Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

Identifieur interne : 000E43 ( Pmc/Corpus ); précédent : 000E42; suivant : 000E44

Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

Auteurs : Lin Sen ; Mario A. Fares ; Bo Liang ; Lei Gao ; Bo Wang ; Ting Wang ; Ying-Juan Su

Source :

RBID : PMC:3129321

Abstract

Background

The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure.

Results

We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2.

Conclusions

The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities.

Reviewers

This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.


Url:
DOI: 10.1186/1745-6150-6-29
PubMed: 21639885
PubMed Central: 3129321

Links to Exploration step

PMC:3129321

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular evolution of
<italic>rbcL </italic>
in three gymnosperm families: identifying adaptive and coevolutionary patterns</title>
<author>
<name sortKey="Sen, Lin" sort="Sen, Lin" uniqKey="Sen L" first="Lin" last="Sen">Lin Sen</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Graduate University of Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fares, Mario A" sort="Fares, Mario A" uniqKey="Fares M" first="Mario A" last="Fares">Mario A. Fares</name>
<affiliation>
<nlm:aff id="I3">Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Ireland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Integrative and Systems Biology Group, Department of Abiotic Stress, Instituto de Biologia Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Bo" sort="Liang, Bo" uniqKey="Liang B" first="Bo" last="Liang">Bo Liang</name>
<affiliation>
<nlm:aff id="I5">Department of Biochemistry, University of Missouri, Columbia, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I6">Genetics Area Program, University of Missouri, Columbia, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Lei" sort="Gao, Lei" uniqKey="Gao L" first="Lei" last="Gao">Lei Gao</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bo" sort="Wang, Bo" uniqKey="Wang B" first="Bo" last="Wang">Bo Wang</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Graduate University of Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ting" sort="Wang, Ting" uniqKey="Wang T" first="Ting" last="Wang">Ting Wang</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Su, Ying Juan" sort="Su, Ying Juan" uniqKey="Su Y" first="Ying-Juan" last="Su">Ying-Juan Su</name>
<affiliation>
<nlm:aff id="I7">State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21639885</idno>
<idno type="pmc">3129321</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129321</idno>
<idno type="RBID">PMC:3129321</idno>
<idno type="doi">10.1186/1745-6150-6-29</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000E43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Molecular evolution of
<italic>rbcL </italic>
in three gymnosperm families: identifying adaptive and coevolutionary patterns</title>
<author>
<name sortKey="Sen, Lin" sort="Sen, Lin" uniqKey="Sen L" first="Lin" last="Sen">Lin Sen</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Graduate University of Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fares, Mario A" sort="Fares, Mario A" uniqKey="Fares M" first="Mario A" last="Fares">Mario A. Fares</name>
<affiliation>
<nlm:aff id="I3">Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Ireland</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I4">Integrative and Systems Biology Group, Department of Abiotic Stress, Instituto de Biologia Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia, Spain</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Bo" sort="Liang, Bo" uniqKey="Liang B" first="Bo" last="Liang">Bo Liang</name>
<affiliation>
<nlm:aff id="I5">Department of Biochemistry, University of Missouri, Columbia, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I6">Genetics Area Program, University of Missouri, Columbia, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Lei" sort="Gao, Lei" uniqKey="Gao L" first="Lei" last="Gao">Lei Gao</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Bo" sort="Wang, Bo" uniqKey="Wang B" first="Bo" last="Wang">Bo Wang</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Graduate University of Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ting" sort="Wang, Ting" uniqKey="Wang T" first="Ting" last="Wang">Ting Wang</name>
<affiliation>
<nlm:aff id="I1">CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Su, Ying Juan" sort="Su, Ying Juan" uniqKey="Su Y" first="Ying-Juan" last="Su">Ying-Juan Su</name>
<affiliation>
<nlm:aff id="I7">State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biology Direct</title>
<idno type="eISSN">1745-6150</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO
<sub>2</sub>
. The large subunit (LSU) of Rubisco is encoded by the chloroplast
<italic>rbcL </italic>
gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure.</p>
</sec>
<sec>
<title>Results</title>
<p>We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in
<italic>rbcL </italic>
gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO
<sub>2</sub>
.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The gene
<italic>rbcL </italic>
has experienced bursts of adaptations in response to the changing concentration of CO
<sub>2 </sub>
in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities.</p>
</sec>
<sec>
<title>Reviewers</title>
<p>This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellis, R" uniqKey="Ellis R">R Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishimura, K" uniqKey="Nishimura K">K Nishimura</name>
</author>
<author>
<name sortKey="Ogawa, T" uniqKey="Ogawa T">T Ogawa</name>
</author>
<author>
<name sortKey="Ashida, H" uniqKey="Ashida H">H Ashida</name>
</author>
<author>
<name sortKey="Yokota, A" uniqKey="Yokota A">A Yokota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kellogg, Ea" uniqKey="Kellogg E">EA Kellogg</name>
</author>
<author>
<name sortKey="Juliano, Nd" uniqKey="Juliano N">ND Juliano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorimer, Gh" uniqKey="Lorimer G">GH Lorimer</name>
</author>
<author>
<name sortKey="Andrews, Tj" uniqKey="Andrews T">TJ Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christin, Pa" uniqKey="Christin P">PA Christin</name>
</author>
<author>
<name sortKey="Salamin, N" uniqKey="Salamin N">N Salamin</name>
</author>
<author>
<name sortKey="Muasya, Am" uniqKey="Muasya A">AM Muasya</name>
</author>
<author>
<name sortKey="Roalson, Eh" uniqKey="Roalson E">EH Roalson</name>
</author>
<author>
<name sortKey="Russier, F" uniqKey="Russier F">F Russier</name>
</author>
<author>
<name sortKey="Besnard, G" uniqKey="Besnard G">G Besnard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erixon, P" uniqKey="Erixon P">P Erixon</name>
</author>
<author>
<name sortKey="Oxelman, B" uniqKey="Oxelman B">B Oxelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muse, Sv" uniqKey="Muse S">SV Muse</name>
</author>
<author>
<name sortKey="Gaut, Bs" uniqKey="Gaut B">BS Gaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nozawa, M" uniqKey="Nozawa M">M Nozawa</name>
</author>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y Suzuki</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiong, As" uniqKey="Xiong A">AS Xiong</name>
</author>
<author>
<name sortKey="Peng, Rh" uniqKey="Peng R">RH Peng</name>
</author>
<author>
<name sortKey="Zhuang, J" uniqKey="Zhuang J">J Zhuang</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Zhu, B" uniqKey="Zhu B">B Zhu</name>
</author>
<author>
<name sortKey="Fu, Xy" uniqKey="Fu X">XY Fu</name>
</author>
<author>
<name sortKey="Xue, Y" uniqKey="Xue Y">Y Xue</name>
</author>
<author>
<name sortKey="Jin, Xf" uniqKey="Jin X">XF Jin</name>
</author>
<author>
<name sortKey="Tian, Ys" uniqKey="Tian Y">YS Tian</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Yao, Qh" uniqKey="Yao Q">QH Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Conery, Js" uniqKey="Conery J">JS Conery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adachi, J" uniqKey="Adachi J">J Adachi</name>
</author>
<author>
<name sortKey="Waddell, Pj" uniqKey="Waddell P">PJ Waddell</name>
</author>
<author>
<name sortKey="Martin, W" uniqKey="Martin W">W Martin</name>
</author>
<author>
<name sortKey="Hasegawa, M" uniqKey="Hasegawa M">M Hasegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delport, W" uniqKey="Delport W">W Delport</name>
</author>
<author>
<name sortKey="Scheffler, K" uniqKey="Scheffler K">K Scheffler</name>
</author>
<author>
<name sortKey="Seoighe, C" uniqKey="Seoighe C">C Seoighe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapralov, Mv" uniqKey="Kapralov M">MV Kapralov</name>
</author>
<author>
<name sortKey="Filatov, Da" uniqKey="Filatov D">DA Filatov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tcherkez, Ggb" uniqKey="Tcherkez G">GGB Tcherkez</name>
</author>
<author>
<name sortKey="Farquhar, Gd" uniqKey="Farquhar G">GD Farquhar</name>
</author>
<author>
<name sortKey="Andrews, Tj" uniqKey="Andrews T">TJ Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapralov, Mv" uniqKey="Kapralov M">MV Kapralov</name>
</author>
<author>
<name sortKey="Filatov, Da" uniqKey="Filatov D">DA Filatov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iida, S" uniqKey="Iida S">S Iida</name>
</author>
<author>
<name sortKey="Miyagi, A" uniqKey="Miyagi A">A Miyagi</name>
</author>
<author>
<name sortKey="Aoki, S" uniqKey="Aoki S">S Aoki</name>
</author>
<author>
<name sortKey="Ito, M" uniqKey="Ito M">M Ito</name>
</author>
<author>
<name sortKey="Kadono, Y" uniqKey="Kadono Y">Y Kadono</name>
</author>
<author>
<name sortKey="Kosuge, K" uniqKey="Kosuge K">K Kosuge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miwa, H" uniqKey="Miwa H">H Miwa</name>
</author>
<author>
<name sortKey="Odrzykoski, Ij" uniqKey="Odrzykoski I">IJ Odrzykoski</name>
</author>
<author>
<name sortKey="Matsui, A" uniqKey="Matsui A">A Matsui</name>
</author>
<author>
<name sortKey="Hasegawa, M" uniqKey="Hasegawa M">M Hasegawa</name>
</author>
<author>
<name sortKey="Akiyama, H" uniqKey="Akiyama H">H Akiyama</name>
</author>
<author>
<name sortKey="Jia, Y" uniqKey="Jia Y">Y Jia</name>
</author>
<author>
<name sortKey="Sabirov, R" uniqKey="Sabirov R">R Sabirov</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H Takahashi</name>
</author>
<author>
<name sortKey="Boufford, De" uniqKey="Boufford D">DE Boufford</name>
</author>
<author>
<name sortKey="Murakami, N" uniqKey="Murakami N">N Murakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Igamberdiev, Au" uniqKey="Igamberdiev A">AU Igamberdiev</name>
</author>
<author>
<name sortKey="Lea, Pj" uniqKey="Lea P">PJ Lea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
<author>
<name sortKey="Mcnally, D" uniqKey="Mcnally D">D McNally</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kishino, H" uniqKey="Kishino H">H Kishino</name>
</author>
<author>
<name sortKey="Thorne, Jl" uniqKey="Thorne J">JL Thorne</name>
</author>
<author>
<name sortKey="Bruno, Wj" uniqKey="Bruno W">WJ Bruno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Ho, Sy" uniqKey="Ho S">SY Ho</name>
