR167 down-regulate five different ARF transcripts by guiding the cleavage of their cognate mRNAs. It was demonstrated previously that many types of stresses, including bacterial infection, could up-regulate miR393 and repress auxin signaling by keeping TIR1 levels low, thereby increasing AUX/IAA-ARF heterodimerization
<xref ref-type="bibr" rid="pone.0072840-Sunkar2">[63]</xref>
. However, one interesting observation in our study is that the expression pattern of miR393 was significantly decreased upon
<italic>Verticillium</italic>
infection, which we also confirmed by stem-loop RT-PCR. The other two miRNAs (miR160 and miR167) involved in regulating auxin signaling pathway also decreased slightly. Similar results could also be found in two recent studies on miRNA responses to fungi infection. Xin et al.
<xref ref-type="bibr" rid="pone.0072840-Xin1">[64]</xref>
investigated the differences in miRNA expression between two wheat cultivars, the disease- susceptible Jingdong8 (JD8) and its near-isogenic resistant line Jingdong8-
<italic>Pm30</italic>
(JD8-
<italic>Pm30</italic>
), in response to powdery mildew. They found different miR393 expression patterns between the two near-isogenic lines, with JD8 having an increased level of miR393 while JD8-Pm30 showed a decreased level. Another example also revealed that the
<italic>Verticillium</italic>
-tolerant cotton cultivar, “Hai-cultivar” had much lower miR393 expression level than the
<italic>Verticillium</italic>
-sensitive cultivar “Yi-11”, when inoculated with
<italic>Verticillium</italic>
<xref ref-type="bibr" rid="pone.0072840-Yin2">[35]</xref>
. In addition, a recent study on
<italic>Arabidopsis</italic>
showed that inhibition of auxin signal increased susceptibility to the necrotrophic fungi
<italic>Plectosphaerella cucumerina</italic>
and
<italic>Botrytis cinerea</italic>
<xref ref-type="bibr" rid="pone.0072840-Llorente1">[65]</xref>
. Further, we examined the expression profile of
<italic>TIR1</italic>
, an identified target gene of miR393, which is a receptor of auxin, and showed a negative correlation with changes in miR393. Llorente et al.
<xref ref-type="bibr" rid="pone.0072840-Llorente1">[65]</xref>
reported that increased expression of
<italic>TIR1</italic>
leads to enhanced removal of members of the AUX/IAA family of transcription factor (TF) repressors by the SCF E3-ubiquitin ligase proteasome pathway and caused expression of auxin-responsive genes, which, in turn, positively regulate plant resistance to necrotrophic fungi. Interestingly, we found that expression of the ubiquitin-conjugating enzyme E2 gene, an identified target of miR399 was also increased, which may also contribute to the degradation of AUX/IAA. Thus, the decreased expression level of miR393 in
<italic>Verticillium</italic>
-infected eggplant leads us to speculate that auxin pathways affected by miRNAs could play important roles in resistance to fungal disease. To test this hypothesis, we pretreated eggplant seedlings with different concentrations of NPA and SA which can inhibit the auxin signaling pathway. Our results demonstrated that seedlings pretreated with different concentrations of NPA and SA were more susceptible to
<italic>Verticillium dahliae</italic>
infection compared to un-pretreated seedlings. These results may partly indicate why miR393 shows down-regulation after
<italic>Verticillium dahliae</italic>
infection. However, seedlings pretreated with different concentrations of auxin showed less change in plant susceptibility to
<italic>Verticillium dahliae</italic>
. Further studies will be needed to examine the role of miR393 in fungal infection resistance.</p>
<p>In summary, global transcriptional profiles of small non-coding RNAs were investigated in eggplant seedlings with and without
<italic>Verticillium dahliae</italic>
infection. The isolated miRNA from eggplant will help us to identify the miRNA-based regulatory system in this species. The differential patterns of sRNA expression are a valuable resource for further studies on post-transcriptional gene regulation in the defense response of eggplant to Verticillium wilt. Hence, further identification and detailed analysis of the target genes of these sRNAs will deepen our understanding of their regulatory roles in this pathological response, and uncover the mechanisms of
<italic>Verticillium</italic>
infection.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0072840.s001">
<label>Figure S1</label>
<caption>
<p>
<bold>Stem loop structure of the novel miRNA m0001 (A) and m0002 (B) precursors.</bold>
</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0072840.s001.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s002">
<label>Figure S2</label>
<caption>
<p>
<bold>Scatter plot of miRNA differential expression between CK and TR libraries.</bold>
