Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000F57 ( Pmc/Corpus ); précédent : 000F569; suivant : 000F580 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution</title>
<author>
<name sortKey="Kersting, Anna R" sort="Kersting, Anna R" uniqKey="Kersting A" first="Anna R." last="Kersting">Anna R. Kersting</name>
</author>
<author>
<name sortKey="Bornberg Bauer, Erich" sort="Bornberg Bauer, Erich" uniqKey="Bornberg Bauer E" first="Erich" last="Bornberg-Bauer">Erich Bornberg-Bauer</name>
</author>
<author>
<name sortKey="Moore, Andrew D" sort="Moore, Andrew D" uniqKey="Moore A" first="Andrew D." last="Moore">Andrew D. Moore</name>
</author>
<author>
<name sortKey="Grath, Sonja" sort="Grath, Sonja" uniqKey="Grath S" first="Sonja" last="Grath">Sonja Grath</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22250127</idno>
<idno type="pmc">3318442</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318442</idno>
<idno type="RBID">PMC:3318442</idno>
<idno type="doi">10.1093/gbe/evs004</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000F57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution</title>
<author>
<name sortKey="Kersting, Anna R" sort="Kersting, Anna R" uniqKey="Kersting A" first="Anna R." last="Kersting">Anna R. Kersting</name>
</author>
<author>
<name sortKey="Bornberg Bauer, Erich" sort="Bornberg Bauer, Erich" uniqKey="Bornberg Bauer E" first="Erich" last="Bornberg-Bauer">Erich Bornberg-Bauer</name>
</author>
<author>
<name sortKey="Moore, Andrew D" sort="Moore, Andrew D" uniqKey="Moore A" first="Andrew D." last="Moore">Andrew D. Moore</name>
</author>
<author>
<name sortKey="Grath, Sonja" sort="Grath, Sonja" uniqKey="Grath S" first="Sonja" last="Grath">Sonja Grath</name>
</author>
</analytic>
<series>
<title level="j">Genome Biology and Evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, Md" uniqKey="Adams M">MD Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhunov, Ed" uniqKey="Akhunov E">ED Akhunov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Dous, Ek" uniqKey="Al Dous E">EK Al-Dous</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexa, A" uniqKey="Alexa A">A Alexa</name>
</author>
<author>
<name sortKey="Rahnenfuhrer, J" uniqKey="Rahnenfuhrer J">J Rahnenführer</name>
</author>
<author>
<name sortKey="Lengauer, T" uniqKey="Lengauer T">T Lengauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amoutzias, Gd" uniqKey="Amoutzias G">GD Amoutzias</name>
</author>
<author>
<name sortKey="Weiner, J" uniqKey="Weiner J">J Weiner</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Cl" uniqKey="Anderson C">CL Anderson</name>
</author>
<author>
<name sortKey="Jan En, T" uniqKey="Jan En T">T Janßen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apic, G" uniqKey="Apic G">G Apic</name>
</author>
<author>
<name sortKey="Gough, J" uniqKey="Gough J">J Gough</name>
</author>
<author>
<name sortKey="Teichmann, Sa" uniqKey="Teichmann S">SA Teichmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Argout, X" uniqKey="Argout X">X Argout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashburner, M" uniqKey="Ashburner M">M Ashburner</name>
</author>
<author>
<name sortKey="Lewis, S" uniqKey="Lewis S">S Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babushok, D" uniqKey="Babushok D">D Babushok</name>
</author>
<author>
<name sortKey="Ostertag, Ee" uniqKey="Ostertag E">EE Ostertag</name>
</author>
<author>
<name sortKey="Kazazian, Hh" uniqKey="Kazazian H">HH Kazazian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banks, Ja" uniqKey="Banks J">JA Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baucom, Rs" uniqKey="Baucom R">RS Baucom</name>
</author>
<author>
<name sortKey="Estill, Jc" uniqKey="Estill J">JC Estill</name>
</author>
<author>
<name sortKey="Leebens Mack, J" uniqKey="Leebens Mack J">J Leebens-Mack</name>
</author>
<author>
<name sortKey="Bennetzen, Jl" uniqKey="Bennetzen J">JL Bennetzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baucom, Rs" uniqKey="Baucom R">RS Baucom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bekaert, M" uniqKey="Bekaert M">M Bekaert</name>
</author>
<author>
<name sortKey="Edger, Pp" uniqKey="Edger P">PP Edger</name>
</author>
<author>
<name sortKey="Pires, Jc" uniqKey="Pires J">JC Pires</name>
</author>
<author>
<name sortKey="Conant, Gc" uniqKey="Conant G">GC Conant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
<author>
<name sortKey="Hochberg, Y" uniqKey="Hochberg Y">Y Hochberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennetzen, Jl" uniqKey="Bennetzen J">JL Bennetzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennici, A" uniqKey="Bennici A">A Bennici</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacharya, D" uniqKey="Bhattacharya D">D Bhattacharya</name>
</author>
<author>
<name sortKey="Yoon, Hs" uniqKey="Yoon H">HS Yoon</name>
</author>
<author>
<name sortKey="Hedges, Sb" uniqKey="Hedges S">SB Hedges</name>
</author>
<author>
<name sortKey="Hackett, Jd" uniqKey="Hackett J">JD Hackett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bjorklund, Ak" uniqKey="Bjorklund A">AK Björklund</name>
</author>
<author>
<name sortKey="Ekman, D" uniqKey="Ekman D">D Ekman</name>
</author>
<author>
<name sortKey="Light, S" uniqKey="Light S">S Light</name>
</author>
<author>
<name sortKey="Frey Skott, J" uniqKey="Frey Skott J">J Frey-Skött</name>
</author>
<author>
<name sortKey="Elofsson, A" uniqKey="Elofsson A">A Elofsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanc, G" uniqKey="Blanc G">G Blanc</name>
</author>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bomblies, K" uniqKey="Bomblies K">K Bomblies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bremer, B" uniqKey="Bremer B">B Bremer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buljan, M" uniqKey="Buljan M">M Buljan</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buljan, M" uniqKey="Buljan M">M Buljan</name>
</author>
<author>
<name sortKey="Frankish, A" uniqKey="Frankish A">A Frankish</name>
</author>
<author>
<name sortKey="Bateman, A" uniqKey="Bateman A">A Bateman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cartwright, P" uniqKey="Cartwright P">P Cartwright</name>
</author>
<author>
<name sortKey="Collins, A" uniqKey="Collins A">A Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Ap" uniqKey="Chan A">AP Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chevanne, D" uniqKey="Chevanne D">D Chevanne</name>
</author>
<author>
<name sortKey="Saupe, Sj" uniqKey="Saupe S">SJ Saupe</name>
</author>
<author>
<name sortKey="Clave, C" uniqKey="Clave C">C Clave</name>
</author>
<author>
<name sortKey="Paoletti, M" uniqKey="Paoletti M">M Paoletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Hk" uniqKey="Choi H">HK Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen Gihon, I" uniqKey="Cohen Gihon I">I Cohen-Gihon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bodt, S" uniqKey="De Bodt S">S De Bodt</name>
</author>
<author>
<name sortKey="Maere, S" uniqKey="Maere S">S Maere</name>
</author>
<author>
<name sortKey="Van De Peer, Y" uniqKey="Van De Peer Y">Y van de Peer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dubchak, I" uniqKey="Dubchak I">I Dubchak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyson, Hj" uniqKey="Dyson H">HJ Dyson</name>
</author>
<author>
<name sortKey="Wright, Pe" uniqKey="Wright P">PE Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekman, D" uniqKey="Ekman D">D Ekman</name>
</author>
<author>
<name sortKey="Bjorklund, Ak" uniqKey="Bjorklund A">AK Björklund</name>
</author>
<author>
<name sortKey="Elofsson, A" uniqKey="Elofsson A">A Elofsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekman, D" uniqKey="Ekman D">D Ekman</name>
</author>
<author>
<name sortKey="Bjorklund, Ak" uniqKey="Bjorklund A">AK Björklund</name>
</author>
<author>
<name sortKey="Frey Skott, J" uniqKey="Frey Skott J">J Frey-Skött</name>
</author>
<author>
<name sortKey="Elofsson, A" uniqKey="Elofsson A">A Elofsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Endress, Pk" uniqKey="Endress P">PK Endress</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enright, Aj" uniqKey="Enright A">AJ Enright</name>
</author>
<author>
<name sortKey="Ouzounis, Ca" uniqKey="Ouzounis C">CA Ouzounis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ernst, Am" uniqKey="Ernst A">AM Ernst</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finn, Rd" uniqKey="Finn R">RD Finn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fong, Jh" uniqKey="Fong J">JH Fong</name>
</author>
<author>
<name sortKey="Geer, Ly" uniqKey="Geer L">LY Geer</name>
</author>
<author>
<name sortKey="Panchenko, Ar" uniqKey="Panchenko A">AR Panchenko</name>
</author>
<author>
<name sortKey="Bryant, Sh" uniqKey="Bryant S">SH Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forest, F" uniqKey="Forest F">F Forest</name>
</author>
<author>
<name sortKey="Chase, Mw" uniqKey="Chase M">MW Chase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forslund, K" uniqKey="Forslund K">K Forslund</name>
</author>
<author>
<name sortKey="Henricson, A" uniqKey="Henricson A">A Henricson</name>
</author>
<author>
<name sortKey="Hollich, V" uniqKey="Hollich V">V Hollich</name>
</author>
<author>
<name sortKey="Sonnhammer, Ell" uniqKey="Sonnhammer E">ELL Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M Freeling</name>
</author>
<author>
<name sortKey="Thomas, Bc" uniqKey="Thomas B">BC Thomas</name>
</author>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M Freeling</name>
</author>
<author>
<name sortKey="Thomas, Bc" uniqKey="Thomas B">BC Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganko, Ew" uniqKey="Ganko E">EW Ganko</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Vision, Tj" uniqKey="Vision T">TJ Vision</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Go, Sa" uniqKey="Go S">SA Go</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gotz, S" uniqKey="Gotz S">S Götz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grace, Sc" uniqKey="Grace S">SC Grace</name>
</author>
<author>
<name sortKey="Logan, Ba" uniqKey="Logan B">BA Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanada, K" uniqKey="Hanada K">K Hanada</name>
</author>
<author>
<name sortKey="Zou, C" uniqKey="Zou C">C Zou</name>
</author>
<author>
<name sortKey="Lehti Shiu, Md" uniqKey="Lehti Shiu M">MD Lehti-Shiu</name>
</author>
<author>
<name sortKey="Shinozaki, K" uniqKey="Shinozaki K">K Shinozaki</name>
</author>
<author>
<name sortKey="Shiu, Sh" uniqKey="Shiu S">SH Shiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hedges, Sb" uniqKey="Hedges S">SB Hedges</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herron, Md" uniqKey="Herron M">MD Herron</name>
</author>
<author>
<name sortKey="Hackett, Jd" uniqKey="Hackett J">JD Hackett</name>
</author>
<author>
<name sortKey="Aylward, Fo" uniqKey="Aylward F">FO Aylward</name>
</author>
<author>
<name sortKey="Michod, Re" uniqKey="Michod R">RE Michod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Tt" uniqKey="Hu T">TT Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Sw" uniqKey="Huang S">SW Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huerta Cepas, J" uniqKey="Huerta Cepas J">J Huerta-Cepas</name>
</author>
<author>
<name sortKey="Dopazo, J" uniqKey="Dopazo J">J Dopazo</name>
</author>
<author>
<name sortKey="Gabald N, T" uniqKey="Gabald N T">T Gabaldón</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaillon, O" uniqKey="Jaillon O">O Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawakita, A" uniqKey="Kawakita A">A Kawakita</name>
</author>
<author>
<name sortKey="Kato, M" uniqKey="Kato M">M Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kejnovsky, E" uniqKey="Kejnovsky E">E Kejnovsky</name>
</author>
<author>
<name sortKey="Leitch, Ij" uniqKey="Leitch I">IJ Leitch</name>
</author>
<author>
<name sortKey="Leitch, Ar" uniqKey="Leitch A">AR Leitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerchev, Pi" uniqKey="Kerchev P">PI Kerchev</name>
</author>
<author>
<name sortKey="Fenton, B" uniqKey="Fenton B">B Fenton</name>
</author>
<author>
<name sortKey="Foyer, Ch" uniqKey="Foyer C">CH Foyer</name>
</author>
<author>
<name sortKey="Hancock, Rd" uniqKey="Hancock R">RD Hancock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kersey, P" uniqKey="Kersey P">P Kersey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroymann, J" uniqKey="Kroymann J">J Kroymann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kummerfeld, Sk" uniqKey="Kummerfeld S">SK Kummerfeld</name>
</author>
<author>
<name sortKey="Teichmann, Sa" uniqKey="Teichmann S">SA Teichmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lang, D" uniqKey="Lang D">D Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitt, M" uniqKey="Levitt M">M Levitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loh, Yh" uniqKey="Loh Y">YH Loh</name>
</author>