</author>
<author>
<name sortKey="Phillips, Mj" uniqKey="Phillips M">MJ Phillips</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conran, Jg" uniqKey="Conran J">JG Conran</name>
</author>
<author>
<name sortKey="Wood, Gm" uniqKey="Wood G">GM Wood</name>
</author>
<author>
<name sortKey="Martin, Pg" uniqKey="Martin P">PG Martin</name>
</author>
<author>
<name sortKey="Dowd, Jm" uniqKey="Dowd J">JM Dowd</name>
</author>
<author>
<name sortKey="Quinn, Cj" uniqKey="Quinn C">CJ Quinn</name>
</author>
<author>
<name sortKey="Gadek, Pa" uniqKey="Gadek P">PA Gadek</name>
</author>
<author>
<name sortKey="Price, Ra" uniqKey="Price R">RA Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinn, Cj" uniqKey="Quinn C">CJ Quinn</name>
</author>
<author>
<name sortKey="Price, Ra" uniqKey="Price R">RA Price</name>
</author>
<author>
<name sortKey="Gadek, Pa" uniqKey="Gadek P">PA Gadek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Tieghem, Mp" uniqKey="Van Tieghem M">MP Van Tieghem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Yc" uniqKey="Cheng Y">YC Cheng</name>
</author>
<author>
<name sortKey="Nicolson, Rg" uniqKey="Nicolson R">RG Nicolson</name>
</author>
<author>
<name sortKey="Tripp, K" uniqKey="Tripp K">K Tripp</name>
</author>
<author>
<name sortKey="Chaw, Sm" uniqKey="Chaw S">SM Chaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delport, W" uniqKey="Delport W">W Delport</name>
</author>
<author>
<name sortKey="Poon, Afy" uniqKey="Poon A">AFY Poon</name>
</author>
<author>
<name sortKey="Frost, Sd" uniqKey="Frost S">SD Frost</name>
</author>
<author>
<name sortKey="Kosakovsky Pond, Sl" uniqKey="Kosakovsky Pond S">SL Kosakovsky Pond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M Anisimova</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Swanson, Wj" uniqKey="Swanson W">WJ Swanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M Anisimova</name>
</author>
<author>
<name sortKey="Bielawski, Jp" uniqKey="Bielawski J">JP Bielawski</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makowski, M" uniqKey="Makowski M">M Makowski</name>
</author>
<author>
<name sortKey="Sobolewski, E" uniqKey="Sobolewski E">E Sobolewski</name>
</author>
<author>
<name sortKey="Czaplewski, C" uniqKey="Czaplewski C">C Czaplewski</name>
</author>
<author>
<name sortKey="Oldziej, S" uniqKey="Oldziej S">S Oldziej</name>
</author>
<author>
<name sortKey="Liwo, A" uniqKey="Liwo A">A Liwo</name>
</author>
<author>
<name sortKey="Scheraga, Ha" uniqKey="Scheraga H">HA Scheraga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ong, Yc" uniqKey="Ong Y">YC Ong</name>
</author>
<author>
<name sortKey="Kolatkar, Pr" uniqKey="Kolatkar P">PR Kolatkar</name>
</author>
<author>
<name sortKey="Yong, El" uniqKey="Yong E">EL Yong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiver, Jw" uniqKey="Shiver J">JW Shiver</name>
</author>
<author>
<name sortKey="Cramer, Wa" uniqKey="Cramer W">WA Cramer</name>
</author>
<author>
<name sortKey="Cohen, Fs" uniqKey="Cohen F">FS Cohen</name>
</author>
<author>
<name sortKey="Bishop, Lj" uniqKey="Bishop L">LJ Bishop</name>
</author>
<author>
<name sortKey="De Jong, Pj" uniqKey="De Jong P">PJ de Jong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
<author>
<name sortKey="Salvucci, Me" uniqKey="Salvucci M">ME Salvucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russo, D" uniqKey="Russo D">D Russo</name>
</author>
<author>
<name sortKey="Murarka, Rk" uniqKey="Murarka R">RK Murarka</name>
</author>
<author>
<name sortKey="Copley, Jrd" uniqKey="Copley J">JRD Copley</name>
</author>
<author>
<name sortKey="Head Gordon, T" uniqKey="Head Gordon T">T Head-Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dahl, Db" uniqKey="Dahl D">DB Dahl</name>
</author>
<author>
<name sortKey="Bohsnnan, Z" uniqKey="Bohsnnan Z">Z Bohsnnan</name>
</author>
<author>
<name sortKey="Mo, Q" uniqKey="Mo Q">Q Mo</name>
</author>
<author>
<name sortKey="Vannucci, M" uniqKey="Vannucci M">M Vannucci</name>
</author>
<author>
<name sortKey="Tsai, J" uniqKey="Tsai J">J Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharwood, Re" uniqKey="Sharwood R">RE Sharwood</name>
</author>
<author>
<name sortKey="Von Caemmerer, S" uniqKey="Von Caemmerer S">S von Caemmerer</name>
</author>
<author>
<name sortKey="Maliga, P" uniqKey="Maliga P">P Maliga</name>
</author>
<author>
<name sortKey="Whitney, Sm" uniqKey="Whitney S">SM Whitney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Portis, Ar" uniqKey="Portis A">AR Portis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Salvucci, Me" uniqKey="Salvucci M">ME Salvucci</name>
</author>
<author>
<name sortKey="Portis, Ar" uniqKey="Portis A">AR Portis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Portis, Ar" uniqKey="Portis A">AR Portis</name>
</author>
<author>
<name sortKey="Li, Cs" uniqKey="Li C">CS Li</name>
</author>
<author>
<name sortKey="Wang, Df" uniqKey="Wang D">DF Wang</name>
</author>
<author>
<name sortKey="Salvucci, Me" uniqKey="Salvucci M">ME Salvucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strauss, Sh" uniqKey="Strauss S">SH Strauss</name>
</author>
<author>
<name sortKey="Palmer, Jd" uniqKey="Palmer J">JD Palmer</name>
</author>
<author>
<name sortKey="Howe, Gt" uniqKey="Howe G">GT Howe</name>
</author>
<author>
<name sortKey="Doerksen, Ah" uniqKey="Doerksen A">AH Doerksen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bausher, Mg" uniqKey="Bausher M">MG Bausher</name>
</author>
<author>
<name sortKey="Singh, Nd" uniqKey="Singh N">ND Singh</name>
</author>
<author>
<name sortKey="Lee, Sb" uniqKey="Lee S">SB Lee</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
<author>
<name sortKey="Daniell, H" uniqKey="Daniell H">H Daniell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gould, Sj" uniqKey="Gould S">SJ Gould</name>
</author>
<author>
<name sortKey="Lewontin, Rc" uniqKey="Lewontin R">RC Lewontin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tokuriki, N" uniqKey="Tokuriki N">N Tokuriki</name>
</author>
<author>
<name sortKey="Tawfik, Ds" uniqKey="Tawfik D">DS Tawfik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Jz" uniqKey="Zhang J">JZ Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bershtein, S" uniqKey="Bershtein S">S Bershtein</name>
</author>
<author>
<name sortKey="Tawfik, Ds" uniqKey="Tawfik D">DS Tawfik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piatigorsky, J" uniqKey="Piatigorsky J">J Piatigorsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piatigorsky, J" uniqKey="Piatigorsky J">J Piatigorsky</name>
</author>
<author>
<name sortKey="Wistow, G" uniqKey="Wistow G">G Wistow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wistow, G" uniqKey="Wistow G">G Wistow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Satagopan, S" uniqKey="Satagopan S">S Satagopan</name>
</author>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guisinger, Mm" uniqKey="Guisinger M">MM Guisinger</name>
</author>
<author>
<name sortKey="Kuehl, Jv" uniqKey="Kuehl J">JV Kuehl</name>
</author>
<author>
<name sortKey="Boore, Jl" uniqKey="Boore J">JL Boore</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Losos, Jb" uniqKey="Losos J">JB Losos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berner, Ra" uniqKey="Berner R">RA Berner</name>
</author>
<author>
<name sortKey="Kothavala, Z" uniqKey="Kothavala Z">Z Kothavala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Won, H" uniqKey="Won H">H Won</name>
</author>
<author>
<name sortKey="Renner, Ss" uniqKey="Renner S">SS Renner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sage, Rf" uniqKey="Sage R">RF Sage</name>
</author>
<author>
<name sortKey="Coleman, Jr" uniqKey="Coleman J">JR Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, Tj" uniqKey="Andrews T">TJ Andrews</name>
</author>
<author>
<name sortKey="Whitney, Sm" uniqKey="Whitney S">SM Whitney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jordan, Db" uniqKey="Jordan D">DB Jordan</name>
</author>
<author>
<name sortKey="Ogren, Wl" uniqKey="Ogren W">WL Ogren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savir, Y" uniqKey="Savir Y">Y Savir</name>
</author>
<author>
<name sortKey="Noor, E" uniqKey="Noor E">E Noor</name>
</author>
<author>
<name sortKey="Milo, R" uniqKey="Milo R">R Milo</name>
</author>
<author>
<name sortKey="Tlusty, T" uniqKey="Tlusty T">T Tlusty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mueller Cajar, O" uniqKey="Mueller Cajar O">O Mueller-Cajar</name>
</author>
<author>
<name sortKey="Whitney, Sm" uniqKey="Whitney S">SM Whitney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orr, Ha" uniqKey="Orr H">HA Orr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carneiro, M" uniqKey="Carneiro M">M Carneiro</name>
</author>
<author>
<name sortKey="Hartl, Dl" uniqKey="Hartl D">DL Hartl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
<author>
<name sortKey="Peddi, Sr" uniqKey="Peddi S">SR Peddi</name>
</author>
<author>
<name sortKey="Satagopan, S" uniqKey="Satagopan S">S Satagopan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marin, I" uniqKey="Marin I">I Marin</name>
</author>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
<author>
<name sortKey="Gonzalez Candelas, F" uniqKey="Gonzalez Candelas F">F Gonzalez-Candelas</name>
</author>
<author>
<name sortKey="Barrio, E" uniqKey="Barrio E">E Barrio</name>
</author>
<author>
<name sortKey="Moya, A" uniqKey="Moya A">A Moya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
<author>
<name sortKey="Elena, Sf" uniqKey="Elena S">SF Elena</name>
</author>
<author>
<name sortKey="Ortiz, J" uniqKey="Ortiz J">J Ortiz</name>
</author>
<author>
<name sortKey="Moya, A" uniqKey="Moya A">A Moya</name>
</author>
<author>
<name sortKey="Barrio, E" uniqKey="Barrio E">E Barrio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codo Er, Fm" uniqKey="Codo Er F">FM Codoñer</name>
</author>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
<author>
<name sortKey="Elena, Sf" uniqKey="Elena S">SF Elena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Travers, Saa" uniqKey="Travers S">SAA Travers</name>
</author>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Codo Er, Fm" uniqKey="Codo Er F">FM Codoñer</name>
</author>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rydin, C" uniqKey="Rydin C">C Rydin</name>
</author>
<author>
<name sortKey="Mohr, B" uniqKey="Mohr B">B Mohr</name>
</author>
<author>
<name sortKey="Friis, Em" uniqKey="Friis E">EM Friis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Cn" uniqKey="Miller C">CN Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Geng, By" uniqKey="Geng B">BY Geng</name>
</author>
<author>
<name sortKey="Dilcher, Dl" uniqKey="Dilcher D">DL Dilcher</name>
</author>
<author>
<name sortKey="Chen, Zd" uniqKey="Chen Z">ZD Chen</name>
</author>
<author>
<name sortKey="Lott, Ta" uniqKey="Lott T">TA Lott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Bielawski, Jp" uniqKey="Bielawski J">JP Bielawski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hurst, Ld" uniqKey="Hurst L">LD Hurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldman, N" uniqKey="Goldman N">N Goldman</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anisimova, M" uniqKey="Anisimova M">M Anisimova</name>
