Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000E92 ( Pmc/Corpus ); précédent : 000E919; suivant : 000E930 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing the Metabolic Effects of Aromatherapy in Human Volunteers</title>
<author>
<name sortKey="Zhang, Yinan" sort="Zhang, Yinan" uniqKey="Zhang Y" first="Yinan" last="Zhang">Yinan Zhang</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yani" sort="Wu, Yani" uniqKey="Wu Y" first="Yani" last="Wu">Yani Wu</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Tianlu" sort="Chen, Tianlu" uniqKey="Chen T" first="Tianlu" last="Chen">Tianlu Chen</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yao, Lei" sort="Yao, Lei" uniqKey="Yao L" first="Lei" last="Yao">Lei Yao</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jiajian" sort="Liu, Jiajian" uniqKey="Liu J" first="Jiajian" last="Liu">Jiajian Liu</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pan, Xiaolan" sort="Pan, Xiaolan" uniqKey="Pan X" first="Xiaolan" last="Pan">Xiaolan Pan</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yixue" sort="Hu, Yixue" uniqKey="Hu Y" first="Yixue" last="Hu">Yixue Hu</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Aihua" sort="Zhao, Aihua" uniqKey="Zhao A" first="Aihua" last="Zhao">Aihua Zhao</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Guoxiang" sort="Xie, Guoxiang" uniqKey="Xie G" first="Guoxiang" last="Xie">Guoxiang Xie</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jia, Wei" sort="Jia, Wei" uniqKey="Jia W" first="Wei" last="Jia">Wei Jia</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23737829</idno>
<idno type="pmc">3659644</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659644</idno>
<idno type="RBID">PMC:3659644</idno>
<idno type="doi">10.1155/2013/356381</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000E92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Assessing the Metabolic Effects of Aromatherapy in Human Volunteers</title>
<author>
<name sortKey="Zhang, Yinan" sort="Zhang, Yinan" uniqKey="Zhang Y" first="Yinan" last="Zhang">Yinan Zhang</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yani" sort="Wu, Yani" uniqKey="Wu Y" first="Yani" last="Wu">Yani Wu</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Tianlu" sort="Chen, Tianlu" uniqKey="Chen T" first="Tianlu" last="Chen">Tianlu Chen</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yao, Lei" sort="Yao, Lei" uniqKey="Yao L" first="Lei" last="Yao">Lei Yao</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jiajian" sort="Liu, Jiajian" uniqKey="Liu J" first="Jiajian" last="Liu">Jiajian Liu</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pan, Xiaolan" sort="Pan, Xiaolan" uniqKey="Pan X" first="Xiaolan" last="Pan">Xiaolan Pan</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yixue" sort="Hu, Yixue" uniqKey="Hu Y" first="Yixue" last="Hu">Yixue Hu</name>
<affiliation>
<nlm:aff id="I2">School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Aihua" sort="Zhao, Aihua" uniqKey="Zhao A" first="Aihua" last="Zhao">Aihua Zhao</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Guoxiang" sort="Xie, Guoxiang" uniqKey="Xie G" first="Guoxiang" last="Xie">Guoxiang Xie</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jia, Wei" sort="Jia, Wei" uniqKey="Jia W" first="Wei" last="Jia">Wei Jia</name>
<affiliation>
<nlm:aff id="I1">Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evidence-based Complementary and Alternative Medicine : eCAM</title>
<idno type="ISSN">1741-427X</idno>
<idno type="eISSN">1741-4288</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Aromatherapy, a form of complementary and alternative medicine (CAM) that uses essential oils through inhalation, is believed to enhance physical and spiritual conditions. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive metabolomics study that reveals metabolic changes in people after exposed to aroma inhalation for 10 continuous days. In this study, the metabolic alterations in urine of 31 females with mild anxiety symptoms exposed to aerial diffusion of aromas were measured by GC-TOF-MS and UPLC-Q-TOF-MS analyses. A significant alteration of metabolic profile in subjects responsive to essential oil was found, which is characterized by the increased levels of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, carbohydrates, and organic acids in urine. Notably, the metabolites from tricarboxylic acid (TCA) cycle and gut microbial metabolism were significantly altered. This study demonstrates that the metabolomics approach can capture the subtle metabolic changes resulting from exposure to essential oils, which may lead to an improved mechanistic understanding of aromatherapy.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Ms" uniqKey="Lee M">MS Lee</name>
</author>
<author>
<name sortKey="Choi, J" uniqKey="Choi J">J Choi</name>
</author>
<author>
<name sortKey="Posadzki, P" uniqKey="Posadzki P">P Posadzki</name>
</author>
<author>
<name sortKey="Ernst, E" uniqKey="Ernst E">E Ernst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lis Balchin, M" uniqKey="Lis Balchin M">M Lis-Balchin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buchbauer, G" uniqKey="Buchbauer G">G Buchbauer</name>
</author>
<author>
<name sortKey="Jirovetz, L" uniqKey="Jirovetz L">L Jirovetz</name>
</author>
<author>
<name sortKey="Jager, W" uniqKey="Jager W">W Jager</name>
</author>
<author>
<name sortKey="Plank, C" uniqKey="Plank C">C Plank</name>
</author>
<author>
<name sortKey="Dietrich, H" uniqKey="Dietrich H">H Dietrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lehrner, J" uniqKey="Lehrner J">J Lehrner</name>
</author>
<author>
<name sortKey="Marwinski, G" uniqKey="Marwinski G">G Marwinski</name>
</author>
<author>
<name sortKey="Lehr, S" uniqKey="Lehr S">S Lehr</name>
</author>
<author>
<name sortKey="Johren, P" uniqKey="Johren P">P Johren</name>
</author>
<author>
<name sortKey="Deecke, L" uniqKey="Deecke L">L Deecke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, Bf" uniqKey="Bradley B">BF Bradley</name>
</author>
<author>
<name sortKey="Starkey, Nj" uniqKey="Starkey N">NJ Starkey</name>
</author>
<author>
<name sortKey="Brown, Sl" uniqKey="Brown S">SL Brown</name>
</author>
<author>
<name sortKey="Lea, Rw" uniqKey="Lea R">RW Lea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umezu, T" uniqKey="Umezu T">T Umezu</name>
</author>
<author>
<name sortKey="Nagano, K" uniqKey="Nagano K">K Nagano</name>
</author>
<author>
<name sortKey="Ito, H" uniqKey="Ito H">H Ito</name>
</author>
<author>
<name sortKey="Kosakai, K" uniqKey="Kosakai K">K Kosakai</name>
</author>
<author>
<name sortKey="Sakaniwa, M" uniqKey="Sakaniwa M">M Sakaniwa</name>
</author>
<author>
<name sortKey="Morita, M" uniqKey="Morita M">M Morita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Komiya, M" uniqKey="Komiya M">M Komiya</name>
</author>
<author>
<name sortKey="Takeuchi, T" uniqKey="Takeuchi T">T Takeuchi</name>
</author>
<author>
<name sortKey="Harada, E" uniqKey="Harada E">E Harada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umezu, T" uniqKey="Umezu T">T Umezu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Yn" uniqKey="Wu Y">YN Wu</name>
</author>
<author>
<name sortKey="Zhang, Yn" uniqKey="Zhang Y">YN Zhang</name>
</author>
<author>
<name sortKey="Xie, Gx" uniqKey="Xie G">GX Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Watt, G" uniqKey="Van Der Watt G">G van der Watt</name>
</author>
<author>
<name sortKey="Janca, A" uniqKey="Janca A">A Janca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edris, Ae" uniqKey="Edris A">AE Edris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ni, Y" uniqKey="Ni Y">Y Ni</name>
</author>
<author>
<name sortKey="Su, M" uniqKey="Su M">M Su</name>
</author>
<author>
<name sortKey="Qiu, Y" uniqKey="Qiu Y">Y Qiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonsson, P" uniqKey="Jonsson P">P Jonsson</name>
</author>
<author>
<name sortKey="Gullberg, J" uniqKey="Gullberg J">J Gullberg</name>
</author>
<author>
<name sortKey="Nordstrom, A" uniqKey="Nordstrom A">A Nordström</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonsson, P" uniqKey="Jonsson P">P Jonsson</name>