Red plots represent miRNAs with increased expression; green plots represent miRNAs with reduced expression; blue plots represent equally-expressed miRNAs.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0072840.s002.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s003">
<label>Table S1</label>
<caption>
<p>
<bold>RT-PCR primer sequences.</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0072840.s003.doc" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s004">
<label>Table S2</label>
<caption>
<p>
<bold>Evolutionary conservation of known eggplant miRNAs.</bold>
</p>
<p>(XLS)</p>
</caption>
<media xlink:href="pone.0072840.s004.xls" mimetype="application" mime-subtype="vnd.ms-excel">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s005">
<label>Table S3</label>
<caption>
<p>
<bold>Predicted targets of the identified known and novel miRNAs.</bold>
</p>
<p>(XLS)</p>
</caption>
<media xlink:href="pone.0072840.s005.xls" mimetype="application" mime-subtype="vnd.ms-excel">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s006">
<label>Table S4</label>
<caption>
<p>
<bold>Summary of common and specific sequences between CK and TR.</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0072840.s006.doc" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0072840.s007">
<label>Table S5</label>
<caption>
<p>
<bold>Differentially expressed miRNAs between libraries.</bold>
</p>
<p>(XLS)</p>
</caption>
<media xlink:href="pone.0072840.s007.xls" mimetype="application" mime-subtype="vnd.ms-excel">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We specially thank Professor Xiuqing Li and Hubdar Ali Kaleri for reading this paper, Miss Chidie Yang for her assistance in writing the manuscript, and Professor Gabriel Yedid for English editing and proofreading.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0072840-Phillips1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Phillips</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Dalmay</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Bartels</surname>
<given-names>D</given-names>
</name>
(
<year>2007</year>
)
<article-title>The role of small RNAs in abiotic stress</article-title>
.
<source>FEBS Lett</source>
<volume>581</volume>
:
<fpage>3592</fpage>
<lpage>3597</lpage>
<pub-id pub-id-type="pmid">17451688</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Lu1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Tej</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Haudenschild</surname>
<given-names>CD</given-names>
</name>
,
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Elucidation of the small RNA component of the transcriptome</article-title>
.
<source>Science</source>
<volume>309</volume>
:
<fpage>1567</fpage>
<lpage>1569</lpage>
<pub-id pub-id-type="pmid">16141074</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Vaucheret1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vaucheret</surname>
<given-names>H</given-names>
</name>
(
<year>2006</year>
)
<article-title>Post-transcriptional small RNA pathways in plants: mechanisms and regulations</article-title>
.
<source>Gene Dev</source>
<volume>20</volume>
:
<fpage>759</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="pmid">16600909</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Reinhart1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reinhart</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Weinstein</surname>
<given-names>EG</given-names>
</name>
,
<name>
<surname>Rhoades</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
(
<year>2002</year>
)
<article-title>MicroRNAs in plants</article-title>
.
<source>Gene Dev</source>
<volume>16</volume>
:
<fpage>1616</fpage>
<lpage>1626</lpage>
<pub-id pub-id-type="pmid">12101121</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Peragine1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Peragine</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Yoshikawa</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Albrecht</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Poethig</surname>
<given-names>RS</given-names>
</name>
(
<year>2004</year>
)
<article-title>SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis</article-title>
.
<source>Gene Dev</source>
<volume>18</volume>
:
<fpage>2368</fpage>
<lpage>2379</lpage>
<pub-id pub-id-type="pmid">15466488</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Vazquez1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vazquez</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Blevins</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ailhas</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Boller</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Meins Jr</surname>
<given-names>F</given-names>
</name>
(
<year>2008</year>
)
<article-title>Evolution of Arabidopsis MIR genes generates novel microRNA classes</article-title>
.