</author>
<author>
<name sortKey="Bielawski, Jp" uniqKey="Bielawski J">JP Bielawski</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stern, A" uniqKey="Stern A">A Stern</name>
</author>
<author>
<name sortKey="Doron Faigenboim, A" uniqKey="Doron Faigenboim A">A Doron-Faigenboim</name>
</author>
<author>
<name sortKey="Erez, E" uniqKey="Erez E">E Erez</name>
</author>
<author>
<name sortKey="Martz, E" uniqKey="Martz E">E Martz</name>
</author>
<author>
<name sortKey="Bacharach, E" uniqKey="Bacharach E">E Bacharach</name>
</author>
<author>
<name sortKey="Pupko, T" uniqKey="Pupko T">T Pupko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, X" uniqKey="Xia X">X Xia</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosakovsky Pond, Sl" uniqKey="Kosakovsky Pond S">SL Kosakovsky Pond</name>
</author>
<author>
<name sortKey="Frost, Sd" uniqKey="Frost S">SD Frost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fares, Ma" uniqKey="Fares M">MA Fares</name>
</author>
<author>
<name sortKey="Travers, Saa" uniqKey="Travers S">SAA Travers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caporaso, Jg" uniqKey="Caporaso J">JG Caporaso</name>
</author>
<author>
<name sortKey="Smit, S" uniqKey="Smit S">S Smit</name>
</author>
<author>
<name sortKey="Easton, Bc" uniqKey="Easton B">BC Easton</name>
</author>
<author>
<name sortKey="Hunter, L" uniqKey="Hunter L">L Hunter</name>
</author>
<author>
<name sortKey="Huttley, Ga" uniqKey="Huttley G">GA Huttley</name>
</author>
<author>
<name sortKey="Knight, R" uniqKey="Knight R">R Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westfall, Ph" uniqKey="Westfall P">PH Westfall</name>
</author>
<author>
<name sortKey="Young, Ss" uniqKey="Young S">SS Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Wh" uniqKey="Li W">WH Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapralov, Mv" uniqKey="Kapralov M">MV Kapralov</name>
</author>
<author>
<name sortKey="Kubien, Ds" uniqKey="Kubien D">DS Kubien</name>
</author>
<author>
<name sortKey="Andersson, I" uniqKey="Andersson I">I Andersson</name>
</author>
<author>
<name sortKey="Filatov, Da" uniqKey="Filatov D">DA Filatov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Kf" uniqKey="Muller K">KF Müller</name>
</author>
<author>
<name sortKey="Borsch, T" uniqKey="Borsch T">T Borsch</name>
</author>
<author>
<name sortKey="Hilu, Kw" uniqKey="Hilu K">KW Hilu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pupko, T" uniqKey="Pupko T">T Pupko</name>
</author>
<author>
<name sortKey="Pe, I" uniqKey="Pe I">I Pe</name>
</author>
<author>
<name sortKey="Shamir, R" uniqKey="Shamir R">R Shamir</name>
</author>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Douzery, Ejp" uniqKey="Douzery E">EJP Douzery</name>
</author>
<author>
<name sortKey="Snell, Ea" uniqKey="Snell E">EA Snell</name>
</author>
<author>
<name sortKey="Bapteste, E" uniqKey="Bapteste E">E Bapteste</name>
</author>
<author>
<name sortKey="Delsuc, F" uniqKey="Delsuc F">F Delsuc</name>
</author>
<author>
<name sortKey="Philippe, H" uniqKey="Philippe H">H Philippe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
<author>
<name sortKey="Martin, W" uniqKey="Martin W">W Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Kj" uniqKey="Peterson K">KJ Peterson</name>
</author>
<author>
<name sortKey="Lyons, Jb" uniqKey="Lyons J">JB Lyons</name>
</author>
<author>
<name sortKey="Nowak, Ks" uniqKey="Nowak K">KS Nowak</name>
</author>
<author>
<name sortKey="Takacs, Cm" uniqKey="Takacs C">CM Takacs</name>
</author>
<author>
<name sortKey="Wargo, Mj" uniqKey="Wargo M">MJ Wargo</name>
</author>
<author>
<name sortKey="Mcpeek, Ma" uniqKey="Mcpeek M">MA McPeek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roger, Aj" uniqKey="Roger A">AJ Roger</name>
</author>
<author>
<name sortKey="Hug, La" uniqKey="Hug L">LA Hug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emerson, Bc" uniqKey="Emerson B">BC Emerson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lepage, T" uniqKey="Lepage T">T Lepage</name>
</author>
<author>
<name sortKey="Bryant, D" uniqKey="Bryant D">D Bryant</name>
</author>
<author>
<name sortKey="Philippe, H" uniqKey="Philippe H">H Philippe</name>
</author>
<author>
<name sortKey="Lartillot, N" uniqKey="Lartillot N">N Lartillot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shields, R" uniqKey="Shields R">R Shields</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Welch, Jj" uniqKey="Welch J">JJ Welch</name>
</author>
<author>
<name sortKey="Bromham, L" uniqKey="Bromham L">L Bromham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Sym" uniqKey="Ho S">SYM Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Syw" uniqKey="Ho S">SYW Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitazoe, Y" uniqKey="Kitazoe Y">Y Kitazoe</name>
</author>
<author>
<name sortKey="Kishino, H" uniqKey="Kishino H">H Kishino</name>
</author>
<author>
<name sortKey="Waddell, Pj" uniqKey="Waddell P">PJ Waddell</name>
</author>
<author>
<name sortKey="Nakajima, N" uniqKey="Nakajima N">N Nakajima</name>
</author>
<author>
<name sortKey="Okabayashi, T" uniqKey="Okabayashi T">T Okabayashi</name>
</author>
<author>
<name sortKey="Watabe, T" uniqKey="Watabe T">T Watabe</name>
</author>
<author>
<name sortKey="Okuhara, Y" uniqKey="Okuhara Y">Y Okuhara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Jw" uniqKey="Brown J">JW Brown</name>
</author>
<author>
<name sortKey="Rest, Js" uniqKey="Rest J">JS Rest</name>
</author>
<author>
<name sortKey="Garcia Moreno, J" uniqKey="Garcia Moreno J">J García-Moreno</name>
</author>
<author>
<name sortKey="Sorenson, Md" uniqKey="Sorenson M">MD Sorenson</name>
</author>
<author>
<name sortKey="Mindell, Dp" uniqKey="Mindell D">DP Mindell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renner, Ss" uniqKey="Renner S">SS Renner</name>
</author>
<author>
<name sortKey="Grimm, Gw" uniqKey="Grimm G">GW Grimm</name>
</author>
<author>
<name sortKey="Schneeweiss, Gm" uniqKey="Schneeweiss G">GM Schneeweiss</name>
</author>
<author>
<name sortKey="Stuessy, Tf" uniqKey="Stuessy T">TF Stuessy</name>
</author>
<author>
<name sortKey="Ricklefs, Re" uniqKey="Ricklefs R">RE Ricklefs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, B" uniqKey="Zhong B">B Zhong</name>
</author>
<author>
<name sortKey="Yonezawa, T" uniqKey="Yonezawa T">T Yonezawa</name>
</author>
<author>
<name sortKey="Zhong, Y" uniqKey="Zhong Y">Y Zhong</name>
</author>
<author>
<name sortKey="Hasegawa, M" uniqKey="Hasegawa M">M Hasegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ott, Cm" uniqKey="Ott C">CM Ott</name>
</author>
<author>
<name sortKey="Smith, Bd" uniqKey="Smith B">BD Smith</name>
</author>
<author>
<name sortKey="Portis, Ar" uniqKey="Portis A">AR Portis</name>
</author>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, Yc" uniqKey="Du Y">YC Du</name>
</author>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, Yc" uniqKey="Du Y">YC Du</name>
</author>
<author>
<name sortKey="Peddi, Sr" uniqKey="Peddi S">SR Peddi</name>
</author>
<author>
<name sortKey="Spreitzer, Rj" uniqKey="Spreitzer R">RJ Spreitzer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biol Direct</journal-id>
<journal-title-group>
<journal-title>Biology Direct</journal-title>
</journal-title-group>
<issn pub-type="epub">1745-6150</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21639885</article-id>
<article-id pub-id-type="pmc">3129321</article-id>
<article-id pub-id-type="publisher-id">1745-6150-6-29</article-id>
<article-id pub-id-type="doi">10.1186/1745-6150-6-29</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Molecular evolution of
<italic>rbcL </italic>
in three gymnosperm families: identifying adaptive and coevolutionary patterns</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Sen</surname>
<given-names>Lin</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<email>jarodsenlin@wbgcas.cn</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Fares</surname>
<given-names>Mario A</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<xref ref-type="aff" rid="I4">4</xref>
<email>faresm@tcd.ie</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Liang</surname>
<given-names>Bo</given-names>
</name>
<xref ref-type="aff" rid="I5">5</xref>
<xref ref-type="aff" rid="I6">6</xref>
<email>blgb8@mail.missouri.edu</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Gao</surname>
<given-names>Lei</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>leigao@wbgcas.cn</email>
</contrib>
<contrib contrib-type="author" id="A5">
<name>
<surname>Wang</surname>
<given-names>Bo</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<email>bowang@wbgcas.cn</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A6">
<name>
<surname>Wang</surname>
<given-names>Ting</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>tingwang@wbgcas.cn</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A7">
<name>
<surname>Su</surname>
<given-names>Ying-Juan</given-names>
</name>
<xref ref-type="aff" rid="I7">7</xref>
<email>suyj@mail.sysu.edu.cn</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China</aff>
<aff id="I2">
<label>2</label>
Graduate University of Chinese Academy of Sciences, Beijing, China</aff>
<aff id="I3">
<label>3</label>
Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Ireland</aff>
<aff id="I4">
<label>4</label>
Integrative and Systems Biology Group, Department of Abiotic Stress, Instituto de Biologia Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia, Spain</aff>
<aff id="I5">
<label>5</label>
Department of Biochemistry, University of Missouri, Columbia, USA</aff>
<aff id="I6">
<label>6</label>
Genetics Area Program, University of Missouri, Columbia, USA</aff>
<aff id="I7">
<label>7</label>
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China</aff>
<pub-date pub-type="collection">
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>3</day>
<month>6</month>
<year>2011</year>
</pub-date>
<volume>6</volume>
<fpage>29</fpage>
<lpage>29</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>1</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>6</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2011 Sen et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2011</copyright-year>
<copyright-holder>Sen et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biology-direct.com/content/6/1/29"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO
<sub>2</sub>
. The large subunit (LSU) of Rubisco is encoded by the chloroplast
<italic>rbcL </italic>
gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure.</p>
</sec>
<sec>
<title>Results</title>
<p>We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in
<italic>rbcL </italic>
gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO
<sub>2</sub>
.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The gene
<italic>rbcL </italic>
has experienced bursts of adaptations in response to the changing concentration of CO