</author>
<author>
<name sortKey="Johansson, Ai" uniqKey="Johansson A">AI Johansson</name>
</author>
<author>
<name sortKey="Gullberg, J" uniqKey="Gullberg J">J Gullberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, G" uniqKey="Xie G">G Xie</name>
</author>
<author>
<name sortKey="Plumb, R" uniqKey="Plumb R">R Plumb</name>
</author>
<author>
<name sortKey="Su, M" uniqKey="Su M">M Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, Ws" uniqKey="Zhong W">WS Zhong</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, Bf" uniqKey="Bradley B">BF Bradley</name>
</author>
<author>
<name sortKey="Starkey, Nj" uniqKey="Starkey N">NJ Starkey</name>
</author>
<author>
<name sortKey="Brown, Sl" uniqKey="Brown S">SL Brown</name>
</author>
<author>
<name sortKey="Lea, Rw" uniqKey="Lea R">RW Lea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaw, D" uniqKey="Shaw D">D Shaw</name>
</author>
<author>
<name sortKey="Annett, Jm" uniqKey="Annett J">JM Annett</name>
</author>
<author>
<name sortKey="Doherty, B" uniqKey="Doherty B">B Doherty</name>
</author>
<author>
<name sortKey="Leslie, Jc" uniqKey="Leslie J">JC Leslie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blanco, Mm" uniqKey="Blanco M">MM Blanco</name>
</author>
<author>
<name sortKey="Costa, Cara" uniqKey="Costa C">CARA Costa</name>
</author>
<author>
<name sortKey="Freire, Ao" uniqKey="Freire A">AO Freire</name>
</author>
<author>
<name sortKey="Santos, Jg" uniqKey="Santos J">JG Santos</name>
</author>
<author>
<name sortKey="Costa, M" uniqKey="Costa M">M Costa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, Dl" uniqKey="Clark D">DL Clark</name>
</author>
<author>
<name sortKey="Boutros, Nn" uniqKey="Boutros N">NN Boutros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, C" uniqKey="Holmes C">C Holmes</name>
</author>
<author>
<name sortKey="Ballard, C" uniqKey="Ballard C">C Ballard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chepulis, Lm" uniqKey="Chepulis L">LM Chepulis</name>
</author>
<author>
<name sortKey="Starkey, Nj" uniqKey="Starkey N">NJ Starkey</name>
</author>
<author>
<name sortKey="Waas, Jr" uniqKey="Waas J">JR Waas</name>
</author>
<author>
<name sortKey="Molan, Pc" uniqKey="Molan P">PC Molan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamin, J" uniqKey="Benjamin J">J Benjamin</name>
</author>
<author>
<name sortKey="Levine, J" uniqKey="Levine J">J Levine</name>
</author>
<author>
<name sortKey="Fux, M" uniqKey="Fux M">M Fux</name>
</author>
<author>
<name sortKey="Aviv, A" uniqKey="Aviv A">A Aviv</name>
</author>
<author>
<name sortKey="Levy, D" uniqKey="Levy D">D Levy</name>
</author>
<author>
<name sortKey="Belmaker, Rh" uniqKey="Belmaker R">RH Belmaker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Einat, H" uniqKey="Einat H">H Einat</name>
</author>
<author>
<name sortKey="Belmaker, Rh" uniqKey="Belmaker R">RH Belmaker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouayed, J" uniqKey="Bouayed J">J Bouayed</name>
</author>
<author>
<name sortKey="Rammal, H" uniqKey="Rammal H">H Rammal</name>
</author>
<author>
<name sortKey="Soulimani, R" uniqKey="Soulimani R">R Soulimani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, F" uniqKey="Ng F">F Ng</name>
</author>
<author>
<name sortKey="Berk, M" uniqKey="Berk M">M Berk</name>
</author>
<author>
<name sortKey="Dean, O" uniqKey="Dean O">O Dean</name>
</author>
<author>
<name sortKey="Bush, Ai" uniqKey="Bush A">AI Bush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuloglu, M" uniqKey="Kuloglu M">M Kuloglu</name>
</author>
<author>
<name sortKey="Atmaca, M" uniqKey="Atmaca M">M Atmaca</name>
</author>
<author>
<name sortKey="Tezcan, E" uniqKey="Tezcan E">E Tezcan</name>
</author>
<author>
<name sortKey="Ustundag, B" uniqKey="Ustundag B">B Ustundag</name>
</author>
<author>
<name sortKey="Bulut, S" uniqKey="Bulut S">S Bulut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ersan, S" uniqKey="Ersan S">S Ersan</name>
</author>
<author>
<name sortKey="Bakir, S" uniqKey="Bakir S">S Bakir</name>
</author>
<author>
<name sortKey="Erdal Ersan, E" uniqKey="Erdal Ersan E">E Erdal Ersan</name>
</author>
<author>
<name sortKey="Dogan, O" uniqKey="Dogan O">O Dogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haug, Tt" uniqKey="Haug T">TT Haug</name>
</author>
<author>
<name sortKey="Mykletun, A" uniqKey="Mykletun A">A Mykletun</name>
</author>
<author>
<name sortKey="Dahl, Aa" uniqKey="Dahl A">AA Dahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tannock, Gw" uniqKey="Tannock G">GW Tannock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yap, Iks" uniqKey="Yap I">IKS Yap</name>
</author>
<author>
<name sortKey="Li, Jv" uniqKey="Li J">JV Li</name>
</author>
<author>
<name sortKey="Saric, J" uniqKey="Saric J">J Saric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
<author>
<name sortKey="Xie, G" uniqKey="Xie G">G Xie</name>
</author>
<author>
<name sortKey="Zhao, A" uniqKey="Zhao A">A Zhao</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Evid Based Complement Alternat Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Evid Based Complement Alternat Med</journal-id>
<journal-id journal-id-type="publisher-id">ECAM</journal-id>
<journal-title-group>
<journal-title>Evidence-based Complementary and Alternative Medicine : eCAM</journal-title>
</journal-title-group>
<issn pub-type="ppub">1741-427X</issn>
<issn pub-type="epub">1741-4288</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23737829</article-id>
<article-id pub-id-type="pmc">3659644</article-id>
<article-id pub-id-type="doi">10.1155/2013/356381</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Assessing the Metabolic Effects of Aromatherapy in Human Volunteers</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">0000-0002-0357-3926</contrib-id>
<name>
<surname>Zhang</surname>
<given-names>Yinan</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Yani</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Tianlu</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yao</surname>
<given-names>Lei</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Jiajian</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pan</surname>
<given-names>Xiaolan</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Yixue</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">0000-0003-0201-3940</contrib-id>
<name>
<surname>Zhao</surname>
<given-names>Aihua</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">0000-0002-0951-4150</contrib-id>
<name>
<surname>Xie</surname>
<given-names>Guoxiang</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor2">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jia</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China</aff>
<aff id="I2">
<sup>2</sup>
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China</aff>
<aff id="I3">
<sup>3</sup>
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081, USA</aff>
<author-notes>
<corresp id="cor1">*Yani Wu:
<email>ynwu@sjtu.edu.cn</email>
and </corresp>
<corresp id="cor2">*Guoxiang Xie:
<email>g_xie@uncg.edu</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Aiping Lu</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>5</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>2</day>
<month>5</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>2013</volume>
<elocation-id>356381</elocation-id>
<history>
<date date-type="received">
<day>4</day>
<month>1</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>12</day>