<author>
<name sortKey="Brenner, S" uniqKey="Brenner S">S Brenner</name>
</author>
<author>
<name sortKey="Venkatesh, B" uniqKey="Venkatesh B">B Venkatesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Lj" uniqKey="Ma L">LJ Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magall N, Sa" uniqKey="Magall N S">SA Magallón</name>
</author>
<author>
<name sortKey="Sanderson, Mj" uniqKey="Sanderson M">MJ Sanderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayrose, I" uniqKey="Mayrose I">I Mayrose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merchant, Ss" uniqKey="Merchant S">SS Merchant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ming, R" uniqKey="Ming R">R Ming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misook, H" uniqKey="Misook H">H Misook</name>
</author>
<author>
<name sortKey="Wen Hsiung, L" uniqKey="Wen Hsiung L">L Wen-Hsiung</name>
</author>
<author>
<name sortKey="Chen, Cj" uniqKey="Chen C">CJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ad" uniqKey="Moore A">AD Moore</name>
</author>
<author>
<name sortKey="Bjorklund, Ak" uniqKey="Bjorklund A">AK Björklund</name>
</author>
<author>
<name sortKey="Ekman, D" uniqKey="Ekman D">D Ekman</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
<author>
<name sortKey="Elofsson, A" uniqKey="Elofsson A">A Elofsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ad" uniqKey="Moore A">AD Moore</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Obradovic, Z" uniqKey="Obradovic Z">Z Obradovic</name>
</author>
<author>
<name sortKey="Peng, K" uniqKey="Peng K">K Peng</name>
</author>
<author>
<name sortKey="Vucetic, S" uniqKey="Vucetic S">S Vucetic</name>
</author>
<author>
<name sortKey="Radivojac, P" uniqKey="Radivojac P">P Radivojac</name>
</author>
<author>
<name sortKey="Dunker, Ak" uniqKey="Dunker A">AK Dunker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olson, Jm" uniqKey="Olson J">JM Olson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olson, Jm" uniqKey="Olson J">JM Olson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osborn, Tc" uniqKey="Osborn T">TC Osborn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oshima, A" uniqKey="Oshima A">A Oshima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palenik, B" uniqKey="Palenik B">B Palenik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasek, S" uniqKey="Pasek S">S Pasek</name>
</author>
<author>
<name sortKey="Risler, Jl" uniqKey="Risler J">JL Risler</name>
</author>
<author>
<name sortKey="Brezellec, P" uniqKey="Brezellec P">P Brézellec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pateraki, I" uniqKey="Pateraki I">I Pateraki</name>
</author>
<author>
<name sortKey="Kanellis, Ak" uniqKey="Kanellis A">AK Kanellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paterson, Ah" uniqKey="Paterson A">AH Paterson</name>
</author>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M Freeling</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peisajovich, Sg" uniqKey="Peisajovich S">SG Peisajovich</name>
</author>
<author>
<name sortKey="Garbarino, Je" uniqKey="Garbarino J">JE Garbarino</name>
</author>
<author>
<name sortKey="Wei, P" uniqKey="Wei P">P Wei</name>
</author>
<author>
<name sortKey="Lim, Wa" uniqKey="Lim W">WA Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proost, S" uniqKey="Proost S">S Proost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reineke, Ar" uniqKey="Reineke A">AR Reineke</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rensing, Sa" uniqKey="Rensing S">SA Rensing</name>
</author>
<author>
<name sortKey="Lang, D" uniqKey="Lang D">D Lang</name>
</author>
<author>
<name sortKey="Zimmer, Ad" uniqKey="Zimmer A">AD Zimmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, Rl" uniqKey="Rogers R">RL Rogers</name>
</author>
<author>
<name sortKey="Hartl, Dl" uniqKey="Hartl D">DL Hartl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, Sw" uniqKey="Roy S">SW Roy</name>
</author>
<author>
<name sortKey="Penny, D" uniqKey="Penny D">D Penny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruping, B" uniqKey="Ruping B">B Ruping</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmutz, J" uniqKey="Schmutz J">J Schmutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnable, Ps" uniqKey="Schnable P">PS Schnable</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shan, H" uniqKey="Shan H">H Shan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shoemaker, Rc" uniqKey="Shoemaker R">RC Shoemaker</name>
</author>
<author>
<name sortKey="Schlueter, J" uniqKey="Schlueter J">J Schlueter</name>
</author>
<author>
<name sortKey="Doyle, Jj" uniqKey="Doyle J">JJ Doyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegel, S" uniqKey="Siegel S">S Siegel</name>
</author>
<author>
<name sortKey="Castellan, N" uniqKey="Castellan N">N Castellan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soding, J" uniqKey="Soding J">J Söding</name>
</author>
<author>
<name sortKey="Lupas, An" uniqKey="Lupas A">AN Lupas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soltis, De" uniqKey="Soltis D">DE Soltis</name>
</author>
<author>
<name sortKey="Soltis, Ps" uniqKey="Soltis P">PS Soltis</name>
</author>
<author>
<name sortKey="Zanis, Mj" uniqKey="Zanis M">MJ Zanis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, M" uniqKey="Srivastava M">M Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuskan, Ga" uniqKey="Tuskan G">GA Tuskan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van De Peer, Y" uniqKey="Van De Peer Y">Y van de Peer</name>
</author>
<author>
<name sortKey="Maere, S" uniqKey="Maere S">S Maere</name>
</author>
<author>
<name sortKey="Meyer, A" uniqKey="Meyer A">A Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velasco, R" uniqKey="Velasco R">R Velasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veron, As" uniqKey="Veron A">AS Veron</name>
</author>
<author>
<name sortKey="Kaufmann, K" uniqKey="Kaufmann K">K Kaufmann</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogel, Jp" uniqKey="Vogel J">JP Vogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walsh, B" uniqKey="Walsh B">B Walsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
<author>
<name sortKey="Caetano Anolles, G" uniqKey="Caetano Anolles G">G Caetano-Anolles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiner, J" uniqKey="Weiner J">J Weiner</name>
</author>
<author>
<name sortKey="Beaussart, F" uniqKey="Beaussart F">F Beaussart</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiner, J" uniqKey="Weiner J">J Weiner</name>
</author>
<author>
<name sortKey="Moore, Ad" uniqKey="Moore A">AD Moore</name>
</author>
<author>
<name sortKey="Bornberg Bauer, E" uniqKey="Bornberg Bauer E">E Bornberg-Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Jh" uniqKey="Williams J">JH Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, Te" uniqKey="Wood T">TE Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Worden, Az" uniqKey="Worden A">AZ Worden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
<author>
<name sortKey="Jawdy, S" uniqKey="Jawdy S">S Jawdy</name>
</author>
<author>
<name sortKey="Tschaplinski, Tj" uniqKey="Tschaplinski T">TJ Tschaplinski</name>
</author>
<author>
<name sortKey="Tuskan, Ga" uniqKey="Tuskan G">GA Tuskan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, Nd" uniqKey="Young N">ND Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zmasek, Cm" uniqKey="Zmasek C">CM Zmasek</name>
</author>
<author>
<name sortKey="Godzik, A" uniqKey="Godzik A">A Godzik</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Genome Biol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Genome Biol Evol</journal-id>
<journal-id journal-id-type="hwp">gbe</journal-id>
<journal-id journal-id-type="publisher-id">gbe</journal-id>
<journal-title-group>
<journal-title>Genome Biology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="epub">1759-6653</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22250127</article-id>
<article-id pub-id-type="pmc">3318442</article-id>
<article-id pub-id-type="doi">10.1093/gbe/evs004</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kersting</surname>
<given-names>Anna R.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bornberg-Bauer</surname>
<given-names>Erich</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Andrew D.</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grath</surname>
<given-names>Sonja</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff>Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Muenster (WWU), Germany</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Corresponding author: E-mail:
<email>radmoore@uni-muenster.de</email>
;
<email>s.grath@uni-muenster.de</email>
.</corresp>
<fn>
<p>
<bold>Associate editor:</bold>
Yves van de Peer</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>1</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>1</month>
<year>2012</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>4</volume>
<issue>3</issue>
<fpage>316</fpage>
<lpage>329</lpage>
<history>
<date date-type="accepted">
<day>9</day>
<month>1</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2012. Published by Oxford University Press on behalf of the
<italic>Society for Molecular Biology and Evolution</italic>
.</copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/3.0">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0">http://creativecommons.org/licenses/by-nc/3.0</ext-link>
), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants.</p>
</abstract>
<kwd-group>
<kwd>plant genome evolution</kwd>
<kwd>modular evolution</kwd>
<kwd>whole-genome duplication</kwd>
<kwd>evolution of stress response</kwd>
</kwd-group>
<counts>
<page-count count="14"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>The wealth of genomic data has governed a number of insightful studies on genome evolution. To date, most studies have concentrated on gene duplications, gene family expansion or reduction, selective sweeps or signals of selection using site-based statistics. An alternative approach to studying genome evolution utilizes the modular nature of proteins. Most proteins are composed of one or many protein domains, which are the units of protein structure, function, and evolution (
<xref ref-type="bibr" rid="bib105">Söding and Lupas 2003</xref>
;
<xref ref-type="bibr" rid="bib80">Moore et al. 2008</xref>
). The majority of proteins can be described using a small set of domains, which, despite the ever-increasing amount of available sequence data, grows at only moderate speed. In contrast, the number of domain arrangements, that is, the combination of these domains in proteins, continues to rapidly grow (
<xref ref-type="bibr" rid="bib71">Levitt 2009</xref>
;
<xref ref-type="bibr" rid="bib125">Yang et al. 2009</xref>
). The study of domain rearrangements across large phyla has provided a detailed understanding of modular protein evolution (
<xref ref-type="bibr" rid="bib22">Björklund et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib38">Ekman et al. 2007</xref>
;
<xref ref-type="bibr" rid="bib45">Fong et al. 2007</xref>
;
<xref ref-type="bibr" rid="bib118">Wang and Caetano-Anolles 2009</xref>
;
<xref ref-type="bibr" rid="bib125">Yang et al. 2009</xref>
) and has demonstrated that domain rearrangements, paired with the occasional formation of novel domains (
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2012</xref>
), create an enormous degree of protein diversity (
<xref ref-type="bibr" rid="bib9">Apic et al. 2001</xref>
;
<xref ref-type="bibr" rid="bib71">Levitt 2009</xref>
;
<xref ref-type="bibr" rid="bib125">Yang et al. 2009</xref>
). The majority of eukaryotic proteins have more than one domain (
<xref ref-type="bibr" rid="bib9">Apic et al. 2001</xref>
;
<xref ref-type="bibr" rid="bib39">Ekman et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib125">Yang et al. 2009</xref>
), and while many domains are found in few arrangements, only few domains are versatile and form a wide array of different arrangements (
<xref ref-type="bibr" rid="bib121">Weiner et al. 2008</xref>
;
<xref ref-type="bibr" rid="bib33">Cohen-Gihon et al. 2011</xref>
). Rearrangement events at the protein level are easy to detect, and the key mechanisms are thought to be fusion, fission, and terminal deletion (
<xref ref-type="bibr" rid="bib22">Björklund et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib120">Weiner et al. 2006</xref>
). These events are likely fueled by a series of underlying genetic events such as nonallelic homologous recombination, exon-shuffling, nonhomologous end joining or transposition (
<xref ref-type="bibr" rid="bib12">Babushok et al. 2007</xref>
;
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
). However, with few exceptions (e.g.,
<xref ref-type="bibr" rid="bib86">Oshima et al. 2010</xref>
), traces of the genetic mechanisms of rearrangement swiftly decay.