<sub>2 </sub>
in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities.</p>
</sec>
<sec>
<title>Reviewers</title>
<p>This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>In spite of its slow non-specific catalysis the chloroplast-localized ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), the most abundant protein in nature, is the primary enzyme responsible for autotrophy [
<xref ref-type="bibr" rid="B1">1</xref>
]. Rubisco is a bi-functional enzyme catalyzing both the carboxylation of D-ribulose-1,5-bisphosphate (RuBP) that initiates photosynthetic CO
<sub>2 </sub>
fixation and the oxygenation of RuBP that starts the nonessential photo-respiratory pathway [
<xref ref-type="bibr" rid="B2">2</xref>
]. Its holoenzyme in green algae and higher plants consists of eight large subunits (LSUs) encoded by the chloroplast (cp) gene
<italic>rbcL </italic>
and eight small subunits (SSUs) encoded by the nuclear gene
<italic>rbcS</italic>
. Active sites are formed at the intra-dimer interfaces among the C-terminal, α/β barrel domain of one large subunit and the N-terminal domain of another [
<xref ref-type="bibr" rid="B3">3</xref>
]. CO
<sub>2 </sub>
and O
<sub>2 </sub>
mutually compete as substrates for the active sites, and the ratio of carboxylation to oxygenation ultimately affects the efficiency of net carbon assimilation [
<xref ref-type="bibr" rid="B4">4</xref>
]. Understanding of the molecular evolution of
<italic>rbcL </italic>
genes may shed light on the functional/structural features governing Rubisco activity. The knowledge is also paramount from the biotechnological point of view since photosynthesis is tightly linked to the delicate balance between carboxylation and oxygenation. Subtle alteration of this balance can have a significant impact upon photosynthetic productivity [
<xref ref-type="bibr" rid="B5">5</xref>
].</p>
<p>Most of the evolutionary changes optimizing Rubisco's function have been likely subjected to selection forces owing to the direct relationship between this function and the biological fitness of the plant. Most molecular changes favouring the enzyme function would be fixed by adaptive evolution, while the changes compromising its activity would be removed by purifying selection. Following the inverse rational, investigation of adaptive evolution processes in Rubisco can aid in identifying key changes in its function. Adaptive evolution has seldom been observed in cp genes [
<xref ref-type="bibr" rid="B6">6</xref>
], mainly due to: i) Low rates of evolution of protein-coding cp genes [
<xref ref-type="bibr" rid="B7">7</xref>
], which challenges the sensitivity of the methods to identify selection due to the lack of statistical power [
<xref ref-type="bibr" rid="B8">8</xref>
]; ii) With the exception of few cases [
<xref ref-type="bibr" rid="B6">6</xref>
], cp genes present a low propensity to undergo duplication [
<xref ref-type="bibr" rid="B9">9</xref>
], a fundamental mechanism in generating the source of novel functions [
<xref ref-type="bibr" rid="B10">10</xref>
]; and iii) The lack of models that realistically parameterize the evolution of cp genes, known to present codon usage bias and hence to yield misleading selection results when inappropriate models are applied [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. Nonetheless, the use of more realistic models may prove successful in identifying true adaptive molecular changes in cp genes, many of which would be linked to plant adaptive radiations [
<xref ref-type="bibr" rid="B13">13</xref>
].</p>
<p>Rubisco enzymatic efficiency has been shown to be fine-tuned in diverse autotrophy species [
<xref ref-type="bibr" rid="B14">14</xref>
]. Significant positive selection events have been also identified in the RbcL subunit of most land plant lineages by using simulation approaches [
<xref ref-type="bibr" rid="B15">15</xref>
]. In particular, the adaptive evolution of
<italic>rbcL </italic>
genes has been found in the aquatic plant
<italic>Potamogeton </italic>
[
<xref ref-type="bibr" rid="B16">16</xref>
] and the F-type lineage of
<italic>Conocephalum </italic>
[
<xref ref-type="bibr" rid="B17">17</xref>
]. These findings make it plausible to hypothesize that RbcL subunit may have undergone "continual fine-tuning" in green plants to adapt to CO
<sub>2 </sub>
concentration changes across geological epochs [
<xref ref-type="bibr" rid="B18">18</xref>
]. How are these adaptive process reflected at the molecular level? To understand and answer these questions, adaptive evolution analysis must be complemented with the identification of coevolutionary dynamics that can highlight the intricate co-adaptive relationships between residues in the protein under an estimated timescale [
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B19">19</xref>
]. In this respect, current molecular evolutionary methods such as the identification of coevolutionary sites [
<xref ref-type="bibr" rid="B20">20</xref>
] and relaxed molecular clock inference models [
<xref ref-type="bibr" rid="B21">21</xref>
,
<xref ref-type="bibr" rid="B22">22</xref>
] offer a unique opportunity to dissect the
<italic>rbcL </italic>
gene fine-tuning.</p>
<p>Podocarpaceae comprises members that extend both southern and northern hemispheres, accounting for nearly 14% of the gymnosperm diversity. The family is predominantly occupying mesic temperate and sunny tropical mountain habitats [
<xref ref-type="bibr" rid="B23">23</xref>
]. Taxaceae (also known as taxads or the yew family), including 25 species, is a widespread albeit locally endangered gymnosperm family [
<xref ref-type="bibr" rid="B24">24</xref>
]. The genus
<italic>Cephalotaxus </italic>
was previously listed in the Taxaceae [
<xref ref-type="bibr" rid="B25">25</xref>
]. However, recent molecular evidences confirmed that it should be treated as a family (Cephalotaxaceae) [
<xref ref-type="bibr" rid="B26">26</xref>
]. Since these three families possess different contemporary net diversification, characterizations of the evolutionary processes in key genes may help to unearth the dynamics of their species diversification. In the present study we conduct an exhaustive analysis of such evolutionary dynamics and address the following questions: i) Whether and to what extent have adaptive evolution played a role in the evolutionary innovation of the
<italic>rbcL </italic>
gene; ii) How important have this evolutionary force been in the ecological diversification of the three gymnosperm families (Taxaceae, Cephalotaxaceae and Podocarpaceae); and iii) What is the coevolutionary pattern within the RbcL subunit of these families?</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Alignments and sequence characteristics</title>
<p>The alignment comprised 1269 positions (423 codons) of the
<italic>rbcL </italic>
gene. Gaps were excluded from the sequences. The model most suited to explain the substitution dynamics and the phylogenetic tree relating all the sequences of this multiple sequence alignment (MSA) was determined by Modeltest 3.7 [
<xref ref-type="bibr" rid="B27">27</xref>
] and Datamonkey 2010 website (
<ext-link ext-link-type="uri" xlink:href="http://www.datamonkey.org">http://www.datamonkey.org</ext-link>
) [
<xref ref-type="bibr" rid="B28">28</xref>
].</p>
</sec>
<sec>
<title>Dating the phylogenetic divergence events</title>
<p>Two monophyletic clades of Taxaceae-Cephalotaxaceae and Podocarpaceae were identified by the Bayesian analysis, both supported with high posterior probabilities (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Within Podocarpaceae, besides
<italic>Podocarpus </italic>
three well-supported genera were obtained:
<italic>Nageia, Dacrycarpus </italic>
and
<italic>Dacrydium</italic>
.
<italic>Dacrydium </italic>
was basal to the remain Podocarpaceae species. The genus
<italic>Podocarpus </italic>
diverged into two groups,
<italic>Podocarpus </italic>
I and
<italic>Podocarpus </italic>
II. In the Taxaceae-Cephalotaxaceae clade, four major lineages were resolved. Among them the
<italic>Torreya-Amentotaxus </italic>
lineage was sister to the remainder; the family Cephalotaxaceae was sister to the three remaining genera of the family Taxaceae; and the genus
<italic>Taxus </italic>
was the sister to the
<italic>Pseudotaxus-Austrotaxus </italic>
lineage. These results indicated that the divergence between Taxaceae-Cephalotaxaceae and Podocarpaceae represented the first major split during the evolution of the three families and that Cephalotaxaceae is nested in Taxaceae.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>The phylogenetic tree inferred from
<italic>rbcL </italic>
sequences under the UCLD model</bold>
. Geologic timescale is tagged above the phylogenetic tree (Unit: Million years). The estimated global atmospheric CO
<sub>2 </sub>
concentrations from the GEOCARB III model are mapped under the phylogenetic tree according to the geologic timeline. Each node in the tree is numbered. Posterior probability values are shown along the branches and those with posterior probability ≥ 0.9 are heavily thickened. Two time intervals are demonstrated in grey. The six major clades concerned in this research are indicated: Podocarpaceae,
<italic>Podocarpus </italic>
I and II, Cephalotaxaceae,
<italic>Taxus </italic>
and
<italic>Torreya</italic>
. The length of each branch is in proportion to the divergence time estimated by using the UCLD model.</p>
</caption>
<graphic xlink:href="1745-6150-6-29-1"></graphic>
</fig>
<p>The absolute divergence time and evolutionary rates of all nodes in the tree were estimated under the uncorrelated lognormal model (UCLD), and the global atmospheric CO
<sub>2 </sub>
concentrations were also mapped according to the estimated timescale (Figure
<xref ref-type="fig" rid="F1">1</xref>
, Table
<xref ref-type="table" rid="T1">1</xref>
). This analysis provided a time estimate of 204 Mya to the most recent common ancestor (MRCA) for the extant Podocarpaceae (Figure
<xref ref-type="fig" rid="F1">1</xref>
). The results demonstrated that the splitting between the genera
<italic>Nageia </italic>
and
<italic>Podocarpus </italic>
occurred during early Paleocene following the Cretaceous-Tertiary (K/T) extinction event, after which the genus
<italic>Podocarpus </italic>
segregated into two groups (
<italic>Podocarpus </italic>
I and II). The lineage
<italic>Torreya</italic>
-
<italic>Amentotaxus </italic>
diverged from the remainder of the other members in Taxaceae-Cephalotaxaceae during the Jurassic; Cephalotaxaceae departed with the rest three genera in Taxaceae during the Cretaceous; and
<italic>Taxus </italic>
split with
<italic>Pseudotaxus-Austrotaxus </italic>
during the Tertiary.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Parameters estimated under the UCLD model</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center">
<bold>Node No</bold>
.</th>
<th align="center">Posterior
<break></break>
probability</th>
<th align="center">Estimated divergence
<break></break>
time (Mya)</th>
<th align="center">Estimated rates
<break></break>