<month>4</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>4</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013 Yinan Zhang et al.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Aromatherapy, a form of complementary and alternative medicine (CAM) that uses essential oils through inhalation, is believed to enhance physical and spiritual conditions. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive metabolomics study that reveals metabolic changes in people after exposed to aroma inhalation for 10 continuous days. In this study, the metabolic alterations in urine of 31 females with mild anxiety symptoms exposed to aerial diffusion of aromas were measured by GC-TOF-MS and UPLC-Q-TOF-MS analyses. A significant alteration of metabolic profile in subjects responsive to essential oil was found, which is characterized by the increased levels of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, carbohydrates, and organic acids in urine. Notably, the metabolites from tricarboxylic acid (TCA) cycle and gut microbial metabolism were significantly altered. This study demonstrates that the metabolomics approach can capture the subtle metabolic changes resulting from exposure to essential oils, which may lead to an improved mechanistic understanding of aromatherapy.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Aromatherapy, the practice of using aromatic plant-derived essential oils for a variety of applications including mood enhancement, pain relief, and improved cognitive function, is increasingly being used in complementary and alternative medicine (CAM) units as well as primary care settings [
<xref ref-type="bibr" rid="B1">1</xref>
]. One of the methods used in aromatherapy is release of odor to a particular environment. The proposed mechanism of action of the respiratory administration of aromatherapy begins with the absorption of volatile odor molecules through the nasal mucosa. Odor molecules are then transformed into chemical signals, which travel to the olfactory bulb and then other parts of the limbic system of the brain and the cerebral cortex and the olfactory sensory center at the base of the brain, interacting with the neuropsychological framework to produce characteristic physiological and psychological effects on target tissues [
<xref ref-type="bibr" rid="B2">2</xref>
]. One study investigated the effects of various plant-derived or synthetic odors on task performance, reaction time, and autonomic parameters or evaluated the direct effects of odors on the brain via electroencephalogram patterns and functional imaging studies [
<xref ref-type="bibr" rid="B3">3</xref>
]. A lot of studies have demonstrated the antianxiety effect by essential oils from rose, lavender, lemon, and peppermint [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B5">5</xref>
]. These studies have consistently shown that odors can produce specific effects on human neuropsychological and autonomic function, suggesting that aromatherapy has beneficial effects in the context of stressful and adverse psychological conditions.</p>
<p>In recent years, researchers have studied the components of essential oil that have antianxiety effect and possible molecular principles. Umezu et al. [
<xref ref-type="bibr" rid="B6">6</xref>
] from Japan analyzed the antianxiety components of essential oil from lavender using GC-MS and identified linalool as the main antianxiety pharmacological substance. Komiya et al. [
<xref ref-type="bibr" rid="B7">7</xref>
] studied the antianxiety effect of essential oil from rose, lavender, and lemon. They also researched the linkage of essential oil from lemon with benzodiazepine, 5-hydroxy tryptamine, dopamine, and adrenergic receptor and found essential oil from lemon increasing the nerve-energy of 5-hydroxy tryptamine from the suppression the activity of dopamine. Umezu [
<xref ref-type="bibr" rid="B8">8</xref>
] studied that dopamine might be involved in the mouse ambulation promoted by peppermint oil and its constituents. Wu et al. [
<xref ref-type="bibr" rid="B9">9</xref>
] have done a thorough metabolomic study on rats' brain tissue and urinary responses to aromatherapy. These metabolic changes include the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, histamine, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine), amino acids, and fatty acids in brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose), nucleosides (adenine and uridine), and organic acids such as lactate and pyruvate were also observed in urine.</p>
<p>Despite of the numerous results demonstrating beneficial effects on mood and relaxation observed in behavioral and emotional studies, evidence for the efficacy and mechanistic understanding of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous methodology [
<xref ref-type="bibr" rid="B10">10</xref>
,
<xref ref-type="bibr" rid="B11">11</xref>
]. </p>
<p>Here, we report a metabolomic study designed to evaluate the effect of an essential oil preparation in university female students. Urine samples were collected and analyzed by both gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) in conjunction with multivariate statistical analysis, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA), to obtain significant endogenous metabolite markers of aromas-exposure. </p>
</sec>
<sec id="sec2">
<title>2. Methods</title>
<sec id="sec2.1">
<title>2.1. Chemicals and Materials</title>
<p>The essential oil used in the study is the same as used in our previous report [
<xref ref-type="bibr" rid="B9">9</xref>
], prepared from 4 aromatic plants,
<italic>Lavandula angustifolia and Salvia sclarea L. </italic>
from China,
<italic>Santalum album </italic>
from India, and
<italic>Citrus sinensis </italic>
from the United States. The constituents of the essential oil were assayed by gas chromatography (GC) and GC-mass spectrometry (GC-MS) and were mainly limonene, linalool, linalyl acetate, polysantol, and other 30 chemicals (the detailed chemical composition of the essential oil was shown in our previous paper [
<xref ref-type="bibr" rid="B9">9</xref>
]). Acetonitrile and methanol of HPLC grade were obtained from Merck Chemicals (Darmstadt, Germany). Analytical-grade methanol was obtained from the Shanghai Lin Feng Chemical Reagent Co, Ltd. (China). All aqueous solutions were prepared with ultrapure water produced by a Milli-Q system (18.2 MΩ, Millipore, Bedford, MA). Chloroform was analytical grade and purchased from China National Pharmaceutical Group Corporation (Shanghai, China). L-2-Chlorophenylalanine was purchased from Intechem Tech. Co. Ltd. (Shanghai, China). BSTFA (1% TMCS), heptadecanoic acid, and methoxyamine were purchased from Sigma-Aldrich (St. Louis, MO).</p>
</sec>
<sec id="sec2.2">
<title>2.2. Human Sample Treatment</title>
<p>Fifty-two female volunteers who were not allergic to essential oil with an average age of 20.29 ± 1.51 years from Shanghai Jiao Tong University were recruited in this study. They were allowed to do a double blind Symptom Check List-90 (SCL90) test. The checklist consists of nine subscales including somatization (SOM), obsessive-compulsive (O-C), interpersonal sensitivity (I-S), depression (DEP), anxiety (ANX), hostility (HOS), phobic anxiety (PHOB), paranoid ideation (PAR), and psychoticism (PSY). Thirty-one volunteers who have at least one subscale with a score over 2.0 were subject to the further study. We have arranged a quiet classroom (100 m
<sup>2</sup>
, room temperature = 24 ± 1°C, and room humidity = 45 ± 15%) for the experiment. The doors and windows of the room were closed 15 minutes before the examination and in which the environment was fragranced by incenses of the essential oil. The examination was performed in the atmosphere of the aroma, and the doors and windows of the classroom were kept close until the end of the examination. The duration of the examination was 45 minutes a day for 10 continuously days. All the volunteers were required to eat only blander food in the 10 days and stay quietly (reading and writing) in the room. Urine samples were collected on day 0 (before exposed to essential oil inhalation, BE) and day 10 (after exposed to essential oil inhalation, AE). The protocol was approved by the Shanghai Jiao Tong University Review Board, and all participants gave informed consent before they were involved in the study.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Urine Sample Preparation for GC-TOFMS Analysis</title>
<p>Urine metabolites were chemically derivatized prior to mass spectrometry analysis following our previously published procedure with minor modifications [
<xref ref-type="bibr" rid="B12">12</xref>
]. An aliquot of 100 
<italic>μ</italic>
L urine sample was spiked with two internal standard solutions (10 
<italic>μ</italic>
L of L-2-chlorophenylalanine in water, 0.3 mg/mL; 10 
<italic>μ</italic>