<xref ref-type="bibr" rid="bib28">Buljan et al. (2010)</xref>
explored the genetic events that facilitate domain gain events to existing arrangements. Their results provide support to the notion that domains are typically added at either terminus. The key mechanism for such domain gain events involves the joining of exons between genes or terminal exon extension. The study of domain content evolution in eukaryotes has illustrated that domain loss and gain are frequent events (
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2011</xref>
;
<xref ref-type="bibr" rid="bib128">Zmasek and Godzik 2011</xref>
). Whereas lost domains tend to be of catalytic nature, gained domains tend to be regulatory. Despite the diverse studies that have explored modular evolution across many species as well as in restricted clades, to date no study has quantitatively addressed the topic of modularity in a set of plant species. However, modular evolution may be of particular importance for plants, as they face a challenge that many other species do not—they cannot easily evade environmental changes because of their sessile nature. In particular the fusion of genes, and consequently of domain arrangements, allows for “jumps” in protein evolution and may govern truly novel genetic phenotypes. Hence such fusion proteins may exhibit great adaptive potential. Indeed, recent findings suggest that chimeric genes formed by gene fusion can be found in regions of selective sweeps (
<xref ref-type="bibr" rid="bib95">Rogers and Hartl 2012</xref>
).</p>
<p>Fusion events have been shown to be associated with regulatory proteins such as the metazoan bHLH transcription factors (
<xref ref-type="bibr" rid="bib7">Amoutzias et al. 2005</xref>
) or the MIKC-type MADS-box transcription factor proteins in plants (
<xref ref-type="bibr" rid="bib115">Veron et al. 2007</xref>
;
<xref ref-type="bibr" rid="bib102">Shan et al. 2009</xref>
). Innovation of transcription factor families is often the result of duplication events, which may occur in chromosomal regions with high recombination rates. Furthermore, it has been illustrated that duplication events in combination with high recombination rates are strong forces in genome evolution (
<xref ref-type="bibr" rid="bib70">Lang et al. 2010</xref>
).</p>
<p>Duplications have been more frequently described for plants than elsewhere and plant genome evolution is special in several aspects. First, plant genomes are repeat-rich and transposable elements have a particularly prominent role in creating retrocopies of genes, for example, in monocots (
<xref ref-type="bibr" rid="bib19">Bennetzen 2005</xref>
;
<xref ref-type="bibr" rid="bib16">Baucom et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib15">Baucom, Estill et al. 2009</xref>
). Second, several whole-genome duplication (WGD) events have created many large genomes with various degrees of ploidy within a relatively short period of time. 35% of all vascular plants are recent polyploids (
<xref ref-type="bibr" rid="bib123">Wood et al. 2009</xref>
). Moreover, angiosperms have undergone up to four rounds of WGD in roughly 320 Myr, with one WGD common to all seed plants 319 Ma and one WGD common to all angiosperms 192 Ma (
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib63">Jiao et al. 2011</xref>
). Although polyploidy events pose a genomic challenge to their host and most polyploidy events are considered a “dead end” for evolution (
<xref ref-type="bibr" rid="bib76">Mayrose et al. 2011</xref>
), it has been suggested that polyploidy, be it the result of autopolyploidy or allopolyploidy, may occasionally provide a starting point for evolutionary innovation (
<xref ref-type="bibr" rid="bib48">Freeling et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
). The benefit of an increased amount of genetic material might be to allow for swift adaptation to extreme environments (
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
). For example, the increased heterozygosity resulting from polyploidy impacts the wiring of signaling cascades and can facilitate strong variation in gene expression (
<xref ref-type="bibr" rid="bib85">Osborn et al. 2003</xref>
). Numerous studies have also explicitly explored the impact of WGD in plants at the genomic level, for example, by exploring duplicate retention rates (
<xref ref-type="bibr" rid="bib53">Hanada et al. 2008</xref>
;
<xref ref-type="bibr" rid="bib109">Tang et al. 2008</xref>
;
<xref ref-type="bibr" rid="bib127">Zheng et al. 2009</xref>
), gene dosage effects (
<xref ref-type="bibr" rid="bib48">Freeling et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib79">Misook et al. 2007</xref>
;
<xref ref-type="bibr" rid="bib17">Bekaert et al. 2011</xref>
), or recombination rates (
<xref ref-type="bibr" rid="bib2">Akhunov et al. 2003</xref>
). WGDs may enhance the potential for diversification and speciation (
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
), yet the details remain poorly understood.</p>
<p>As genomic stability is largely influenced by genome size and repeat content (
<xref ref-type="bibr" rid="bib19">Bennetzen 2005</xref>
), one might speculate that plants have high rates of recombination and hence exhibit a high number of domain rearrangements. Indeed, comparative studies have illustrated that angiosperms exhibit higher recombination rates than vertebrates (
<xref ref-type="bibr" rid="bib65">Kejnovsky et al. 2009</xref>
). However, to date, no study has explored the extent of modular protein evolution in plants.</p>
<p>Given their large genome size, higher recombination rates, and the inability to flee upon environmental challenges, it seems likely that plants may utilize their abundant genomic material to facilitate rapid evolutionary innovation. Consequently, the benefits of modular domain rearrangements might be particularly pronounced, since the ability of modular evolution to swiftly implement changes to the protein repertoire may be a key process in both exploiting existing and creating functionalities. So far, all studies on the evolutionary dynamics and the adaptive potential of domain rearrangements have been reported for bacteria (
<xref ref-type="bibr" rid="bib41">Enright and Ouzounis 2001</xref>
), metazoa (
<xref ref-type="bibr" rid="bib38">Ekman et al. 2007</xref>
), or fungi (
<xref ref-type="bibr" rid="bib33">Cohen-Gihon et al. 2011</xref>
), but none for plants.</p>
<p>In this report, we explore the nature of modular evolution in 29 green plant species (Viridiplantae) with taxa ranging from green algae to liliopsida and eudicotyledons. Our aim is to understand the evolutionary dynamics by studying the frequency of individual modular events such as fusion, fission, or terminal loss. We apply a maximum parsimony-based approach to reconstruct events placing this study into a phylogenomic framework and quantitatively address the role of domain emergence and domain rearrangements. Furthermore, we explore the speed with which new domains, and their arrangements, are gained and lost; how many of these events are clade or species-specific and whether event “hotspots” can be found amongst the phylogenies of the considered species. Finally, we employ several functional analyses based on the Gene Ontology (GO) classification (
<xref ref-type="bibr" rid="bib11">Ashburner and Lewis 2002</xref>
) to shed light on the potential adaptive benefits of domain emergence and rearrangements during plant genome evolution.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Proteomes and Domain Annotation</title>
<p>Comparative analyses of protein domains and their arrangements were performed on the following 29 plant genomes:
<italic>Arabidopsis thaliana</italic>
v9.0 (
<xref ref-type="bibr" rid="bib110">The Arabidopsis Initiative 2000</xref>
);
<italic>Arabidopsis lyrata</italic>
v1.0 (
<xref ref-type="bibr" rid="bib58">Hu et al. 2011</xref>
);
<italic>Carica papaya</italic>
v1.0 (
<xref ref-type="bibr" rid="bib78">Ming et al. 2008</xref>
);
<italic>Citrus sinensis</italic>
v1.0 (
<xref ref-type="bibr" rid="bib108">Sweet Orange Genome Project 2010</xref>
);
<italic>Citrus clementine</italic>
v0.9 (
<xref ref-type="bibr" rid="bib54">Haploid Clementine Genome International Citrus Genome Consortium 2011</xref>
);
<italic>Eucalyptus grandis</italic>
v1.0 (
<xref ref-type="bibr" rid="bib43">Eucalyptus grandis Genome Project 2010</xref>
);
<italic>Mimulus guttatus</italic>
v1.1;
<italic>Aquilegia coerulea</italic>
;
<italic>Theobroma cacao</italic>
v1.0 (
<xref ref-type="bibr" rid="bib10">Argout et al. 2011</xref>
);
<italic>Glycine max</italic>
v1.0 (
<xref ref-type="bibr" rid="bib99">Schmutz et al. 2010</xref>
);
<italic>Medicago truncatula</italic>
v3.0 (
<xref ref-type="bibr" rid="bib126">Young et al. 2005</xref>
);
<italic>Lotus japonica</italic>
v1.0 (
<xref ref-type="bibr" rid="bib126">Young et al. 2005</xref>
);
<italic>Populus trichocarpa</italic>
v2.0 (
<xref ref-type="bibr" rid="bib112">Tuskan et al. 2006</xref>
);
<italic>Ricinus communis</italic>
v1.0 (
<xref ref-type="bibr" rid="bib30">Chan et al. 2010</xref>
);
<italic>Manihot esculenta</italic>
v1.1;
<italic>Malus domestica</italic>
(
<xref ref-type="bibr" rid="bib114">Velasco et al. 2010</xref>
);
<italic>Prunus persica</italic>
v1.0 (
<xref ref-type="bibr" rid="bib61">International Peach Genome Initiative 2010</xref>
);
<italic>Cucumus sativa</italic>
v1.0 (
<xref ref-type="bibr" rid="bib59">Huang et al. 2009</xref>
);
<italic>Vitis vinifera</italic>
v1.0 (
<xref ref-type="bibr" rid="bib62">Jaillon et al. 2007</xref>
);
<italic>Setaria italica</italic>
v2.0 (
<xref ref-type="bibr" rid="bib101">Setaria italica Genome Sequencing Project 2011</xref>
);
<italic>Zea mays</italic>
v4a.53 (
<xref ref-type="bibr" rid="bib100">Schnable et al. 2009</xref>
);
<italic>Sorghum bicolor</italic>
v1.4 (
<xref ref-type="bibr" rid="bib35">Dubchak et al. 2009</xref>
);
<italic>Oryza sativa</italic>
v6.1 (
<xref ref-type="bibr" rid="bib50">Go et al. 2002</xref>
);
<italic>Brachypodium distachyon</italic>
v1.0 (
<xref ref-type="bibr" rid="bib116">Vogel et al. 2010</xref>
);
<italic>Phoenix dactylifera</italic>
v2.0 (
<xref ref-type="bibr" rid="bib3">Al-Dous et al. 2011</xref>
);
<italic>Selaginella moellendorffii</italic>
v1.0 (
<xref ref-type="bibr" rid="bib13">Banks et al. 2011</xref>
);
<italic>Physcomitrella patens</italic>
v1.5 (
<xref ref-type="bibr" rid="bib94">Rensing et al. 2008</xref>
);
<italic>Chlamydomonas reinhardtii</italic>
v4.0 (
<xref ref-type="bibr" rid="bib77">Merchant et al. 2007</xref>
);
<italic>Ostreococcus lucimarinus</italic>
v2.0 (
<xref ref-type="bibr" rid="bib87">Palenik et al. 2007</xref>
); and
<italic>Micromonas pusilla</italic>
v3.0 (
<xref ref-type="bibr" rid="bib124">Worden et al. 2009</xref>
).</p>
<p>We rooted the tree ∼1.700 Ma by including
<italic>Trichoplax adhaerens</italic>
v1.0 (
<xref ref-type="bibr" rid="bib107">Srivastava et al. 2008</xref>
),
<italic>Rhizopus oryzae</italic>
(
<xref ref-type="bibr" rid="bib74">Ma et al. 2009</xref>
) and
<italic>Drosophila melanogaster</italic>
v5.11 (
<xref ref-type="bibr" rid="bib1">Adams et al. 2000</xref>
). Phylogenetic relationships for all 32 species (29 plants and 3 outgroups) used for this study are given in
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary figure 1</ext-link>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). If several splice variants were present for one protein, we excluded all but the longest transcript. All proteomes were scanned for domains with the pfam_scan utility and HMMER3.0 (
<xref ref-type="bibr" rid="bib37">Eddy 2011</xref>
) against the Pfam-A and Pfam-B models obtained from Pfam (v.24) (
<xref ref-type="bibr" rid="bib44">Finn et al. 2008</xref>
). For the annotation of Pfam-A domains, we used the model-defined gathering threshold and query sequences were required to match at least 30% of the defining model (
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
). Pfam-B domains were annotated using an
<italic>E</italic>
value cutoff of 0.001 (
<xref ref-type="bibr" rid="bib38">Ekman et al. 2007</xref>
). Pfam-A domains with clan membership were mapped to their clans and domains of type “repeat” or “motif” were collapsed into one large domain instance (
<xref ref-type="bibr" rid="bib39">Ekman et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib47">Forslund et al. 2007</xref>
).</p>
</sec>
<sec>
<title>Reconstruction of the Ancestral Domain State; Domain Gain, Loss, and Emergence</title>
<p>We reconstructed ancestral domain contents using a maximum parsimony approach as follows: the tree (see
<xref ref-type="fig" rid="fig1">fig. 1
<italic>B</italic>
</xref>
) was traversed twice, first from leaves to root then from root to leaves. Domain presence or absence is determined by majority rule. During first traversal (leaves → root), the state of domain
<italic>d</italic>
is set to present at a node
<italic>n</italic>
, if
<italic>d</italic>
is present in the majority of leaves of the subtree rooted in
<italic>n</italic>
(leaves of
<italic>n</italic>
). Similarly,
<italic>d</italic>
is set to absent at
<italic>n</italic>
, if
<italic>d</italic>
is absent in the majority of leaves of
<italic>n</italic>
. If there is no state majority for
<italic>d</italic>
in the child nodes of
<italic>n</italic>
(i.e., there is an identical proportion of presence and absence states for
<italic>d</italic>
in the leaves), the state of
<italic>d</italic>
at
<italic>n</italic>
is set to unknown. As traversal continues toward the root,
<italic>d</italic>
is set to present (absent) at
<italic>n</italic>
as soon as the majority of leaves of
<italic>n</italic>
exhibit the present (absent) state. Ergo, present and unknown are resolved to present, while unknown and absent are resolved to absent. The first traversal terminates at the root node. All unknown states at the root node are set to present (note that this root includes the outgroups). During the second traversal (root → leaves), unknown states are resolved by setting them to the state of their ancestor. We used a combination of custom-made python scripts and the ETE2 package (
<xref ref-type="bibr" rid="bib60">Huerta-Cepas et al. 2010</xref>
) for tree traversal. Branch lengths of the tree (
<xref ref-type="bibr" rid="bib106">Soltis et al. 2002</xref>
;
<xref ref-type="bibr" rid="bib32">Choi et al. 2004</xref>
;
<xref ref-type="bibr" rid="bib75">Magallón and Sanderson 2005</xref>
;
<xref ref-type="bibr" rid="bib55">Hedges et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib29">Cartwright and Collins 2007</xref>
;
<xref ref-type="bibr" rid="bib8">Anderson and Janßen 2009</xref>
;
<xref ref-type="bibr" rid="bib21">Bhattacharya et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib26">Bremer et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib46">Forest and Chase 2009</xref>
;
<xref ref-type="bibr" rid="bib56">Herron et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib118">Wang and Caetano-Anolles 2009</xref>
;
<xref ref-type="bibr" rid="bib70">Lang et al. 2010</xref>
;
<xref ref-type="bibr" rid="bib93">Reineke et al. 2011</xref>
) and whole-genome duplication events (
<xref ref-type="bibr" rid="bib23">Blanc and Wolfe 2004</xref>
;
<xref ref-type="bibr" rid="bib100">Schnable et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib63">Jiao et al. 2011</xref>
) were extracted from the literature.</p>
<fig id="fig1" position="float">
<label>F
<sc>IG</sc>
. 1.—</label>
<caption>
<p>Domain gain, loss, emergence and proteome coverage of 26 plant genomes. (
<italic>A</italic>
) Correlation of domain gain and loss with branch length. Both gain and loss correlate significantly with branch length (gain: ρ = 0.6,
<italic>P</italic>
< 0.001; loss: ρ = 0.63,
<italic>P</italic>
< 0.001). (
<italic>B</italic>
) Phylogenetic relationship of all species used in this study. For each branch, the size of the green circle corresponds to the number of domain emergence events along the branch. Branches colored in red indicate that the gain and/or loss at this branch is higher than the average gain and/or loss rates. Exact values for domain gain, loss, and emergence are given in
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 2</ext-link>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). (
<italic>C</italic>
) Domain coverage for proteins. The lower axis (percentage of proteins with domains) displays the proportion of proteins with only Pfam-A domains (red), only Pfam-B domains (dark blue), both Pfam-A and Pfam-B domains (light blue), and without any protein domain annotation (yellow). The upper axis displays proteome size indicated as vertical black line for each species. Statistics for three species (
<italic>Setaria italica</italic>
,
<italic>Prunus persica</italic>
, and
<italic>Mimulus guttatus</italic>
) that are still under Fort Lauderdale restriction are not provided.</p>
</caption>
<graphic xlink:href="gbeevs004f01_3c"></graphic>
</fig>
<p>We performed a Blast (
<xref ref-type="bibr" rid="bib5">Altschul et al. 1997</xref>
) search to identify recently duplicated proteins. Proteins with a similarity of 75% or more and an
<italic>E</italic>
value ≤ 10
<sup>−20</sup>
were considered to be paralogs. We employed a synteny analysis to distinguish between tandem and segmental duplications. Two genes were considered to be tandem duplicates if they were five or less genes apart. Paralogs with more than five genes between them were considered to be a result of a segmental duplication event (
<xref ref-type="bibr" rid="bib53">Hanada et al. 2008</xref>
).</p>
<p>Domain gain and loss events along branches were calculated by comparison of domain content at a given node with the domain content of its ancestor. We distinguish between “gained” domains, which are all domains found present at a node while absent in its ancestor, and “emerged” domains, which are gained domains which can only be found within Viridiplantae. Ergo, emerged domains are a subset of the gained domains. Emerged domains were determined by scanning gained domains with HMMER3.0 against NCBI NR and Integr8 (
<xref ref-type="bibr" rid="bib67">Kersey et al. 2005</xref>
). Gained domains, which are not present in the outgroups were also scanned against NCBI NR to determine the kingdoms where these domains are present (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Domain event rates (gain and loss) were calculated by dividing the number of events predicted to occur along a given branch by the branch length (in million years).</p>
<p>Given the evidence that novel domains are frequently enriched in structural disorder (
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
;
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2012</xref>
), we predicted disorder in domains classified as emerging. VSL2.0 (
<xref ref-type="bibr" rid="bib82">Obradovic et al. 2005</xref>
) was used to detect structural disorder in domain sequences. Emerged domains were divided into four bins (Viridiplantae, Embryophyta, Tracheophyta, and Magnoliophyta), corresponding to their emergence nodes. Domains that emerged after the Magnoliophyta node were pooled into one “RECENT” bin. To compare disorder of emerged domains with old domains (i.e., domains that exist at the root), a bin “OLD” was constructed consisting of 500 randomly picked domains occurring in the root. In addition, we constructed a “RANDOM” bin consisting of 100 randomly selected domains, which exist at the root. To account for sampling bias, we repeated the random selection 100 times. Statistical inference was conducted with the kruskalmc test of the R package pgirmess (
<xref ref-type="bibr" rid="bib104">Siegel and Castellan 1988</xref>
;
<xref ref-type="bibr" rid="bib111">R Development Core Team 2008</xref>
).</p>
<p>We quantified domain emergence and explored a set of attributes (
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2012</xref>
). Domain frequency,
<italic>d</italic>
(
<italic>f</italic>
), is defined as the absolute frequency of a domain across all plant genomes used for the analysis. The domain rate
<italic>x</italic>
(
<italic>d</italic>
) of domain
<italic>d</italic>
is defined as the domain frequency divided by the number of plants in which
<italic>d</italic>
occurs. The domain success rate corresponds to the domain rate divided by the node age (in million years) at which the domain first emerged. The prevalence
<italic>P</italic>
(
<italic>d</italic>
) of a domain
<italic>d</italic>
is the number of plants with
<italic>d</italic>
divided by the number of plants with the emergence node of
<italic>d</italic>
as an ancestor.</p>
</sec>
<sec>
<title>Functional Analysis of Domains</title>
<p>Where available, GO (
<xref ref-type="bibr" rid="bib11">Ashburner and Lewis 2002</xref>
) annotation of proteomes was obtained from PLAZA 2.0 (
<xref ref-type="bibr" rid="bib92">Proost et al. 2009</xref>
); Blast2GO (
<xref ref-type="bibr" rid="bib51">Götz et al. 2008</xref>
) with default settings was used to functionally annotate the remaining proteomes. Comparative functional analyses were performed by assessing GO-term overrepresentation (overrepresentation analysis, ORA) in two separate steps. First, for emerging domains, we performed the functional analysis indirectly by using the GO annotation of arrangements that harbor at least one emerging domain, similar to a previous approach (
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2012</xref>
). Statistical inference was conducted using the R package TopGo (
<xref ref-type="bibr" rid="bib4">Alexa et al. 2006</xref>
). As universe, we used the GO annotation of all proteins in our data set; the sample consisted of arrangements with emerging domains. Second, for assessing functional overrepresentation of arrangements in events (such as fusion or fission), we again conducted an ORA using the proteins GO annotation, however, our sample here was the arrangement set that results from a specific event (e.g., all gained arrangements explainable by a fusion event).
