Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000F160 ( Pmc/Corpus ); précédent : 000F159; suivant : 000F161 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of a citrus NDR1 ortholog increases disease resistance in
<italic>Arabidopsis</italic>
</title>
<author>
<name sortKey="Lu, Hua" sort="Lu, Hua" uniqKey="Lu H" first="Hua" last="Lu">Hua Lu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chong" sort="Zhang, Chong" uniqKey="Zhang C" first="Chong" last="Zhang">Chong Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Albrecht, Ute" sort="Albrecht, Ute" uniqKey="Albrecht U" first="Ute" last="Albrecht">Ute Albrecht</name>
<affiliation>
<nlm:aff id="aff2">
<institution>United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture</institution>
<country>Fort Pierce, FL, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Rena" sort="Shimizu, Rena" uniqKey="Shimizu R" first="Rena" last="Shimizu">Rena Shimizu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guanfeng" sort="Wang, Guanfeng" uniqKey="Wang G" first="Guanfeng" last="Wang">Guanfeng Wang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Kim D" sort="Bowman, Kim D" uniqKey="Bowman K" first="Kim D." last="Bowman">Kim D. Bowman</name>
<affiliation>
<nlm:aff id="aff2">
<institution>United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture</institution>
<country>Fort Pierce, FL, USA</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23761797</idno>
<idno type="pmc">3669760</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669760</idno>
<idno type="RBID">PMC:3669760</idno>
<idno type="doi">10.3389/fpls.2013.00157</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000F16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Overexpression of a citrus NDR1 ortholog increases disease resistance in
<italic>Arabidopsis</italic>
</title>
<author>
<name sortKey="Lu, Hua" sort="Lu, Hua" uniqKey="Lu H" first="Hua" last="Lu">Hua Lu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chong" sort="Zhang, Chong" uniqKey="Zhang C" first="Chong" last="Zhang">Chong Zhang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Albrecht, Ute" sort="Albrecht, Ute" uniqKey="Albrecht U" first="Ute" last="Albrecht">Ute Albrecht</name>
<affiliation>
<nlm:aff id="aff2">
<institution>United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture</institution>
<country>Fort Pierce, FL, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Rena" sort="Shimizu, Rena" uniqKey="Shimizu R" first="Rena" last="Shimizu">Rena Shimizu</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guanfeng" sort="Wang, Guanfeng" uniqKey="Wang G" first="Guanfeng" last="Wang">Guanfeng Wang</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Kim D" sort="Bowman, Kim D" uniqKey="Bowman K" first="Kim D." last="Bowman">Kim D. Bowman</name>
<affiliation>
<nlm:aff id="aff2">
<institution>United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture</institution>
<country>Fort Pierce, FL, USA</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of
<italic>Arabidopsis</italic>
and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The
<italic>Arabidopsis</italic>
gene
<italic>NDR1</italic>
(NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of
<italic>NDR1</italic>
from citrus,
<italic>CsNDR1</italic>
. Overexpression of
<italic>CsNDR1</italic>
complemented susceptibility conferred by the
<italic>Arabidopsis</italic>
<italic>ndr1-1 </italic>
mutant to
<italic>Pseudomonas syringae</italic>
strains and also led to enhanced resistance to an oomycete pathogen
<italic>Hyaloperonospora arabidopsidis</italic>
. Such heightened resistance is associated with increased SA production and expression of the defense marker gene
<italic>PATHOGENESIS RELATED 1</italic>
(
<italic>PR1</italic>
). In addition, we found that expression of
<italic>PR1</italic>
and accumulation of SA were induced to modest levels in citrus infected with
<italic>Candidatus</italic>
Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that
<italic>CsNDR1</italic>
is a functional ortholog of
<italic>Arabidopsis</italic>
<italic>NDR1</italic>
. Since
<italic>Ca.</italic>
L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aarts, N" uniqKey="Aarts N">N. Aarts</name>
</author>
<author>
<name sortKey="Metz, M" uniqKey="Metz M">M. Metz</name>
</author>
<author>
<name sortKey="Holub, E" uniqKey="Holub E">E. Holub</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
<author>
<name sortKey="Daniels, M J" uniqKey="Daniels M">M. J. Daniels</name>
</author>
<author>
<name sortKey="Parker, J E" uniqKey="Parker J">J. E. Parker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U. Albrecht</name>
</author>
<author>
<name sortKey="Bowman, K" uniqKey="Bowman K">K. Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U. Albrecht</name>
</author>
<author>
<name sortKey="Bowman, K D" uniqKey="Bowman K">K. D. Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bittner Eddy, P D" uniqKey="Bittner Eddy P">P. D. Bittner-Eddy</name>
</author>
<author>
<name sortKey="Beynon, J L" uniqKey="Beynon J">J. L. Beynon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bove, J M" uniqKey="Bove J">J. M. Bove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brlansky, R H" uniqKey="Brlansky R">R. H. Brlansky</name>
</author>
<author>
<name sortKey="Rogers, M E" uniqKey="Rogers M">M. E. Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cacas, J L" uniqKey="Cacas J">J. L. Cacas</name>
</author>
<author>
<name sortKey="Petitot, A S" uniqKey="Petitot A">A. S. Petitot</name>
</author>
<author>
<name sortKey="Bernier, L" uniqKey="Bernier L">L. Bernier</name>
</author>
<author>
<name sortKey="Estevan, J" uniqKey="Estevan J">J. Estevan</name>
</author>
<author>
<name sortKey="Conejero, G" uniqKey="Conejero G">G. Conejero</name>
</author>
<author>
<name sortKey="Mongrand, S" uniqKey="Mongrand S">S. Mongrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campbell, M A" uniqKey="Campbell M">M. A. Campbell</name>
</author>
<author>
<name sortKey="Fitzgerald, H A" uniqKey="Fitzgerald H">H. A. Fitzgerald</name>
</author>
<author>
<name sortKey="Ronald, P C" uniqKey="Ronald P">P. C. Ronald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H. Cao</name>
</author>
<author>
<name sortKey="Glazebrook, J" uniqKey="Glazebrook J">J. Glazebrook</name>
</author>
<author>
<name sortKey="Clarke, J D" uniqKey="Clarke J">J. D. Clarke</name>
</author>
<author>
<name sortKey="Volko, S" uniqKey="Volko S">S. Volko</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Century, K S" uniqKey="Century K">K. S. Century</name>
</author>
<author>
<name sortKey="Holub, E B" uniqKey="Holub E">E. B. Holub</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Century, K S" uniqKey="Century K">K. S. Century</name>
</author>
<author>
<name sortKey="Shapiro, A D" uniqKey="Shapiro A">A. D. Shapiro</name>
</author>
<author>
<name sortKey="Repetti, P P" uniqKey="Repetti P">P. P. Repetti</name>
</author>
<author>
<name sortKey="Dahlbeck, D" uniqKey="Dahlbeck D">D. Dahlbeck</name>
</author>
<author>
<name sortKey="Holub, E" uniqKey="Holub E">E. Holub</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chern, M S" uniqKey="Chern M">M. S. Chern</name>
</author>
<author>
<name sortKey="Fitzgerald, H A" uniqKey="Fitzgerald H">H. A. Fitzgerald</name>
</author>
<author>
<name sortKey="Yadav, R C" uniqKey="Yadav R">R. C. Yadav</name>
</author>
<author>
<name sortKey="Canlas, P E" uniqKey="Canlas P">P. E. Canlas</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
<author>
<name sortKey="Ronald, P C" uniqKey="Ronald P">P. C. Ronald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chisholm, S T" uniqKey="Chisholm S">S. T. Chisholm</name>
</author>
<author>
<name sortKey="Coaker, G" uniqKey="Coaker G">G. Coaker</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B. Day</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chomczynski, P" uniqKey="Chomczynski P">P. Chomczynski</name>
</author>
<author>
<name sortKey="Sacci, N" uniqKey="Sacci N">N. Sacci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chong, J" uniqKey="Chong J">J. Chong</name>
</author>
<author>
<name sortKey="Le Hananff, G" uniqKey="Le Hananff G">G. Le Hananff</name>
</author>
<author>
<name sortKey="Bertsch, C" uniqKey="Bertsch C">C. Bertsch</name>
</author>
<author>
<name sortKey="Walter, B" uniqKey="Walter B">B. Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clough, S J" uniqKey="Clough S">S. J. Clough</name>
</author>
<author>
<name sortKey="Bent, A F" uniqKey="Bent A">A. F. Bent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coppinger, P" uniqKey="Coppinger P">P. Coppinger</name>
</author>
<author>
<name sortKey="Repetti, P P" uniqKey="Repetti P">P. P. Repetti</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B. Day</name>
</author>
<author>
<name sortKey="Dahlbeck, D" uniqKey="Dahlbeck D">D. Dahlbeck</name>
</author>
<author>
<name sortKey="Mehlert, A" uniqKey="Mehlert A">A. Mehlert</name>
</author>
<author>
<name sortKey="Staskawicz, B J" uniqKey="Staskawicz B">B. J. Staskawicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dekkers, M G H" uniqKey="Dekkers M">M. G. H. Dekkers</name>
</author>
<author>
<name sortKey="Graham, J H" uniqKey="Graham J">J. H. Graham</name>
</author>
<author>
<name sortKey="Burns, J K" uniqKey="Burns J">J. K. Burns</name>
</author>
<author>
<name sortKey="Cubero, J" uniqKey="Cubero J">J. Cubero</name>
</author>
<author>
<name sortKey="Colburn, G C" uniqKey="Colburn G">G. C. Colburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dormann, P" uniqKey="Dormann P">P. Dormann</name>
</author>
<author>
<name sortKey="Hoffman Benning, S" uniqKey="Hoffman Benning S">S. Hoffman-Benning</name>
</author>
<author>
<name sortKey="Balbo, I" uniqKey="Balbo I">I. Balbo</name>
</author>
<author>
<name sortKey="Benning, C" uniqKey="Benning C">C. Benning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dormanna, P" uniqKey="Dormanna P">P. Dörmanna</name>
</author>
<author>
<name sortKey="Gopalanb, S" uniqKey="Gopalanb S">S. Gopalanb</name>
</author>
<author>
<name sortKey="He, S Y" uniqKey="He S">S.-Y. He</name>
</author>
<author>
<name sortKey="Benning, C" uniqKey="Benning C">C. Benning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durrant, W E" uniqKey="Durrant W">W. E. Durrant</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falk, A" uniqKey="Falk A">A. Falk</name>
</author>
<author>
<name sortKey="Feys, B J" uniqKey="Feys B">B. J. Feys</name>
</author>
<author>
<name sortKey="Frost, L N" uniqKey="Frost L">L. N. Frost</name>
</author>
<author>
<name sortKey="Jones, J D" uniqKey="Jones J">J. D. Jones</name>
</author>
<author>
<name sortKey="Daniels, M J" uniqKey="Daniels M">M. J. Daniels</name>
</author>
<author>
<name sortKey="Parker, J E" uniqKey="Parker J">J. E. Parker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzgerald, H A" uniqKey="Fitzgerald H">H. A. Fitzgerald</name>
</author>
<author>
<name sortKey="Chern, M S" uniqKey="Chern M">M. S. Chern</name>
</author>
<author>
<name sortKey="Navarre, R" uniqKey="Navarre R">R. Navarre</name>
</author>
<author>
<name sortKey="Ronald, P C" uniqKey="Ronald P">P. C. Ronald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Francis, M I" uniqKey="Francis M">M. I. Francis</name>
</author>
<author>
<name sortKey="Redondo, A" uniqKey="Redondo A">A. Redondo</name>
</author>
<author>
<name sortKey="Burns, J K" uniqKey="Burns J">J. K. Burns</name>
</author>
<author>
<name sortKey="Graham, J H" uniqKey="Graham J">J. H. Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Shu, X" uniqKey="Shu X">X. Shu</name>
</author>
<author>
<name sortKey="Ali, M B" uniqKey="Ali M">M. B. Ali</name>
</author>
<author>
<name sortKey="Howard, S" uniqKey="Howard S">S. Howard</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Winterhagen, P" uniqKey="Winterhagen P">P. Winterhagen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaskalla, R" uniqKey="Gaskalla R">R. Gaskalla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gottwald, T R" uniqKey="Gottwald T">T. R. Gottwald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, J H" uniqKey="Graham J">J. H. Graham</name>
</author>
<author>
<name sortKey="Myers, M" uniqKey="Myers M">M. Myers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond Kosack, K E" uniqKey="Hammond Kosack K">K. E. Hammond-Kosack</name>
</author>
<author>
<name sortKey="Jones, J D" uniqKey="Jones J">J. D. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ichinose, K" uniqKey="Ichinose K">K. Ichinose</name>
</author>
<author>
<name sortKey="Miyazi, K" uniqKey="Miyazi K">K. Miyazi</name>
</author>
<author>
<name sortKey="Matsuhira, K" uniqKey="Matsuhira K">K. Matsuhira</name>
</author>
<author>
<name sortKey="Yasuda, K" uniqKey="Yasuda K">K. Yasuda</name>
</author>
<author>
<name sortKey="Sadoyama, Y" uniqKey="Sadoyama Y">Y. Sadoyama</name>