<source>Nucleic Acids Res</source>
<volume>36</volume>
:
<fpage>6429</fpage>
<lpage>6438</lpage>
<pub-id pub-id-type="pmid">18842626</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Lu2">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Kulkarni</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Souret</surname>
<given-names>FF</given-names>
</name>
,
<name>
<surname>MuthuValliappan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Tej</surname>
<given-names>SS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant</article-title>
.
<source>Genome Res</source>
<volume>16</volume>
:
<fpage>1276</fpage>
<lpage>1288</lpage>
<pub-id pub-id-type="pmid">16954541</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Borsani1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Borsani</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Verslues</surname>
<given-names>PE</given-names>
</name>
,
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
(
<year>2005</year>
)
<article-title>Endogenous siRNAs Derived from a Pair of Natural
<italic>cis</italic>
-Antisense Transcripts Regulate Salt Tolerance in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Cell</source>
<volume>123</volume>
:
<fpage>1279</fpage>
<lpage>1291</lpage>
<pub-id pub-id-type="pmid">16377568</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-JonesRhoades1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jones-Rhoades</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
(
<year>2006</year>
)
<article-title>MicroRNAs and their regulatory roles in plants</article-title>
.
<source>Annu Rev Plant Biol</source>
<volume>57</volume>
:
<fpage>19</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">16669754</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Lu3">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>XL</given-names>
</name>
(
<year>2008</year>
)
<article-title>Plant miRNAs and abiotic stress responses</article-title>
.
<source>Biochem Bioph Res Co</source>
<volume>368</volume>
:
<fpage>458</fpage>
<lpage>462</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zhou1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sutoh</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
(
<year>2008</year>
)
<article-title>Identification of cold-inducible microRNAs in plants by transcriptome analysis</article-title>
.
<source>BBA-Gene Regul Mech</source>
<volume>1779</volume>
:
<fpage>780</fpage>
<lpage>788</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Chen1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
(
<year>2012</year>
)
<article-title>Ethylene-responsive miRNAs in roots of
<italic>Medicago truncatula</italic>
identified by high-throughput sequencing at whole genome level</article-title>
.
<source>Plant Sci</source>
<volume>184</volume>
:
<fpage>14</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">22284705</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zhang1">
<label>13</label>
<mixed-citation publication-type="other">Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S,
<etal>et al</etal>
. (2011)
<italic>Arabidopsis</italic>
Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a golgi-localized SNARE gene,
<italic>MEMB12</italic>
Mol Cell 42, 356–366.</mixed-citation>
</ref>
<ref id="pone.0072840-Padmanabhan1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Padmanabhan</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>H</given-names>
</name>
(
<year>2009</year>
)
<article-title>Host small RNAs are big contributors to plant innate immunity</article-title>
.
<source>Curr Opin Plant Biol</source>
<volume>12</volume>
:
<fpage>465</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="pmid">19608454</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Navarro1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Dunoyer</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Jay</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Arnold</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Dharmasiri</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>A plant miRNA contributes to antibacterial resistance by repressing auxin signaling</article-title>
.
<source>Sci Signal</source>
<volume>312</volume>
:
<fpage>436</fpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-KatiyarAgarwal1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Katiyar-Agarwal</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Morgan</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Dahlbeck</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Borsani</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Villegas Jr</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>A pathogen-inducible endogenous siRNA in plant immunity</article-title>
.
<source>P Natl Acad Sci</source>
<volume>103</volume>
:
<fpage>18002</fpage>
<lpage>18007</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Fahlgren1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fahlgren</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Howell</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>EJ</given-names>
</name>
,
<name>
<surname>Sullivan</surname>
<given-names>CM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes</article-title>
.
<source>PLoS ONE</source>
<volume>2</volume>
:
<fpage>e219</fpage>
<pub-id pub-id-type="pmid">17299599</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Agorio1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agorio</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Vera</surname>
<given-names>P</given-names>
</name>
(
<year>2007</year>
)
<article-title>ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
:
<fpage>3778</fpage>
<lpage>3790</lpage>
<pub-id pub-id-type="pmid">17993621</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Bhat1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bhat</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
(
<year>1999</year>
)
<article-title>Host range specificity in
<italic>Verticillium dahliae</italic>
</article-title>
.