<bold>(10</bold>
<sup>
<bold>-10 </bold>
</sup>
<bold>nt/year)</bold>
</th>
<th align="center">Geologic period</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">1</td>
<td align="center">100</td>
<td align="center">8.62</td>
<td align="center">1.52</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">7</td>
<td align="center">99.97</td>
<td align="center">29.61</td>
<td align="center">2.85</td>
<td align="center">Paleogene/Neogene</td>
</tr>
<tr>
<td align="center">13</td>
<td align="center">100</td>
<td align="center">49.65</td>
<td align="center">2.69</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">25</td>
<td align="center">95.51</td>
<td align="center">52.95</td>
<td align="center">1.69</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">26</td>
<td align="center">100</td>
<td align="center">19.98</td>
<td align="center">2.06</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">27</td>
<td align="center">99.99</td>
<td align="center">66.75</td>
<td align="center">2.46</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">28</td>
<td align="center">99.99</td>
<td align="center">61.78</td>
<td align="center">1.99</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">30</td>
<td align="center">100</td>
<td align="center">134.19</td>
<td align="center">4.66</td>
<td align="center">Lower Cretaceous</td>
</tr>
<tr>
<td align="center">32</td>
<td align="center">100</td>
<td align="center">9.13</td>
<td align="center">2.41</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">35</td>
<td align="center">99.67</td>
<td align="center">31.9</td>
<td align="center">1.96</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">36</td>
<td align="center">100</td>
<td align="center">39.88</td>
<td align="center">2.94</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">38</td>
<td align="center">100</td>
<td align="center">34.74</td>
<td align="center">1.28</td>
<td align="center">Paleogene</td>
</tr>
<tr>
<td align="center">39</td>
<td align="center">99.99</td>
<td align="center">69.45</td>
<td align="center">1.65</td>
<td align="center">Cretaceous/Paleogene</td>
</tr>
<tr>
<td align="center">40</td>
<td align="center">96.18</td>
<td align="center">8.18</td>
<td align="center">1.59</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">47</td>
<td align="center">99.29</td>
<td align="center">21.02</td>
<td align="center">1.56</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">49</td>
<td align="center">98.09</td>
<td align="center">4.12</td>
<td align="center">1.48</td>
<td align="center">Neogene/Quaternary</td>
</tr>
<tr>
<td align="center">50</td>
<td align="center">98.77</td>
<td align="center">21.05</td>
<td align="center">1.52</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">51</td>
<td align="center">100</td>
<td align="center">30.85</td>
<td align="center">2.53</td>
<td align="center">Paleogene/Neogene</td>
</tr>
<tr>
<td align="center">54</td>
<td align="center">98.18</td>
<td align="center">1.47</td>
<td align="center">2.01</td>
<td align="center">Neogene/Quaternary</td>
</tr>
<tr>
<td align="center">55</td>
<td align="center">100</td>
<td align="center">9.98</td>
<td align="center">2.47</td>
<td align="center">Neogene/Quaternary</td>
</tr>
<tr>
<td align="center">64</td>
<td align="center">100</td>
<td align="center">20.17</td>
<td align="center">2.57</td>
<td align="center">Neogene</td>
</tr>
<tr>
<td align="center">65</td>
<td align="center">99.76</td>
<td align="center">136.64</td>
<td align="center">1.58</td>
<td align="center">Lower Cretaceous</td>
</tr>
<tr>
<td align="center">67</td>
<td align="center">100</td>
<td align="center">168.52</td>
<td align="center">2.89</td>
<td align="center">Middle Jurassic</td>
</tr>
<tr>
<td align="center">70</td>
<td align="center">99.97</td>
<td align="center">174.16</td>
<td align="center">1.97</td>
<td align="center">Middle Jurassic</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Results for the well supported nodes in Figure 1 are shown.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Consistent adaptive evolution in the phylogeny of
<italic>rbcL</italic>
</title>
<p>The primary proportion of the sites (
<italic>p</italic>
<sub>
<italic>0 </italic>
</sub>
> 89%,
<italic>ω</italic>
<sub>0 </sub>
< 0.1) in the three families were under purifying selection (Figure
<xref ref-type="fig" rid="F2">2</xref>
, Table
<xref ref-type="table" rid="T2">2</xref>
). A small proportion of sites (
<italic>p</italic>
<sub>2 </sub>
= 2%,
<italic>ω</italic>
<sub>2 </sub>
= 2.92) were under positive selection (Table
<xref ref-type="table" rid="T2">2</xref>
). Seven sites (A11V, Q14K, K30Q, S95N, V99A, I133L, and L225I) were significantly identified as positively selected sites under both PAML and Selecton programs via random-site models, and three more (G86D, S143A, and T262V) were found to have evolved under adaptive evolution using the branch-site models. One site (K30Q) was also recognized as positively selected via conservative nested models (M1a/M2a). The significant level of nested models was assessed by the likelihood ratio test (Table
<xref ref-type="table" rid="T2">2</xref>
). The χ
<sup>2 </sup>
test indicated that all the alternative hypotheses (M2a, M3, and M8) in the random-site models significantly outperformed their comparable null test (M1a, M0, and M7/M8a). Moreover, the branch-site model A (
<italic>ω</italic>
<sub>2 </sub>
estimated) fit five branches (Podocarpaceae,
<italic>Podocarpus </italic>
I and II, Taxaceae, and
<italic>Taxus</italic>
) significantly better than its null model (
<italic>ω</italic>
<sub>2 </sub>
= 1 fixed) (Table
<xref ref-type="table" rid="T2">2</xref>
and
<xref ref-type="table" rid="T3">3</xref>
). Podocarpaceae and
<italic>Podocarpus </italic>
I and II were also identified to be under positive selection, even after correcting for multiple tests by the Bonferroni correction [
<xref ref-type="bibr" rid="B29">29</xref>
] (Table
<xref ref-type="table" rid="T3">3</xref>
). By contrast, when
<italic>Torreya </italic>
and Cephalotaxaceae were specified as the foreground branches, both the test and null models had similar log-likelihood values, indicating that there was not enough evidence to support adaptive diversifying scenarios.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Estimated parameters under the M8 model using Selecton web-server</bold>
. Approximate posterior means of
<italic>ω </italic>
are weighted by the posterior probabilities. Sites are numbered according to the reference sequence from
<italic>Taxus mairei </italic>
(GenBank accession number:
<ext-link ext-link-type="gen" xlink:href="AY450856">AY450856</ext-link>
).</p>
</caption>
<graphic xlink:href="1745-6150-6-29-2"></graphic>
</fig>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Parameter estimates from tests for selection</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center">Model</th>
<th align="center">
<italic>np</italic>
</th>
<th align="center"></th>
<th align="center">Parameters</th>
<th align="center">Positively selected sites</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">M0: One ratio</td>
<td align="center">137</td>
<td align="center">-5654.77</td>
<td align="center">
<bold>
<italic>ω </italic>
</bold>
= 0.173</td>
<td align="center">None</td>
</tr>
<tr>
<td align="center">M1a: Nearly neutral</td>
<td align="center">138</td>
<td align="center">-5539.34</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.885,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.062;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 0.114,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">M2a: Positive selection</td>
<td align="center">140</td>
<td align="center">-5529.73</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.892,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.07;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.085,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 0.023,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 2.92</td>
<td align="center">K30Q</td>
</tr>
<tr>
<td align="center">M3: Discrete</td>
<td align="center">139</td>
<td align="center">-5536.84</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.92,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.08;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 0.079,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 1.46</td>
<td align="center">A11V, Q14K, E28Q, K30Q, G86D, S95N, V99A, I133L, L225I, I251M, K305R</td>
</tr>
<tr>
<td align="center">M7: β</td>
<td align="center">138</td>
<td align="center">-5547.37</td>
<td align="center">
<bold>
<italic>p </italic>
</bold>
= 0.015,
<bold>
<italic>q </italic>
</bold>
= 0.074</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">M8: β &
<italic>ω</italic>
</td>
<td align="center">140</td>
<td align="center">-5527.82</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0 </bold>
</sub>
= 0.96;
<bold>
<italic>p </italic>
</bold>
= 0.09,
<bold>
<italic>q </italic>
</bold>
= 0.38;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1 </bold>
</sub>
= 0.039,
<bold>
<italic>ω </italic>
</bold>
= 2.20</td>
<td align="center">A11V, Q14K, K30Q, S95N, V99A, I133L, L225I</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>Branch-site models</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>Taxaceae-Cephalotaxaceae</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5533.19</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.857
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.053;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.061,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.082,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5530.95</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.891
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.06;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.078,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.03,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 2.55</td>
<td align="center">A11V, V99A, I133L</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>
<italic>Taxus</italic>
</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5535.98</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.852
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.057;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.106,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.042,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5533.12</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.86
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.06;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.103,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.027,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 5.9</td>
<td align="center">K30Q</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>
<italic>Torreya</italic>
</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5538.23</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.82