L of heptadecanoic acid in methanol, 1 mg/mL) and vortexed for 10 s. The mixed solution was extracted with 300 
<italic>μ</italic>
L of methanol/chloroform (3 : 1) and vortexed for 30 s. After storing for 10 min at −20°C, the samples were centrifuged at 12 000 rpm for 10 min. An aliquot of the 300 
<italic>μ</italic>
L supernatant was transferred to a glass sampling vial to vacuum-dry at room temperature. The residue was derivatized using a two-step procedure. First, 80 
<italic>μ</italic>
L of methoxyamine (15 mg/mL in pyridine) was added to the vial and kept at 30°C for 90 min, followed by 80 
<italic>μ</italic>
L of BSTFA (1% TMCS) at 70°C for 60 min.</p>
</sec>
<sec id="sec2.4">
<title>2.4. GC-TOFMS Analysis</title>
<p>A 1 
<italic>μ</italic>
L aliquot of the derivatized solution was injected in splitless mode into an Agilent 6890 N gas chromatograph coupled with a Pegasus HT time-of-flight mass spectrometer (Leco Corporation, St. Joseph, MI). Separation was achieved on a DB-5ms capillary column (30 m × 250 
<italic>μ</italic>
m i.d., 0.25 
<italic>μ</italic>
m film thickness; (5%-phenyl)-methylpolysiloxane bonded and cross-linked; Agilent J&W Scientific, Folsom, CA), with helium as the carrier gas at a constant flow rate of 1.0 mL/min. The temperature of injection, transfer interface, and ion source was set to 270, 260, and 200°C, respectively. The GC temperature programming was set to 2 min isothermal heating at 80°C, followed by 10°C/min oven temperature ramps to 180°C, 5°C/min to 240°C, and 25°C/min to 290°C, and a final 9 min maintenance at 290°C. Electron impact ionization (70 eV) at full scan mode (m/z 30–600) was used, with an acquisition rate of 20 spectra/s in the TOFMS setting.</p>
</sec>
<sec id="sec2.5">
<title>2.5. Urine Sample Preparation for UPLC-QTOFMS Analysis</title>
<p>Urine samples were preliminarily treated following our previously published procedure with minor modifications [
<xref ref-type="bibr" rid="B12">12</xref>
]. The collected urine samples were centrifuged at 13,000 rpm for 10 min at 4°C, and the resulting supernatants were immediately stored at −80°C pending UPLC-QTOFMS analysis. Also, 600 
<italic>μ</italic>
L of ultrapure water (containing 5 
<italic>μ</italic>
g/mL L-2-chlorophenylalanine as the internal standard) was added to urine (300 
<italic>μ</italic>
L) and vortexed for 1 min and then filtered through a syringe filter (0.22 
<italic>μ</italic>
m) and placed into the sampling vial pending UPLC-QTOFMS analysis. </p>
</sec>
<sec id="sec2.6">
<title>2.6. UPLC-QTOFMS Analysis</title>
<p>Urine metabolite profiling was performed using a Waters ACQUITY UPLC system equipped with abinary solvent delivery manager and a sample manager (Waters Corporation, Milford, MA), coupled to a Micromass Q-TOF Premiermass spectrometer equipped with an electrospray interface (Waters Corporation, Milford, MA). Chromatographic separations were performed on a 2.1 × 100 mm 1.7 
<italic>μ</italic>
m ACQUITY BEH C
<sub>18</sub>
chromatography column. The column was maintained at 45°C and eluted with a 1%–99% acetonitrile (0.1% (v/v) formic acid)-aqueous formic acid (0.1% (v/v) formic acid) gradient over 10 min at a flow rate of 0.40 mL/min. A 5 
<italic>μ</italic>
L aliquot sample was injected onto the column. The mass accuracy analysis and detailed MS parameters were optimized according to our previous work [
<xref ref-type="bibr" rid="B12">12</xref>
]. During metabolite profiling experiments, centroid data were acquired for each sample from 50 to 1000 Da with a 0.10 s scan time and a 0.01 s interscan delay over a 10 min analysis time.</p>
</sec>
<sec id="sec2.7">
<title>2.7. Data Analysis</title>
<p>The acquired MS files from GC-TOFMS analysis were exported in NetCDF format by ChromaTOF software (v3.30, Leco Co., CA). CDF files were extracted using custom scripts (revised Matlab toolbox hierarchical multivariate curve resolution (H-MCR), developed by Par Jonsson et al. [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
] in the MATLAB 7.0 (The MathWorks, Inc.) for data pretreatment procedures such as baseline correction, denoising, smoothing, alignment, time-window splitting, and multivariate curve resolution (based on multivariate curve resolution algorithm)) [
<xref ref-type="bibr" rid="B14">14</xref>
]. The resulting three-dimensional data set included sample information, peak retention time, and peak intensities. Internal standards and any known artificial peaks, such as peaks caused by noise, column bleed, and BSTFA derivatization procedure, were removed from the data set. Additionally, compound identification was performed by comparing the mass fragments with NIST 05 standard mass spectral databases in NIST MS search 2.0 (NIST, Gaithersburg, MD) software with a similarity of more than 70% and finally verified by available reference compounds.</p>
<p>The UPLC-QTOFMS raw data were analyzed by the MarkerLynx Applications Manager version 4.1 (Waters, Manchester, UK) using parameters reported in our previous work [
<xref ref-type="bibr" rid="B15">15</xref>
]. A list of the ion intensities of each peak detected was generated, using retention time (RT) and the m/z data pairs as the identifier for each ion. The resulting three-dimensional matrix contained arbitrarily assigned peak indexes (retention time-m/z pairs), sample names (observations), and ion intensity information (variables). To obtain consistent differential variables, the resulting matrix was further reduced by removing any peaks with missing value (ion intensity) in more than 40% of the samples from both groups. The ion peaks generated by the internal standard were also removed. The data was then normalized by the sum of all peak intensities within the sample.</p>
<p>Then, the GC-TOFMS and UPLC-QTOFMS were put together and unit variance scaled during chemometric data analysis in the SIMCA-P + 13.0 Software package (Umetrics, Umeå, Sweden). Partial least squares-discriminant analysis (PLS-DA) was carried out to discriminate between different groups. On the basis of a variable importance in the projection (VIP) threshold of 1 from the PLS-DA model, a number of metabolites responsible for the difference in the metabolic profiles between two groups could be obtained. In parallel, the metabolites identified by the PLS-DA model were validated at a univariate level using the Student's
<italic>t</italic>
-test with the critical
<italic>P</italic>
  value set to 0.05. The resultant
<italic>P</italic>
  values for all metabolites were subsequently adjusted to account for multiple testing. The corresponding fold change shows how these selected differential metabolites varied between groups. </p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results and Discussion </title>
<sec id="sec3.1">
<title>3.1. SCL-90 Test</title>
<p>The 31 volunteers were given the test before being exposed to essential oil inhalation and after being exposed to essential oil inhalation for 10 days, and the result was shown in
<xref ref-type="table" rid="tab1">Table 1</xref>
. The values of normal Chinese University students were also included [
<xref ref-type="bibr" rid="B16">16</xref>
]. The BE values of the 31 volunteers are a little bit higher than the normal values which indicated that they were under slight anxiety. The AE values are lower or similar to the normal value which indicated they relieved their stress after inhaling the essential oil for 10 days.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Metabolic Profile of GC-TOFMS and UPLC-QTOFMS Analysis</title>
<p>A wide range of carbohydrates, amino acids, organic acids, and alcohols were detected using GC-TOFMS and UPLC-QTOFMS analyses of urine. Among a total of 388 chromatographic features obtained from the GC-TOFMS spectra of urine samples, 134 metabolites were identified with NIST 05 standard mass spectral databases with a similarity >70%, and 83 were further verified by available reference standards, respectively. Altogether, 5690 peaks were detected with our optimized UPLC-QTOFMS analysis protocol. And we were able to confirm 111 from reference standards and HMDB. These two datasets were normalized and put together, and at last 215 metabolites were identified after combination.