<italic>P</italic>
value transformed TermClouds were created by logarithmic transformation of the False Discovery Rate (FDR)-corrected (
<xref ref-type="bibr" rid="bib18">Benjamini and Hochberg 1995</xref>
)
<italic>P</italic>
value obtained from the ORA, such that term size represents the significance of the GO term. Visualization was created using Wordle (
<ext-link ext-link-type="uri" xlink:href="http://www.wordle.net/">http://www.wordle.net/</ext-link>
) with the transformed
<italic>P</italic>
value as a custom scaling factor.</p>
</sec>
<sec>
<title>Reconstruction of the Ancestral Domain Arrangements State, Arrangement Gain, and Loss</title>
<p>We defined domain arrangements as ordered sets of domains for each protein. For the analysis of arrangements in this study, only Pfam-A domains were used. Ancestral states for arrangements were reconstructed as previously described. Similarly, arrangement gain and loss was determined by comparing current and ancestral states.</p>
</sec>
<sec>
<title>Determination of Arrangement Rates</title>
<p>For each gained arrangement, we applied a search algorithm to determine the possible mechanism that led to its formation. We considered the four most important mechanisms of modular rearrangements—fusion, fission, terminal deletion, and domain addition (
<xref ref-type="bibr" rid="bib22">Björklund et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib88">Pasek et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib120">Weiner et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
). The algorithm assigns a fusion event when two ancestral arrangements can be fused to form the gained arrangement. A gained arrangement is considered to be the result of fission if an ancestral arrangement can be split to give rise to the new arrangement; both products of the split are required to be present in the current node. In contrast, for terminal deletion, only one product of the split (the gained arrangement) may be present in the current node (the other product is considered to be lost). The algorithm counts a domain addition event when the newly gained arrangement contains a domain that is absent in the ancestral node.</p>
<p>Note that in general, any new arrangement can be explained by a sufficiently large “chain” of events. However, since the likelihood of events is not available, we make no assumptions about the relative costs of each mechanism and therefore are not able to determine the most likely chain. Instead, we focus on single-step solutions, that is, on cases where a newly gained arrangement can be explained by a single event. Using this strategy, we can differentiate between arrangements with exact solution (i.e., the formation can be explained by exactly one mechanism), arrangements with nonambiguous solution (i.e., only one mechanism explains the arrangement but there are several events possible) and arrangements with ambiguous solution (i.e., conflicting solutions of different types). All arrangements with solution are referred to as “simple gains,” whereas all other arrangements are considered to be “complex gains.”</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Domain Coverage</title>
<p>In plants, on average, 50% of the proteome residues were found to be covered by domain annotation; the residue coverage ranges from 30% to 70% (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 1</ext-link>
and
<xref ref-type="fig" rid="fig2">fig. 2</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). For an average of 35% of the residues, for each plant, a Pfam-A domain can be detected, whereas Pfam-B domains affect 15% of all residues. Residue coverage levels for all species are given in
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 1</ext-link>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>At the protein level, the coverage distribution is more diverse (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 1</ext-link>
and
<xref ref-type="fig" rid="fig2">fig. 2</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). On average, 70% of the proteins for one plant species have at least one Pfam-A or Pfam-B domain. Fifty percent of the proteins contain only Pfam-A domains, 14% contain only Pfam-B domains, and 6% contain both Pfam-A and Pfam-B domains (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>C</italic>
</xref>
). All protein coverage values are given in
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 1</ext-link>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). The total number of proteins containing Pfam-A and Pfam-B domains is highly variable between the different proteomes (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>C</italic>
</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
<sec>
<title>Domain Emergence</title>
<p>To investigate domain gain, loss, and emergence across the considered plants, we reconstructed the ancestral domain content at each internal node of the tree (see also Materials and Methods;
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). In total, 545 domains emerged in the plant kingdom, that is, these domains are exclusively found in Viridiplantae. The largest amount of domain emergence within plants occurs along the branch leading to Embryophyta, which sees the emergence of 262 domains (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>B</italic>
</xref>
). A total of 114 and 66 domains emerge along the branches to Magnoliophyta and Tracheophyta, respectively. Fifty-one domains emerged prior to the split of Embryophyta and the green algae and 52 domains are the result of recent emergence events and can only be found within Magnoliophyta (see also Discussion below) (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>B</italic>
</xref>
).</p>
</sec>
<sec>
<title>Radiation and Functional Impact of Emerging Domains</title>
<p>Next, we assessed whether emerged domains confer specific functionalities and whether these might provide adaptive benefit. We assessed functional overrepresentation using GO categories and TopGO (
<xref ref-type="bibr" rid="bib4">Alexa et al. 2006</xref>
) (see Materials and Methods for details). We find that GO terms prefixed by response_to are overrepresented along with functionalities related to reproduction, developmental mechanisms, and metabolic processes (
<xref ref-type="fig" rid="fig2">fig. 2</xref>
).</p>
<fig id="fig2" position="float">
<label>F
<sc>IG</sc>
. 2.—</label>
<caption>
<p>Gene Ontology (GO) terms associated with emerging domains. GO terms affected by emergence were tested for overrepresentation using the TopGO package and all terms present in plants as universe (for details, see Materials and Methods). The font size corresponds to the value of significance obtained for this term. Significance was determined after correction for multiple testing using FDR (
<xref ref-type="bibr" rid="bib18">Benjamini and Hochberg 1995</xref>
) correction at
<italic>P</italic>
< 0.01. The vast majority of GO terms is related to stimulus response, development, reproduction, regulation, and plant-specific metabolic processes.</p>
</caption>
<graphic xlink:href="gbeevs004f02_3c"></graphic>
</fig>
<p>We binned emerging domains according to their point of emergence (for details, see Materials and Methods) and ranked them by their frequency
<italic>d</italic>
(
<italic>f</italic>
). The 5% highest ranked domains from each age bin (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online) were subject to further investigation as these can be considered to be particularly “successful” emerging domains. Among these, we find domains with plant-specific functions such as flowering control, auxin regulation, fruit development, cell wall development, and plant organelle recognition. Furthermore, we detected domains related to the F-box protein family, to transcription factors and to DNA binding. For the majority of emerging domains, direct functional annotation is difficult—the largest proportion (85%) of all emerging domains in plants are domains of unknown function (DUFs) or belong to the set of poorly annotated Pfam-B domains. We assessed functional overrepresentation using the function of proteins that obtain emerging domains—we are hence not exploring which functional modules emerge but rather which protein functionalities undergo innovation (by the addition of an emerging domain).</p>
<p>There is increasing evidence that young domains can exhibit higher levels of structural disorder than established domains (
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
;
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2012</xref>
). We examined the degree of structural disorder in emerging domains. The results indicate that emerging domains are significantly enriched in intrinsic disorder, more than in randomly chosen domains (see Materials and Methods;
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Furthermore, the younger a domain, the higher the degree of disorder.</p>
</sec>
<sec>
<title>Domain Gain and Loss</title>
<p>Domain gain and loss are frequent events in plant evolution, and there is a strong variation between different branches (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>A</italic>
</xref>
). Nevertheless, both gain and loss rates correlate significantly with branch length (Spearman rank correlation, gain: ρ = 0.6,
<italic>P</italic>
< 0.001; loss: ρ = 0.63,
<italic>P</italic>
< 0.001). On average, plants have a domain gain rate of 6.64/Myr and a domain loss rate of 6.11/Myr (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>A</italic>
</xref>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 2</ext-link>
and fig. 9,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). In monocots, the average domain gain rate (6.7/Myr) is lower than the domain loss rate (7.4/Myr), whereas in eudicots the situation is reversed; eudicots show a loss rate of 7.4/Myr and a gain rate of 8.3/Myr (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 2</ext-link>
and fig. 9,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Some branches exhibit very high loss rates, such as the branch leading to
<italic>P. dactylifera</italic>
, the branches to the two Fabaceae
<italic>M. truncatula</italic>
and
<italic>L. japonica</italic>
, and the branches to the two Andropogoneae
<italic>Z. mays</italic>
and
<italic>S. bicolo</italic>
<italic>r</italic>
(
<xref ref-type="fig" rid="fig1">fig. 1
<italic>B</italic>
</xref>
).</p>
</sec>
<sec>
<title>Gain, Loss, and Distribution of Arrangements</title>
<p>We next explored the dynamics of arrangement gain and loss. After determining the presence/absence of arrangements at ancestral nodes (for details, see Materials and Methods), we compared arrangement content at each node with the content at the corresponding parent node to determine arrangement gain and loss. As expected, both gain and loss rates correlate significantly with branch length (Spearman rank correlation, gain: ρ = 0:56,
<italic>P</italic>
< 0.001; loss: ρ = 0.38,
<italic>P</italic>
= 0.003,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Overall, arrangement gain rate is higher than arrangement loss rate. However, both rates correlate significantly with each other (ρ = 0.56,
<italic>P</italic>
< 0.001). By far, the largest amount of arrangement gain (2,814 arrangements) occurs along the branch to
<italic>M. domestica</italic>
followed by the branch to
<italic>R. communis</italic>
(1,018). Large amounts of arrangement loss can be found along the branches to
<italic>P. dactylifera</italic>
(1,028) and
<italic>L. japonica</italic>
(680); both plants also showed a high amount of domain loss. All values for arrangement gain and loss are given in
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 4</ext-link>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>We investigated the amount of arrangements shared by different plants species (
<xref ref-type="fig" rid="fig3">fig. 3</xref>
). The distribution is bimodal, with the largest number of arrangements being either specific to one species (∼7,000) or shared by all (∼1,000); only a very small amount of arrangements is shared by 10–20 species. Although by far the largest proportion of arrangements shared by all species consists of single-domain proteins, the contrary is true for species-specific arrangements. Here, the largest number of arrangements tends to be composed of more than one domain, with a large proportion containing seven or more domains. This indicates that the longer an arrangement is, the more likely it is species-specific.</p>
<fig id="fig3" position="float">
<label>F
<sc>IG</sc>
. 3.—</label>
<caption>
<p>Arrangements shared between species. The dashed line represents the number of arrangements shared by the different numbers of species (right axis). The distribution of unique arrangements is roughly bimodal with the majority of arrangements shared by either few or all species. The left axis and barplots display the frequency of arrangements with a certain length (one, two, three, four, five, six, and seven or more domains). Although single-domain arrangements tend to occur in all species, longer arrangements are often species-specific.</p>
</caption>
<graphic xlink:href="gbeevs004f03_3c"></graphic>
</fig>
</sec>
<sec>
<title>Modular Rearrangements</title>
<p>Using a simple model of modular rearrangement (for details, see Materials and Methods), we next explored the mechanisms that can facilitate the formation of novel arrangements. For this, we considered fusion, fission, terminal deletion, and domain addition. The results illustrate that 70% of all gained arrangements can be explained by exactly one solution (exact solutions). Of the gained arrangements, 14% can be explained by one particular mechanism, however, with a number of different possible solutions (nonambiguous solutions); only 4% have conflicting solutions (ambiguous solutions). The remaining 12% of all new arrangements are complex gains that likely arose by a chain of events (see Materials and Methods;
<xref ref-type="fig" rid="fig4">fig. 4</xref>
). The different events were found to occur with different frequencies (
<xref ref-type="table" rid="tbl1">table 1</xref>
). Fusion events makeup the largest proportion of exact solutions, followed by domain addition, fission, and terminal deletion. Fusion events occur with a frequency of 4.59/Myr, followed by fission with 1.98/Myr, and gain with 1.89/Myr. Domain deletion events can be split in C-terminal and N-terminal domain deletion; both events have a frequency of 0.7/Myr. All rates were averaged across all branches. We further explored event frequencies across different age bins. At the Embryophyta node, 68% of new arrangements are affected by domain addition and 26% by fusion. Domain deletion (4%) and fission (3%) are less prevalent at this node. Over time, the frequency of domain deletion and fission increases up to 13% and 21% in recent rearrangements, whereas domain additions decrease to a frequency of 24%. The largest fraction of recently gained arrangements (49%) can be explained by fusion events (
<xref ref-type="fig" rid="fig4">fig. 4</xref>
).</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Contribution of Fusion, Fission, C-Terminal Deletion, N-Terminal Deletion and Domain Addition to Simple Arrangement Gains</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Fusion</td>
<td align="center" rowspan="1" colspan="1">Fission</td>
<td align="center" rowspan="1" colspan="1">C-Del</td>
<td align="center" rowspan="1" colspan="1">N-Del</td>
<td align="center" rowspan="1" colspan="1">Add</td>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Total number</td>
<td align="char" char="." rowspan="1" colspan="1">9,669</td>
<td align="char" char="." rowspan="1" colspan="1">4,073</td>
<td align="char" char="." rowspan="1" colspan="1">1,283</td>
<td align="char" char="." rowspan="1" colspan="1">1,424</td>
<td align="char" char="." rowspan="1" colspan="1">4,848</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Average number/Myr</td>
<td align="char" char="." rowspan="1" colspan="1">4.59</td>
<td align="char" char="." rowspan="1" colspan="1">1.98</td>
<td align="char" char="." rowspan="1" colspan="1">0.7</td>
<td align="char" char="." rowspan="1" colspan="1">0.7</td>
<td align="char" char="." rowspan="1" colspan="1">1.89</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>N
<sc>OTE</sc>
.—Del, deletion; Add, addition.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig4" position="float">
<label>F
<sc>IG</sc>
. 4.—</label>
<caption>
<p>Mechanisms of rearrangement across different clades. We applied a search algorithm to assess the mechanisms that might account for newly gained arrangements (for details, see Materials and Methods). Only 12% of all gained arrangements cannot be explained by a one-step event (complex gains). The remaining 88% of simple gains can be further differentiated into exact solutions where only one particular mechanism (fusion, fission, terminal deletion, or domain addition) was necessary to explain the arrangement gain event (70%). All proteomes were divided into four different age bins: Embryophyta, Tracheophyta, Magnoliophyta, and Recent Nodes. The frequencies of fusion, fission, and terminal deletion increase over time, whereas the frequency of domain addition decreases.</p>
</caption>
<graphic xlink:href="gbeevs004f04_3c"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<sec>
<title>Domain Emergence</title>