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.059;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.106,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.073,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5538.33</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.82
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>= </italic>
</bold>
0.059;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.106,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.071,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1.02</td>
<td align="center">None</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>Podocarpaceae</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5527.9</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.84
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.049;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.057,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.099,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5523.16</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.89
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.065;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.063,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.047,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 2.41</td>
<td align="center">A11V, G86D, V99A, I133L</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>
<italic>Podocarpus </italic>
I</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5537.56</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.786
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.05;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.084,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.129,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5533.91</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.727
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.058;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.091,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.181,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1.12</td>
<td align="center">None</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>
<italic>Podocarpus </italic>
II</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5530.31</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.81
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.054;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.093,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.097,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5526.95</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.85
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.056;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.096,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.056,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 3.31</td>
<td align="center">S143A, T262V</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>Model</bold>
</td>
<td align="center">
<bold>
<italic>np</italic>
</bold>
</td>
<td align="center"></td>
<td align="center">
<bold>Parameters</bold>
</td>
<td align="center">
<bold>Positively selected sites</bold>
</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">
<bold>Cephalotaxaceae</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1, fixed</td>
<td align="center">139</td>
<td align="center">-5537.3</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.82
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.058;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.102,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.077,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 1</td>
<td align="center">Not allowed</td>
</tr>
<tr>
<td align="center">Model A:
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
estimated</td>
<td align="center">140</td>
<td align="center">-5536.84</td>
<td align="center">
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.862
<bold>
<italic>, ω</italic>
</bold>
<sub>
<bold>0</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.059;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
0.105,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>
<italic>=</italic>
</bold>
1;
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2a</bold>
</sub>
+
<bold>
<italic>p</italic>
</bold>
<sub>
<bold>2b </bold>
</sub>
= 0.032,
<bold>
<italic>ω</italic>
</bold>
<sub>
<bold>2 </bold>
</sub>
= 2.68</td>
<td align="center">None</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Positive selection sites are identified with posterior probability higher than 95%.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Tests for selection with Bonferroni correction</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Model</th>
<th align="center">2Δℓ</th>
<th align="center">
<italic>d.f.</italic>
</th>
<th align="center">
<italic>p</italic>
</th>
<th align="center">Sig. α = 0.05</th>
<th align="center">Bonferroni correction</th>
<th align="center">Sig. α = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">M0-M3</td>
<td align="center">235.86</td>
<td align="center">2</td>
<td align="center">0</td>
<td align="center"></td>
<td align="center" colspan="2">No need</td>
</tr>
<tr>
<td align="left">M1a-M2a</td>
<td align="center">19.22</td>
<td align="center">2</td>
<td align="center">0.0001</td>
<td align="center"></td>
<td align="center" colspan="2">No need</td>
</tr>
<tr>
<td align="left">M7-M8</td>
<td align="center">39.1</td>
<td align="center">2</td>
<td align="center">0</td>
<td align="center"></td>
<td align="center" colspan="2">No need</td>
</tr>
<tr>
<td align="left">M8a-M8</td>
<td align="center">4.86</td>
<td align="center">1</td>
<td align="center">0.0275</td>
<td align="center"></td>
<td align="center" colspan="2">No need</td>
</tr>
<tr>
<td colspan="7">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">A-A1 test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">Taxaceae-Cephalotaxaceae</td>
<td align="center">4.48</td>
<td align="center">1</td>
<td align="center">0.0343</td>
<td align="center"></td>
<td align="center">0.0686</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">
<italic>Taxus</italic>
</td>
<td align="center">5.72</td>
<td align="center">1</td>
<td align="center">0.0168</td>
<td align="center"></td>
<td align="center">0.084</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">
<italic>Torreya</italic>
</td>
<td align="center">0.2</td>
<td align="center">1</td>
<td align="center">0.6547</td>
<td align="center"></td>
<td align="center">3.2735</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">Cephalotaxaceae</td>
<td align="center">0.92</td>
<td align="center">1</td>
<td align="center">0.3375</td>
<td align="center"></td>
<td align="center">1.6875</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">Podocarpaceae</td>
<td align="center">9.48</td>
<td align="center">1</td>
<td align="center">0.0021</td>
<td align="center"></td>
<td align="center">0.0105</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">
<italic>Podocarpus </italic>
I</td>
<td align="center">7.3</td>
<td align="center">1</td>
<td align="center">0.0069</td>
<td align="center"></td>
<td align="center">0.0345</td>
<td align="center"></td>
</tr>
<tr>
<td align="left">
<italic>Podocarpus </italic>
II</td>
<td align="center">6.72</td>
<td align="center">1</td>
<td align="center">0.0095</td>
<td align="center"></td>
<td align="center">0.0475</td>
<td align="center"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>In the branch-site model, the relevant hypotheses are verified under the Bonferroni correction to avoid false positive conclusion. The sign ● denotes the results that pass the statistical significance tests, while ○ stands for the opposite.</p>
</table-wrap-foot>
</table-wrap>
<p>Four sites (A11V, G86D, V99A, and I133L) were detected under adaptive evolution along the ancestral branch of Podocarpaceae (Figure
<xref ref-type="fig" rid="F3">3</xref>
). The ancestor of
<italic>Podocarpus </italic>
I presented two positively selected candidate sites (A11V and Q14K); however, neither of them was significantly supported by the posterior probabilities. As for
<italic>Podocarpus </italic>
II, two sites (S143A and T262V) were identified under selection with strong statistical supports. In addition, three sites (A11V, V99A, and I133L) were found to be positively selected on the branch leading to the ancestor of Taxaceae, whereas only one (K30Q) was identified in the ancestor of
<italic>Taxus</italic>
.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Positively selected sites in the RbcL subunit of the Podocarpaceae ancestor</bold>
. Four positive selected sites of the Podocarpaceae ancestor are highlighted in red arrows. The 3D imagines of the ancestral and current amino acid residues are represented in purple and cyanine, respectively. The ancestral amino acid residues are inferred by the DAMBE package and the ancestral state reconstruction (ASR) molecule on Datamonkey 2010 website for the Podocarpaceae ancestral node [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B82">82</xref>
]. The three domains are colour coded differently. Positively selected sites are indicated with lines, whereas the potential ones are with black dotted lines.</p>
</caption>
<graphic xlink:href="1745-6150-6-29-3"></graphic>
</fig>
</sec>
<sec>
<title>Inter-dependent evolution of amino acid sites in the RbcL subunit</title>
<p>Analysis of coevolution in RbcL using CAPS identified 21 co-evolution groups (Figure
<xref ref-type="fig" rid="F4">4</xref>
). A coevolution group was defined to include all those sites that presented coevolution signal with all the other sites within the same group: if site A was coevolving with B, B with C and A with C, then all three sites were included within one coevolution group. The largest group (Figure
<xref ref-type="fig" rid="F5">5</xref>
) included four sites (11V, 14K, 19D, and 56A), while the smallest contained only two. The residues belonging to most of the co-evolving pairs presented significant correlations with their physicochemical properties, including hydrophobicity, molecular weight, or both of them. For example, four of the co-evolution pairs (11V/19D, 14K/19D, 11V/86D, and 50P/219V) detected among the 21 co-evolution groups exhibited correlated hydrophobicity; meanwhile, the other four pairs (14L/258R, 14K/142P, 95N/145S, and 255V/251M) correlated in their molecular weight variance.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Coevolutionary networks in the RbcL subunit of the three gymnosperm families</bold>
. Residues in the networks are sorted clockwise in an ascending order depending on the number of coevolutionary interactions that each amino acid residue establishes. The domains to which these amino acid sites belong are colour-coded. Nodes (amino acid residues) are connected through edges differently according to the nature and characteristics of their coevolution.</p>
</caption>
<graphic xlink:href="1745-6150-6-29-4"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Coevolving sites within the N-terminal structure of the RbcL subunit</bold>
. Amino acid residues involving in the coevolutionary network are highlighted red in the 3D structural diagram. And the residues are connected differently according to the nature and characteristics of their coevolution.</p>