<xref ref-type="fig" rid="fig1"> Figure 1(a)</xref>
illustrates the scores plots of PLS-DA model of the subjects from BE and AE group. It is showed that 11 people are vulnerable to essential oil (Vulnerable group before being exposed to essential oil inhalation, VBE, and Vulnerable group after being exposed to essential oil inhalation, VAE), while the other 20 are invulnerable to essential oil (Invulnerable group before being exposed to essential oil inhalation, IBE, and Invulnerable group after being exposed to essential oil inhalation, IAE) (
<xref ref-type="fig" rid="fig1">Figure 1(b)</xref>
). </p>
<p>The trend of separation can be seen from the PCA scores plot between VBE and VAE groups using only identified metabolites as shown in
<xref ref-type="fig" rid="fig2">Figure 2(a)</xref>
(R2X = 0.306). We selected the differentially expressed urine metabolites in the VBE group relative to VAE group based on the VIP values (VIP > 1) by OPLS models with 1 predictive component and 2 orthogonal components (R2X = 0.333, R2Y = 0.979, and Q
<sup>2</sup>
(cum) = 0.484) (
<xref ref-type="fig" rid="fig2">Figure 2(b)</xref>
) constructed with the identified metabolites. Univariate statistical analysis, Student's
<italic>t</italic>
-test, was performed on these metabolites to evaluate their significance. Differentially expressed metabolites in urine were obtained with a
<italic>P</italic>
  value less than 0.05 (
<xref ref-type="table" rid="tab2">Table 2</xref>
). All these metabolites remained statistically significant after multiple testing. On the other hand, there is no separation trend between IBE and IAE groups from the PCA scores plot, and the Q
<sup>2</sup>
(cum) of the OPLS model is below zero; these illustrated that there is no significant difference between IBE and IAE groups on the level of metabolites.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Daily Exposure to Aromas Induces Significant Metabolic Changes</title>
<p>We detected 29 differentially expressed metabolites induced by aromas inhalation in human urine (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
and
<xref ref-type="table" rid="tab2">Table 2</xref>
), which include a number of carbohydrates, alcohols, organic acids, and amino acids. As compared to themselves before being exposed to essential oil inhalation, people after being exposed to essential oil inhalation were characterized by higher levels of arginine, homocysteine, and betaine, lower levels of alcohols (threitol, sorbitol, and histidinol), carbohydrate (inositol, sucrose, and xylose), pyrimidine (uracil), and organic acids (hippurate, benzoate, methylmalonate, gluconate, ferulate, pipecolinic acid, homovanillate, 4-hydroxybenzoate, 4-hydroxyphenylacetic acid, threonic acid, glycerate, phenol, cis-aconite acid, and succinate).</p>
<p>Aromatherapy, a form of inexpensive and noninvasive CAM, uses of essential oils, the scented, volatile liquid substances extracted from plants using steam or pressure, which dates back centuries for the purpose of altering a person's mind, mood, cognitive function, or health [
<xref ref-type="bibr" rid="B17">17</xref>
]. Although there were already some findings on the pharmacological effect and mechanism of essential oil, most of them were in the field of behavioral and emotional science [
<xref ref-type="bibr" rid="B18">18</xref>
<xref ref-type="bibr" rid="B20">20</xref>
]. The effects of essential oil were evaluated from senses and experiences; thus, it is hard to scientifically assess and explain aromatherapy. This paper, however, is focused on using recent developed metabolomics technology to evaluate this CAM intervention by understanding metabolic variations. </p>
<p>From our previous publication [
<xref ref-type="bibr" rid="B11">11</xref>
], we found that alkenes, esters, and alcohols are the main constituents of the essential oil. None of them has been detected in our profiling data in human urine, which means that all the changes that we found were due to endogenous change and not due to breathe in extrinsic substances.</p>
<p>The result of SCL90 (
<xref ref-type="table" rid="tab1">Table 1</xref>
) demonstrated that ANX and PHOB from 31 people after being exposed to essential oil inhalation were significantly different from themselves before being exposed to essential oil inhalation. Also, O-C and DEP were significantly different as well. This indicated that the essential oil used in this study not only relaxes anxious moods, but also has some effect on other psychological health. It does have some effect on mood adjustment, and it is in agreement with previous publications [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
].</p>
<p>However, from our metabolomics results (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
), it is found that some people's metabolic profiles were not changed much after aromatherapy while others were significantly altered. This is because individual experience of an odour may also affect response. The marked association of odours with emotional response is due to the prominence of afferent links from the olfactory bulb to the amygdala, where emotional significance is attached to incoming stimuli [
<xref ref-type="bibr" rid="B21">21</xref>
]. Consequently, study participants for whom a particular odour has strong negative (or positive) associations may be expected to introduce further interindividual variability in outcome measures [
<xref ref-type="bibr" rid="B22">22</xref>
]. Hence, only eleven people out of 31 were susceptible to aromatherapy of this specific essential oil (
<xref ref-type="fig" rid="fig1">Figure 1(b)</xref>
). </p>
<p>An interesting finding of our analysis suggests the decreased carbohydrates in urine that are critically involved in the metabolic perturbation are derived from inhalation of aromas. Carbohydrates have been shown in several reports that have anxiolytic effects [
<xref ref-type="bibr" rid="B23">23</xref>
], and the significantly decreased levels of carbohydrates in urine may be due to the therapeutic effects of aromatherapy on anxiety. VAE group has a much lower level of Inositol than the VBE group. Myoinositol has been shown to have antidepressant and anxiolytic activities in both humans and animals [
<xref ref-type="bibr" rid="B24">24</xref>
,
<xref ref-type="bibr" rid="B25">25</xref>
]. Also of interest is the finding that several energy metabolism related metabolites, including cis-aconitic acid, succinate, and hydroquinone, were found at different levels between the VAE and VBE groups. It was found that oxidative stress was involved in the pathogenesis of neurological diseases, such as psychiatric disorders [
<xref ref-type="bibr" rid="B26">26</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
] and anxiety [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
]. Oxidative stress is caused by altered mitochondrial energy pathways leading to abundant reactive oxidative stress compounds. It is therefore not surprising that metabolites and carbohydrates involved in TCA cycle were found to be significantly different between the VAE and VBE groups.</p>
<p>It is believed that there was a strong relationship between gastrointestinal symptoms and anxiety [
<xref ref-type="bibr" rid="B30">30</xref>
]. Changes of gastrointestinal functional ecology are directly linked to gut microbial populations and activities [
<xref ref-type="bibr" rid="B31">31</xref>
]. Urine of mammals contains many polar metabolites resulting from gut microbial-mammalian cometabolism [
<xref ref-type="bibr" rid="B31">31</xref>
,
<xref ref-type="bibr" rid="B32">32</xref>
]. Therefore, metabolic variations of urinary excretion of many aromatic compounds (e.g., phenolics, indoles, and benzoyl derivatives) provide indirect information on the gut microbial metabolic activities [
<xref ref-type="bibr" rid="B33">33</xref>
]. Hippurate, 4-hydroxybenzoate, 4-hydroxyphenylacetic acid, benzoate, tyramine, and phenol were all significantly decreased in VAE group, reflecting an altered gut microbial metabolism associated with aromatherapy. Metabolite profiling of urine in this study revealed an entire lower level of gut microbe related metabolites after being exposed to essential oil inhalation for 10 days. </p>
<p>The aim of this study was to obtain metabolite markers in urine of human exposed to essential oil to gain mechanistic insights into the metabolic impact of aromatherapy. However, there are limitations in the current metabolomic study. First, the sample size was a little bit small especially for people vulnerable to this essential oil. More people and longer essential oil inhale time may be tested in future study. Second, only urine was used in the experiments, and because of the blood-brain barrier, the metabolism of the brain is independent of peripheral circulation, and, hence, the metabolic variances induced by aromas inhalation were different between urine and brain. Additional mechanistic information and metabolite markers may be identified with brain tissue. </p>
<p> In conclusion, we identified the global metabolic responses to aromatherapy characterized by unique metabolic signatures in human urine involving carbohydrates, organic acids, amino acids, and pyrimidine. The metabolites involved in TCA cycle and gut microbe metabolism were significantly decreased after being exposed to essential oil inhalation for 10 days. These distinctions collectively constitute a metabolic window into essential oil effect, providing metabolic endpoints that complement the interpretation of behavioral research. The results of this study also highlight the potential of this sufficiently robust and noninvasive profiling approach for research on the CAM of aromatherapy.</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments </title>
<p>This work was financially supported by Drug Innovation Program of National Science and Technology Project (2011ZX09307-001-02), Shanghai Science and Technology funds (12DZ2295004).</p>
</ack>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>GC-TOF-MS:</term>
<def>
<p>Gas chromatography time-of-flight mass spectrometry</p>
</def>
</def-item>
<def-item>