<source>Phytopathology</source>
<volume>89</volume>
:
<fpage>1218</fpage>
<lpage>1225</lpage>
<pub-id pub-id-type="pmid">18944648</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Ellendorff1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ellendorff</surname>
<given-names>U</given-names>
</name>
,
<name>
<surname>Fradin</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>De Jonge</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Thomma</surname>
<given-names>BP</given-names>
</name>
(
<year>2009</year>
)
<article-title>RNA silencing is required for Arabidopsis defence against Verticillium wilt disease</article-title>
.
<source>J Exp Bot</source>
<volume>60</volume>
:
<fpage>591</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="pmid">19098131</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Liu1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Xie</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Jue</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hong</surname>
<given-names>Y</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Transgenic potato plants expressing
<italic>StoVe1</italic>
exhibit enhanced resistance to
<italic>Verticillium dahliae</italic>
</article-title>
.
<source>Plant Mol Biol Rep</source>
<volume>30</volume>
:
<fpage>1032</fpage>
<lpage>1039</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Li1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lam</surname>
<given-names>TW</given-names>
</name>
,
<name>
<surname>Yiu</surname>
<given-names>SM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>SOAP2: an improved ultrafast tool for short read alignment</article-title>
.
<source>Bioinformatics</source>
<volume>25</volume>
:
<fpage>1966</fpage>
<lpage>1967</lpage>
<pub-id pub-id-type="pmid">19497933</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-GriffithsJones1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Griffiths-Jones</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Moxon</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Marshall</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Khanna</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Rfam: annotating non-coding RNAs in complete genomes</article-title>
.
<source>Nucleic Acids Res</source>
<volume>33</volume>
:
<fpage>D121</fpage>
<lpage>D124</lpage>
<pub-id pub-id-type="pmid">15608160</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-GriffithsJones2">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Griffiths-Jones</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Saini</surname>
<given-names>HK</given-names>
</name>
,
<name>
<surname>Van Dongen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Enright</surname>
<given-names>AJ</given-names>
</name>
(
<year>2008</year>
)
<article-title>miRBase: tools for microRNA genomics</article-title>
.
<source>Nucleic Acids Res</source>
<volume>36</volume>
:
<fpage>D154</fpage>
<lpage>D158</lpage>
<pub-id pub-id-type="pmid">17991681</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Allen1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Gustafson</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
(
<year>2005</year>
)
<article-title>microRNA-directed phasing during trans-acting siRNA biogenesis in plants</article-title>
.
<source>Cell</source>
<volume>121</volume>
:
<fpage>207</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="pmid">15851028</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zuker1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zuker</surname>
<given-names>M</given-names>
</name>
(
<year>2003</year>
)
<article-title>Mfold web server for nucleic acid folding and hybridization prediction</article-title>
.
<source>Nucleic Acids Res</source>
<volume>31</volume>
:
<fpage>3406</fpage>
<lpage>3415</lpage>
<pub-id pub-id-type="pmid">12824337</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Kantar1">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kantar</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Unver</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Budak</surname>
<given-names>H</given-names>
</name>
(
<year>2010</year>
)
<article-title>Regulation of barley miRNAs upon dehydration stress correlated with target gene expression</article-title>
.
<source>Funct integr genomic</source>
<volume>10</volume>
:
<fpage>493</fpage>
<lpage>507</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Unver1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Unver</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Budak</surname>
<given-names>H</given-names>
</name>
(
<year>2009</year>
)
<article-title>Conserved microRNAs and their targets in model grass species Brachypodium distachyon</article-title>
.
<source>Planta</source>
<volume>230</volume>
:
<fpage>659</fpage>
<lpage>669</lpage>
<pub-id pub-id-type="pmid">19585143</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Yin1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Shen</surname>
<given-names>F</given-names>
</name>
(
<year>2008</year>
)
<article-title>Identification of conserved microRNAs and their target genes in tomato (
<italic>Lycopersicon esculentum</italic>
)</article-title>
.