</author>
<author>
<name sortKey="Do, H T" uniqKey="Do H">H. T. Do</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knepper, C" uniqKey="Knepper C">C. Knepper</name>
</author>
<author>
<name sortKey="Savory, E A" uniqKey="Savory E">E. A. Savory</name>
</author>
<author>
<name sortKey="Day, B" uniqKey="Day B">B. Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koltunow, A M" uniqKey="Koltunow A">A. M. Koltunow</name>
</author>
<author>
<name sortKey="Hidaka, T" uniqKey="Hidaka T">T. Hidaka</name>
</author>
<author>
<name sortKey="Robinson, S P" uniqKey="Robinson S">S. P. Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, M W" uniqKey="Lee M">M. W. Lee</name>
</author>
<author>
<name sortKey="Jelenska, J" uniqKey="Jelenska J">J. Jelenska</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S B" uniqKey="Lee S">S. B. Lee</name>
</author>
<author>
<name sortKey="Ham, B K" uniqKey="Ham B">B. K. Ham</name>
</author>
<author>
<name sortKey="Park, J M" uniqKey="Park J">J. M. Park</name>
</author>
<author>
<name sortKey="Kim, Y J" uniqKey="Kim Y">Y. J. Kim</name>
</author>
<author>
<name sortKey="Kh, P" uniqKey="Kh P">P. Kh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Brader, G" uniqKey="Brader G">G. Brader</name>
</author>
<author>
<name sortKey="Palva, E T" uniqKey="Palva E">E. T. Palva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Hartung, J S" uniqKey="Hartung J">J. S. Hartung</name>
</author>
<author>
<name sortKey="Levy, L" uniqKey="Levy L">L. Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, W C" uniqKey="Lin W">W. C. Lin</name>
</author>
<author>
<name sortKey="Lu, C F" uniqKey="Lu C">C. F. Lu</name>
</author>
<author>
<name sortKey="Wu, J W" uniqKey="Wu J">J. W. Wu</name>
</author>
<author>
<name sortKey="Cheng, M L" uniqKey="Cheng M">M. L. Cheng</name>
</author>
<author>
<name sortKey="Lin, Y M" uniqKey="Lin Y">Y. M. Lin</name>
</author>
<author>
<name sortKey="Yang, N S" uniqKey="Yang N">N. S. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Livak, K J" uniqKey="Livak K">K. J. Livak</name>
</author>
<author>
<name sortKey="Schmittgen, T D" uniqKey="Schmittgen T">T. D. Schmittgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
<author>
<name sortKey="Rate, D N" uniqKey="Rate D">D. N. Rate</name>
</author>
<author>
<name sortKey="Song, J T" uniqKey="Song J">J. T. Song</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makandar, R" uniqKey="Makandar R">R. Makandar</name>
</author>
<author>
<name sortKey="Essig, J S" uniqKey="Essig J">J. S. Essig</name>
</author>
<author>
<name sortKey="Schapaugh, M A" uniqKey="Schapaugh M">M. A. Schapaugh</name>
</author>
<author>
<name sortKey="Trick, H N" uniqKey="Trick H">H. N. Trick</name>
</author>
<author>
<name sortKey="Shah, J" uniqKey="Shah J">J. Shah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malamy, J" uniqKey="Malamy J">J. Malamy</name>
</author>
<author>
<name sortKey="Carr, J P" uniqKey="Carr J">J. P. Carr</name>
</author>
<author>
<name sortKey="Klessig, D F" uniqKey="Klessig D">D. F. Klessig</name>
</author>
<author>
<name sortKey="Raskin, I" uniqKey="Raskin I">I. Raskin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maleck, K" uniqKey="Maleck K">K. Maleck</name>
</author>
<author>
<name sortKey="Levine, A" uniqKey="Levine A">A. Levine</name>
</author>
<author>
<name sortKey="Eulgem, T" uniqKey="Eulgem T">T. Eulgem</name>
</author>
<author>
<name sortKey="Morgan, A" uniqKey="Morgan A">A. Morgan</name>
</author>
<author>
<name sortKey="Schmid, J" uniqKey="Schmid J">J. Schmid</name>
</author>
<author>
<name sortKey="Lawton, K A" uniqKey="Lawton K">K. A. Lawton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malnoy, M" uniqKey="Malnoy M">M. Malnoy</name>
</author>
<author>
<name sortKey="Jin, Q" uniqKey="Jin Q">Q. Jin</name>
</author>
<author>
<name sortKey="Borejsza Wysocka, E E" uniqKey="Borejsza Wysocka E">E. E. Borejsza-Wysocka</name>
</author>
<author>
<name sortKey="He, S Y" uniqKey="He S">S. Y. He</name>
</author>
<author>
<name sortKey="Aldwinckle, H S" uniqKey="Aldwinckle H">H. S. Aldwinckle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, G B" uniqKey="Martin G">G. B. Martin</name>
</author>
<author>
<name sortKey="Bogdanove, A J" uniqKey="Bogdanove A">A. J. Bogdanove</name>
</author>
<author>
<name sortKey="Sessa, G" uniqKey="Sessa G">G. Sessa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maxson Stein, K" uniqKey="Maxson Stein K">K. Maxson-Stein</name>
</author>
<author>
<name sortKey="He, S" uniqKey="He S">S. He</name>
</author>
<author>
<name sortKey="Hammerschmidt, R" uniqKey="Hammerschmidt R">R. Hammerschmidt</name>
</author>
<author>
<name sortKey="Jones, A" uniqKey="Jones A">A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, J M" uniqKey="Mcdowell J">J. M. McDowell</name>
</author>
<author>
<name sortKey="Cuzick, A" uniqKey="Cuzick A">A. Cuzick</name>
</author>
<author>
<name sortKey="Can, C" uniqKey="Can C">C. Can</name>
</author>
<author>
<name sortKey="Beynon, J" uniqKey="Beynon J">J. Beynon</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
<author>
<name sortKey="Holub, E B" uniqKey="Holub E">E. B. Holub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, J M" uniqKey="Mcdowell J">J. M. McDowell</name>
</author>
<author>
<name sortKey="Hoff, T" uniqKey="Hoff T">T. Hoff</name>
</author>
<author>
<name sortKey="Anderson, R G" uniqKey="Anderson R">R. G. Anderson</name>
</author>
<author>
<name sortKey="Deegan, D" uniqKey="Deegan D">D. Deegan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, J M" uniqKey="Mcdowell J">J. M. McDowell</name>
</author>
<author>
<name sortKey="Simon, S A" uniqKey="Simon S">S. A. Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, G" uniqKey="Ng G">G. Ng</name>
</author>
<author>
<name sortKey="Seabolt, S" uniqKey="Seabolt S">S. Seabolt</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Salimian, S" uniqKey="Salimian S">S. Salimian</name>
</author>
<author>
<name sortKey="Watkins, T A" uniqKey="Watkins T">T. A. Watkins</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishimura, M T" uniqKey="Nishimura M">M. T. Nishimura</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pegadaraju, V" uniqKey="Pegadaraju V">V. Pegadaraju</name>
</author>
<author>
<name sortKey="Louis, J" uniqKey="Louis J">J. Louis</name>
</author>
<author>
<name sortKey="Singh, V" uniqKey="Singh V">V. Singh</name>
</author>
<author>
<name sortKey="Reese, J C" uniqKey="Reese J">J. C. Reese</name>
</author>
<author>
<name sortKey="Bautor, J" uniqKey="Bautor J">J. Bautor</name>
</author>
<author>
<name sortKey="Feys, B J" uniqKey="Feys B">B. J. Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rassmussen, J B" uniqKey="Rassmussen J">J. B. Rassmussen</name>
</author>
<author>
<name sortKey="Hammerschmidt, R" uniqKey="Hammerschmidt R">R. Hammerschmidt</name>
</author>
<author>
<name sortKey="Zook, M N" uniqKey="Zook M">M. N. Zook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryals, J" uniqKey="Ryals J">J. Ryals</name>
</author>
<author>
<name sortKey="Weymann, K" uniqKey="Weymann K">K. Weymann</name>
</author>
<author>
<name sortKey="Lawton, K" uniqKey="Lawton K">K. Lawton</name>
</author>
<author>
<name sortKey="Friedrich, L" uniqKey="Friedrich L">L. Friedrich</name>
</author>
<author>
<name sortKey="Ellis, D" uniqKey="Ellis D">D. Ellis</name>
</author>
<author>
<name sortKey="Steiner, H Y" uniqKey="Steiner H">H. Y. Steiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandhu, D" uniqKey="Sandhu D">D. Sandhu</name>
</author>
<author>
<name sortKey="Tasma, I M" uniqKey="Tasma I">I. M. Tasma</name>
</author>
<author>
<name sortKey="Frasch, R" uniqKey="Frasch R">R. Frasch</name>
</author>
<author>
<name sortKey="Bhattacharyya, M K" uniqKey="Bhattacharyya M">M. K. Bhattacharyya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, J" uniqKey="Shah J">J. Shah</name>
</author>
<author>
<name sortKey="Tsui, F" uniqKey="Tsui F">F. Tsui</name>
</author>
<author>
<name sortKey="Klessig, D F" uniqKey="Klessig D">D. F. Klessig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapiro, A D" uniqKey="Shapiro A">A. D. Shapiro</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, Y K" uniqKey="Sharma Y">Y. K. Sharma</name>
</author>
<author>
<name sortKey="Davis, K R" uniqKey="Davis K">K. R. Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, J T" uniqKey="Song J">J. T. Song</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
<author>
<name sortKey="Mcdowell, J M" uniqKey="Mcdowell J">J. M. Mcdowell</name>
</author>
<author>
<name sortKey="Greenberg, J T" uniqKey="Greenberg J">J. T. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strommer, J" uniqKey="Strommer J">J. Strommer</name>
</author>
<author>
<name sortKey="Gregerson, R" uniqKey="Gregerson R">R. Gregerson</name>
</author>
<author>
<name sortKey="Vayda, M" uniqKey="Vayda M">M. Vayda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K. Tamura</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D. Peterson</name>
</author>
<author>
<name sortKey="Peterson, N" uniqKey="Peterson N">N. Peterson</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G. Stecher</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M. Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tao, Y" uniqKey="Tao Y">Y. Tao</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z. Xie</name>
</author>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W. Chen</name>
</author>
<author>
<name sortKey="Glazebrook, J" uniqKey="Glazebrook J">J. Glazebrook</name>
</author>
<author>
<name sortKey="Chang, H S" uniqKey="Chang H">H. S. Chang</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuda, K" uniqKey="Tsuda K">K. Tsuda</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M. Sato</name>
</author>
<author>
<name sortKey="Glazebrook, J" uniqKey="Glazebrook J">J. Glazebrook</name>
</author>
<author>
<name sortKey="Cohen, J D" uniqKey="Cohen J">J. D. Cohen</name>
</author>
<author>
<name sortKey="Katagiri, F" uniqKey="Katagiri F">F. Katagiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varet, A" uniqKey="Varet A">A. Varet</name>
</author>
<author>
<name sortKey="Hause, B" uniqKey="Hause B">B. Hause</name>
</author>
<author>
<name sortKey="Hause, G" uniqKey="Hause G">G. Hause</name>
</author>
<author>
<name sortKey="Scheel, D" uniqKey="Scheel D">D. Scheel</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varet, A" uniqKey="Varet A">A. Varet</name>
</author>
<author>
<name sortKey="Parker, J" uniqKey="Parker J">J. Parker</name>
</author>
<author>
<name sortKey="Tornero, P" uniqKey="Tornero P">P. Tornero</name>
</author>
<author>
<name sortKey="Nass, N" uniqKey="Nass N">N. Nass</name>
</author>
<author>
<name sortKey="Nurnberger, T" uniqKey="Nurnberger T">T. Nurnberger</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G F" uniqKey="Wang G">G. F. Wang</name>
</author>
<author>
<name sortKey="Seabolt, S" uniqKey="Seabolt S">S. Seabolt</name>
</author>
<author>
<name sortKey="Hamdoun, S" uniqKey="Hamdoun S">S. Hamdoun</name>
</author>
<author>
<name sortKey="Ng, G" uniqKey="Ng G">G. Ng</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G Y" uniqKey="Wang G">G. Y. Wang</name>
</author>
<author>
<name sortKey="Shi, J L" uniqKey="Shi J">J. L. Shi</name>
</author>
<author>
<name sortKey="Ng, G" uniqKey="Ng G">G. Ng</name>
</author>
<author>
<name sortKey="Battle, S L" uniqKey="Battle S">S. L. Battle</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wildermuth, M C" uniqKey="Wildermuth M">M. C. Wildermuth</name>
</author>
<author>
<name sortKey="Dewdney, J" uniqKey="Dewdney J">J. Dewdney</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G. Wu</name>
</author>
<author>
<name sortKey="Ausubel, F M" uniqKey="Ausubel F">F. M. Ausubel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, S" uniqKey="Xiao S">S. Xiao</name>
</author>
<author>
<name sortKey="Ellwood, S" uniqKey="Ellwood S">S. Ellwood</name>
</author>
<author>
<name sortKey="Calis, O" uniqKey="Calis O">O. Calis</name>
</author>
<author>
<name sortKey="Patrick, E" uniqKey="Patrick E">E. Patrick</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T. Li</name>
</author>
<author>
<name sortKey="Coleman, M" uniqKey="Coleman M">M. Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Gutsche, A T" uniqKey="Gutsche A">A. T. Gutsche</name>
</author>
<author>
<name sortKey="Shapiro, A D" uniqKey="Shapiro A">A. D. Shapiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Francis, M I" uniqKey="Francis M">M. I. Francis</name>
</author>
<author>
<name sortKey="Dawson, W O" uniqKey="Dawson W">W. O. Dawson</name>
</author>
<author>
<name sortKey="Graham, J H" uniqKey="Graham J">J. H. Graham</name>
</author>
<author>
<name sortKey="Orbovic, V" uniqKey="Orbovic V">V. Orbovic</name>
</author>
<author>