<term>UPLC-Q-TOFMS:</term>
<def>
<p> Ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry</p>
</def>
</def-item>
<def-item>
<term>CAM:</term>
<def>
<p> Complementary and alternative medicine</p>
</def>
</def-item>
<def-item>
<term>PLS-DA:</term>
<def>
<p> Partial least squares discriminant analysis</p>
</def>
</def-item>
<def-item>
<term>PCA:</term>
<def>
<p> Principal component analysis </p>
</def>
</def-item>
<def-item>
<term>OPLS-DA:</term>
<def>
<p> Orthogonal partial least squares-discriminant analysis</p>
</def>
</def-item>
<def-item>
<term>BE:</term>
<def>
<p> Before exposed to essential oil inhalation</p>
</def>
</def-item>
<def-item>
<term>AE:</term>
<def>
<p> After exposed to essential oil inhalation </p>
</def>
</def-item>
<def-item>
<term>VBE:</term>
<def>
<p>Vulnerable group before exposed to essential oil inhalation</p>
</def>
</def-item>
<def-item>
<term>VAE:</term>
<def>
<p>Vulnerable group after exposed to essential oil inhalation</p>
</def>
</def-item>
<def-item>
<term>IBE:</term>
<def>
<p> Invulnerable group before exposed to essential oil inhalation</p>
</def>
</def-item>
<def-item>
<term>IAE:</term>
<def>
<p> Invulnerable group after exposed to essential oil inhalation.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Posadzki</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Aromatherapy for health care: an overview of systematic reviews</article-title>
<source>
<italic>Maturitas</italic>
</source>
<year>2012</year>
<volume>71</volume>
<issue>3</issue>
<fpage>257</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">22285469</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lis-Balchin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Essential oils and “aromatherapy”: their modern role in healing</article-title>
<source>
<italic>Journal of the Royal Society of Health</italic>
</source>
<year>1997</year>
<volume>117</volume>
<issue>5</issue>
<fpage>324</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="other">2-s2.0-0031422953</pub-id>
<pub-id pub-id-type="pmid">9519666</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buchbauer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jirovetz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jager</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Plank</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Fragrance compounds and essential oils with sedative effects upon inhalation</article-title>
<source>
<italic>Journal of Pharmaceutical Sciences</italic>
</source>
<year>1993</year>
<volume>82</volume>
<issue>6</issue>
<fpage>660</fpage>
<lpage>664</lpage>
<pub-id pub-id-type="other">2-s2.0-0027199497</pub-id>
<pub-id pub-id-type="pmid">8331544</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lehrner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Marwinski</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lehr</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Johren</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Deecke</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Ambient odors of orange and lavender reduce anxiety and improve mood in a dental office</article-title>
<source>
<italic>Physiology and Behavior</italic>
</source>
<year>2005</year>
<volume>86</volume>
<issue>1-2</issue>
<fpage>92</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="other">2-s2.0-24944583186</pub-id>
<pub-id pub-id-type="pmid">16095639</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradley</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Starkey</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>The effects of prolonged rose odor inhalation in two animal models of anxiety</article-title>
<source>
<italic>Physiology and Behavior</italic>
</source>
<year>2007</year>
<volume>92</volume>
<issue>5</issue>
<fpage>931</fpage>
<lpage>938</lpage>
<pub-id pub-id-type="other">2-s2.0-36048941027</pub-id>
<pub-id pub-id-type="pmid">17689573</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Umezu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kosakai</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sakaniwa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Anticonflict effects of lavender oil and identification of its active constituents</article-title>
<source>
<italic>Pharmacology Biochemistry and Behavior</italic>
</source>
<year>2006</year>
<volume>85</volume>
<issue>4</issue>
<fpage>713</fpage>
<lpage>721</lpage>
<pub-id pub-id-type="other">2-s2.0-33846406883</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Komiya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice</article-title>
<source>
<italic>Behavioural Brain Research</italic>
</source>
<year>2006</year>
<volume>172</volume>
<issue>2</issue>
<fpage>240</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="other">2-s2.0-33746596175</pub-id>
<pub-id pub-id-type="pmid">16780969</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Umezu</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Evidence for dopamine involvement in ambulation promoted by pulegone in mice</article-title>
<source>
<italic>Pharmacology Biochemistry and Behavior</italic>
</source>
<year>2010</year>
<volume>94</volume>
<issue>4</issue>
<fpage>497</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="other">2-s2.0-74249099050</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>YN</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YN</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>GX</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The metabolic responses to aerial diffusion of essential oils</article-title>
<source>
<italic>PLOS One</italic>
</source>
<year>2012</year>
<volume>7</volume>
<issue>9</issue>
<pub-id pub-id-type="publisher-id">e44830</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Watt</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Janca</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Aromatherapy in nursing and mental health care</article-title>
<source>
<italic>Contemporary Nurse</italic>
</source>
<year>2008</year>
<volume>30</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="other">2-s2.0-59749097587</pub-id>
<pub-id pub-id-type="pmid">19072192</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edris</surname>
<given-names>AE</given-names>
</name>
</person-group>
<article-title>Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review</article-title>
<source>
<italic>Phytotherapy Research</italic>
</source>
<year>2007</year>
<volume>21</volume>
<issue>4</issue>
<fpage>308</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="other">2-s2.0-34247271338</pub-id>
<pub-id pub-id-type="pmid">17199238</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ni</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat</article-title>
<source>
<italic>FEBS Letters</italic>
</source>
<year>2007</year>
<volume>581</volume>
<issue>4</issue>
<fpage>707</fpage>
<lpage>711</lpage>
<pub-id pub-id-type="other">2-s2.0-33846847778</pub-id>
<pub-id pub-id-type="pmid">17274990</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonsson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gullberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nordström</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS</article-title>
<source>
<italic>Analytical Chemistry</italic>
</source>
<year>2004</year>
<volume>76</volume>
<issue>6</issue>
<fpage>1738</fpage>
<lpage>1745</lpage>
<pub-id pub-id-type="other">2-s2.0-1542408614</pub-id>
<pub-id pub-id-type="pmid">15018577</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonsson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Gullberg</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses</article-title>
<source>
<italic>Analytical Chemistry</italic>
</source>
<year>2005</year>
<volume>77</volume>
<issue>17</issue>
<fpage>5635</fpage>
<lpage>5642</lpage>
<pub-id pub-id-type="other">2-s2.0-24644481093</pub-id>
<pub-id pub-id-type="pmid">16131076</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Plumb</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research</article-title>
<source>
<italic>Journal of Separation Science</italic>
</source>
<year>2008</year>
<volume>31</volume>
<issue>6-7</issue>
<fpage>1015</fpage>
<lpage>1026</lpage>
<pub-id pub-id-type="other">2-s2.0-43249119417</pub-id>
<pub-id pub-id-type="pmid">18338405</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Research on the new SCL-90 model on Chinese university students</article-title>
<source>
<italic>Chinese Journal of School Doctor</italic>
</source>
<year>2009</year>
<volume>23</volume>
<issue>3</issue>
<fpage>251</fpage>
<lpage>256</lpage>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="other">
<comment>National Cancer Institute, U. S. N. I. o. H. Aromatherapy and essential oils (PDQs),
<ext-link ext-link-type="uri" xlink:href="http://www.cancer.gov/cancertopics/pdq/cam/aromatherapy/HealthProfessional">http://www.cancer.gov/cancertopics/pdq/cam/aromatherapy/HealthProfessional</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradley</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Starkey</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Anxiolytic effects of Lavandula angustifolia odour on the Mongolian gerbil elevated plus maze</article-title>
<source>
<italic>Journal of Ethnopharmacology</italic>
</source>
<year>2007</year>
<volume>111</volume>
<issue>3</issue>
<fpage>517</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="other">2-s2.0-34247187031</pub-id>
<pub-id pub-id-type="pmid">17289317</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaw</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Annett</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Doherty</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Leslie</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats</article-title>
<source>
<italic>Phytomedicine</italic>
</source>
<year>2007</year>
<volume>14</volume>
<issue>9</issue>
<fpage>613</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="other">2-s2.0-34547410325</pub-id>
<pub-id pub-id-type="pmid">17482442</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blanco</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>CARA</given-names>