<source>Gene</source>
<volume>414</volume>
:
<fpage>60</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">18387754</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Audic1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Audic</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Claverie</surname>
<given-names>JM</given-names>
</name>
(
<year>1997</year>
)
<article-title>The significance of digital gene expression profiles</article-title>
.
<source>Genome Res</source>
<volume>7</volume>
:
<fpage>986</fpage>
<lpage>995</lpage>
<pub-id pub-id-type="pmid">9331369</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-VarkonyiGasic1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Varkonyi-Gasic</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Wood</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Walton</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Hellens</surname>
<given-names>RP</given-names>
</name>
(
<year>2007</year>
)
<article-title>Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs</article-title>
.
<source>Plant Methods</source>
<volume>3</volume>
:
<fpage>12</fpage>
<pub-id pub-id-type="pmid">17931426</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Hafner1">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hafner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Landgraf</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ludwig</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Rice</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ojo</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing</article-title>
.
<source>Methods</source>
<volume>44</volume>
:
<fpage>3</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">18158127</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Morozova1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morozova</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Marra</surname>
<given-names>MA</given-names>
</name>
(
<year>2008</year>
)
<article-title>Applications of next-generation sequencing technologies in functional genomics</article-title>
.
<source>Genomics</source>
<volume>92</volume>
:
<fpage>255</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">18703132</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Liang1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liang</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Zou</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Su</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis</article-title>
.
<source>PLoS ONE</source>
<volume>5</volume>
:
<fpage>e10698</fpage>
<pub-id pub-id-type="pmid">20502668</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Yin2">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Shen</surname>
<given-names>F</given-names>
</name>
(
<year>2012</year>
)
<article-title>Genome-Wide Profiling of miRNAs and Other Small Non-Coding RNAs in the
<italic>Verticillium dahliae</italic>
–Inoculated Cotton Roots</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>e35765</fpage>
<pub-id pub-id-type="pmid">22558219</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zhao1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>YT</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fu</surname>
<given-names>SX</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>WC</given-names>
</name>
,
<name>
<surname>Qi</surname>
<given-names>CK</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Small RNA Profiling in Two Brassica napus Cultivars Identifies MicroRNAs with Oil Production-and Development-Correlated Expression and New Small RNA Classes</article-title>
.
<source>Plant Physiol</source>
<volume>158</volume>
:
<fpage>813</fpage>
<lpage>823</lpage>
<pub-id pub-id-type="pmid">22138974</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Mi1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Hodges</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Sorting of Small RNAs into
<italic>Arabidopsis</italic>
Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide</article-title>
.
<source>Cell</source>
<volume>133</volume>
:
<fpage>116</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="pmid">18342361</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Voinnet1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Voinnet</surname>
<given-names>O</given-names>
</name>
(
<year>2009</year>
)
<article-title>Origin, biogenesis, and activity of plant microRNAs</article-title>
.
<source>Cell</source>
<volume>136</volume>
:
<fpage>669</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="pmid">19239888</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Czech1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Czech</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Hannon</surname>
<given-names>GJ</given-names>
</name>
(
<year>2010</year>
)
<article-title>Small RNA sorting: matchmaking for Argonautes</article-title>
.
<source>Nat Rev Genet</source>
<volume>12</volume>
:
<fpage>19</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">21116305</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Arazi1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Arazi</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Talmor-Neiman</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stav</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Riese</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Huijser</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Cloning and characterization of micro-RNAs from moss</article-title>
.
<source>Plant J</source>
<volume>43</volume>
:
<fpage>837</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="pmid">16146523</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Ambros1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ambros</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
,
<name>
<surname>Burge</surname>
<given-names>CB</given-names>
</name>
,
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2003</year>
)
<article-title>A uniform system for microRNA annotation</article-title>
.
<source>RNA</source>
<volume>9</volume>
:
<fpage>277</fpage>
<lpage>279</lpage>
<pub-id pub-id-type="pmid">12592000</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Rhoades1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rhoades</surname>
<given-names>MW</given-names>
</name>
,
<name>
<surname>Reinhart</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Lim</surname>
<given-names>LP</given-names>
</name>
,
<name>
<surname>Burge</surname>
<given-names>CB</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>Prediction of plant microRNA targets</article-title>
.