<name sortKey="Triplett, E W" uniqKey="Triplett E">E. W. Triplett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, M S" uniqKey="Zheng M">M. S. Zheng</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H. Takahashi</name>
</author>
<author>
<name sortKey="Miyazaki, A" uniqKey="Miyazaki A">A. Miyazaki</name>
</author>
<author>
<name sortKey="Hamamoto, H" uniqKey="Hamamoto H">H. Hamamoto</name>
</author>
<author>
<name sortKey="Shah, J" uniqKey="Shah J">J. Shah</name>
</author>
<author>
<name sortKey="Yamaguchi, I" uniqKey="Yamaguchi I">I. Yamaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, N" uniqKey="Zhou N">N. Zhou</name>
</author>
<author>
<name sortKey="Tootle, T L" uniqKey="Tootle T">T. L. Tootle</name>
</author>
<author>
<name sortKey="Tsui, F" uniqKey="Tsui F">F. Tsui</name>
</author>
<author>
<name sortKey="Klessig, D F" uniqKey="Klessig D">D. F. Klessig</name>
</author>
<author>
<name sortKey="Glazebrook, J" uniqKey="Glazebrook J">J. Glazebrook</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23761797</article-id>
<article-id pub-id-type="pmc">3669760</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2013.00157</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Overexpression of a citrus NDR1 ortholog increases disease resistance in
<italic>Arabidopsis</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Hua</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Chong</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Albrecht</surname>
<given-names>Ute</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shimizu</surname>
<given-names>Rena</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Guanfeng</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bowman</surname>
<given-names>Kim D.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Biological Sciences, University of Maryland Baltimore County</institution>
<country>Baltimore, MD, USA</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture</institution>
<country>Fort Pierce, FL, USA</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Vincenzo Lionetti, “Sapienza” Università di Roma, Italy</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Brad Day, Michigan State University, USA; Robin K. Cameron, McMaster University, Canada</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Hua Lu, Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA e-mail:
<email xlink:type="simple">hualu@umbc.edu</email>
</italic>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Frontiers in Plant-Microbe Interaction, a specialty of Frontiers in Plant Science.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>03</day>
<month>6</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<volume>4</volume>
<elocation-id>157</elocation-id>
<history>
<date date-type="received">
<day>20</day>
<month>2</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>07</day>
<month>5</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © Lu, Zhang, Albrecht, Shimizu, Wang and Bowman.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p> This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.</license-p>
</license>
</permissions>
<abstract>
<p>Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of
<italic>Arabidopsis</italic>
and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The
<italic>Arabidopsis</italic>
gene
<italic>NDR1</italic>
(NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of
<italic>NDR1</italic>
from citrus,
<italic>CsNDR1</italic>
. Overexpression of
<italic>CsNDR1</italic>
complemented susceptibility conferred by the
<italic>Arabidopsis</italic>
<italic>ndr1-1 </italic>
mutant to
<italic>Pseudomonas syringae</italic>
strains and also led to enhanced resistance to an oomycete pathogen
<italic>Hyaloperonospora arabidopsidis</italic>
. Such heightened resistance is associated with increased SA production and expression of the defense marker gene
<italic>PATHOGENESIS RELATED 1</italic>
(
<italic>PR1</italic>
). In addition, we found that expression of
<italic>PR1</italic>
and accumulation of SA were induced to modest levels in citrus infected with
<italic>Candidatus</italic>
Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that
<italic>CsNDR1</italic>
is a functional ortholog of
<italic>Arabidopsis</italic>
<italic>NDR1</italic>
. Since
<italic>Ca.</italic>
L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Pseudomonas syringae</italic>
</kwd>
<kwd>salicylic acid</kwd>
<kwd>citrus canker</kwd>
<kwd>Huanglongbing</kwd>
<kwd>greening disease</kwd>
<kwd>
<italic>Candidatus</italic>
Liberibacter asiaticus</kwd>
<kwd>genetic engineering</kwd>
</kwd-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="74"></ref-count>
<page-count count="10"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>Huanglongbing (HLB; also called citrus greening disease), citrus canker, and other emerging diseases have imposed serious threats to the citrus industry worldwide (
<xref ref-type="bibr" rid="B5">Bove, 2006</xref>
;
<xref ref-type="bibr" rid="B28">Gottwald, 2007</xref>
). Citrus canker is caused by the gram negative bacterium
<italic>Xanthomonas axonopodis</italic>
pv.
<italic> citri</italic>
. Wind and rain facilitate the dispersal of the pathogen and spreading of the disease. More than 16 million citrus trees have been destroyed in Florida in an effort to restrict the disease (
<xref ref-type="bibr" rid="B27">Gaskalla, 2006</xref>
). HLB is even more devastating than citrus canker since it is highly contagious and lethal to afflicted plants (
<xref ref-type="bibr" rid="B5">Bove, 2006</xref>
;
<xref ref-type="bibr" rid="B6">Brlansky and Rogers, 2007</xref>
;
<xref ref-type="bibr" rid="B28">Gottwald, 2007</xref>
). The parasitic bacterium
<italic>Candidatus</italic>
Liberibacter that lives in the phloem tissue of a citrus tree is believed to be the associating agent of HLB. The disease is transmitted by a small insect vector of the family Psyllidae. The growth of psyllids cannot yet be reliably controlled by conventional insecticide application (
<xref ref-type="bibr" rid="B31">Ichinose et al., 2010</xref>
). Without successful measures to control the causal pathogen and its transmission vector, HLB is endemic to a variety of citrus species and related plants. Therefore, it is imperative to develop strategies to contain and eventually eradicate HLB and other diseases challenging the production of citrus worldwide.</p>
<p>Successful manipulation of citrus disease resistance relies on a thorough understanding of defense mechanisms of the plant. Although not well understood yet in citrus, defense mechanisms are well studied in other plants, in particular the model plant
<italic>Arabidopsis thaliana</italic>
, and have been shown to be relatively conserved among plants (
<xref ref-type="bibr" rid="B52">Nishimura and Dangl, 2010</xref>
). Therefore, prior knowledge of defense mechanisms from other plants should help us to better understand citrus defense and ultimately develop effective strategies to combat devastating diseases challenging the citrus industry.</p>
<p>Plant defense can be preformed or induced. The preformed defense includes some existing physical structures and chemical compounds produced by plants before infection that can restrict pathogen invasion. The induced defense can be activated upon pathogen invasion, involving sophisticated surveillance systems to recognize general elicitors from pathogens and subsequently to activate basal defense. Much stronger defense can be induced when host resistance (R) proteins specifically recognize their cognate pathogen effectors; thus such defense is also termed as R protein-mediated defense. The largest class of R proteins is represented by a family of proteins that have two conserved domains, nucleotide binding site (NBS) and leucine-rich repeat (LRR;
<xref ref-type="bibr" rid="B46">Martin et al., 2003</xref>
;
<xref ref-type="bibr" rid="B50">McDowell and Simon, 2006</xref>
). This class of R proteins can be further divided into two groups according to the N-terminal sequence, coiled-coil (CC)–NBS–LRR and Toll-interleukin-1 receptor (TIR)–NBS–LRR. Some CC–NBS–LRR type proteins are found to signal through NON-RACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). For instance, an
<italic>ndr1</italic>
mutation compromises resistance conferred by the CC–NBS–LRR proteins RPS2, RPM1, or RPS5 to
<italic>Pseudomonas syringae</italic>
expressing the avirulence effectors
<italic>avrRpt2</italic>
,
<italic>avrB</italic>
and
<italic>avrRpm1</italic>
, or
<italic>avrPph3</italic>
, respectively (
<xref ref-type="bibr" rid="B10">Century et al., 1995</xref>
;
<xref ref-type="bibr" rid="B1">Aarts et al., 1998</xref>
). On the other hand, some TIR–NBS–LRR type proteins functionally require ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). For instance, an
<italic>eds1</italic>
mutant is immune-compromised to
<italic>P. syringae avrRps4</italic>
, resistance to which is conferred by the TIR–NBS–LRR protein RPS4 but not by TIR–NBS–LRR type R proteins (
<xref ref-type="bibr" rid="B1">Aarts et al., 1998</xref>
;
<xref ref-type="bibr" rid="B23">Falk et al., 1999</xref>
). These observations suggest a general rule that these two subgroups of R proteins can activate distinct downstream signaling pathways. However, exceptions to this rule also exist for some other NBS–LRR R proteins (
<xref ref-type="bibr" rid="B48">McDowell et al., 2000</xref>
;
<xref ref-type="bibr" rid="B4">Bittner-Eddy and Beynon, 2001</xref>
;
<xref ref-type="bibr" rid="B70">Xiao et al., 2001</xref>
).</p>
<p>The small phenolic molecule salicylic acid (SA) plays a key role in signaling both basal and R protein-mediated defense (
<xref ref-type="bibr" rid="B30">Hammond-Kosack and Jones, 1996</xref>
;
<xref ref-type="bibr" rid="B64">Tsuda et al., 2008</xref>
) and is involved in resistance against diverse pathogens and in response to various stress conditions (
<xref ref-type="bibr" rid="B43">Malamy et al., 1990</xref>
;
<xref ref-type="bibr" rid="B54">Rassmussen et al., 1991</xref>
;
<xref ref-type="bibr" rid="B59">Sharma and Davis, 1997</xref>
;
<xref ref-type="bibr" rid="B64">Tsuda et al., 2008</xref>
). While increased SA accumulation and/or signaling lead to enhanced disease resistance, disrupting these processes by gene mutations or transgene expression result in compromised defense against pathogens (
<xref ref-type="bibr" rid="B22">Durrant and Dong, 2004</xref>
;
<xref ref-type="bibr" rid="B40">Lu, 2009</xref>
). Genes involved in SA-mediated defense can affect SA biosynthesis, accumulation, and/or signaling (
<xref ref-type="bibr" rid="B40">Lu, 2009</xref>
). For instance,
<italic>SA INDUCTION-DEFICIENT 2 EDS16</italic>
, encodes isochorismate synthase contributing to the majority of SA biosynthesis (
<xref ref-type="bibr" rid="B69">Wildermuth et al., 2001</xref>
). Both
<italic>NDR1</italic>
and
<italic>EDS1</italic>
are known to act upstream of SA to regulate SA accumulation (
<xref ref-type="bibr" rid="B23">Falk et al., 1999</xref>
;
<xref ref-type="bibr" rid="B58">Shapiro and Zhang, 2001</xref>
). Downstream of SA signaling,
<italic>NONEXPRESSOR OF PR GENES 1 NPR1</italic>
) acts as a signal transducer that regulates systemic acquired resistance, a long-lasting defense against broad-spectrum pathogens at the whole plant level (
<xref ref-type="bibr" rid="B9">Cao et al., 1997</xref>
;
<xref ref-type="bibr" rid="B55">Ryals et al., 1997</xref>
;
<xref ref-type="bibr" rid="B57">Shah et al., 1997</xref>
;
<xref ref-type="bibr" rid="B19">Dong, 2004</xref>
). Overexpression of
<italic>NDR1</italic>
,
<italic>EDS1</italic>
,
<italic>NPR1</italic>
, or several other SA regulators confers enhanced disease resistance to a range of pathogens in
<italic>Arabidopsis</italic>
and/or in other plants (
<xref ref-type="bibr" rid="B12">Chern et al., 2001</xref>
;
<xref ref-type="bibr" rid="B24">Fitzgerald et al., 2004</xref>
;
<xref ref-type="bibr" rid="B38">Lin et al., 2004</xref>
;
<xref ref-type="bibr" rid="B42">Makandar et al., 2006</xref>
;
<xref ref-type="bibr" rid="B45">Malnoy et al., 2007</xref>
;
<xref ref-type="bibr" rid="B53">Pegadaraju et al., 2007</xref>
;
<xref ref-type="bibr" rid="B56">Sandhu et al., 2009</xref>
;
<xref ref-type="bibr" rid="B26">Gao et al., 2010</xref>
). Therefore, manipulation of SA-mediated defense has the potential to introduce broad-spectrum disease resistance in plants.</p>
<p>
<italic>NDR1</italic>
encodes a glycosyl-phosphatidyl inositol-anchored plasma membrane protein that belongs to a large protein family (
<xref ref-type="bibr" rid="B20">Dormann et al., 1995</xref>
;
<xref ref-type="bibr" rid="B66">Varet et al., 2002</xref>
;
<xref ref-type="bibr" rid="B17">Coppinger et al., 2004</xref>
;
<xref ref-type="bibr" rid="B73">Zheng et al., 2004</xref>
). A recent study implicates the function of
<italic>NDR1</italic>
in mediating plasma membrane-cell wall adhesion (
<xref ref-type="bibr" rid="B32">Knepper et al., 2011</xref>
).