<p>The increasing availability of plant genomes has allowed us to conduct a comparative domain analysis between a set of diverse plant species. Here, we reconstruct the ancestral states of domain content and arrangement and investigate the functional impact of domain emergence and domain rearrangements across a comprehensive set of 29 genomes dating back ∼800 Myr. However, the considered clade still contains a number of species for which genome sequences are missing, such as the gymnosperms or the charophyta. As these genomes become available, a more comprehensive picture of modular evolution in plants will emerge.</p>
<p>In contrast to animals, plants are sessile organisms that are unable to escape strong environmental shifts and must rather adapt to such variation. Hence, plants, more so than animals, are required to evolve mechanisms in order to deal with biotic and abiotic stresses. Here, we illustrate that the emergence of new domains can provide an important strategy for evolving stress response. More than 500 domains emerged within Viridiplantae of which more than 100 domains are unique for Tracheophyta (
<xref ref-type="fig" rid="fig1">fig. 1</xref>
). We recently assessed the impact of domain emergence in a set of insects, where only 30 domains emerged within 19 insect genomes spanning roughly 300 Myr of evolution (
<xref ref-type="bibr" rid="bib81">Moore and Bornberg-Bauer 2011</xref>
). Hence, it would seem that plants exhibit a large amount of domain innovation. One might speculate that plants at least partly address the challenge of a sessile lifestyle by means of domain innovation. The investigation of GO terms of proteins containing emerged domains further supports this notion. A large number of terms are related to plant-specific processes, such as megagametogenesis and development of plant-specific organs. This is not surprising as the reproductive system and morphology of plants not only differ strongly from other kingdoms but are also highly variable between plant species (
<xref ref-type="bibr" rid="bib40">Endress 2001</xref>
;
<xref ref-type="bibr" rid="bib20">Bennici 2005</xref>
;
<xref ref-type="bibr" rid="bib122">Williams 2008</xref>
;
<xref ref-type="bibr" rid="bib64">Kawakita and Kato 2009</xref>
). Besides these plant-specific functions, a number of overrepresented GO terms correspond to response_to categories and to secondary metabolite pathways related to stress response, such as auxin and jasmonic acid. Such secondary metabolites are strongly related to the defense and response mechanisms in plants (
<xref ref-type="bibr" rid="bib52">Grace and Logan 2000</xref>
;
<xref ref-type="bibr" rid="bib89">Pateraki and Kanellis 2010</xref>
;
<xref ref-type="bibr" rid="bib66">Kerchev et al. 2012</xref>
). As the composition of these compounds is variable between plant species and also within species (
<xref ref-type="bibr" rid="bib68">Kroymann 2011</xref>
), such secondary metabolites may provide a strong flexible basis for improving adaptation and defense.</p>
<p>Functional links to photosynthesis are not found amongst emerged domains (
<xref ref-type="fig" rid="fig2">fig. 2</xref>
). This is likely explained by photosynthesis not being unique to plants; photosynthetic processes can be found in algae and in many species of bacteria (
<xref ref-type="bibr" rid="bib83">Olson 1970</xref>
,
<xref ref-type="bibr" rid="bib84">2001</xref>
). Indeed, photosynthesis-related GO terms can be detected by investigating gained domains which are absent in the outgroups (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online), as well as response_to terms and a number of plant-specific functionalities related to development, similar to those terms found in proteins containing emerged domains.</p>
<p>Emerged domains seem to be evolutionarily important as they have a high prevalence of 0.9–1, indicating that their occurrence is strongly conserved. Besides their widespread occurrence in nearly all leaves, such emerged domains often occur in high copy numbers (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>Investigating the most successful emerged domains uncovers connections to key functional categories such as transcription factors, binding-related processes, and secondary metabolites, including auxin and jasmonic acid (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Indeed, a burst of transcription factors and their constituent domains, which are assumed to be correlated with increasing complexity in plant evolution (
<xref ref-type="bibr" rid="bib70">Lang et al. 2010</xref>
), has been found in angiosperms. The increase of plant complexity with duplication events (
<xref ref-type="bibr" rid="bib48">Freeling et al. 2006</xref>
) may partly be the result of duplication facilitating increasingly complex regulatory networks (
<xref ref-type="bibr" rid="bib115">Veron et al. 2007</xref>
).</p>
<p>Emerging domains exhibit an increased amount of intrinsic disorder; the more recent the emergence event, the more likely the domain in question exhibits intrinsic disorder. Disordered sequences may increase the binding affinity of proteins (
<xref ref-type="bibr" rid="bib36">Dyson and Wright 2005</xref>
). High intrinsic disorder paired with the fact that emerged domains are significantly underrepresented in single-domain proteins (hypergeometric test,
<italic>P</italic>
< 0.01), leads us to the speculation that emerging domains may have higher interaction potential, which in turn may increase their viability and result in higher prevalence and frequency. Indeed, some of the most successful emerging domains have links to binding-related processes.</p>
</sec>
<sec>
<title>Arrangement Mechanisms</title>
<p>In plants, roughly 70% of the domain-containing proteins are single domain (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). This high percentage of single-domain proteins can be an artifact of low domain coverage or “eroded-domains,” which have diverged beyond detection (
<xref ref-type="bibr" rid="bib120">Weiner et al. 2006</xref>
). Recent rearrangements can mostly be explained by the fusion of two single or two domain proteins. The relative rates of fusion and fission are similar to previously reported rates (
<xref ref-type="bibr" rid="bib69">Kummerfeld and Teichmann 2005</xref>
). GO terms overrepresented in proteins, which arose via fusion, are stress-, defense-, and adaptation-related as well as related to the reproduction system (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). In contrast, proteins formed by fission mainly play a role in metabolic and biosynthesis processes (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Proteins shaped by domain deletion are mainly related to basic functions such as the primary metabolism, and only a minor part of these proteins are stress–response related (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>Our results provide further evidence that duplication impacts rates of modular rearrangement (
<xref ref-type="bibr" rid="bib27">Buljan and Bateman 2009</xref>
). We find that proteins affected by rearrangement events are overrepresented in duplicated genes (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Furthermore, we find indication that species with recent WGD have higher rates of fusion and fission in comparison to species without recent WGD (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). In general, duplicates are thought to undergo one of three different scenarios: subfunctionalization, where the two duplicates share ancestral gene function; neofunctionalization, where one copy retains the ancestral function and the other copy diverges toward a novel function; and pseudogenization, where one copy is not expressed and is subsequently lost (
<xref ref-type="bibr" rid="bib117">Walsh 2003</xref>
). One explanation for sub- or neofunctionalization is the loss or change of regulatory regions (
<xref ref-type="bibr" rid="bib49">Ganko et al. 2007</xref>
). As the conservation of noncoding sequences follows an exponential decay rate (
<xref ref-type="bibr" rid="bib93">Reineke et al. 2011</xref>
), the retention of both duplicates might be the result of the change of one of the gene's regulatory region under relaxed selectional constraints. The high retention rate of proteins that result from a fusion event might be explained by the conservation of at least one regulatory element in the upstream region, whereas after fission, one arising protein may lose a regulatory region and undergo pseudogenization followed by gene loss. A further reason for sub- and neofunctionalization after duplication might be domain rearrangements in one paralog or differential domain loss (
<xref ref-type="bibr" rid="bib28">Buljan et al. 2010</xref>
).</p>
<p>We further illustrate the impact of protein domain rearrangements on an organism's protein repertoire (
<xref ref-type="fig" rid="fig5">fig. 5</xref>
). The emerging domains PAN_2 (emerged in the Tracheophyta) and S_locus_glycop (Embryophyta) often co-occur together with the B-lectin domain. Arrangements containing the two emerged domains S_locus_glycop and PAN_2 are frequently rearranged within paralogous genes (
<xref ref-type="fig" rid="fig5">fig. 5</xref>
) and obtain a catalytic function through the addition of kinase domains. Proteins that consist of arrangements with these two emerged domains have GO functions related to the recognition of pollen, protein phosphorylation, and cell recognition. Although we observed fusion events in tandemly duplicated genes in our case study, fusion events are not generally overrepresented in tandemly duplicated genes (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). After fusion, duplicates might be difficult to recognize as paralogs. One might therefore speculate that in tandemly duplicated proteins fused arrangements are harder to detect. The increased rates of events along more recent branches might be explained by WGD which have taken place in angiosperms (
<xref ref-type="bibr" rid="bib34">De Bodt et al. 2005</xref>
;
<xref ref-type="bibr" rid="bib48">Freeling et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib103">Shoemaker et al. 2006</xref>
;
<xref ref-type="bibr" rid="bib113">van de Peer et al. 2009</xref>
;
<xref ref-type="bibr" rid="bib90">Paterson et al. 2010</xref>
). Indeed, in a pairwise comparison of fusion and fission rates between plant pairs, which differ by one recent WGD, we find increased rates in plants with more recent WGD (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). Roughly one-third of all vascular plants have undergone recent WGDs (
<xref ref-type="bibr" rid="bib123">Wood et al. 2009</xref>
).</p>
<fig id="fig5" position="float">
<label>F
<sc>IG</sc>
. 5.—</label>
<caption>
<p>Example of two emergent domains at the Tracheophyta node (PAN_2) and Embryophyta node (S_locus_glycope). The evolution of example arrangements over time is shown in five different species (
<italic>Arabidopsis thaliana</italic>
[AT],
<italic>Oryza sativa</italic>
[OS],
<italic>Populus trichocarpa</italic>
[PT],
<italic>Ricinus communis</italic>
[RC],
<italic>Vitis vinifera</italic>
[VV]). The observable diversity in arrangements within this family is explainable by simple one-step events of fusion, fission, terminal deletion, and domain gain.</p>
</caption>
<graphic xlink:href="gbeevs004f05_3c"></graphic>
</fig>
</sec>
<sec>
<title>Arrangement Distribution</title>
<p>We investigated the distribution of shared arrangements among the plant species. The majority of domain arrangements are either species-specific or universal (
<xref ref-type="fig" rid="fig3">fig. 3</xref>
). This bimodal distribution is even stronger when we consider only a well-annotated subset of our species and exclude the green algae (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 8</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online). In particular, proteins with two or three domains are often species-specific. In combination with the observation that roughly 70% of all domain-containing proteins are single-domain proteins (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary fig. 4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online), this can lead to the assumption that the fusion of single-domain proteins is a powerful mechanism to obtain species-specific proteins with new functionalities. This distribution suggests that only very few long arrangements are highly conserved; long arrangements are possibly more often affected by fission events. Proteins with arrangements shared by several but not all species are overrepresented in GO terms related to basic functions such as primary metabolism, cellulose biosynthetic process, and cell wall organization. In proteins with arrangements shared by a subset of between 5 and 24 proteomes, innate_immune_response is significantly overrepresented, suggesting that there might be different pathogens affecting different subclades. Proteins with GO terms related to reproduction, signal transduction, and prefixed with response_to are overrepresented in species-specific arrangements or those shared by only few species. The high number of species-specific arrangements observed here is in accordance with the observation that, within a set of five angiosperm species, around 20% of proteins do not align to an orthologous group (
<xref ref-type="bibr" rid="bib90">Paterson et al. 2010</xref>
). The high amount of species-specific arrangements and genes might also be a consequence of frequent duplication events followed by lineage-specific retention (
<xref ref-type="bibr" rid="bib90">Paterson et al. 2010</xref>
). This supports the hypothesis that plants have many flexible genetic mechanisms to produce species-specific adaptation (
<xref ref-type="bibr" rid="bib24">Bomblies 2010</xref>
).</p>
</sec>
<sec>
<title>Gain and Loss of Domains and Arrangements</title>
<p>We investigated gain and loss at the levels of domains and domain arrangements by reconstructing the ancestral states based on maximum parsimony. We observe that gain and loss can frequently be found in all clades in plant evolution at both domain and arrangement levels. This is in agreement with
<xref ref-type="bibr" rid="bib27">Buljan and Bateman (2009)</xref>
, who found an equal event distribution after speciation and duplication within animals and a high amount of change in arrangements after duplication events. As we here do not conduct a direct comparison of paralogs, but instead compare presence/absence patterns of domains and their arrangements across proteomes, our results only support the notion that domain gain and loss can be found along all branches and that both have a significant correlation with each other and with branch length (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>A</italic>
</xref>
). Branches with an increased loss rate have, on average, a higher domain gain rate. This high gain and loss rate, branch-specific variation and the large number of species-specific arrangements show the high variability and flexibility with which single-step mechanisms can create evolutionary novelties. One might speculate that the high gain rate of arrangements in
<italic>M. domestica</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">supplementary table 4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary Material</ext-link>
online) is caused by the recent polyploidy event or hybridization as consequence of domestication (
<xref ref-type="bibr" rid="bib114">Velasco et al. 2010</xref>
). The large amount of domain loss in
<italic>P. dactylifera</italic>
might also be the consequence of low sequence coverage (
<xref ref-type="bibr" rid="bib3">Al-Dous et al. 2011</xref>
). Differences in gain and loss between the different branches might also be a consequence of variation in generation time between plants. Evidence from studies in Fugu and Tetraodon suggests that intron loss is increased in species with shorter generation time (
<xref ref-type="bibr" rid="bib73">Loh et al. 2008</xref>
). Similar patterns have been found in Arabidopsis and rice (
<xref ref-type="bibr" rid="bib96">Roy and Penny 2007</xref>
).</p>
</sec>
<sec>
<title>Coverage</title>
<p>The average domain residue coverage is 50%. Protein coverage varies strongly even between closely related species (
<xref ref-type="fig" rid="fig1">fig. 1
<italic>C</italic>
</xref>
). Three plants belonging to the Fabaceae clade are included in this study,
<italic>G. max</italic>
,
<italic>L. japonica</italic>
, and
<italic>M. truncatula</italic>
. Their branches split around 50–60 Ma (
<xref ref-type="bibr" rid="bib93">Reineke et al. 2011</xref>
). Several events of WGD have been found within the Fabaceae clade; all three species share a common WGD followed by additional independent WGDs (
<xref ref-type="bibr" rid="bib23">Blanc and Wolfe 2004</xref>
). These WGDs in connection with different retention and pseudogenization rates might explain the variance in coverage within this clade. It is also possible that a number of plant-specific domains are still not yet described, as the number of sequenced plant genomes is still considerably lower than the currently available animal genomes. In the Fabaceae family, for example, a unique conserved disordered region has been described in sieve element occlusion genes (
<xref ref-type="bibr" rid="bib97">Ruping et al. 2010</xref>
;
<xref ref-type="bibr" rid="bib42">Ernst et al. 2011</xref>
). Many of these family-specific conserved functional sequences might be still not covered by Pfam. It should also be considered that genome quality between the investigated genomes varies, which might be the cause of differences in domain coverage; the most recently sequenced genomes exhibit low coverage in comparison to longer established genomes such as