<source>Cell</source>
<volume>110</volume>
:
<fpage>513</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="pmid">12202040</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Dai1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dai</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>PX</given-names>
</name>
(
<year>2011</year>
)
<article-title>psRNATarget: a plant small RNA target analysis server</article-title>
.
<source>Nucleic Acids Res</source>
<volume>39</volume>
:
<fpage>W155</fpage>
<lpage>W159</lpage>
<pub-id pub-id-type="pmid">21622958</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Jakoby1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jakoby</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Weisshaar</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Dröge-Laser</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Vicente-Carbajosa</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Tiedemann</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2002</year>
)
<article-title>bZIP transcription factors in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Trends Plant Sci</source>
<volume>7</volume>
:
<fpage>106</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">11906833</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Casimiro1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Casimiro</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Marchant</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Bhalerao</surname>
<given-names>RP</given-names>
</name>
,
<name>
<surname>Beeckman</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Dhooge</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2001</year>
)
<article-title>Auxin transport promotes Arabidopsis lateral root initiation</article-title>
.
<source>Plant Cell</source>
<volume>13</volume>
:
<fpage>843</fpage>
<lpage>852</lpage>
<pub-id pub-id-type="pmid">11283340</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Wang1">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Pajerowska-Mukhtar</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Culler</surname>
<given-names>AH</given-names>
</name>
,
<name>
<surname>Dong</surname>
<given-names>X</given-names>
</name>
(
<year>2007</year>
)
<article-title>Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway</article-title>
.
<source>Curr Biol</source>
<volume>17</volume>
:
<fpage>1784</fpage>
<lpage>1790</lpage>
<pub-id pub-id-type="pmid">17919906</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Chen2">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
(
<year>2005</year>
)
<article-title>MicroRNA biogenesis and function in plants</article-title>
.
<source>FEBS Lett</source>
<volume>579</volume>
:
<fpage>5923</fpage>
<lpage>5931</lpage>
<pub-id pub-id-type="pmid">16144699</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-LakshmanaReddy1">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lakshmana Reddy</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Radhika</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Bharadwaj</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Khandagale</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Aswath</surname>
<given-names>C</given-names>
</name>
(
<year>2012</year>
)
<article-title>miRNAs in brinjal (Solanum melongena) mined through an in silico approach</article-title>
.
<source>J Hortic Sci Biotech</source>
<volume>87</volume>
:
<fpage>186</fpage>
<lpage>192</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Gunaratne1">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gunaratne</surname>
<given-names>PH</given-names>
</name>
,
<name>
<surname>Coarfa</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Soibam</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Tandon</surname>
<given-names>A</given-names>
</name>
(
<year>2012</year>
)
<article-title>miRNA data analysis: next-gen sequencing</article-title>
.
<source>Methods Mol Biol</source>
<volume>822</volume>
:
<fpage>273</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="pmid">22144206</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Sunkar1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Jagadeeswaran</surname>
<given-names>G</given-names>
</name>
(
<year>2008</year>
)
<article-title>In silico identification of conserved microRNAs in large number of diverse plant species</article-title>
.
<source>BMC Plant Biol</source>
<volume>8</volume>
:
<fpage>37</fpage>
<pub-id pub-id-type="pmid">18416839</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Axtell1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Axtell</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
(
<year>2007</year>
)
<article-title>Common functions for diverse small RNAs of land plants</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
:
<fpage>1750</fpage>
<lpage>1769</lpage>
<pub-id pub-id-type="pmid">17601824</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Mallory1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mallory</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Vaucheret</surname>
<given-names>H</given-names>
</name>
(
<year>2006</year>
)
<article-title>Functions of microRNAs and related small RNAs in plants</article-title>
.
<source>Nat Genet</source>
<volume>38</volume>
:
<fpage>S31</fpage>
<lpage>S36</lpage>
<pub-id pub-id-type="pmid">16736022</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zhang2">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Huan</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Chong</surname>
<given-names>K</given-names>
</name>
(
<year>2009</year>
)
<article-title>Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response</article-title>
.