<italic>NDR1-</italic>
like genes widely exist in different plants (
<xref ref-type="bibr" rid="B35">Lee et al., 2006</xref>
;
<xref ref-type="bibr" rid="B15">Chong et al., 2008</xref>
;
<xref ref-type="bibr" rid="B7">Cacas et al., 2011</xref>
). Besides
<italic>NDR1</italic>
, some
<italic>Arabidopsis</italic>
homologs of
<italic>NDR1</italic>
were shown to be highly induced by pathogen infection and/or to confer enhanced disease resistance to
<italic>P. syringae</italic>
when overexpressed (
<xref ref-type="bibr" rid="B66">Varet et al., 2002</xref>
,
<xref ref-type="bibr" rid="B65">2003</xref>
;
<xref ref-type="bibr" rid="B17">Coppinger et al., 2004</xref>
;
<xref ref-type="bibr" rid="B73">Zheng et al., 2004</xref>
). Thus
<italic>NDR1</italic>
and some members in the family are critical components of plant defense.</p>
<p>In this study, we report the isolation and characterization of a functional ortholog of
<italic>NDR1</italic>
in citrus, named
<italic>CsNDR1</italic>
. We found that overexpression of
<italic>CsNDR1</italic>
complements the susceptibility of
<italic>Arabidopsis</italic>
<italic>ndr1-1</italic>
mutant to
<italic>P. syringae avrRpt2</italic>
and further confers enhanced disease resistance to
<italic>P. syringae avrRps4</italic>
, which normally is not affected by the endogenous
<italic>NDR1</italic>
. Overexpression of
<italic>CsNDR1</italic>
also led to increased resistance to the oomycete pathogen
<italic>Hyaloperonospora arabidopsidis </italic>
(
<italic>Hpa</italic>
) isolate Noco2.
<italic>CsNDR1</italic>
-induced disease resistance is associated with increased SA accumulation and expression of the defense marker gene
<italic>PATHOGENESIS RELATED 1</italic>
(
<italic>PR1</italic>
) in the transgenic
<italic>Arabidopsis</italic>
plants. In addition, we found that citrus infected with
<italic>Candidatus</italic>
Liberibacter asiaticus, a pathogen associated with the HLB disease, expressed modestly increased
<italic>CsNDR1</italic>
and SA levels, compared with mock-treated plants. We propose that genetic engineering to enhance SA/NDR1 signaling pathway in citrus could potentially enhance its resistance to HLB, citrus canker, and other emerging diseases.</p>
</sec>
<sec sec-type="materials|methods" id="s1">
<title>MATERIALS AND METHODS</title>
<sec>
<title>PLANT MATERIALS</title>
<p>
<italic>Arabidopsis</italic>
plants were grown in growth chambers with a 12 h light/12 h dark cycle, light intensity at 200 μmol m
<sup>-</sup>
<sup>2</sup>
s
<sup>-</sup>
<sup>1</sup>
, 60% humidity, and 22°C. The
<italic>ndr1-1</italic>
mutant was previously described (
<xref ref-type="bibr" rid="B10">Century et al., 1995</xref>
,
<xref ref-type="bibr" rid="B11">1997</xref>
). Citrus plants, “Valencia” (
<italic>Citrus sinensis</italic>
[L.] Osbeck), were grown on the greenhouse bench and kept at 24°C under natural light conditions. Plants were irrigated as needed and fertilized every 3 weeks using a water-soluble fertilizer mix, 20N–10P–20K (Peters Professional, The Scotts Company, Marysville, OH, USA).</p>
</sec>
<sec>
<title>BIOINFORMATIC ANALYSIS</title>
<p>Basic Local Alignment Search Tools (BLAST) was used to search protein sequence databases for
<italic>Arabidopsis</italic>
<sup>
<xref ref-type="fn" rid="fn01">1</xref>
</sup>
and
<italic>Citrus sinensis</italic>
<sup>
<xref ref-type="fn" rid="fn02">2</xref>
</sup>
, using appropriate query sequences. Sequence alignment and phylogenetic analysis were performed with the MEGA program (version 5.05). To construct the phylogenetic tree, the neighbor-joining method with 1000 bootstrap replications was used.</p>
</sec>
<sec>
<title>PATHOGEN INFECTIONS</title>
<p>
<italic>Pseudomonas syringae</italic>
strains used in this study were previously described (
<xref ref-type="bibr" rid="B34">Lee et al., 2008</xref>
;
<xref ref-type="bibr" rid="B68">Wang et al., 2011b</xref>
). Bacteria were cultured at 28°C with King’s B medium (10 g proteose peptone, 1.5 g K
<sub>2</sub>
HPO
<sub>4</sub>
, 3.2 ml 1 M MgSO
<sub>4</sub>
, and 5 g glycerol/l) containing the appropriate antibiotics. Freshly cultured bacteria at the optical density of 0.5–0.8 were harvested, washed once, and resuspended in 10 mM MgSO
<sub>4</sub>
to make the infection solution at the desired concentrations. The fifth to seventh leaves of 25-day-old
<italic>Arabidopsis</italic>
plants were infected by infiltration with a 1-ml needleless syringe. For bacterial growth assay, six leaves selected from over 10 plants of each genotype were collected 3 days post-infiltration, bored with a core borer (6 mm in diameter), and ground for bacterial growth measurement as described previously (
<xref ref-type="bibr" rid="B41">Lu et al., 2003</xref>
). For hypersensitive response (HR) test, one-half of a leaf at the fifth, sixth, or seventh position was infiltrated with
<italic>P. syringae</italic>
pv.
<italic>maculicola</italic>
ES4326
<italic>avrRpt2</italic>
(
<italic>Pma avrRpt2</italic>
; OD
<sub>600</sub>
= 0.1) and scored 16–24 h post-infiltration for leaf collapse. Leaves infiltrated with 10 mM MgSO
<sub>4</sub>
or the isogenic virulent strain
<italic>Pma</italic>
(OD
<sub>600</sub>
= 0.1) were used as controls. At least 16 leaves from different plants of each genotype were scored for the HR symptoms. The rate of HR was expressed by the percentile of the number of leaves that developed HR symptoms out of the total number of inoculated leaves.</p>
<p>
<italic>Hyaloperonospora arabidopsidis</italic>
isolate Noco2 was a kind gift from S. Xiao at University of Maryland College Park. Strain propagation and preparation were conducted as previously described (
<xref ref-type="bibr" rid="B60">Song et al., 2004</xref>
;
<xref ref-type="bibr" rid="B49">McDowell et al., 2010</xref>
).
<italic>Hpa Noco2</italic>
spores (5 × 10
<sup>4</sup>
spores/ml in water) were sprayed on 7-day-old soil-grown seedlings. Sporangiophores on both sides of cotyledons were counted 7 days post-inoculation. At least 50 cotyledons from each genotype were counted to derive the average number of sporangiophores per genotype.</p>
<p>For
<italic>Ca.</italic>
L. asiaticus infection, 15-month-old “Valencia” plants were inoculated by grafting with two bark- or bud-pieces and two leaf pieces from infected greenhouse-grown “Valencia” plants, which were tested PCR-positive for
<italic>Ca.</italic>
L. asiaticus and demonstrated symptoms for HLB. Plants similarly inoculated but with disease-free tissue pieces obtained from healthy greenhouse-grown “Valencia” plants were used as controls. Plants were pruned immediately after graft-inoculation to promote new leaf growth and HLB disease development. The inoculated plants were randomized periodically on the greenhouse bench to minimize the effect of environment on their defense responses to
<italic>Ca.</italic>
L. asiaticus.</p>
</sec>
<sec>
<title>PCR-DETECTION OF
<italic>Ca.</italic>
L. asiaticus IN CITRUS</title>
<p>
<italic>Ca.</italic>
L. asiaticus-infected “Valencia” plants began to show typical HLB symptoms, yellowing and blotchy mottling around 11 weeks after inoculation (wai), which progressed more severely later. The symptomatic leaves were collected at 11 and 16 wai and extracted for DNA followed by PCR-detection of
<italic>Ca.</italic>
L. asiaticus (
<xref ref-type="bibr" rid="B3">Albrecht and Bowman, 2012</xref>
). Specifically, 100 mg leaf tissue was ground for DNA extraction, using the Plant DNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. For detection of
<italic>Ca.</italic>
L. asiaticus, real-time PCR assays were performed using primers HLBas and HLBr and the probe HLBp as described (
<xref ref-type="bibr" rid="B37">Li et al., 2006</xref>
). Amplifications were performed over 40 cycles using an ABI 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA) and the QuantiTect Probe PCR Kit (Qiagen) according to the manufacturer’s instructions. All reactions were carried out in a 20-μl reaction volume using 5 μl DNA. Once a branch was confirmed positive for
<italic>Ca.</italic>
L. asiaticus, symptomatic leaves on the branch were harvested for further RNA and SA analyses.</p>
</sec>
<sec>
<title>RNA EXTRACTION AND ANALYSIS</title>
<p>Twenty-five-day-old
<italic>Arabidopsis</italic>
plants were harvested for RNA extraction and northern blotting as described (
<xref ref-type="bibr" rid="B51">Ng et al., 2011</xref>
). Radioactive probes were made by PCR with an antisense primer specific for a gene fragment in the presence of [32P] dCTP. Primers used for making the
<italic>CsNDR1</italic>
probe were CsNDR1-F1 (ATGTCAGAAAACGCCGGTG) and CsNDR1-R1 (TTAAGCAAAAATCAAGACAAAAAAATAC). Primers for the
<italic>PR1</italic>
and
<italic>18S</italic>
<italic>rRNA</italic>
probes were described previously (
<xref ref-type="bibr" rid="B51">Ng et al., 2011</xref>
).</p>
<p>Fully expanded leaves from
<italic>Ca.</italic>
L. asiaticus-infected “Valencia” plants showing HLB symptoms were collected 16 wai. One gram leaf tissue was ground in liquid nitrogen with a mortar and pestle and resuspended in 10 ml guanidinium isothiocyanate buffer (
<xref ref-type="bibr" rid="B14">Chomczynski and Sacci, 1987</xref>
). Total RNA was extracted as previously described (
<xref ref-type="bibr" rid="B61">Strommer et al., 1993</xref>
) with slight modifications. Phenol/chloroform/isoamyl alcohol (25:24:1) extraction was followed by two extractions with chloroform/isoamyl alcohol and precipitation of RNA with isopropanol at -20°C overnight. RNA was pelleted by centrifugation at 10,000
<italic>g</italic>
and 4°C for 1 h, resuspended in 5 ml water and precipitated overnight at 0°C with an equal volume of 8 M LiCl. After centrifugation at 10,000
<italic>g</italic>
and 4°C for 1 h, RNA was washed twice with 70% ethanol, air-dried, and dissolved in 500 μl of water. RNA was further purified, using the RNeasy
<sup>®</sup>
MinElute Cleanup kit (Qiagen) according to the manufacturer’s instructions. Total RNA was DNase-treated using the TURBO DNA-
<italic>free</italic>
-Kit
<sup> TM</sup>
(Ambion, Austin, TX, USA) according to the manufacturer’s instructions.</p>
<p>Quantitative reverse transcription real-time PCR (qRT-PCR) was performed using an ABI 7500 real-time PCR system (Applied Biosystems) and the QuantiTect SYBR Green RT-PCR Kit (Qiagen) according to the manufacturer’s instructions. Sixty nanograms of DNase-treated RNA were used in a total volume of 20 μl. For detection of
<italic>CsNDR1</italic>
transcripts, forward primer 5′-TGCTGCAGCTTCATCTTCAC-3′ and reverse primer 5′-TGTCGTGTTGTTTCGGTTGT-3′ were used. For detection of
<italic>18S rRNA</italic>
transcripts, forward primer 5′-GCTTAGGCCAAGGAAGTTTG-3′ and reverse primer 5′-TCTATCCCCATCACGATGAA-3′ were used. Melting curve analysis was performed to ensure amplification of a single product and the absence of primer-dimers. For relative quantification of gene expression, the 2
<sup>-</sup>
<sup>Δ</sup>
<sup>Δ</sup>
<sup>CT</sup>
method was applied as previously described (
<xref ref-type="bibr" rid="B39">Livak and Schmittgen, 2001</xref>
), using cycle threshold (Ct) values of
<italic>18S rRNA</italic>
for normalization.</p>
</sec>
<sec>
<title>cDNA AMPLIFICATION, DNA CONSTRUCTION, AND PLANT TRANSFORMATION</title>
<p>To obtain the full-length
<italic>CsNDR1</italic>
cDNA sequence, we used the SMARTer
<sup> TM</sup>
RACE cDNA Amplification Kit (Clontech) to make a cDNA library from RNA extracted from
<italic>Ca.</italic>
L. asiaticus-infected 15-month-old “Valencia” plants. Nested primers, NDR1-5R-P1 (CACTTTCTGATCGGTCAGCGCAG) and NDR1-5R-P2 (CAATCACGGACGTGCCGATG), were used to amplify the 5′ end missing sequence while NDR1-3R-P1 (CATCGGCACGTCCGTGATTG) and NDR1-3R-P2 (CTGCGCTGACCGATCAGAAAGTG) were used to amplify the 3′ end missing sequence. The amplified fragments were cloned in the pJET cloning vector, using the CloneJET
<sup> TM</sup>
PCR Cloning Kit (Thermo Scientific), and sequenced to obtain the full-length cDNA sequence. The full-length
<italic>CsNDR1</italic>
cDNA was further amplified from the library with NDR1-F1 (ATGTCAGAAAACGCCGGTG) and NDR1-R1 (TTAAGCAAAAATCAAGACAAAAAAATAC) and cloned into the
<italic>pJET</italic>