</name>
<name>
<surname>Freire</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Neurobehavioral effect of essential oil of Cymbopogon citratus in mice</article-title>
<source>
<italic>Phytomedicine</italic>
</source>
<year>2009</year>
<volume>16</volume>
<issue>2-3</issue>
<fpage>265</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="other">2-s2.0-59649101596</pub-id>
<pub-id pub-id-type="pmid">17561386</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Boutros</surname>
<given-names>NN</given-names>
</name>
</person-group>
<source>
<italic>The Brain and Behaviour: An Introduction to Behavioural Neuroanatomy</italic>
</source>
<year>1999</year>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Blackwell Science</publisher-name>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ballard</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Aromatherapy in dementia</article-title>
<source>
<italic>Advances in Psychiatric Treatment</italic>
</source>
<year>2004</year>
<volume>10</volume>
<issue>4</issue>
<fpage>296</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="other">2-s2.0-2442462410</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chepulis</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Starkey</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Waas</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Molan</surname>
<given-names>PC</given-names>
</name>
</person-group>
<article-title>The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats</article-title>
<source>
<italic>Physiology and Behavior</italic>
</source>
<year>2009</year>
<volume>97</volume>
<issue>3-4</issue>
<fpage>359</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="other">2-s2.0-67349238785</pub-id>
<pub-id pub-id-type="pmid">19296910</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aviv</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Belmaker</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Double-blind, placebo-controlled, crossover trial of inositol treatment for panic disorder</article-title>
<source>
<italic>American Journal of Psychiatry</italic>
</source>
<year>1995</year>
<volume>152</volume>
<issue>7</issue>
<fpage>1084</fpage>
<lpage>1086</lpage>
<pub-id pub-id-type="other">2-s2.0-0029069839</pub-id>
<pub-id pub-id-type="pmid">7793450</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Einat</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Belmaker</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>The effects of inositol treatment in animal models of psychiatric disorders</article-title>
<source>
<italic>Journal of Affective Disorders</italic>
</source>
<year>2001</year>
<volume>62</volume>
<issue>1-2</issue>
<fpage>113</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="other">2-s2.0-0035154768</pub-id>
<pub-id pub-id-type="pmid">11172878</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouayed</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rammal</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Soulimani</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Oxidative stress and anxiety Relationship and cellular pathways</article-title>
<source>
<italic>Oxidative Medicine and Cellular Longevity</italic>
</source>
<year>2009</year>
<volume>2</volume>
<issue>2</issue>
<fpage>63</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="other">2-s2.0-63449091380</pub-id>
<pub-id pub-id-type="pmid">20357926</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Berk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Bush</surname>
<given-names>AI</given-names>
</name>
</person-group>
<article-title>Oxidative stress in psychiatric disorders: evidence base and therapeutic implications</article-title>
<source>
<italic>International Journal of Neuropsychopharmacology</italic>
</source>
<year>2008</year>
<volume>11</volume>
<issue>6</issue>
<fpage>851</fpage>
<lpage>876</lpage>
<pub-id pub-id-type="other">2-s2.0-50849139232</pub-id>
<pub-id pub-id-type="pmid">18205981</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuloglu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Atmaca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tezcan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ustundag</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bulut</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Antioxidant enzyme and malondialdehyde levels in patients with panic disorder</article-title>
<source>
<italic>Neuropsychobiology</italic>
</source>
<year>2002</year>
<volume>46</volume>
<issue>4</issue>
<fpage>186</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="other">2-s2.0-0036977565</pub-id>
<pub-id pub-id-type="pmid">12566935</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ersan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bakir</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Erdal Ersan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dogan</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Examination of free radical metabolism and antioxidant defence system elements in patients with obsessive-compulsive disorder</article-title>
<source>
<italic>Progress in Neuro-Psychopharmacology and Biological Psychiatry</italic>
</source>
<year>2006</year>
<volume>30</volume>
<issue>6</issue>
<fpage>1039</fpage>
<lpage>1042</lpage>
<pub-id pub-id-type="other">2-s2.0-33745241877</pub-id>
<pub-id pub-id-type="pmid">16682105</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haug</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Mykletun</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dahl</surname>
<given-names>AA</given-names>
</name>
</person-group>
<article-title>Are anxiety and depression related to gastrointestinal symptoms in the general population?</article-title>
<source>
<italic>Scandinavian Journal of Gastroenterology</italic>
</source>
<year>2002</year>
<volume>37</volume>
<issue>3</issue>
<fpage>294</fpage>
<lpage>298</lpage>
<pub-id pub-id-type="other">2-s2.0-0036185840</pub-id>
<pub-id pub-id-type="pmid">11916191</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tannock</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>New perceptions of the gut microbiota: implications for future research</article-title>
<source>
<italic>Gastroenterology Clinics of North America</italic>
</source>
<year>2005</year>
<volume>34</volume>
<issue>3</issue>
<fpage>361</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="other">2-s2.0-23244432360</pub-id>
<pub-id pub-id-type="pmid">16084302</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yap</surname>
<given-names>IKS</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Saric</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabonomic and microbiological analysis of the dynamic effect of vancomycin-lnduced gut microbiota modification in the mouse</article-title>
<source>
<italic>Journal of Proteome Research</italic>
</source>
<year>2008</year>
<volume>7</volume>
<issue>9</issue>
<fpage>3718</fpage>
<lpage>3728</lpage>
<pub-id pub-id-type="other">2-s2.0-55249093899</pub-id>
<pub-id pub-id-type="pmid">18698804</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The footprints of gut microbial-mammalian co-metabolism</article-title>
<source>
<italic>Journal of Proteomic Research</italic>
</source>
<year>2011</year>
<volume>10</volume>
<issue>12</issue>
<fpage>5512</fpage>
<lpage>5522</lpage>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Metabolic profiles depicted by PLS-DA scores plot of GC-TOFMS and UPLC-QTOFMS spectral data from human urine of (a) BE group and AE group; (b) IBE group, VBE group, IAE group, and VAE group.</p>
</caption>
<graphic xlink:href="ECAM2013-356381.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Metabolic profiles depicted by PCA scores plot (a) and OPLS scores plot (b) from the VBE group and VAE group with only identified metabolites.</p>
</caption>
<graphic xlink:href="ECAM2013-356381.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Heat map showing changes in metabolites in urine after being exposed to essential oil inhalation for 10 days (VAE group) to themselves before being exposed to essential oil inhalation (VBE group). Shades of red and blue represent fold increase and fold decrease of a metabolite, respectively, in VAE group relative to VBE group (see color scale).</p>
</caption>
<graphic xlink:href="ECAM2013-356381.003"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>SCL-90 test checklist for volunteers before being exposed to essential oil inhalation and after being exposed to essential oil inhalation for 10 days.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Subscales</th>
<th align="center" rowspan="1" colspan="1">BE</th>
<th align="center" rowspan="1" colspan="1">AE</th>
<th align="center" rowspan="1" colspan="1">
<italic>P</italic>
</th>
<th align="center" rowspan="1" colspan="1">Norm of China (2008) (
<italic>n</italic>
= 9941)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">SOM</td>
<td align="center" rowspan="1" colspan="1">1.59 ± 0.40</td>
<td align="center" rowspan="1" colspan="1">1.37 ± 0.36</td>
<td align="center" rowspan="1" colspan="1">0.03*</td>
<td align="center" rowspan="1" colspan="1">1.45 ± 0.49</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">O-C</td>
<td align="center" rowspan="1" colspan="1">2.40 ± 0.63</td>
<td align="center" rowspan="1" colspan="1">1.93 ± 0.66</td>
<td align="center" rowspan="1" colspan="1">0.01*</td>
<td align="center" rowspan="1" colspan="1">1.98 ± 0.63</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">I-S</td>
<td align="center" rowspan="1" colspan="1">2.80 ± 0.61</td>
<td align="center" rowspan="1" colspan="1">1.75 ± 0.63</td>
<td align="center" rowspan="1" colspan="1">0.04*</td>
<td align="center" rowspan="1" colspan="1">1.88 ± 0.63</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DEP</td>
<td align="center" rowspan="1" colspan="1">1.97 ± 0.61</td>
<td align="center" rowspan="1" colspan="1">1.68 ± 0.54</td>
<td align="center" rowspan="1" colspan="1">0.05</td>
<td align="center" rowspan="1" colspan="1">1.74 ± 0.62</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ANX</td>