<source>BMC Genomics</source>
<volume>10</volume>
:
<fpage>449</fpage>
<pub-id pub-id-type="pmid">19772667</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Simons1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Simons</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Groenendijk</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wijbrandi</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Reijans</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Groenen</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy</article-title>
.
<source>Plant Cell</source>
<volume>10</volume>
:
<fpage>1055</fpage>
<lpage>1068</lpage>
<pub-id pub-id-type="pmid">9634592</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Ori1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ori</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Eshed</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Paran</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Presting</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Aviv</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>1997</year>
)
<article-title>The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes</article-title>
.
<source>Plant Cell</source>
<volume>9</volume>
:
<fpage>521</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">9144960</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Luigi1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Luigi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Luigi</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Raffalella</surname>
<given-names>EM</given-names>
</name>
,
<name>
<surname>Sara</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Walter</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Solanaceae Evolutionary Dynamics of the I2-NBS Domain</article-title>
.
<source>Am J Plant Sci</source>
<volume>3</volume>
:
<fpage>283</fpage>
<lpage>294</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Zhang3">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Gao</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Chellappan</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks</article-title>
.
<source>Plant Mol Biol</source>
<volume>75</volume>
:
<fpage>93</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">21153682</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-He1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>XF</given-names>
</name>
,
<name>
<surname>Fang</surname>
<given-names>YY</given-names>
</name>
,
<name>
<surname>Feng</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>HS</given-names>
</name>
(
<year>2008</year>
)
<article-title>Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR–NBS–LRR class
<italic>R</italic>
gene-derived novel miRNA in Brassica</article-title>
.
<source>FEBS Lett</source>
<volume>582</volume>
:
<fpage>2445</fpage>
<lpage>2452</lpage>
<pub-id pub-id-type="pmid">18558089</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Yi1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yi</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Richards</surname>
<given-names>EJ</given-names>
</name>
(
<year>2007</year>
)
<article-title>A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
:
<fpage>2929</fpage>
<lpage>2939</lpage>
<pub-id pub-id-type="pmid">17890374</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Chen3">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>HM</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>LT</given-names>
</name>
,
<name>
<surname>Patel</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>YH</given-names>
</name>
,
<name>
<surname>Baulcombe</surname>
<given-names>DC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants</article-title>
.
<source>P Natl Acad Sci</source>
<volume>107</volume>
:
<fpage>15269</fpage>
<lpage>15274</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Wu1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ni</surname>
<given-names>F</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>DNA methylation mediated by a microRNA pathway</article-title>
.
<source>Mol Cell</source>
<volume>38</volume>
:
<fpage>465</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="pmid">20381393</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Khraiwesh1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Khraiwesh</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
(
<year>2012</year>
)
<article-title>Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants</article-title>
.
<source>BBA-Gene Regul Mech</source>
<volume>1819</volume>
:
<fpage>137</fpage>
<lpage>148</lpage>
</mixed-citation>
</ref>
<ref id="pone.0072840-Sunkar2">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>YF</given-names>
</name>
,
<name>
<surname>Jagadeeswaran</surname>
<given-names>G</given-names>
</name>
(
<year>2012</year>
)
<article-title>Functions of microRNAs in plant stress responses</article-title>
.
<source>Trends Plant Sci</source>
<volume>17</volume>
:
<fpage>196</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">22365280</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Xin1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xin</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Xie</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)</article-title>
.
<source>BMC Plant Biol</source>
<volume>10</volume>
:
<fpage>123</fpage>
<pub-id pub-id-type="pmid">20573268</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0072840-Llorente1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Llorente</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Muskett</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Sánchez-Vallet</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>López</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ramos</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2008</year>
)
<article-title>Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi</article-title>
.
<source>Mol Plant</source>
<volume>1</volume>
:
<fpage>496</fpage>
<lpage>509</lpage>
<pub-id pub-id-type="pmid">19825556</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3754920
   |texte=   Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24015279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024