vector. At least 10 individual colonies were prepared for DNA and analyzed by sequencing. The sequence with fewer polymorphisms, compared with the reference sequence, and a correct open reading frame was used as the template for further cloning into the binary vector
<italic>pBINplusARS</italic>
under the control of the
<italic>CAMV 35s</italic>
promoter. The construct was confirmed by sequencing and transferred to
<italic>Agrobacterium tumefaciens</italic>
for
<italic>ndr1-1</italic>
transformation, using the floral dipping method (
<xref ref-type="bibr" rid="B16">Clough and Bent, 1998</xref>
). T
<sub>0</sub>
seeds were selected for T
<sub>1</sub>
plants on MS plates containing kanamycin, resistance to which was conferred by the binary vector. T
<sub>1</sub>
transgenic plants were collected for seeds, which were further selected for homozygous T
<sub>2</sub>
plants.</p>
</sec>
<sec>
<title>ION LEAKAGE MEASUREMENT</title>
<p>Leaves of 25-day-old
<italic>Arabidopsis</italic>
plants were infiltrated with a bacterial suspension
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.1) with a blunt-end syringe, using 10 mM MgSO
<sub>4</sub>
treatment as a control. At 0, 4, and 7 h post-inoculation, five leaf disks, cut with a 6-mm core borer, were collected, washed in de-ionized water, and placed in a 15-ml tube with 5 ml of de-ionized water. Triplicate tubes for each sample were gently shaken for 15 min followed by the measurement of solution conductivity, using an electrical conductivity meter (The London Company, Welwyn International Inc. Cleveland, OH, USA). Each tube was measured three times to derive average conductivity.</p>
</sec>
<sec>
<title>SA MEASUREMENT</title>
<p>Free and total SA (glucosylated SA) were extracted from 25-day-old Arabidopsis plants (
<xref ref-type="bibr" rid="B51">Ng et al., 2011</xref>
;
<xref ref-type="bibr" rid="B67">Wang et al., 2011a</xref>
). The same protocol was used to extract SA from leaves of
<italic>Ca.</italic>
L. asiaticus-positive “Valencia” plants that demonstrated HLB symptoms. SA separation and detection were conducted with a high-performance liquid chromatography (HPLC) instrument as previously described (
<xref ref-type="bibr" rid="B51">Ng et al., 2011</xref>
;
<xref ref-type="bibr" rid="B67">Wang et al., 2011a</xref>
).</p>
</sec>
</sec>
<sec>
<title>RESULTS</title>
<sec>
<title>IDENTIFICATION OF A CITRUS NDR1 ORTHOLOG</title>
<p>Since NDR1 plays a critical role in
<italic>Arabidopsis</italic>
defense, we set out to identify the citrus ortholog and investigate its role in defense regulation. In
<italic>Arabidopsis</italic>
, NDR1 belongs to a large protein family with over 40 members, named NDR1/HIN1-like (NHL) proteins (
<xref ref-type="bibr" rid="B21">Dörmanna et al., 2000</xref>
). BLAST searching of the sequence database of
<italic>Citrus sinensis</italic>
<sup>
<xref ref-type="fn" rid="fn03">3</xref>
</sup>
with the NDR1 protein sequence revealed a citrus protein (CsNDR1; orange1.1g028712m) with the highest similarity to NDR1 (the
<italic>E</italic>
-value is 2.4e
<sup>-</sup>
<sup>53</sup>
) and three other top hits with
<italic>E</italic>
-values below 1.0 e
<sup>-</sup>
<sup>5</sup>
. We further used CsNDR1 as the query to search the
<italic>Arabidopsis</italic>
protein database and retrieved sequences of NDR1 and 14 NHL proteins as the top hits. To determine the extent of similarity among these proteins, phylogenetic analysis was conducted, using the MEGA program (version 5.0;
<xref ref-type="bibr" rid="B62">Tamura et al., 2011</xref>
).
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
shows that CsNDR1 is in the same cluster with NDR1 with 99% bootstrap support. Two other citrus NHL proteins (orange1.1g041808m and orange1.1g08713m) are also in the same cluster with NDR1 but with lower confidence levels in bootstrap support. Thus, bioinformatic analysis suggests that CsNDR1 is an ortholog of NDR1.</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>Neighbor-joining phylogenetic tree to show relationship among NDR1 homologs from
<italic>Arabidopsis</italic>
and citrus.</bold>
The protein sequences were retrieved from BLAST search of
<italic>Citrus sinensis</italic>
protein database with NDR1 sequence as a query or from BLAST search of
<italic>Arabidopsis</italic>
protein database with CsNDR1 sequence as a query, using an
<italic>E</italic>
-value cutoff e
<sup>-</sup>
<sup>4</sup>
. The MEGA program (version 5.05) was used to construct the tree. Protein sequences of the indicated genes were aligned with the ClustalW method and the tree was generated with the neighbor-joining method, using 1000 bootstrap replications. Numbers on the tree indicate bootstrap support (values <50% not shown). Branch lengths were drawn to scale; size bar represents number of amino acid substitutions per site. RIN4 protein sequence was used as an outgroup to root the tree.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g001"></graphic>
</fig>
</sec>
<sec>
<title>ECTOPIC EXPRESSION OF
<italic>CsNDR1</italic>
COMPLEMENTS
<italic>Arabidopsis ndr1-1</italic>
MUTANT</title>
<p>To test if
<italic>CsNDR1</italic>
shares conserved function with its
<italic>Arabidopsis</italic>
correspondence, we used a genetic complementation approach. The full-length
<italic>CsNDR1</italic>
cDNA was amplified via RT-PCR from a cDNA library made from
<italic>Ca.</italic>
L. asiaticus-infected “Valencia” plants and was cloned initially to the pJET vector and then to the binary vector
<italic>pBINplusARS</italic>
under the control of the CAMV 35s promoter. The
<italic>CsNDR1</italic>
/
<italic>pBINplusARS</italic>
construct was used to transform
<italic>ndr1-1</italic>
via the standard floral dipping method (
<xref ref-type="bibr" rid="B16">Clough and Bent, 1998</xref>
). The presence of the transgene was confirmed by PCR with gene-specific primers. Initial infection of the T
<sub>1</sub>
transgenic plants with a virulent strain
<italic>P. syringae</italic>
pv.
<italic>maculicola</italic>
ES4326 (
<italic>Pma</italic>
) indicated that some of the transgenic plants were more resistant than
<italic>ndr1-1</italic>
(data not shown)
<italic>.</italic>
We further isolated homozygous plants for eight independently transformed lines (
<italic>ndr1-1</italic>
+
<italic>CsNDR1)</italic>
. Infection of these plants with
<italic>Pma</italic>
showed that all lines were more resistant than
<italic>ndr1-1</italic>
and some were even more resistant than Col-0 (
<bold>Figure
<xref ref-type="fig" rid="F2">2A</xref>
</bold>
). Total RNA was isolated from these plants and northern blotting indicated that the level of disease resistance in some transgenic plants was correlated with the degree of transgene expression (
<bold>Figure
<xref ref-type="fig" rid="F2">2B</xref>
</bold>
). Thus, our results suggest that
<italic>CsNDR1</italic>
positively regulates
<italic>Arabidopsis</italic>
defense.</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>
<bold>
<italic>CsNDR1</italic>
rescues enhanced disease susceptibility conferred by
<italic>Arabidopsis</italic>
<italic>ndr1-1 </italic>
to a virulent
<italic>P. syringae </italic>
strain. (A)</bold>
Bacterial growth assay. Twenty-five-day-old plants were infected with the virulent strain
<italic>P. syringae </italic>
pv.
<italic>maculicola</italic>
ES4326 (
<italic>Pma</italic>
; OD
<sub>600</sub>
= 0.0001). Bacterial growth was assessed 3 days after infection. Data represent the average of bacterial numbers in six samples ± standard error. Statistical analysis was performed with log transformed data, using one-way analysis of variance (ANOVA) Fisher’s protected least significant difference (PLSD) tests (StatView 5.0.1). Different letters indicate significant difference among the samples (
<italic>P</italic>
< 0.05).
<bold>(B)</bold>
Expression analysis of transgenic plants carrying
<italic>CsNDR1</italic>
. Total RNA was extracted from 25-day-old plants and analyzed by northern blotting. A probe specific to
<italic>CsNDR1</italic>
was used to detect expression of the transgene. The
<italic>18S rRNA</italic>
probe was used to indicate equal loading in the samples. These experiments were repeated two times with similar results.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g002"></graphic>
</fig>
<p>The
<italic>Arabidopsis</italic>
RPS2 is a CC–NBS–LRR type R protein. When recognizing the avirulent strain
<italic>Pma avrRpt2</italic>
, RPS2 activates strong defense responses. Such defense activation requires the function of NDR1 and sometimes leads to HR, a rapid programed cell death in the infected region (
<xref ref-type="bibr" rid="B1">Aarts et al., 1998</xref>
). We found that all transgenic plants showed enhanced disease resistance to
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.0004), compared with
<italic>ndr1-1</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F3">3A</xref>
</bold>
). In addition, the
<italic>ndr1-1</italic>
mutant showed compromised HR in response to a high dose of
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.1), as indicated by the lack of leaf collapse (
<bold>Figure
<xref ref-type="fig" rid="F3">3B</xref>
</bold>
, top panel;
<xref ref-type="bibr" rid="B10">Century et al., 1995</xref>
). We found that all transgenic plants showed partial to full rescue of HR-defect of
<italic>ndr1-1</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F3">3B</xref>
</bold>
, bottom panel).</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>
<bold>
<italic>CsNDR1</italic>
rescues enhance disease susceptibility and HR-defect conferred by
<italic>ndr1-1 </italic>
in response to
<italic>Pma avrRpt2</italic>
. (A)</bold>
Bacterial growth assay. Twenty-five-day-old plants were infected with
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.0004). Bacterial growth was assessed 3 days after infection. Data represent the average of bacterial numbers in six samples ± standard error. Statistical analysis was performed with log transformed data, using one-way ANOVA Fisher’s PLSD tests (StatView 5.0.1). Different letters indicate significant difference among the samples (
<italic>P</italic>
< 0.05).
<bold>(B)</bold>
HR test. Half leaves of the fourth to seventh leaves of 25-day-old plants were infiltrated with
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.1) and scored for the HR symptoms 16 h post-infection. At least 16 leaves were infected in each sample.
<italic>Top panel</italic>
: picture of infected leaves. The arrowheads indicate leaf collapse, a typical HR symptom, in Col-0 and a representative complemented plant (line 9) but not in
<italic>ndr1-1</italic>
.
<italic>Bottom panel</italic>
: the percentage of the infected leaves of each genotype that showed HR. These experiments were repeated two times with similar results.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g003"></graphic>
</fig>
<p>Interestingly, line 15 that showed the highest level of
<italic>CsNDR1</italic>
expression, had a low frequency of leaf collapse in the HR assay, albeit still more than the
<italic>ndr1-1</italic>
mutant. We also noticed that this line is smaller than other lines (
<bold>Figure
<xref ref-type="fig" rid="F4">4A</xref>
</bold>
). Thus we suspected that the small leaf size might obscure the HR scoring. To better quantify the HR cell death, we performed ion leakage measurement with this line and another line (#9) that showed medium
<italic>CsNDR1</italic>
expression (
<bold>Figure
<xref ref-type="fig" rid="F2">2B</xref>
</bold>
). When challenged with
<italic>Pma avrRpt2 </italic>
(OD
<sub>600</sub>
= 0.1),
<italic>ndr1-1</italic>
had the lowest level of ion leakage (
<bold>Figure
<xref ref-type="fig" rid="F4">4B</xref>
</bold>
;
<xref ref-type="bibr" rid="B71">Zhang et al., 2004</xref>
), consistent with its HR-deficit. The ion leakage level was highest in line 15 and medium in line 9, compared with Col-0. Together disease resistance and HR assays suggest that
<italic>CsNDR1</italic>
functions similarly as
<italic>Arabidopsis</italic>
<italic>NDR1</italic>
in both basal and resistance protein-mediated defense.</p>
<fig id="F4" position="float">
<label>FIGURE 4</label>
<caption>
<p>
<bold>
<italic>CsNDR1</italic>
overexpression leads to increased ion leakage, SA accumulation, and
<italic>PR1</italic>
expression. (A)</bold>
Picture of 25-day-old plants. Other transgenic lines resemble Col-0 (not shown).