</caption>
<graphic xlink:href="1745-6150-6-29-5"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<sec>
<title>Adaptive evolution of the
<italic>rbcL </italic>
gene in the three gymnosperm families</title>
<p>The random-site models [
<xref ref-type="bibr" rid="B30">30</xref>
] were employed to examine the adaptive evolution of the
<italic>rbcL </italic>
gene in three gymnosperm families Podocarpaceae, Taxaceae and Cephalotaxaceae. Our results showed that most sites are under purifying selection, while a small part is under neutral evolution.</p>
<p>Recent improvements in the statistical models made it feasible to infer ancestral adaptive evolution events [
<xref ref-type="bibr" rid="B31">31</xref>
,
<xref ref-type="bibr" rid="B32">32</xref>
]. Using these models we found that the amino acid sites in the RbcL subunit of both the ancestor of Podocarpaceae and that of Taxaceae-Cephalotaxaceae had undergone adaptive evolution. By contrast, no adaptive evolution was detected in the ancestor of Cephalotaxaceae. Moreover, within Podocarpaceae, no positively selected site was found in the ancestral branch of
<italic>Podocarpus </italic>
I; however, two were detected in the branch leading to
<italic>Podocarpus </italic>
II (Figure
<xref ref-type="fig" rid="F1">1</xref>
). In Taxaceae, for the ancestor of
<italic>Taxus</italic>
, site 30 was identified as positively selected; but no such a site was found in the ancestor of
<italic>Torreya</italic>
. Totally, ten positively selected sites (A11V, Q14K, K30Q, G86D, S95N, V99A, I133L, S143A, L225I, and T262V) were identified in all the tests.</p>
<p>To fully understand the mechanism of the molecular adaptation of
<italic>rbcL </italic>
gene, both the structural and the functional significance of those ten positively selected sites need to be elucidated (Table
<xref ref-type="table" rid="T4">4</xref>
). Seven (A11V, Q14K, K30Q, I133L, S143A, L225I, and T262V) of the positively selected sites are located at the interface of Rubisco subunits, whereas the other three (G86D, S95N, and V99A) are at the interface between Rubisco and its activase (Table
<xref ref-type="table" rid="T2">2</xref>
and
<xref ref-type="table" rid="T4">4</xref>
).</p>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>Functional roles of the amino acid sites under adaptive evolution</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th align="center" colspan="2">Location</th>
<th></th>
<th></th>
</tr>
<tr>
<th></th>
<th colspan="2">
<hr></hr>
</th>
<th></th>
<th></th>
</tr>
<tr>
<th align="center">Site</th>
<th align="center">Domain</th>
<th align="center">Interface</th>
<th align="center">Functional roles</th>
<th align="center">References</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">A11V</td>
<td align="center">loop 1</td>
<td></td>
<td align="center">To contribute to the holoenzyme thermal stability, catalytic efficiency, and CO
<sub>2</sub>
/O
<sub>2 </sub>
specificity</td>
<td align="center">Kellogg and Juliano (1997) [
<xref ref-type="bibr" rid="B3">3</xref>
]</td>
</tr>
<tr>
<td colspan="1">
<hr></hr>
</td>
<td></td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">Q14K</td>
<td></td>
<td></td>
<td></td>
<td align="center">Ott
<italic>et al. </italic>
(2000) [
<xref ref-type="bibr" rid="B106">106</xref>
]</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">K30Q</td>
<td align="center">loop 2</td>
<td align="center">LSU dimers</td>
<td></td>
<td align="center">Du and Spreitzer (2000) [
<xref ref-type="bibr" rid="B107">107</xref>
]</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">I133L</td>
<td align="center">βE</td>
<td></td>
<td></td>
<td align="center">Spreitzer and Salvucci (2002) [
<xref ref-type="bibr" rid="B36">36</xref>
]</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">S143A</td>
<td align="center">αD</td>
<td></td>
<td></td>
<td align="center">Spreitzer
<italic>et al. </italic>
(2005) [
<xref ref-type="bibr" rid="B64">64</xref>
]</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">L225I</td>
<td align="center">α2</td>
<td align="center">LSUs and SSUs</td>
<td></td>
<td align="center">Makowski
<italic>et al. </italic>
(2008) [
<xref ref-type="bibr" rid="B33">33</xref>
]</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">T262V</td>
<td align="center">β4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">G86D</td>
<td align="center">βC</td>
<td align="center">Rubisco and its activase</td>
<td align="center">To affect the contacts between the Rubisco and its activase</td>
<td align="center">Du
<italic>et al. </italic>
(2003) [
<xref ref-type="bibr" rid="B108">108</xref>
]</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">S95N</td>
<td align="center">βD</td>
<td></td>
<td></td>
<td align="center">Portis (2003) [
<xref ref-type="bibr" rid="B40">40</xref>
]</td>
</tr>
<tr>
<td colspan="1">
<hr></hr>
</td>
<td></td>
<td></td>
<td></td>
<td colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">V99A</td>
<td></td>
<td></td>
<td></td>
<td align="center">Portis
<italic>et al. </italic>
(2008) [
<xref ref-type="bibr" rid="B42">42</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>All positively selected amino acid sites in Table 3 are included.</p>
</table-wrap-foot>
</table-wrap>
<p>Most of the amino acid sites detected to be under adaptive evolution have been previously identified to have important functional roles. Of these adaptively selected sites, site 11 shows an adaptive substitution from Alanine to Valine. Valine has an additional methylene group (-CH
<sub>2</sub>
-) in comparison with Alanine, allows a stronger van de Waal binding with the other residues at the LSU
<sub>2 </sub>
C-terminus [
<xref ref-type="bibr" rid="B33">33</xref>
], tightening therefore the combination of LSU
<sub>2 </sub>
dimer [
<xref ref-type="bibr" rid="B34">34</xref>
]. In addition, lysine and glutamine present side-chains that are positively and negatively charged, respectively [
<xref ref-type="bibr" rid="B35">35</xref>
]. Therefore the replacement of Q by K at site 14, identified to have evolved under positive selection, may create extra ionic bonds with its proximal amino acid sites [
<xref ref-type="bibr" rid="B36">36</xref>
]. Importantly, site 30 is very close to site 28 [
<xref ref-type="bibr" rid="B3">3</xref>
], both possessing hydrophilic side-chains (Table
<xref ref-type="table" rid="T2">2</xref>
). Kapralov and Filatov (2007) noted that site 28 is highly prone to fix amino acid replacements by positive selection in green plants [
<xref ref-type="bibr" rid="B15">15</xref>
]. Future examinations on sites 28 and 30 by using site-directed mutagenesis may unveil whether their hydrophilic side-chain substitutions have brought advantageous effects. The replacements at sites 133 and 143 may improve the stability of LSU
<sub>2 </sub>
dimer by modifying side-chain physicochemical characters [
<xref ref-type="bibr" rid="B37">37</xref>
,
<xref ref-type="bibr" rid="B38">38</xref>
]. Moreover, the nonsynonymous substitutions on sites 225 and 262 could contribute to the linkage of LSU and SSU subunits (Table
<xref ref-type="table" rid="T4">4</xref>
). Recent genetic analyses of a hybrid Rubisco pointed to that the combination of LSU and SSU have effects on the holoenzyme expression [
<xref ref-type="bibr" rid="B39">39</xref>
].</p>
<p>Rubisco activase is involved in the opening of the closed state of the Rubisco form to release RuBP, producing the active enzyme form [
<xref ref-type="bibr" rid="B40">40</xref>
]. The physical contact between the Rubisco site 89 and the activase site 314 has been reported by Li
<italic>et al </italic>
(2005) [
<xref ref-type="bibr" rid="B41">41</xref>
]. Moreover, the negatively charged Rubisco site 93 is potentially complementary to the positively charged activase site 312 [
<xref ref-type="bibr" rid="B42">42</xref>
]. Hence, changes of the three neighbouring sites (G86D, S95N, and V99A) around sites 89 and 93 may affect the contacts between the Rubisco and its activase. In summary, positively selected sites identified in the
<italic>rbcL </italic>
gene of the three gymnosperm families are located either on the contact surface between Rubisco subunits or between the Rubisco and its activase. Nonsynonymous substitutions among them have great potentials to optimize the enzyme characteristics.</p>
<p>
<italic>RbcL </italic>
gene is located in the large single copy region of chloroplast genome [
<xref ref-type="bibr" rid="B43">43</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
]. It has been regarded as a region with no evidence for adaptive evolution [
<xref ref-type="bibr" rid="B45">45</xref>
], but recent research has brought this into question [
<xref ref-type="bibr" rid="B15">15</xref>
]. Currently, Ohno's model is frequently used to describe protein evolution and adaptation [
<xref ref-type="bibr" rid="B46">46</xref>
], which emphasizes the role that gene duplication plays in the adjustment of protein functions [
<xref ref-type="bibr" rid="B47">47</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
]. The "gene sharing" model stresses that it is at the single copy gene stage, namely before the occurrence of gene duplication, that functional genes have already adapted [
<xref ref-type="bibr" rid="B49">49</xref>
]. For instance, studies on the eye lens crystallins showed that the gene duplication indeed occurred after the protein had diverged from its ancestral function [
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
]. This study on the
<italic>rbcL </italic>
gene further unveils adaptive evolutionary processes in the single copy chloroplast gene. It has been known that for
<italic>rbcL</italic>
, only a few nonsynonymous substitutions, especially those at catalytic active sites on the LSU and SSU interface or between the Rubisco and its activase interface, can significantly change the Rubisco features (e.g. thermal stability, catalytic efficiency, and CO
<sub>2</sub>
/O
<sub>2 </sub>
specificity) [
<xref ref-type="bibr" rid="B52">52</xref>
]. Indeed, the positively selected sites we identified in the three gymnosperm families are all located at these positions. Adaptive substitutions at the sites, possibly generated during chloroplast DNA replication or repair [
<xref ref-type="bibr" rid="B53">53</xref>
], may impose great potential for optimizing the Rubisco functional/structural characteristics. As shown in Table
<xref ref-type="table" rid="T2">2</xref>
, our results suggest that: i) mutations at most sites in
<italic>rbcL </italic>
(
<italic>p</italic>
<sub>0 </sub>
= 89.2%,
<italic>ω</italic>
<sub>0 </sub>
= 0.07) may be deleterious; ii) 5.8% of the substitutions probably have no significant effect on fitness; and iii) 2.3% of the replacements are likely to improve the Rubisco performance. It is therefore reasonable to postulate that the three gymnosperm families may have adaptively responded to habitat pressures by adjusting the Rubisco function/structure during their evolution.</p>