<italic>M. truncatula</italic>
or
<italic>O. sativa</italic>
(
<xref ref-type="fig" rid="fig1">fig. 1
<italic>C</italic>
</xref>
).</p>
</sec>
</sec>
<sec>
<title>Conclusions</title>
<p>The results presented here provide, from a phylogenomic perspective, multiple insights into the evolutionary dynamics of modular rearrangements and the potential adaptive benefits in plant genomes. Although around 70% of all proteins are single-domain proteins and a large fraction of these are shared by many species, we observe a very high volatility of novel domains and arrangements in general. Most strikingly, the majority of all arrangements is species-specific or restricted to a very small clade. Our phylogeny-based approach unravels that the majority of novel arrangements can be explained by single-step events such as fusion, fission, and terminal loss. Several events of accelerated activity of rearrangements and domain emergence could be associated to the respective changes in stress adaptation and morphogenesis. This is particularly pronounced for fusion in regulatory proteins. We thus observe a dominant effect of rearrangements on adaptation, which is partly driven by the high volatility of novel domains.</p>
<p>Taken together, this study illustrates another layer of complexity, which explains how modularity helps plants to both create and exploit their abundant genetic material in order to accomplish rapid adaptation in response to environmental challenges. We propose these results will fuel further large-scale experiments. Recent experiments in fungi using recombination of libraries of domains from signaling proteins (
<xref ref-type="bibr" rid="bib91">Peisajovich et al. 2010</xref>
) and the expansion of domain repeats in self-recognition molecules (
<xref ref-type="bibr" rid="bib31">Chevanne et al. 2010</xref>
) have already highlighted the enormous evolutionary potential of modularity in protein evolution. Along these lines, experiments on plant adaptation should be more explicitly geared at furthering our understanding of how protein modularity facilitates rapid adaptation.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs004/-/DC1">Supplementary figures 1–9 and tables 1–7</ext-link>
are available at
<italic>Genome Biology and Evolution</italic>
online (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/">http://www.gbe.oxfordjournals.org/</ext-link>
).</p>
</sec>
</body>
<back>
<ack>
<p>This work was supported by the
<funding-source>Deutsche Forschungs Gemeinschaft</funding-source>
, grant
<award-id>BO 2455/4-1</award-id>
and by the
<funding-source>Human Frontier Science Program</funding-source>
(
<award-id>R6P0033/2006-C</award-id>
) to E.B.B.; A.D.M. acknowledges support by the
<funding-source>WWU-PAS</funding-source>
stipend.</p>
<p>The authors would like to thank two anonymous reviewers for critical reading and helpful comments on the manuscript.</p>
</ack>
<ref-list>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome sequence of
<italic>Drosophila melanogaster</italic>
</article-title>
<source>Science</source>
<year>2000</year>
<volume>287</volume>
<fpage>2185</fpage>
<lpage>2195</lpage>
<pub-id pub-id-type="pmid">10731132</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhunov</surname>
<given-names>ED</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms</article-title>
<source>Genome Res.</source>
<year>2003</year>
<volume>13</volume>
<fpage>753</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="pmid">12695326</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Dous</surname>
<given-names>EK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>De novo genome sequencing and comparative genomics of date palm (
<italic>Phoenix dactylifera</italic>
)</article-title>
<source>Nat Biotechnol.</source>
<year>2011</year>
<volume>29</volume>
<fpage>521</fpage>
<lpage>527</lpage>
<pub-id pub-id-type="pmid">21623354</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rahnenführer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lengauer</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Improved scoring of functional groups from gene expression data by decorrelating GO graph structure</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<fpage>1600</fpage>
<lpage>1607</lpage>
<pub-id pub-id-type="pmid">16606683</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gapped BLAST and PSI-BLAST: a new generation of protein database search programs</article-title>
<source>Nucleic Acids Res.</source>
<year>1997</year>
<volume>25</volume>
<fpage>3389</fpage>
<lpage>3402</lpage>
<pub-id pub-id-type="pmid">9254694</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amoutzias</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Weiner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Phylogenetic profiling of protein interaction networks in eukaryotic transcription factors reveals focal proteins being ancestral to hubs</article-title>
<source>Gene</source>
<year>2005</year>
<volume>347</volume>
<fpage>247</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="pmid">15777629</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Janßen</surname>
<given-names>T</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Hedges</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Monocots</article-title>
<source>The timetree of life</source>
<year>2009</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
<fpage>203</fpage>
<lpage>212</lpage>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gough</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Teichmann</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Domain combinations in archaeal, eubacterial and eukaryotic proteomes</article-title>
<source>J Mol Biol.</source>
<year>2001</year>
<volume>310</volume>
<fpage>311</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="pmid">11428892</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Argout</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of
<italic>Theobroma cacao</italic>
</article-title>
<source>Nat Genet.</source>
<year>2011</year>
<volume>43</volume>
<fpage>101</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">21186351</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashburner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>On ontologies for biologists: the gene ontology—untangling the web</article-title>
<source>Novartis Found Symp.</source>
<year>2002</year>
<volume>247</volume>
<fpage>66</fpage>
<lpage>80</lpage>
<comment>; discussion 80–90, 244–252</comment>
<pub-id pub-id-type="pmid">12539950</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babushok</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ostertag</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Kazazian</surname>
<given-names>HH</given-names>
</name>
</person-group>
<article-title>Current topics in genome evolution: molecular mechanisms of new gene formation</article-title>
<source>Cell Mol Life Sci.</source>
<year>2007</year>
<volume>64</volume>
<fpage>542</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">17192808</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banks</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Selaginella</italic>
genome identifies genetic changes associated with the evolution of vascular plants</article-title>
<source>Science</source>
<year>2011</year>
<volume>332</volume>
<fpage>960</fpage>
<lpage>963</lpage>
<pub-id pub-id-type="pmid">21551031</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baucom</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Estill</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Leebens-Mack</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bennetzen</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome</article-title>
<source>Genome Res.</source>
<year>2009</year>
<volume>19</volume>
<fpage>243</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">19029538</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baucom</surname>
<given-names>RS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the b73 maize genome</article-title>
<source>PLoS Genet.</source>
<year>2009</year>
<volume>5</volume>
<fpage>e1000732</fpage>
<pub-id pub-id-type="pmid">19936065</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bekaert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Edger</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Conant</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Two-phase resolution of polyploidy in the
<italic>Arabidopsis</italic>
metabolic network gives rise to relative and absolute dosage constraints</article-title>
<source>Plant Cell</source>
<year>2011</year>
<volume>23</volume>
<fpage>1719</fpage>
<lpage>1728</lpage>
<pub-id pub-id-type="pmid">21540436</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hochberg</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Controlling the false discovery rate: a practical and powerful approach to multiple testing</article-title>
<source>J R Stat Soc Ser B Biol Sci (Methodological).</source>
<year>1995</year>
<volume>57</volume>
<fpage>289</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennetzen</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Transposable elements, gene creation and genome rearrangement in flowering plants</article-title>
<source>Curr Opin Genet Dev.</source>
<year>2005</year>
<volume>15</volume>
<fpage>621</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="pmid">16219458</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennici</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>A fundamental plant evolutionary problem: the origin of land-plant sporophyte; is a new hypothesis possible?</article-title>
<source>Riv Biol.</source>
<year>2005</year>
<volume>98</volume>
<fpage>469</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">16440282</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bhattacharya</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Hedges</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>JD</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Hedges</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Eukaryotes (eukaryota)</article-title>
<source>The timetree of life</source>
<year>2009</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
<fpage>116</fpage>
<lpage>120</lpage>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Björklund</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Ekman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Light</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Frey-Skött</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elofsson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Domain rearrangements in protein evolution</article-title>
<source>J Mol Biol.</source>
<year>2005</year>
<volume>353</volume>
<fpage>911</fpage>
<lpage>923</lpage>
<pub-id pub-id-type="pmid">16198373</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanc</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes</article-title>
<source>Plant Cell</source>
<year>2004</year>
<volume>16</volume>
<fpage>1667</fpage>
<lpage>1678</lpage>
<pub-id pub-id-type="pmid">15208399</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bomblies</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Doomed lovers: mechanisms of isolation and incompatibility in plants</article-title>
<source>Annu Rev Plant Biol.</source>
<year>2010</year>
<volume>61</volume>
<fpage>109</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">20192733</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bremer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III</article-title>
<source>Bot J Linn Soc.</source>
<year>2009</year>
<volume>161</volume>
<fpage>105</fpage>
<lpage>121</lpage>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buljan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The evolution of protein domain families</article-title>
<source>Biochem Soc Trans.</source>
<year>2009</year>
<volume>37</volume>
<fpage>751</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">19614588</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buljan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Frankish</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bateman</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Quantifying the mechanisms of domain gain in animal proteins</article-title>
<source>Genome Biol.</source>
<year>2010</year>
<volume>11</volume>
<fpage>R74</fpage>
<pub-id pub-id-type="pmid">20633280</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cartwright</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages</article-title>
<source>Integr Comp Biol.</source>
<year>2007</year>
<volume>47</volume>
<fpage>744</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="pmid">21669755</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Draft genome sequence of the oilseed species
<italic>Ricinus communis</italic>
</article-title>
<source>Nat Biotechnol.</source>
<year>2010</year>
<volume>28</volume>
<fpage>951</fpage>
<lpage>956</lpage>
<pub-id pub-id-type="pmid">20729833</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chevanne</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Saupe</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Clave</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Paoletti</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>WD-repeat instability and diversication of the
<italic>Podospora anserina hnwd</italic>
non-self recognition gene family</article-title>
<source>BMC Evol Biol.</source>
<year>2010</year>
<volume>10</volume>
<fpage>134</fpage>
<pub-id pub-id-type="pmid">20459612</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>HK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Estimating genome conservation between crop and model legume species</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2004</year>
<volume>101</volume>
<fpage>15289</fpage>
<lpage>15294</lpage>
<pub-id pub-id-type="pmid">15489274</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen-Gihon</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evolution of domain promiscuity in eukaryotic genomes—a perspective from the inferred ancestral domain architectures</article-title>
<source>Mol Biosyst.</source>
<year>2011</year>
<volume>7</volume>
<fpage>784</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="pmid">21127809</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Bodt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maere</surname>
<given-names>S</given-names>
</name>
<name>
<surname>van de Peer</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Genome duplication and the origin of angiosperms</article-title>
<source>Trends Ecol Evol.</source>
<year>2005</year>
<volume>20</volume>
<fpage>591</fpage>
<lpage>597</lpage>
<pub-id pub-id-type="pmid">16701441</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dubchak</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Sorghum bicolor</italic>
genome and the diversification of grasses</article-title>
<source>Nature</source>
<year>2009</year>
<volume>457</volume>
<fpage>551</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="pmid">19189423</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyson</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>PE</given-names>
</name>
</person-group>
<article-title>Intrinsically unstructured proteins and their functions</article-title>
<source>Nat Rev Mol Cell Biol.</source>
<year>2005</year>
<volume>6</volume>
<fpage>197</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="pmid">15738986</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Accelerated profile HMM searches</article-title>
<source>PLoS Comp Biol.</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002195</fpage>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Björklund</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Elofsson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Quantification of the elevated rate of domain rearrangements in metazoa</article-title>
<source>J Mol Biol.</source>
<year>2007</year>
<volume>372</volume>
<fpage>1337</fpage>
<lpage>1348</lpage>
<pub-id pub-id-type="pmid">17689563</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Björklund</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Frey-Skött</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elofsson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions</article-title>
<source>J Mol Biol.</source>
<year>2005</year>
<volume>348</volume>
<fpage>231</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="pmid">15808866</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Endress</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Origins of flower morphology</article-title>
<source>J Exp Zool.</source>
<year>2001</year>
<volume>291</volume>
<fpage>105</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">11479912</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enright</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Ouzounis</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Functional associations of proteins in entire genomes by means of exhaustive detection of gene fusions</article-title>
<source>Genome Biol.</source>
<year>2001</year>
<volume>2</volume>
<fpage>RESEARCH0034</fpage>
<pub-id pub-id-type="pmid">11820254</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ernst</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The sieve element occlusion gene family in dicotyledonous plants</article-title>
<source>Plant Signal Behav.</source>
<year>2011</year>
<volume>6</volume>