<bold>(B)</bold>
Ion leakage measurement. The fourth to seventh leaves of 25-day-old plants were infiltrated with
<italic>Pma avrRpt2</italic>
(OD
<sub>600</sub>
= 0.1) and collected at the indicated times post-infection for ion leakage measurement. The data represent average of triplicate samples, each of which contained five individual leaf disks of 6 mm in diameter.
<bold>(C)</bold>
SA quantitation. Twenty-five-day-old plants were harvested for SA extraction followed by HPLC analysis. Asterisks indicate significant difference between the samples and Col-0 (
<italic>P</italic>
< 0.05;
<italic>n</italic>
= 3).
<bold>(D)</bold>
Northern blotting. DNA fragments specific to
<italic>PR1</italic>
and
<italic>18s rRNA</italic>
, respectively, were used to probe blots containing RNA samples from Col-0,
<italic>ndr1-1</italic>
, and transgenic lines 9 and 15. These experiments were repeated two times with similar results.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g004"></graphic>
</fig>
</sec>
<sec>
<title>ECTOPIC EXPRESSION OF
<italic>CsNDR1</italic>
LEADS TO ACTIVATION OF SA-MEDIATED DEFENSE AND BROAD-SPECTRUM DISEASE RESISTANCE</title>
<p>Salicylic acid is a key signaling molecule regulating defense pathways including basal defense, R gene-mediated resistance, and systemic acquired resistance (
<xref ref-type="bibr" rid="B22">Durrant and Dong, 2004</xref>
;
<xref ref-type="bibr" rid="B40">Lu, 2009</xref>
). To test whether SA-mediated defense is activated in the transgenic plants, we quantified SA levels. We found that line 15 but not line 9 accumulated much higher levels of both free and total SA (glucosylated SA;
<bold>Figure
<xref ref-type="fig" rid="F4">4C</xref>
</bold>
). Consistent with its high SA levels, line 15 also showed higher expression of the SA marker gene
<italic>PR1</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F4">4D</xref>
</bold>
). These results suggest that overexpression of
<italic>CsNDR1</italic>
to a certain level activates SA signaling.</p>
<p>To further investigate how overexpressing
<italic>CsNDR1</italic>
affects disease resistance, we challenged line 9 and 15 with additional
<italic>P. syringae</italic>
strains. Ectopic expression of
<italic>CsNDR1</italic>
complemented susceptibility conferred by
<italic>ndr1-1</italic>
to the virulent strain
<italic>P. syringae</italic>
pv.
<italic>tomato</italic>
DC3000 (
<italic>Pto</italic>
;
<bold>Figure
<xref ref-type="fig" rid="F5">5A</xref>
</bold>
, left). Line 15 is also more resistant to the isogenic avirulent strain
<italic>Pto avrRps4</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F5">5A</xref>
</bold>
, right), which is recognized by RPS4 (a TIR–NBS–LRR type of R protein) independently of NDR1 (
<xref ref-type="bibr" rid="B1">Aarts et al., 1998</xref>
). Thus, these results indicate that ectopic expression of
<italic>CsNDR1</italic>
leads to activation of resistance to a pathogen that the endogenous gene otherwise does not have an effect on. In addition, we found that line 9 and 15 showed increased resistance to the virulent oomycete pathogen
<italic>Hpa</italic>
Noco2, compared with
<italic>ndr1-1</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F5">5B</xref>
</bold>
). Thus, overexpressing
<italic>CsNDR1</italic>
could lead to broad-spectrum disease resistance.</p>
<fig id="F5" position="float">
<label>FIGURE 5</label>
<caption>
<p>
<bold>
<italic>CsNDR1 </italic>
confers broad-spectrum disease resistance. (A)</bold>
Bacterial growth assay. Twenty-five-day-old plants were infected with
<italic>Pto</italic>
(left panel; OD
<sub>600</sub>
= 0.0002) or
<italic>Pto avrRps4</italic>
(right panel; OD
<sub>600</sub>
= 0.0004). Bacterial growth was assessed 3 days after infection. Data represent the average of bacterial numbers in six samples ± standard error.
<bold>(B)</bold>
<italic>Hpa</italic>
sporangiophore measurement. Seven-day-old seedlings were spray-infected with
<italic>Hpa</italic>
Noco2 (5 × 10
<sup>4</sup>
spores/ml in water)
<italic>.</italic>
Statistical analysis was performed with one-way ANOVA Fisher’s PLSD tests (StatView 5.0.1). Different letters indicate significant difference among the samples (
<italic>P</italic>
< 0.05). These experiments were repeated twice with similar results.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g005"></graphic>
</fig>
</sec>
<sec>
<title>SA ACCUMULATION AND EXPRESSION OF
<italic>CsNDR1</italic>
ARE MODESTLY INDUCED BY
<italic>Ca</italic>
. L. asiaticus INFECTION</title>
<p>To see how SA signaling is affected by HLB in citrus, we infected 15-month-old “Valencia” plants with
<italic>Ca.</italic>
L. asiaticus, using mock-treated plants as a control. We began to observe at 11 wai HLB symptoms, chlorosis and/or blotchy mottling of leaves, which increased in severity by 16 wai (
<bold>Figure
<xref ref-type="fig" rid="F6">6A</xref>
</bold>
). We did qPCR with the symptomatic and control leaves, using primers specific to
<italic>Ca.</italic>
L. asiaticus. The average Ct values of the symptomatic leaves were 21.8 at 11 wai and 20.7 at 16 wai. No
<italic>Ca.</italic>
L. asiaticus was detected in the control. Thus these symptomatic leaves were confirmed to be
<italic>Ca.</italic>
L. asiaticus positive. The symptomatic leaves were further collected for SA measurement and RNA analysis. Compared with the mock control, the symptomatic leaves from infected plants had about twofold more total SA levels (
<bold>Figure
<xref ref-type="fig" rid="F6">6B</xref>
</bold>
). Similarly, expression of
<italic>CsNDR1</italic>
was also induced about twofold more in the infected leaves (
<bold>Figure
<xref ref-type="fig" rid="F6">6C</xref>
</bold>
). These data suggest that SA and/or
<italic>CsNDR1</italic>
-mediated signaling are activated modestly upon
<italic>Ca.</italic>
L. asiaticus infection.</p>
<fig id="F6" position="float">
<label>FIGURE 6</label>
<caption>
<p>
<bold>
<italic>Ca.</italic>
L. asiaticus infection induces modest increase of SA accumulation and
<italic>CsNDR1</italic>
expression in citrus. Fifteen-month-old “Valencia” plants were infected with
<italic>Ca.</italic>
L. asiaticus or mock treated. (A)</bold>
Photo of leaves collected at 16 wai. Note the infected leaves showing chlorosis and blotchy mottling, typical HLB symptoms.
<bold>(B)</bold>
SA quantitation.
<bold>(C)</bold>
qRT-PCR analysis.
<italic>CsNDR1</italic>
expression was normalized to the expression of
<italic>18S rRNA</italic>
and is presented as mean fold differences relative to control. Results are based on six biological replications. Statistical analysis was performed with one-way ANOVA Fisher’s PLSD tests (StatView 5.0.1). Asterisks indicate significant different between the samples (
<italic>P</italic>
< 0.05). These experiments were repeated two times with similar results.</p>
</caption>
<graphic xlink:href="fpls-04-00157-g006"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>DISCUSSION</title>
<p>In this study, we presented bioinformatic and experimental evidence suggesting that the citrus gene
<italic>CsNDR1</italic>
is an
<italic>Arabidopsis</italic>
<italic>NDR1</italic>
ortholog. Overexpression of
<italic>CsNDR1</italic>
in
<italic>Arabidopsis</italic>
rescues
<italic>ndr1-1</italic>
-conferred susceptibility to
<italic>P. syringae </italic>
infection and leads to broad-spectrum disease resistance to the oomycete pathogen
<italic>Hpa</italic>
Noco2. We also found that both SA accumulation and
<italic>CsNDR1</italic>
expression are induced to modest levels in citrus upon infection with
<italic>Ca.</italic>
L. asiaticus, the agent associated with HLB. Our data suggest a possibility that manipulation of SA/
<italic>CsNDR1</italic>
-mediated defense may lead to enhanced resistance to HLB and other devastating diseases in citrus.</p>
<p>SA plays a critical role in regulating plant resistance against various pathogens. Broad-spectrum disease resistance has been successfully introduced into several economically important plants via manipulation of the SA pathway. Much of the previous studies have been focused on NPR1, a key SA signal transducer. For instance, overexpression of
<italic>Arabidopsis</italic>
NPR1 and/or its homologs from other plants confers resistance against diverse bacterial and fungal pathogens in
<italic>Arabidopsis</italic>
, apple, citrus, soybean, tomato, rice, and/or wheat (
<xref ref-type="bibr" rid="B24">Fitzgerald et al., 2004</xref>
;
<xref ref-type="bibr" rid="B36">Li et al., 2004</xref>
;
<xref ref-type="bibr" rid="B42">Makandar et al., 2006</xref>
;
<xref ref-type="bibr" rid="B45">Malnoy et al., 2007</xref>
;
<xref ref-type="bibr" rid="B56">Sandhu et al., 2009</xref>
;
<xref ref-type="bibr" rid="B72">Zhang et al., 2010</xref>
). These observations suggest that SA-mediated defense is conserved in monocots and dicots, and can be activated to against a range of pathogens (
<xref ref-type="bibr" rid="B8">Campbell et al., 2002</xref>
). Consistent with this notion, reports showed that exogenous application of SA agonists, such as benzothiadiazole and its commercial forms, acibenzolar-
<italic>S</italic>
-methyl (ASM, Actigard
<sup>®</sup>
, Syngenta Crop Protection, Inc.) and imidacloprid (Imid, Admire
<sup>®</sup>
, Bayer Crop Science), to citrus and other plants could induce defense marker gene expression and/or activate some protections of plants to a variety of viral, bacterial, and fungal pathogens (
<xref ref-type="bibr" rid="B8">Campbell et al., 2002</xref>
;
<xref ref-type="bibr" rid="B47">Maxson-Stein et al., 2002</xref>
;
<xref ref-type="bibr" rid="B18">Dekkers et al., 2004</xref>
;
<xref ref-type="bibr" rid="B25">Francis et al., 2009</xref>
;
<xref ref-type="bibr" rid="B29">Graham and Myers, 2009</xref>
).</p>
<p>
<italic>Arabidopsis</italic>
<italic>NDR1</italic>
is a positive SA regulator, which is known to be specifically required for defense activated by some CC–NBS–LRR R proteins but not by some TIR–NBS–LRR type of R proteins (
<xref ref-type="bibr" rid="B1">Aarts et al., 1998</xref>
;
<xref ref-type="bibr" rid="B17">Coppinger et al., 2004</xref>
). Although not much is known about R-avr recognition in many non-
<italic>Arabidopsis</italic>
plants, the fact that
<italic>NDR1</italic>
homologs widely exist in diverse plants (
<xref ref-type="bibr" rid="B35">Lee et al., 2006</xref>
;
<xref ref-type="bibr" rid="B15">Chong et al., 2008</xref>
;
<xref ref-type="bibr" rid="B7">Cacas et al., 2011</xref>
) suggests conserved defense signaling involving
<italic>NDR1</italic>
homologs. Recently a coffee
<italic>NDR1</italic>
homolog was shown to complement the
<italic>ndr1-1</italic>
mutant for its susceptibility to
<italic>P. syringae</italic>
strains (
<xref ref-type="bibr" rid="B7">Cacas et al., 2011</xref>
). Here we also showed a complementation of
<italic>ndr1-1</italic>
by
<italic>CsNDR1</italic>
. The transgenic plants showed varying levels of
<italic>CsNDR1</italic>
expression, which is not uncommon for transgenes (
<xref ref-type="bibr" rid="B41">Lu et al., 2003</xref>
). We noticed that there is a degree of correlation between the level of transgene expression and the level of disease resistance in some transgenic plants (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
). One line highly expressing
<italic>CsNDR1</italic>
(line 15) constitutively activates SA-mediated defense, associated with enhanced disease resistance to
<italic>Pto avrRps4</italic>
(that is not affected by the endogenous
<italic>Arabidopsis</italic>
NDR1) and to the oomycete isolate
<italic>Hpa Noco2</italic>
(
<bold>Figure
<xref ref-type="fig" rid="F5">5</xref>
</bold>
). It is known that signals induced by different R genes upon recognition of their cognate effectors from pathogens can converge at downstream steps, involving SA-mediated defense (
<xref ref-type="bibr" rid="B46">Martin et al., 2003</xref>
;
<xref ref-type="bibr" rid="B13">Chisholm et al., 2006</xref>
). Our data suggest that hyper-activation of one branch of R-gene pathways, such as the
<italic>CsNDR1</italic>
branch, could potentially activate SA signaling, leading to broad-spectrum disease resistance.</p>
<p>In
<italic>Arabidopsis</italic>
, both resistant and susceptible responses to pathogen infection are characterized by elevated SA accumulation and defense gene induction but with differences in the speed and amplitude of the responses (
<xref ref-type="bibr" rid="B74">Zhou et al., 1998</xref>
;
<xref ref-type="bibr" rid="B44">Maleck et al., 2000</xref>
;
<xref ref-type="bibr" rid="B63">Tao et al., 2003</xref>
;
<xref ref-type="bibr" rid="B60">Song et al., 2004</xref>
). Compared with a resistance response in
<italic>Arabidopsis</italic>
, induction of SA levels in citrus infected with
<italic>Ca.</italic>
L. asiaticus is quite small (
<bold>Figure
<xref ref-type="fig" rid="F6">6B</xref>
</bold>
). In addition, our gene expression data (
<bold>Figure
<xref ref-type="fig" rid="F6">6C</xref>
</bold>
) and microarray analyses (
<xref ref-type="bibr" rid="B2">Albrecht and Bowman, 2008</xref>
,
<xref ref-type="bibr" rid="B3">2012</xref>
) indicate that the spectrum and intensity of defense genes induced by
<italic>Ca.</italic>
L. asiaticus are also quite limited. These observations suggest that when infected by
<italic>Ca.</italic>
L. asiaticus, citrus plants do not activate considerable host defense. This can be explained with at least two possible reasons: (1) a lack of recognition of effector proteins from
<italic>Ca.</italic>
L. asiaticus by citrus; and/or (2) a suppression of host defense by
<italic>Ca.</italic>
L. asiaticus. Thus, the interaction between citrus and
<italic>Ca.</italic>
L. asiaticus can be viewed as a compatible interaction, leading to disease symptom development in the host. The relatively low level of host defense in response to
<italic>Ca.</italic>
L. asiaticus also suggests a possibility that HLB resistance can be achieved if we could manipulate the host to enhance its defense levels.</p>
<p> Genetic engineering is a particularly attractive approach to introduce disease resistance traits into citrus because citrus has long juvenile growth – it typically takes 5–15 years for a citrus plant to flower. In addition, most commercial citrus cultivars produce polyembryonic seeds asexually, which complicates the process of introducing novel traits into citrus via traditional breeding (
<xref ref-type="bibr" rid="B33">Koltunow et al., 1996</xref>
). Recently the
<italic>Arabidopsis</italic>
<italic>NPR1</italic>
gene was shown to increase resistance to the canker disease when overexpressed in citrus (
<xref ref-type="bibr" rid="B72">Zhang et al., 2010</xref>
). Thus,
<italic>CsNDR1</italic>
, citrus
<italic>NPR1</italic>
, and other citrus homologs of SA regulatory genes are ideal candidates that can be genetically manipulated to increase their expression in order to test if these genes confer resistance to HLB in citrus. Engineering such genes could yield citrus plants with enhanced disease resistance that are also more acceptable to the consumers than those engineered with similar genes from other plants. Moreover, the newly released citrus genome sequence has greatly facilitated the identification of additional citrus defense genes. We anticipate that large-scale functional genomic analysis could uncover defense genes that play critical roles in resistance against HLB, citrus canker, and/or other emerging diseases challenging the citrus industry worldwide.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>We thank members in the Lu laboratory for assistance with this work. We thank Dr. Kevin Omland for assistance in phylogenetic analysis, Dr. William LaCourse for sharing his HPLC instrument, and Mr. Tim Ford for taking pictures for this publication. This work was supported by a grant from Citrus Research and Development Foundation to Hua Lu and a scholarship from China Scholarship Council to Chong Zhang.</p>
</ack>
<fn-group>
<fn id="fn01">
<label>1</label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://http://blast.ncbi.nlm.nih.gov/Blast.cgi">http://blast.ncbi.nlm.nih.gov/Blast.cgi</ext-link>
</p>
</fn>
<fn id="fn02">
<label>2</label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://http://www.phytozome.net/search.php?method=Org_Csinensis">http://www.phytozome.net/search.php?method=Org_Csinensis</ext-link>
</p>
</fn>
<fn id="fn03">
<label>3</label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://http://www.phytozome.net">http://www.phytozome.net</ext-link>
</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aarts</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Holub</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>J. E.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Different requirements for
<italic>EDS1</italic>
and
<italic>NDR1</italic>
by disease resistance genes define at least two
<italic>R</italic>
gene-mediated signaling pathways in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>95</volume>
<fpage>10306</fpage>
<lpage>10311</lpage>
<pub-id pub-id-type="pmid">9707643</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrecht</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Gene expression in
<italic>Citrus sinensis</italic>
(L.) Osbeck following infection with the bacterial pathogen
<italic>Candidatus</italic>
Liberibacter asiaticus causing Huanglongbing in Florida.</article-title>
<source>
<italic>Plant Sci.</italic>
</source>
<volume>175</volume>
<fpage>291</fpage>
<lpage>306</lpage>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrecht</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>K. D.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Transcriptional response of susceptible and tolerant citrus to infection with
<italic>Candidatus</italic>
Liberibacter asiaticus.</article-title>
<source>
<italic>Plant Sci.</italic>
</source>
<volume>185–186</volume>
<fpage>118</fpage>