<td align="center" rowspan="1" colspan="1">2.03 ± 0.73</td>
<td align="center" rowspan="1" colspan="1">1.65 ± 0.65</td>
<td align="center" rowspan="1" colspan="1">0.03*</td>
<td align="center" rowspan="1" colspan="1">1.61 ± 0.55</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HOS</td>
<td align="center" rowspan="1" colspan="1">1.83 ± 0.66</td>
<td align="center" rowspan="1" colspan="1">1.49 ± 0.45</td>
<td align="center" rowspan="1" colspan="1">0.02*</td>
<td align="center" rowspan="1" colspan="1">1.61 ± 0.62</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PHOB</td>
<td align="center" rowspan="1" colspan="1">1.55 ± 0.55</td>
<td align="center" rowspan="1" colspan="1">1.29 ± 0.39</td>
<td align="center" rowspan="1" colspan="1">0.03*</td>
<td align="center" rowspan="1" colspan="1">1.38 ± 0.49</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PAR</td>
<td align="center" rowspan="1" colspan="1">1.74 ± 0.58</td>
<td align="center" rowspan="1" colspan="1">1.58 ± 0.48</td>
<td align="center" rowspan="1" colspan="1">0.22</td>
<td align="center" rowspan="1" colspan="1">1.72 ± 0.62</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PSY</td>
<td align="center" rowspan="1" colspan="1">1.86 ± 0.60</td>
<td align="center" rowspan="1" colspan="1">1.57 ± 0.45</td>
<td align="center" rowspan="1" colspan="1">0.04*</td>
<td align="center" rowspan="1" colspan="1">1.59 ± 0.54</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">OTHER</td>
<td align="center" rowspan="1" colspan="1">1.98 ± 0.70</td>
<td align="center" rowspan="1" colspan="1">1.66 ± 0.59</td>
<td align="center" rowspan="1" colspan="1">0.06</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Compared with BE; *
<italic>P</italic>
< 0.05.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>List of differential metabolites in urine after being exposed to essential oil inhalation for 10 days (VAE group) to themselves before being exposed to essential oil inhalation (VBE group).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Classes</th>
<th align="center" rowspan="1" colspan="1">Metabolites</th>
<th align="center" rowspan="1" colspan="1">VIP
<sup>1</sup>
</th>
<th align="center" rowspan="1" colspan="1">FC
<sup>2</sup>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>P</italic>
<sup>3</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2" colspan="1">Amino acids</td>
<td align="center" rowspan="1" colspan="1">Arginine</td>
<td align="center" rowspan="1" colspan="1">1.80</td>
<td align="center" rowspan="1" colspan="1">3.76</td>
<td align="center" rowspan="1" colspan="1">2.44
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ornithine</td>
<td align="center" rowspan="1" colspan="1">1.78</td>
<td align="center" rowspan="1" colspan="1">0.50</td>
<td align="center" rowspan="1" colspan="1">2.66
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">Amino acids related</td>
<td align="center" rowspan="1" colspan="1">Homocysteine</td>
<td align="center" rowspan="1" colspan="1">1.98</td>
<td align="center" rowspan="1" colspan="1">2.05</td>
<td align="center" rowspan="1" colspan="1">1.21
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Betaine</td>
<td align="center" rowspan="1" colspan="1">2.21</td>
<td align="center" rowspan="1" colspan="1">1.79</td>
<td align="center" rowspan="1" colspan="1">4.21
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">5-Oxoproline</td>
<td align="center" rowspan="1" colspan="1">2.03</td>
<td align="center" rowspan="1" colspan="1">0.61</td>
<td align="center" rowspan="1" colspan="1">9.76
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Tyramine</td>
<td align="center" rowspan="1" colspan="1">2.58</td>
<td align="center" rowspan="1" colspan="1">0.47</td>
<td align="center" rowspan="1" colspan="1">4.49
<italic>E</italic>
− 04</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Alcohols</td>
<td align="center" rowspan="1" colspan="1">Histidinol</td>
<td align="center" rowspan="1" colspan="1">1.66</td>
<td align="center" rowspan="1" colspan="1">0.34</td>
<td align="center" rowspan="1" colspan="1">4.02
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Threitol</td>
<td align="center" rowspan="1" colspan="1">2.77</td>
<td align="center" rowspan="1" colspan="1">0.48</td>
<td align="center" rowspan="1" colspan="1">9.66
<italic>E</italic>
− 05</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Sorbitol</td>
<td align="center" rowspan="1" colspan="1">1.98</td>
<td align="center" rowspan="1" colspan="1">0.16</td>
<td align="center" rowspan="1" colspan="1">1.19
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Carbohydrates</td>
<td align="center" rowspan="1" colspan="1">Inositol</td>
<td align="center" rowspan="1" colspan="1">2.48</td>
<td align="center" rowspan="1" colspan="1">0.53</td>
<td align="center" rowspan="1" colspan="1">8.67
<italic>E</italic>
− 04</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Sucrose</td>
<td align="center" rowspan="1" colspan="1">1.97</td>
<td align="center" rowspan="1" colspan="1">0.27</td>
<td align="center" rowspan="1" colspan="1">1.29
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Xylose</td>
<td align="center" rowspan="1" colspan="1">1.90</td>
<td align="center" rowspan="1" colspan="1">0.61</td>
<td align="center" rowspan="1" colspan="1">1.68
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="14" colspan="1">Organic acids</td>
<td align="center" rowspan="1" colspan="1">Hippurate</td>
<td align="center" rowspan="1" colspan="1">1.99</td>
<td align="center" rowspan="1" colspan="1">0.17</td>
<td align="center" rowspan="1" colspan="1">1.14
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Benzoate</td>
<td align="center" rowspan="1" colspan="1">2.28</td>
<td align="center" rowspan="1" colspan="1">0.34</td>
<td align="center" rowspan="1" colspan="1">2.90
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Methylmalonate</td>
<td align="center" rowspan="1" colspan="1">1.94</td>
<td align="center" rowspan="1" colspan="1">0.62</td>
<td align="center" rowspan="1" colspan="1">1.42
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Gluconate</td>
<td align="center" rowspan="1" colspan="1">1.76</td>
<td align="center" rowspan="1" colspan="1">0.70</td>
<td align="center" rowspan="1" colspan="1">2.86
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Ferulate</td>
<td align="center" rowspan="1" colspan="1">1.65</td>
<td align="center" rowspan="1" colspan="1">0.37</td>
<td align="center" rowspan="1" colspan="1">4.20
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Pipecolinic acid</td>
<td align="center" rowspan="1" colspan="1">1.62</td>
<td align="center" rowspan="1" colspan="1">0.74</td>
<td align="center" rowspan="1" colspan="1">4.60
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Homovanillate</td>
<td align="center" rowspan="1" colspan="1">2.34</td>
<td align="center" rowspan="1" colspan="1">0.40</td>
<td align="center" rowspan="1" colspan="1">2.11
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">4-Hydroxybenzoate</td>
<td align="center" rowspan="1" colspan="1">1.75</td>
<td align="center" rowspan="1" colspan="1">0.48</td>
<td align="center" rowspan="1" colspan="1">2.93
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">4-Hydroxyphenylacetic acid</td>
<td align="center" rowspan="1" colspan="1">1.99</td>
<td align="center" rowspan="1" colspan="1">0.44</td>
<td align="center" rowspan="1" colspan="1">1.14
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Threonic acid</td>
<td align="center" rowspan="1" colspan="1">2.52</td>
<td align="center" rowspan="1" colspan="1">0.57</td>
<td align="center" rowspan="1" colspan="1">6.78
<italic>E</italic>
− 04</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Glycerate</td>
<td align="center" rowspan="1" colspan="1">2.41</td>
<td align="center" rowspan="1" colspan="1">0.56</td>
<td align="center" rowspan="1" colspan="1">1.38
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Phenol</td>
<td align="center" rowspan="1" colspan="1">1.80</td>
<td align="center" rowspan="1" colspan="1">0.49</td>
<td align="center" rowspan="1" colspan="1">2.42
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Cis-Aconitic acid</td>
<td align="center" rowspan="1" colspan="1">1.91</td>
<td align="center" rowspan="1" colspan="1">0.53</td>
<td align="center" rowspan="1" colspan="1">1.65
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Succinate</td>
<td align="center" rowspan="1" colspan="1">2.16</td>
<td align="center" rowspan="1" colspan="1">0.52</td>
<td align="center" rowspan="1" colspan="1">5.23
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pyrimidine</td>
<td align="center" rowspan="1" colspan="1">Uracil</td>
<td align="center" rowspan="1" colspan="1">1.99</td>
<td align="center" rowspan="1" colspan="1">0.54</td>
<td align="center" rowspan="1" colspan="1">1.16
<italic>E</italic>
− 02</td>
</tr>
<tr>
<td align="left" colspan="5" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Others</td>
<td align="center" rowspan="1" colspan="1">Phosphate</td>
<td align="center" rowspan="1" colspan="1">2.24</td>
<td align="center" rowspan="1" colspan="1">0.69</td>
<td align="center" rowspan="1" colspan="1">3.48
<italic>E</italic>
− 03</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Hydroquinone</td>
<td align="center" rowspan="1" colspan="1">1.74</td>
<td align="center" rowspan="1" colspan="1">0.55</td>
<td align="center" rowspan="1" colspan="1">3.08
<italic>E</italic>
− 02</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>1</sup>
Variable importance in the projection (VIP) was obtained from PLS-DA model with a threshold of 1.0;</p>
</fn>
<fn>
<p>
<sup>2</sup>
fold change (FC) was obtained by comparing those metabolites in VAE group to VBE group;</p>
</fn>
<fn>
<p>
<sup>3</sup>
<italic>P</italic>
values were calculated from Student's
<italic>t</italic>
-test;</p>
</fn>
<fn>
<p>FC with a value >1 indicates a relatively higher concentration present in VAE group, while a value <1 means a relatively lower concentration as compared to VBE.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E92  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E92  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024