<fpage>151</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="pmid">21422825</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<collab>Eucalyptus grandis Genome Project</collab>
<year>2010</year>
<comment>[cited 2012 Jan 24]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/eucalyptus">http://www.phytozome.net/eucalyptus</ext-link>
</comment>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finn</surname>
<given-names>RD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Pfam protein families database</article-title>
<source>Nucleic Acids Res.</source>
<year>2008</year>
<volume>38</volume>
<fpage>D211</fpage>
<lpage>D222</lpage>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fong</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Geer</surname>
<given-names>LY</given-names>
</name>
<name>
<surname>Panchenko</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Modeling the evolution of protein domain architectures using maximum parsimony</article-title>
<source>J Mol Biol.</source>
<year>2007</year>
<volume>366</volume>
<fpage>307</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="pmid">17166515</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Forest</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chase</surname>
<given-names>MW</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Hedges</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Eurosid I</article-title>
<source>The timetree of life</source>
<year>2009</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
<fpage>188</fpage>
<lpage>196</lpage>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forslund</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Henricson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hollich</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sonnhammer</surname>
<given-names>ELL</given-names>
</name>
</person-group>
<article-title>Domain tree based analysis of protein architecture evolution</article-title>
<source>Mol Biol Evol.</source>
<year>2007</year>
<volume>25</volume>
<fpage>254</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">18025066</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Freeling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>BC</given-names>
</name>
</person-group>
<article-title>Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity</article-title>
<source>Genome Res.</source>
<year>2006</year>
<volume>16</volume>
<fpage>805</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="pmid">16818725</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganko</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Vision</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Divergence in expression between duplicated genes in
<italic>Arabidopsis</italic>
</article-title>
<source>Mol Biol Evol.</source>
<year>2007</year>
<volume>24</volume>
<fpage>2298</fpage>
<lpage>2309</lpage>
<pub-id pub-id-type="pmid">17670808</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Go</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A draft sequence of the rice genome (
<italic>Oryza sativa</italic>
L. ssp)</article-title>
<source>Science</source>
<year>2002</year>
<volume>296</volume>
<fpage>92</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="pmid">11935018</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Götz</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-throughput functional annotation and data mining with the Blast2GO suite</article-title>
<source>Nucleic Acids Res.</source>
<year>2008</year>
<volume>36</volume>
<fpage>3420</fpage>
<lpage>3435</lpage>
<pub-id pub-id-type="pmid">18445632</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grace</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Energy dissipation and radical scavenging by the plant phenylpropanoid pathway</article-title>
<source>Philos Trans R Soc Lond B Biol Sci.</source>
<year>2000</year>
<volume>355</volume>
<fpage>1499</fpage>
<lpage>1510</lpage>
<pub-id pub-id-type="pmid">11128003</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lehti-Shiu</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Shinozaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shiu</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli</article-title>
<source>Plant Physiol.</source>
<year>2008</year>
<volume>148</volume>
<fpage>993</fpage>
<lpage>1003</lpage>
<pub-id pub-id-type="pmid">18715958</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<collab>Haploid Clementine Genome International Citrus Genome Consortium</collab>
<year>2011</year>
<comment>[cited 2012 Jan 24]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/clementine">http://www.phytozome.net/clementine</ext-link>
</comment>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hedges</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Timetree: a public knowledge-base of divergence times among organisms</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<fpage>2971</fpage>
<lpage>2972</lpage>
<pub-id pub-id-type="pmid">17021158</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herron</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Hackett</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Aylward</surname>
<given-names>FO</given-names>
</name>
<name>
<surname>Michod</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>Triassic origin and early radiation of multicellular volvocine algae</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2009</year>
<volume>106</volume>
<fpage>3254</fpage>
<lpage>3258</lpage>
<pub-id pub-id-type="pmid">19223580</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>TT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Arabidopsis lyrata</italic>
genome sequence and the basis of rapid genome size change</article-title>
<source>Nat Genet.</source>
<year>2011</year>
<volume>43</volume>
<fpage>476</fpage>
<lpage>481</lpage>
<pub-id pub-id-type="pmid">21478890</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>SW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of the cucumber,
<italic>Cucumis sativus</italic>
</article-title>
<source>Nat Genet.</source>
<year>2009</year>
<volume>41</volume>
<fpage>1275</fpage>
<lpage>1281</lpage>
<pub-id pub-id-type="pmid">19881527</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huerta-Cepas</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dopazo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gabaldón</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>ETE: a python environment for tree exploration</article-title>
<source>BMC Bioinformatics</source>
<year>2010</year>
<volume>11</volume>
<fpage>24</fpage>
<pub-id pub-id-type="pmid">20070885</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<collab>International Peach Genome Initiative</collab>
<year>2010</year>
<comment> [cited 2012 Jan 24]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/peach">http://www.phytozome.net/peach</ext-link>
</comment>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaillon</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla</article-title>
<source>Nature</source>
<year>2007</year>
<volume>449</volume>
<fpage>463</fpage>
<lpage>467</lpage>
<pub-id pub-id-type="pmid">17721507</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ancestral polyploidy in seed plants and angiosperms</article-title>
<source>Nature</source>
<year>2011</year>
<volume>473</volume>
<fpage>97</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="pmid">21478875</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawakita</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Repeated independent evolution of obligate pollination mutualism in the phyllantheae-epicephala association</article-title>
<source>Proc Biol Sci.</source>
<year>2009</year>
<volume>276</volume>
<fpage>417</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="pmid">18948251</pub-id>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kejnovsky</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Leitch</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Leitch</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Contrasting evolutionary dynamics between angiosperm and mammalian genomes</article-title>
<source>Trends Ecol Evol.</source>
<year>2009</year>
<volume>24</volume>
<fpage>572</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="pmid">19665255</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerchev</surname>
<given-names>PI</given-names>
</name>
<name>
<surname>Fenton</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Hancock</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways</article-title>
<source>Plant Cell Environ.</source>
<year>2012</year>
<volume>35</volume>
<fpage>441</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="pmid">21752032</pub-id>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kersey</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Integr8 and genome reviews: integrated views of complete genomes and proteomes</article-title>
<source>Nucleic Acids Res.</source>
<year>2005</year>
<volume>33</volume>
<fpage>D297</fpage>
<lpage>D302</lpage>
<pub-id pub-id-type="pmid">15608201</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroymann</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Natural diversity and adaptation in plant secondary metabolism</article-title>
<source>Curr Opin Plant Biol.</source>
<year>2011</year>
<volume>14</volume>
<fpage>246</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">21514879</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kummerfeld</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Teichmann</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Relative rates of gene fusion and fission in multi-domain proteins</article-title>
<source>Trends Genet.</source>
<year>2005</year>
<volume>21</volume>
<fpage>25</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">15680510</pub-id>
</element-citation>
</ref>
<ref id="bib70">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lang</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity</article-title>
<source>Genome Biol Evol.</source>
<year>2010</year>
<volume>2</volume>
<fpage>488</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="pmid">20644220</pub-id>
</element-citation>
</ref>
<ref id="bib71">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levitt</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Nature of the protein universe</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2009</year>
<volume>106</volume>
<fpage>11079</fpage>
<lpage>11084</lpage>
<pub-id pub-id-type="pmid">19541617</pub-id>
</element-citation>
</ref>
<ref id="bib73">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Venkatesh</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Investigation of loss and gain of introns in the compact genomes of pufferfishes (fugu and tetraodon)</article-title>
<source>Mol Biol Evol.</source>
<year>2008</year>
<volume>25</volume>
<fpage>526</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="pmid">18089580</pub-id>
</element-citation>
</ref>
<ref id="bib74">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>LJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic analysis of the basal lineage fungus
<italic>Rhizopus oryzae</italic>
reveals a whole-genome duplication</article-title>
<source>PLoS Genet.</source>
<year>2009</year>
<volume>5</volume>
<fpage>e1000549</fpage>
<pub-id pub-id-type="pmid">19578406</pub-id>
</element-citation>
</ref>
<ref id="bib75">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Magallón</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Sanderson</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Angiosperm divergence times: the effect of genes, codon positions, and time constraints</article-title>
<source>Evolution</source>
<year>2005</year>
<volume>59</volume>
<fpage>1653</fpage>
<lpage>1670</lpage>
<pub-id pub-id-type="pmid">16329238</pub-id>
</element-citation>
</ref>
<ref id="bib76">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mayrose</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recently formed polyploid plants diversify at lower rates</article-title>
<source>Science</source>
<year>2011</year>
<volume>333</volume>
<fpage>1257</fpage>
<pub-id pub-id-type="pmid">21852456</pub-id>
</element-citation>
</ref>
<ref id="bib77">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merchant</surname>
<given-names>SS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Chlamydomonas</italic>
genome reveals the evolution of key animal and plant functions</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>245</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="pmid">17932292</pub-id>
</element-citation>
</ref>
<ref id="bib78">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ming</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The draft genome of the transgenic tropical fruit tree papaya (
<italic>Carica papaya linnaeus</italic>
)</article-title>
<source>Nature</source>
<year>2008</year>
<volume>452</volume>
<fpage>991</fpage>
<lpage>996</lpage>
<pub-id pub-id-type="pmid">18432245</pub-id>
</element-citation>
</ref>
<ref id="bib79">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misook</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wen-Hsiung</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>External factors accelerate expression divergence between duplicate genes</article-title>
<source>Trends Genet.</source>
<year>2007</year>
<volume>23</volume>
<fpage>162</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="pmid">17320239</pub-id>
</element-citation>
</ref>
<ref id="bib80">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Björklund</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Ekman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Elofsson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Arrangements in the modular evolution of proteins</article-title>
<source>Trends Biochem Sci.</source>
<year>2008</year>
<volume>33</volume>
<fpage>444</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="pmid">18656364</pub-id>
</element-citation>
</ref>
<ref id="bib81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The dynamics and evolutionary potential of domain loss and emergence</article-title>
<source>Mol Biol Evol.</source>
<year>2012</year>
<volume>29</volume>
<fpage>787</fpage>
<lpage>796</lpage>
<pub-id pub-id-type="pmid">22016574</pub-id>
</element-citation>
</ref>
<ref id="bib82">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Obradovic</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vucetic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Radivojac</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dunker</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Exploiting heterogeneous sequence properties improves prediction of protein disorder</article-title>
<source>Proteins</source>
<year>2005</year>
<volume>61</volume>
<issue>Suppl 7</issue>
<fpage>176</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="pmid">16187360</pub-id>
</element-citation>
</ref>
<ref id="bib83">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olson</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The evolution of photosynthesis</article-title>
<source>Science</source>
<year>1970</year>
<volume>168</volume>
<fpage>438</fpage>
<lpage>446</lpage>
<pub-id pub-id-type="pmid">4985766</pub-id>
</element-citation>
</ref>
<ref id="bib84">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olson</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>‘Evolution of photosynthesis’ (1970), re-examined thirty years later</article-title>
<source>Photosynth Res.</source>
<year>2001</year>
<volume>68</volume>
<fpage>95</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">16228333</pub-id>
</element-citation>
</ref>
<ref id="bib85">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osborn</surname>
<given-names>TC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Understanding mechanisms of novel gene expression in polyploids</article-title>
<source>Trends Genet.</source>
<year>2003</year>
<volume>19</volume>
<fpage>141</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">12615008</pub-id>
</element-citation>
</ref>
<ref id="bib86">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oshima</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels</article-title>
<source>J Mol Biol.</source>
<year>2010</year>
<volume>405</volume>
<fpage>724</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="pmid">21094651</pub-id>
</element-citation>
</ref>
<ref id="bib87">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palenik</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The tiny eukaryote
<italic>Ostreococcus</italic>
provides genomic insights into the paradox of plankton speciation</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2007</year>
<volume>104</volume>
<fpage>7705</fpage>
<lpage>7710</lpage>
<pub-id pub-id-type="pmid">17460045</pub-id>
</element-citation>
</ref>
<ref id="bib88">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Risler</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Brézellec</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<fpage>1418</fpage>
<lpage>1423</lpage>
<pub-id pub-id-type="pmid">16601004</pub-id>
</element-citation>
</ref>
<ref id="bib89">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pateraki</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kanellis</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Stress and developmental responses of terpenoid biosynthetic genes in
<italic>Cistus creticus</italic>
subsp.