<lpage>130</lpage>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bittner-Eddy</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Beynon</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>The
<italic>Arabidopsis</italic>
downy mildew resistance gene,
<italic>RPP13-Nd</italic>
, functions independently of
<italic>NDR1</italic>
and
<italic>EDS1</italic>
and does not require the accumulation of salicylic acid.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>14</volume>
<fpage>416</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="pmid">11277440</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bove</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Huanglongbing: a destructive, newly-emerging, century-old disease of citrus.</article-title>
<source>
<italic>J. Plant Pathol.</italic>
</source>
<volume>88</volume>
<fpage>7</fpage>
<lpage>37</lpage>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brlansky</surname>
<given-names>R. H.</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Citrus Huanglongbing: understanding the vector–pathogen interaction for disease management.</article-title>
<source>
<italic>Plant Health Progr.</italic>
</source>
<pub-id pub-id-type="doi">10.1094/APSnetFeature-2007-1207(publishedonline).</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cacas</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Petitot</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Bernier</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Estevan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Conejero</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mongrand</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2011</year>
).
<article-title>Identification and characterization of the Non-race specific Disease Resistance 1 (NDR1) orthologous protein in coffee.</article-title>
<source>
<italic>BMC Plant Biol. </italic>
</source>
<volume>11</volume>
:
<issue>144</issue>
<pub-id pub-id-type="doi">10.1186/1471-2229-11-144</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campbell</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Ronald</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Engineering pathogen resistance in crop plants.</article-title>
<source>
<italic>Transgenic Res.</italic>
</source>
<volume>11</volume>
<fpage>599</fpage>
<lpage>613</lpage>
<pub-id pub-id-type="pmid">12509135</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Glazebrook</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Volko</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>The
<italic>Arabidopsis NPR1</italic>
gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>88</volume>
<fpage>57</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">9019406</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Century</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Holub</surname>
<given-names>E. B.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>NDR1, a locus of
<italic>Arabidopsis thaliana</italic>
that is required for disease resistance to both a bacterial and a fungal pathogen.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>92</volume>
<fpage>6597</fpage>
<lpage>6601</lpage>
<pub-id pub-id-type="pmid">11607554</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Century</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Repetti</surname>
<given-names>P. P.</given-names>
</name>
<name>
<surname>Dahlbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Holub</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>NDR1, a pathogen-induced component required for
<italic>Arabidopsis</italic>
disease resistance.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>278</volume>
<fpage>1963</fpage>
<lpage>1965</lpage>
<pub-id pub-id-type="pmid">9395402</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chern</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Yadav</surname>
<given-names>R. C.</given-names>
</name>
<name>
<surname>Canlas</surname>
<given-names>P. E.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ronald</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>27</volume>
<fpage>101</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="pmid">11489188</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chisholm</surname>
<given-names>S. T.</given-names>
</name>
<name>
<surname>Coaker</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Host–microbe interactions: shaping the evolution of the plant immune response.</article-title>
<source>
<italic>Cell</italic>
</source>
<volume>124</volume>
<fpage>803</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="pmid">16497589</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chomczynski</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sacci</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>1987</year>
).
<article-title>Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction.</article-title>
<source>
<italic>Anal. Biochem.</italic>
</source>
<volume>162</volume>
<fpage>156</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="pmid">2440339</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Le Hananff</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bertsch</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Identification, expression analysis, and characterization of defense and signaling genes in
<italic>Vitis vinifera</italic>
.</article-title>
<source>
<italic>Plant Physiol. Biochem.</italic>
</source>
<volume>46</volume>
<fpage>469</fpage>
<lpage>481</lpage>
<pub-id pub-id-type="pmid">17988883</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clough</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Bent</surname>
<given-names>A. F.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Floral dip: a simplified method for
<italic>Agrobacterium</italic>
-mediated transformation of
<italic>Arabidopsis thaliana</italic>
.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>16</volume>
<fpage>735</fpage>
<lpage>743</lpage>
<pub-id pub-id-type="pmid">10069079</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coppinger</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Repetti</surname>
<given-names>P. P.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dahlbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mehlert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Staskawicz</surname>
<given-names>B. J.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in
<italic>Arabidopsis thaliana</italic>
.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>40</volume>
<fpage>225</fpage>
<lpage>237</lpage>
<pub-id pub-id-type="pmid">15447649</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dekkers</surname>
<given-names>M. G. H.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Cubero</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Colburn</surname>
<given-names>G. C.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Evaluation of chemical inducers and PR protein reporters for induced systemic resistance to citrus bacterial diseases.</article-title>
<source>
<italic>Phytophathology</italic>
</source>
<volume>S25</volume>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>NPR1, all things considered.</article-title>
<source>
<italic>Curr. Opin. Plant. Biol.</italic>
</source>
<volume>7</volume>
<fpage>547</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="pmid">15337097</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dormann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hoffman-Benning</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Balbo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Benning</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Isolation and characterization of an
<italic>Arabidopsis</italic>
mutant deficient in the thylakoid lipid digalactosyl diacylglycerol.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>7</volume>
<fpage>1801</fpage>
<lpage>1810</lpage>
<pub-id pub-id-type="pmid">8535135</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dörmanna</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gopalanb</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Benning</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>A gene family in
<italic>Arabidopsis thaliana</italic>
with sequence similarity to
<italic>NDR1</italic>
and
<italic>HIN1</italic>
.</article-title>
<source>
<italic>Plant Physiol. Biochem.</italic>
</source>
<volume>38</volume>
<fpage>789</fpage>
<lpage>796</lpage>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durrant</surname>
<given-names>W. E.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Systemic acquired resistance.</article-title>
<source>
<italic>Annu. Rev. Phytopathol.</italic>
</source>
<volume>42</volume>
<fpage>185</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">15283665</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>L. N.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>J. E.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>EDS1, an essential component of
<italic>R</italic>
gene-mediated disease resistance in
<italic>Arabidopsis</italic>
has homology to eukaryotic lipases.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>96</volume>
<fpage>3292</fpage>
<lpage>3297</lpage>
<pub-id pub-id-type="pmid">10077677</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fitzgerald</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Chern</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Navarre</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ronald</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Overexpression of (
<italic>At</italic>
)
<italic>NPR1</italic>
in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>17</volume>
<fpage>140</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="pmid">14964528</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Francis</surname>
<given-names>M. I.</given-names>
</name>
<name>
<surname>Redondo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>J. H.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Soil application of imidacloprid and related SAR inducing compounds produces effective and persistent control of citrus canker.</article-title>
<source>
<italic>Eur. J. Plant Pathol.</italic>
</source>
<volume>124</volume>
<fpage>283</fpage>
<lpage>292</lpage>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Winterhagen</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an
<italic>Arabidopsis eds1</italic>
mutant.</article-title>
<source>
<italic>Planta</italic>
</source>
<volume>231</volume>
<fpage>1037</fpage>
<lpage>1047</lpage>
<pub-id pub-id-type="pmid">20145949</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gaskalla</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>
<italic>Comprehensive Report on Citrus Canker Eradication Program in Florida Through 14 January 2006 Revised</italic>
.</article-title>
<publisher-loc>Tallahassee, FL</publisher-loc>
:
<publisher-name>Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 25 p</publisher-name>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gottwald</surname>
<given-names>T. R.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Citrus canker and citrus huanglongbing, two exotic bacterial diseases threatening the citrus industries of the western hemisphere.</article-title>
<source>
<italic>Outlooks Pest Manage.</italic>
</source>
<volume>18</volume>
<fpage>274</fpage>
<lpage>279</lpage>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Soil drenches of imidacloprid, thiamethoxam and acibenzolar-S-methyl for induction of SAR to control citrus canker in young citrus trees.</article-title>
<source>
<italic>Phytopathology</italic>
</source>
<volume>99</volume>
<issue>S46</issue>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond-Kosack</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Resistance gene-dependent plant defense responses.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>8</volume>
<fpage>1773</fpage>
<lpage>1791</lpage>
<pub-id pub-id-type="pmid">8914325</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ichinose</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miyazi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsuhira</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sadoyama</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>H. T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Unreliable pesticide control of the vector psyllid
<italic>Diaphorina citri</italic>
(Hemiptera: Psyllidae) for the reduction of microorganism disease transmission.</article-title>
<source>
<italic>J. Environ. Sci. Health B</italic>
</source>
<volume>45</volume>
<fpage>466</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="pmid">20512737</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knepper</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Savory</surname>
<given-names>E. A.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>
<italic>Arabidopsis</italic>
NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>156</volume>
<fpage>286</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="pmid">21398259</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koltunow</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Hidaka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>S. P.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Polyembryony in citrus accumulation of seed storage proteins in seeds and in embryos cultured
<italic>in vitro</italic>
.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<fpage>599</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="pmid">8742336</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>M. W.</given-names>
</name>
<name>
<surname>Jelenska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>
<italic>Arabidopsis</italic>
proteins important for modulating defense responses to
<italic>Pseudomonas syringae</italic>
that secrete HopW1-1.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>54</volume>
<fpage>452</fpage>
<lpage>465</lpage>
<pub-id pub-id-type="pmid">18266921</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Ham</surname>
<given-names>B. K.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Kh</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>BnNHL18A shows a localization change by stress-inducing chemical treatments.</article-title>
<source>
<italic>Biochem. Biophys. Res. Comm.</italic>
</source>
<volume>339</volume>
<fpage>399</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">16298336</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brader</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Palva</surname>
<given-names>E. T.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>16</volume>
<fpage>319</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="pmid">14742872</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hartung</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Quantitative real-time PCR for detection and identification of
<italic>Candidatus Liberibacter</italic>
species associated with citrus huanglongbing.</article-title>
<source>
<italic>J. Microbiol. Methods</italic>
</source>
<volume>66</volume>
<fpage>104</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">16414133</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C. F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y. M.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Transgenic tomato plants expressing the
<italic>Arabidopsis NPR1</italic>
gene display enhanced resistance to a spectrum of fungal and bacterial diseases.</article-title>
<source>
<italic>Transgenic Res.</italic>
</source>
<volume>13</volume>
<fpage>567</fpage>
<lpage>581</lpage>
<pub-id pub-id-type="pmid">15672838</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Livak</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Schmittgen</surname>
<given-names>T. D.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method.</article-title>
<source>
<italic>Methods</italic>
</source>
<volume>25</volume>
<fpage>402</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="pmid">11846609</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Dissection of salicylic acid-mediated defense signaling networks.</article-title>
<source>
<italic>Plant Signal. Behav.</italic>
</source>
<volume>4</volume>
<fpage>713</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">19820324</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rate</surname>
<given-names>D. N.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the
<italic>Arabidopsis</italic>
defense response.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>15</volume>
<fpage>2408</fpage>
<lpage>2420</lpage>
<pub-id pub-id-type="pmid">14507999</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makandar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Essig</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Schapaugh</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Trick</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Genetically engineered resistance to
<italic>Fusarium</italic>
head blight in wheat by expression of
<italic>Arabidopsis</italic>
NPR1.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>19</volume>
<fpage>123</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="pmid">16529374</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malamy</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Klessig</surname>
<given-names>D. F.</given-names>
</name>
<name>
<surname>Raskin</surname>
<given-names>I.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>250</volume>
<fpage>1002</fpage>
<lpage>1004</lpage>
<pub-id pub-id-type="pmid">17746925</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maleck</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Eulgem</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lawton</surname>
<given-names>K. A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2000</year>
).