<italic>creticus</italic>
</article-title>
<source>Plant Cell Rep.</source>
<year>2010</year>
<volume>29</volume>
<fpage>629</fpage>
<lpage>641</lpage>
<pub-id pub-id-type="pmid">20364257</pub-id>
</element-citation>
</ref>
<ref id="bib90">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paterson</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Freeling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Insights from the comparison of plant genome sequences</article-title>
<source>Annu Rev Plant Biol.</source>
<year>2010</year>
<volume>61</volume>
<fpage>349</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="pmid">20441528</pub-id>
</element-citation>
</ref>
<ref id="bib91">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peisajovich</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Garbarino</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>WA</given-names>
</name>
</person-group>
<article-title>Rapid diversification of cell signaling phenotypes by modular domain recombination</article-title>
<source>Science</source>
<year>2010</year>
<volume>328</volume>
<fpage>368</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="pmid">20395511</pub-id>
</element-citation>
</ref>
<ref id="bib92">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Proost</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PLAZA: a comparative genomics resource to study gene and genome evolution in plants</article-title>
<source>Plant Cell</source>
<year>2009</year>
<volume>21</volume>
<fpage>3718</fpage>
<lpage>3731</lpage>
<pub-id pub-id-type="pmid">20040540</pub-id>
</element-citation>
</ref>
<ref id="bib93">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reineke</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes</article-title>
<source>Nucleic Acids Res.</source>
<year>2011</year>
<volume>39</volume>
<fpage>6029</fpage>
<lpage>6043</lpage>
<pub-id pub-id-type="pmid">21470961</pub-id>
</element-citation>
</ref>
<ref id="bib94">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rensing</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zimmer</surname>
<given-names>AD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Physcomitrella</italic>
genome reveals evolutionary insights into the conquest of land by plants</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>64</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">18079367</pub-id>
</element-citation>
</ref>
<ref id="bib95">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Hartl</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Chimeric genes as a source of rapid evolution in
<italic>Drosophila melanogaster</italic>
</article-title>
<source>Mol Biol Evol.</source>
<year>2012</year>
<volume>29</volume>
<fpage>517</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="pmid">21771717</pub-id>
</element-citation>
</ref>
<ref id="bib96">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Penny</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of
<italic>O. sativa</italic>
and
<italic>A. thaliana</italic>
</article-title>
<source>Mol Biol Evol.</source>
<year>2007</year>
<volume>24</volume>
<fpage>171</fpage>
<lpage>181</lpage>
<pub-id pub-id-type="pmid">17065597</pub-id>
</element-citation>
</ref>
<ref id="bib97">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruping</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular and phylogenetic characterization of the sieve element occlusion gene family in
<italic>Fabaceae</italic>
and non-
<italic>Fabaceae</italic>
plants</article-title>
<source>BMC Plant Biol.</source>
<year>2010</year>
<volume>10</volume>
<fpage>219</fpage>
<pub-id pub-id-type="pmid">20932300</pub-id>
</element-citation>
</ref>
<ref id="bib99">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmutz</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome sequence of the palaeopolyploid soybean</article-title>
<source>Nature</source>
<year>2010</year>
<volume>463</volume>
<fpage>178</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="pmid">20075913</pub-id>
</element-citation>
</ref>
<ref id="bib100">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schnable</surname>
<given-names>PS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The b73 maize genome: complexity, diversity, and dynamics</article-title>
<source>Science</source>
<year>2009</year>
<volume>326</volume>
<fpage>1112</fpage>
<lpage>1115</lpage>
<pub-id pub-id-type="pmid">19965430</pub-id>
</element-citation>
</ref>
<ref id="bib101">
<element-citation publication-type="journal">
<collab>
<italic>Setaria italica</italic>
Genome Sequencing Project</collab>
<year>2011</year>
<comment>These sequence data were produced by the US Department of Energy Joint Genome Institute [Internet]. [cited 2012 Jan 24] Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/foxtailmillet">http://www.phytozome.net/foxtailmillet</ext-link>
</comment>
</element-citation>
</ref>
<ref id="bib102">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shan</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications</article-title>
<source>Mol Biol Evol.</source>
<year>2009</year>
<volume>26</volume>
<fpage>2229</fpage>
<lpage>2244</lpage>
<pub-id pub-id-type="pmid">19578156</pub-id>
</element-citation>
</ref>
<ref id="bib103">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shoemaker</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Schlueter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Paleopolyploidy and gene duplication in soybean and other legumes</article-title>
<source>Curr Opin Plant Biol.</source>
<year>2006</year>
<volume>9</volume>
<fpage>104</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="pmid">16458041</pub-id>
</element-citation>
</ref>
<ref id="bib104">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Castellan</surname>
<given-names>N</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>1988. Nonparametric statistics for the behavioral sciences, 2nd ed</article-title>
<source>Boston: McGraw-Hill Humanities.</source>
</element-citation>
</ref>
<ref id="bib105">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Söding</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lupas</surname>
<given-names>AN</given-names>
</name>
</person-group>
<article-title>More than the sum of their parts: on the evolution of proteins from peptides</article-title>
<source>Bioessays</source>
<year>2003</year>
<volume>25</volume>
<fpage>837</fpage>
<lpage>846</lpage>
<pub-id pub-id-type="pmid">12938173</pub-id>
</element-citation>
</ref>
<ref id="bib106">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soltis</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Soltis</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Zanis</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Phylogeny of seed plants based on evidence from eight genes</article-title>
<source>Am J Bot.</source>
<year>2002</year>
<volume>89</volume>
<fpage>1670</fpage>
<lpage>1681</lpage>
<pub-id pub-id-type="pmid">21665594</pub-id>
</element-citation>
</ref>
<ref id="bib107">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Trichoplax</italic>
genome and the nature of placozoans</article-title>
<source>Nature</source>
<year>2008</year>
<volume>454</volume>
<fpage>955</fpage>
<lpage>960</lpage>
<pub-id pub-id-type="pmid">18719581</pub-id>
</element-citation>
</ref>
<ref id="bib108">
<element-citation publication-type="journal">
<collab>Sweet Orange Genome Project</collab>
<year>2010</year>
<comment>[cited 2012 Jan 24]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/citrus">www.phytozome.net/citrus</ext-link>
</comment>
</element-citation>
</ref>
<ref id="bib109">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps</article-title>
<source>Genome Res.</source>
<year>2008</year>
<volume>18</volume>
<fpage>1944</fpage>
<lpage>1954</lpage>
<pub-id pub-id-type="pmid">18832442</pub-id>
</element-citation>
</ref>
<ref id="bib110">
<element-citation publication-type="journal">
<collab>The Arabidopsis Initiative</collab>
<article-title>Analysis of the genome sequence of the flowering plant
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Nature</source>
<year>2000</year>
<volume>408</volume>
<fpage>796</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="pmid">11130711</pub-id>
</element-citation>
</ref>
<ref id="bib111">
<element-citation publication-type="book">
<collab>R Development Core Team</collab>
<source>R: a language and environment for statistical computing</source>
<year>2008</year>
<publisher-loc>Vienna (Austria)</publisher-loc>
<publisher-name>R Foundation for Statistical Computing</publisher-name>
</element-citation>
</ref>
<ref id="bib112">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuskan</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of black cottonwood,
<italic>Populus trichcarpa</italic>
(Torr. & Gray)</article-title>
<source>Science</source>
<year>2006</year>
<volume>313</volume>
<fpage>1596</fpage>
<lpage>1604</lpage>
<pub-id pub-id-type="pmid">16973872</pub-id>
</element-citation>
</ref>
<ref id="bib113">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van de Peer</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maere</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The evolutionary significance of ancient genome duplications</article-title>
<source>Nat Rev Genet.</source>
<year>2009</year>
<volume>10</volume>
<fpage>725</fpage>
<lpage>732</lpage>
<pub-id pub-id-type="pmid">19652647</pub-id>
</element-citation>
</ref>
<ref id="bib114">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velasco</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of the domesticated apple (
<italic>Malus</italic>
×
<italic> domestica</italic>
Borkh.)</article-title>
<source>Nat Genet.</source>
<year>2010</year>
<volume>42</volume>
<fpage>833</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="pmid">20802477</pub-id>
</element-citation>
</ref>
<ref id="bib115">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veron</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins</article-title>
<source>Mol Biol Evol.</source>
<year>2007</year>
<volume>24</volume>
<fpage>670</fpage>
<lpage>678</lpage>
<pub-id pub-id-type="pmid">17175526</pub-id>
</element-citation>
</ref>
<ref id="bib116">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vogel</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome sequencing and analysis of the model grass
<italic>Brachypodium distachyon</italic>
</article-title>
<source>Nature</source>
<year>2010</year>
<volume>463</volume>
<fpage>763</fpage>
<lpage>768</lpage>
<pub-id pub-id-type="pmid">20148030</pub-id>
</element-citation>
</ref>
<ref id="bib117">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walsh</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Population-genetic models of the fates of duplicate genes</article-title>
<source>Genetica</source>
<year>2003</year>
<volume>118</volume>
<fpage>279</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="pmid">12868616</pub-id>
</element-citation>
</ref>
<ref id="bib118">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Caetano-Anolles</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world</article-title>
<source>Structure</source>
<year>2009</year>
<volume>17</volume>
<fpage>66</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">19141283</pub-id>
</element-citation>
</ref>
<ref id="bib120">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Beaussart</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Domain deletions and substitutions in the modular protein evolution</article-title>
<source>FEBS J.</source>
<year>2006</year>
<volume>273</volume>
<fpage>2037</fpage>
<lpage>2047</lpage>
<pub-id pub-id-type="pmid">16640566</pub-id>
</element-citation>
</ref>
<ref id="bib121">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Bornberg-Bauer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Just how versatile are domains?</article-title>
<source>BMC Evol Biol.</source>
<year>2008</year>
<volume>8</volume>
<fpage>285</fpage>
<pub-id pub-id-type="pmid">18854028</pub-id>
</element-citation>
</ref>
<ref id="bib122">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Novelties of the flowering plant pollen tube underlie diversification of a key life history stage</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2008</year>
<volume>105</volume>
<fpage>11259</fpage>
<lpage>11263</lpage>
<pub-id pub-id-type="pmid">18678915</pub-id>
</element-citation>
</ref>
<ref id="bib123">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wood</surname>
<given-names>TE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The frequency of polyploid speciation in vascular plants</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2009</year>
<volume>106</volume>
<fpage>13875</fpage>
<lpage>13879</lpage>
<pub-id pub-id-type="pmid">19667210</pub-id>
</element-citation>
</ref>
<ref id="bib124">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Worden</surname>
<given-names>AZ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes
<italic>Micromonas</italic>
</article-title>
<source>Science</source>
<year>2009</year>
<volume>324</volume>
<fpage>268</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="pmid">19359590</pub-id>
</element-citation>
</ref>
<ref id="bib125">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Jawdy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tschaplinski</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Tuskan</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Genome-wide identication of lineage-specific genes in
<italic>Arabidopsis, Oryza</italic>
and
<italic>Populus</italic>
</article-title>
<source>Genomics</source>
<year>2009</year>
<volume>93</volume>
<fpage>473</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">19442640</pub-id>
</element-citation>
</ref>
<ref id="bib126">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>ND</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sequencing the genespaces of
<italic>Medicago truncatula</italic>
and
<italic>Lotus japonicus</italic>
</article-title>
<source>Plant Physiol.</source>
<year>2005</year>
<volume>137</volume>
<fpage>1174</fpage>
<lpage>1181</lpage>
<pub-id pub-id-type="pmid">15824279</pub-id>
</element-citation>
</ref>
<ref id="bib127">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gene loss under neighborhood selection following whole genome duplication and the reconstruction of the ancestral
<italic>Populus</italic>
genome</article-title>
<source>J Bioinform Comput Biol.</source>
<year>2009</year>
<volume>7</volume>
<fpage>499</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="pmid">19507287</pub-id>
</element-citation>
</ref>
<ref id="bib128">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zmasek</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Godzik</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires</article-title>
<source>Genome Biol.</source>
<year>2011</year>
<volume>12</volume>
<fpage>R4</fpage>
<pub-id pub-id-type="pmid">21241503</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F57  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F57  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024