<article-title>The transcriptome of
<italic>Arabidopsis thaliana</italic>
during systemic acquired resistance.</article-title>
<source>
<italic>Nat. Genet.</italic>
</source>
<volume>26</volume>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">11101835</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malnoy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Borejsza-Wysocka</surname>
<given-names>E. E.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S. Y.</given-names>
</name>
<name>
<surname>Aldwinckle</surname>
<given-names>H. S.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Overexpression of the apple
<italic>MpNPR1</italic>
gene confers increased disease resistance in
<italic>Malus</italic>
×
<italic>domestica</italic>
.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>20</volume>
<fpage>1568</fpage>
<lpage>1580</lpage>
<pub-id pub-id-type="pmid">17990964</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Bogdanove</surname>
<given-names>A. J.</given-names>
</name>
<name>
<surname>Sessa</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Understanding the functions of plant disease resistance proteins.</article-title>
<source>
<italic>Annu. Rev. Plant Biol.</italic>
</source>
<volume>54</volume>
<fpage>23</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="pmid">14502984</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maxson-Stein</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hammerschmidt</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression of pathogenesis-related protein genes.</article-title>
<source>
<italic>Plant Disease</italic>
</source>
<volume>86</volume>
<fpage>785</fpage>
<lpage>790</lpage>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Cuzick</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Can</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Beynon</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Holub</surname>
<given-names>E. B.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Downy mildew (
<italic>Peronospora parasitica</italic>
) resistance genes in
<italic>Arabidopsis</italic>
vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>22</volume>
<fpage>523</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="pmid">10886772</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Hoff</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Deegan</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Propagation, storage, and assays with
<italic>Hyaloperonospora arabidopsidis</italic>
: a model oomycete pathogen of
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Methods Mol. Biol.</italic>
</source>
<volume>712</volume>
<fpage>137</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="pmid">21359806</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McDowell</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>S. A.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Recent insights into
<italic>R</italic>
gene evolution.</article-title>
<source>
<italic>Mol. Plant Pathol.</italic>
</source>
<volume>7</volume>
<fpage>437</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">20507459</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Seabolt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Salimian</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watkins</surname>
<given-names>T. A.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Genetic dissection of salicylic acid-mediated defense signaling networks in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Genetics</italic>
</source>
<volume>189</volume>
<fpage>851</fpage>
<lpage>859</lpage>
<pub-id pub-id-type="pmid">21900271</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishimura</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>
<italic>Arabidopsis</italic>
and the plant immune system.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>61</volume>
<fpage>1053</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="pmid">20409278</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pegadaraju</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Louis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Reese</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Bautor</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>B. J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Phloem-based resistance to green peach aphid is controlled by
<italic>Arabidopsis</italic>
PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>52</volume>
<fpage>332</fpage>
<lpage>341</lpage>
<pub-id pub-id-type="pmid">17725549</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rassmussen</surname>
<given-names>J. B.</given-names>
</name>
<name>
<surname>Hammerschmidt</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zook</surname>
<given-names>M. N.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Systemic induction of salicylic acid accumulation in cucumber after inoculation with
<italic>Pseudomonas syringae</italic>
pv.
<italic>syringae</italic>
.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>97</volume>
<fpage>1342</fpage>
<lpage>1347</lpage>
<pub-id pub-id-type="pmid">16668554</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryals</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Weymann</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lawton</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Friedrich</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Steiner</surname>
<given-names>H. Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1997</year>
).
<article-title>The
<italic>Arabidopsis</italic>
NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>9</volume>
<fpage>425</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="pmid">9090885</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandhu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tasma</surname>
<given-names>I. M.</given-names>
</name>
<name>
<surname>Frasch</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bhattacharyya</surname>
<given-names>M. K.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Systemic acquired resistance in soybean is regulated by two proteins, orthologous to
<italic>Arabidopsis</italic>
NPR1.</article-title>
<source>
<italic>BMC Plant Biol.</italic>
</source>
<volume>9</volume>
:
<issue>105</issue>
<pub-id pub-id-type="doi">10.1186/1471-2229-9-105</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Klessig</surname>
<given-names>D. F.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Characterization of a salicylic acid-insensitive mutant (
<italic>sai1</italic>
) of
<italic>Arabidopsis thaliana</italic>
, identified in a selective screen utilizing the SA-inducible expression of the
<italic>tms2</italic>
gene.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>10</volume>
<fpage>69</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">9002272</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shapiro</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>127</volume>
<fpage>1089</fpage>
<lpage>1101</lpage>
<pub-id pub-id-type="pmid">11706189</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>Y. K.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>K. R.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>The effects of ozone on antioxidant responses in plants.</article-title>
<source>
<italic>Free Radic. Biol. Med.</italic>
</source>
<volume>23</volume>
<fpage>480</fpage>
<lpage>488</lpage>
<pub-id pub-id-type="pmid">9214586</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mcdowell</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>A key role for ALD1 in activation of local and systemic defenses in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>40</volume>
<fpage>200</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="pmid">15447647</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Strommer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gregerson</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vayda</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>“Isolation and characterization of plant mRNA,” in
<italic>Methods in Plant Molecular Biology and Biotechnology</italic>
</article-title>
<role>eds</role>
<person-group person-group-type="editor">
<name>
<surname>Greenberg</surname>
<given-names>B. M.</given-names>
</name>
<name>
<surname>Glick</surname>
<given-names>B. R.</given-names>
</name>
</person-group>
(
<publisher-loc>Boca Raton, FL</publisher-loc>
:
<publisher-name>CRC Press Inc.</publisher-name>
)
<fpage>49</fpage>
<lpage>65</lpage>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Stecher</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.</article-title>
<source>
<italic>Mol. Biol. Evol.</italic>
</source>
<volume>28</volume>
<fpage>2731</fpage>
<lpage>2739</lpage>
<pub-id pub-id-type="pmid">21546353</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Glazebrook</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2003</year>
).
<article-title>Quantitative nature of
<italic>Arabidopsis</italic>
responses during compatible and incompatible interactions with the bacterial pathogen
<italic>Pseudomonas syringae</italic>
.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>15</volume>
<fpage>317</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">12566575</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Glazebrook</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Katagiri</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Interplay between MAMP-triggered and SA-mediated defense responses.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>53</volume>
<fpage>763</fpage>
<lpage>775</lpage>
<pub-id pub-id-type="pmid">18005228</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hause</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hause</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Scheel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The
<italic>Arabidopsis</italic>
<italic>NHL3</italic>
gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to
<italic>Pseudomonas syringae</italic>
pv.
<italic>tomato</italic>
DC3000.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>132</volume>
<fpage>2023</fpage>
<lpage>2033</lpage>
<pub-id pub-id-type="pmid">12913158</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varet</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tornero</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Nass</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nurnberger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2002</year>
).
<article-title>
<italic>NHL25</italic>
and
<italic>NHL3</italic>
, two
<italic>NDR1</italic>
/
<italic>HIN1</italic>
-like genes in
<italic>Arabidopsis thaliana</italic>
with potential role(s) in plant defense.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>15</volume>
<fpage>608</fpage>
<lpage>616</lpage>
<pub-id pub-id-type="pmid">12059109</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G. F.</given-names>
</name>
<name>
<surname>Seabolt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hamdoun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011a</year>
).
<article-title>Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>156</volume>
<fpage>1508</fpage>
<lpage>1519</lpage>
<pub-id pub-id-type="pmid">21543726</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G. Y.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Battle</surname>
<given-names>S. L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2011b</year>
).
<article-title>Circadian clock-regulated phosphate transporter PHT4;1 plays an important role in
<italic>Arabidopsis</italic>
defense.</article-title>
<source>
<italic>Mol. Plant</italic>
</source>
<volume>4</volume>
<fpage>516</fpage>
<lpage>526</lpage>
<pub-id pub-id-type="pmid">21447757</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wildermuth</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Dewdney</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ausubel</surname>
<given-names>F. M.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Isochorismate synthase is required to synthesize salicylic acid for plant defence.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>414</volume>
<fpage>562</fpage>
<lpage>565</lpage>
<pub-id pub-id-type="pmid">11734859</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ellwood</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Calis</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Patrick</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2001</year>
).
<article-title>Broad-spectrum mildew resistance in
<italic>Arabidopsis thaliana</italic>
mediated by RPW8.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>291</volume>
<fpage>118</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="pmid">11141561</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gutsche</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>A. D.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Feedback control of the
<italic>Arabidopsis</italic>
hypersensitive response.</article-title>
<source>
<italic>Mol. Plant Microbe Interact.</italic>
</source>
<volume>17</volume>
<fpage>357</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="pmid">15077668</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Francis</surname>
<given-names>M. I.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>W. O.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Orbovic</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Triplett</surname>
<given-names>E. W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2010</year>
).
<article-title>Over-expression of the
<italic>Arabidopsis NPR1</italic>
gene in citrus increases resistance to citrus canker.</article-title>
<source>
<italic>Eur. J. Plant Pathol.</italic>
</source>
<volume>128</volume>
<fpage>91</fpage>
<lpage>100</lpage>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hamamoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Up-regulation of
<italic>Arabidopsis thaliana</italic>
NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement.</article-title>
<source>
<italic>Planta</italic>
</source>
<volume>218</volume>
<fpage>740</fpage>
<lpage>750</lpage>
<pub-id pub-id-type="pmid">14666423</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tootle</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Klessig</surname>
<given-names>D. F.</given-names>
</name>
<name>
<surname>Glazebrook</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>PAD4 functions upstream from salicylic acid to control defense responses in
<italic>Arabidopsis</italic>
.</article-title>
<source>
<italic>Plant Cell</italic>
</source>
<volume>10</volume>
<fpage>1021</fpage>
<lpage>1030</lpage>
<pub-id pub-id-type="pmid">9634589</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F160 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F160 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024