</sec>
<sec>
<title>Historic adaptation of the
<italic>rbcL </italic>
gene under continual changing of CO
<sub>2 </sub>
concentration</title>
<p>The historic accumulation of nucleotide substitutions in the
<italic>rbcL </italic>
gene has supplied the Podocarpaceae species with differentiated Rubisco catalytic efficiency, which could contribute to their adaptive radiation into diverse ecological niches [
<xref ref-type="bibr" rid="B54">54</xref>
]. By contrast, the absence of
<italic>rbcL </italic>
adaptation in
<italic>Cephalotaxus </italic>
and
<italic>Torreya </italic>
may explain why their members tend to be locally distributed (Table
<xref ref-type="table" rid="T2">2</xref>
).</p>
<p>Two positively selected sites were identified at the ancestral branch of Podocarpaceae and each was at the interface between the Rubisco and its activase (Table
<xref ref-type="table" rid="T2">2</xref>
). The global CO
<sub>2 </sub>
concentration has been acutely changing since 170 Mya to 65 Mya [
<xref ref-type="bibr" rid="B55">55</xref>
]. Our results showed that the ancestor of Podocarpaceae diverged from Taxaceae-Cephalotaxaceae around 204 Mya; and its descendants started to diverge about 134 Mya [
<xref ref-type="bibr" rid="B56">56</xref>
]. From 170 Mya to 134 Mya, the
<italic>rbcL </italic>
variants in the ancestor of Podocarpaceae that could better adapt to the global reduction of CO
<sub>2 </sub>
concentration became consequently fixed (Figure
<xref ref-type="fig" rid="F1">1</xref>
, Table
<xref ref-type="table" rid="T2">2</xref>
). Sage and Coleman (2001) has noted that increasing the expression level of the Rubisco and its activase is an effective solution for plants to respond to the reduction of CO
<sub>2 </sub>
concentration [
<xref ref-type="bibr" rid="B57">57</xref>
]. Here we further demonstrated that the simultaneous and inter-dependent adjustment of the two enzymes provides an alternative adaptive mode.</p>
<p>Many transgenic manipulations have been attempted to improve Rubisco's catalytic performance, since its property largely determines the maximum efficiency of photosynthesis in the use of light, water, and fertilizer N resources [
<xref ref-type="bibr" rid="B58">58</xref>
]. The function of Rubisco in terrestrial plants is identical. Evolutionary pressures seem to have driven it towards more efficient utilization of CO
<sub>2</sub>
, and recent analyses have indicated that the optimal performance of Rubisco is basically determined by CO
<sub>2 </sub>
concentration [
<xref ref-type="bibr" rid="B59">59</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
]. In this study, adaptive evolution of the
<italic>rbcL </italic>
gene has been detected in Podocarpaceae and
<italic>Podocarpus </italic>
I and II (Table
<xref ref-type="table" rid="T3">3</xref>
), which implies that the Podocarpaceae species have undergone continual modification in their RbcL subunit for better fitness along with the changing atmosphere CO
<sub>2 </sub>
concentration. The positively selected sites identified (Table
<xref ref-type="table" rid="T3">3</xref>
) may also benefit future studies for improving the Rubisco efficiency and for elucidating the interactions between the enzyme and its activase [
<xref ref-type="bibr" rid="B61">61</xref>
].</p>
</sec>
<sec>
<title>Site-specific coevolution in RbcL subunit</title>
<p>To further understand the complex evolutionary patterns, we also analysed the inter-dependence among amino acid regions in the RbcL subunit. Adaptive evolution is only expected to occur on functionally and structurally meaningful amino acid sites where nonsynonymous substitutions are most likely to destabilise and hence to compromise organism's fitness [
<xref ref-type="bibr" rid="B62">62</xref>
,
<xref ref-type="bibr" rid="B63">63</xref>
]. Consequently, evolution of biological innovation is dependent upon the fixation of mutations close in the structure that can compensate the destabilising effects of innovative mutations. This may well explain the pattern we observe in the Rubisco, with many of the mutations that are under adaptive evolution and that co-evolve occurring at the interface of the protein dimer where stability is essential for the preservation of enzyme function and integrity. In support of the co-evolutionary hypothesis as a mean to fix innovative mutations in the RbcL subunit, previous research has shown that when multiple amino acid replacements are introduced, significant changes can occur in both enzyme catalytic efficiency and specificity [
<xref ref-type="bibr" rid="B64">64</xref>
]. In our co-evolutionary analyses, 21 co-evolution groups were identified within the RbcL subunit. In particular, evolutionary dependencies were recognized among sites belonging to different domains (Figure
<xref ref-type="fig" rid="F5">5</xref>
). Some correlated pairs (e.g. 251M and 255 V) were linearly proximal, whereas the others (e.g. 19D and 56A) were linearly distant but structurally proximal. Among the co-evolving sites, we also identified structurally and linearly distant sites (e.g. 14 K and 86D) (Figure
<xref ref-type="fig" rid="F4">4</xref>
and
<xref ref-type="fig" rid="F5">5</xref>
). Although certain studies have attributed a biological meaning for the linearly proximal sites [
<xref ref-type="bibr" rid="B65">65</xref>
], many other reports elucidated that physical connections can be established between distant functional sites in the quaternary protein structures [
<xref ref-type="bibr" rid="B66">66</xref>
-
<xref ref-type="bibr" rid="B69">69</xref>
].</p>
</sec>
</sec>
<sec>
<title>Conclusions</title>
<p>This research presents substantial evidence that point to a complex adaptive process associated with the functional innovation of the Rubisco protein. This process involves a continuous checking of the structural and functional consequences of the fixation of novel mutations as well as the amelioration of the effects by such mutations through compensatory replacement events. Several other conditions related to the population genetics of the individuals have to be met in order for a compensatory mutation to be fixed before the individuals carrying the destabilising mutations are purged by selection. Among the possible hypothetical scenarios is the relaxation of the action of selection or the action of other buffering mechanisms. Species from both Taxaceae and Cephalotaxaceae are characterized by their small population sizes and clonality, which makes it feasible for genetic drift to act and facilitate the fixation of the mutations regardless of their immediate fitness consequences. Although this seems to be a possible scenario, several points remain to be investigated in future studies such as to assess the real inter-dependence among mutations through directed mutagenesis or to examine the strength of genetic drift at the population levels. Our research however opens exciting new avenues that may lead to a more complete understanding of the functional novelties in the Rubisco among gymnosperms.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Plant Sampling</title>
<p>Plant materials sampled for this investigation (Table
<xref ref-type="table" rid="T5">5</xref>
), including
<italic>Cephalotaxus sinensis </italic>
(Rehder & E. H. Wilson) H. L. Li,
<italic>C. hainanensis </italic>
H. L. Li,
<italic>C. fortunei </italic>
Hook.,
<italic>C. oliveri </italic>
Mast.,
<italic>Taxus chinensis </italic>
(Pilg.) Rehder,
<italic>T. yunnanensis </italic>
W. C. Cheng & L. K. Fu,
<italic>T. mairei </italic>
(Lemee & H. Lev.) S. Y. Hu ex T. S. Liu,
<italic>Amentotaxus yunnanensis </italic>
H. L. Li,
<italic>A. argotaenia </italic>
(Hance) Pilg.,
<italic>Torreya fargesii </italic>
var.
<italic>yunnanensis </italic>
(W. C. Cheng & L. K. Fu) N. Kang,
<italic>Pseudotaxus chienii </italic>
(W. C. Cheng) W. C. Cheng,
<italic>Podocarpus macrophyllus </italic>
(Thunb.) Sweet,
<italic>P. neriifolius </italic>
D. Don,
<italic>Dacrycarpus imbricatus </italic>
(Blume) de Laub., and
<italic>Dacrydium pierrei </italic>
de Laub., were collected from South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. In addition,
<italic>Nageia nagi </italic>
(Thunb.) Kuntze was collected from the campus of Sun Yat-sen University, Guangzhou, China.</p>
<table-wrap id="T5" position="float">
<label>Table 5</label>
<caption>
<p>Species and GenBank accession numbers for the
<italic>rbcL </italic>
gene sequences analysed in this study</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Family</th>
<th align="left">Genus</th>
<th align="left">Species</th>
<th align="left">GenBank Acc. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Taxaceae</td>
<td align="left">
<italic>Taxus</italic>
</td>
<td align="left">
<italic>Taxus mairei </italic>
(Lemee & H.Lev.) S. Y. Hu ex T. S. Liu</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450856">AY450856</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus yunnanensis </italic>
W. C. Cheng & L. K. Fu</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450857">AY450857</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus chinensis </italic>
(Pilg.) Rehder</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450855">AY450855</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus baccata </italic>
L.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF456388">AF456388</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus cuspidata </italic>
Siebold & Zucc.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660720">EF660720</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus sumatrana </italic>
(Miq.) de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660706">EF660706</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus wallichiana </italic>
Zucc.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660717">EF660717</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus canadensis </italic>
Marshall</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660724">EF660724</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus fuana </italic>
N. Li & R. R. Mill</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660725">EF660725</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus globosa </italic>
Schltdl.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660710">EF660710</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus brevifolia </italic>
Nutt.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249666">AF249666</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus x hunnewelliana </italic>
Rehder</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660723">EF660723</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Taxus x media </italic>
Rehder</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660722">EF660722</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Pseudotaxus</italic>
</td>
<td align="left">
<italic>Pseudotaxus chienii </italic>
(W. C. Cheng) W. C. Cheng</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450858">AY450858</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Austrotaxus</italic>
</td>
<td align="left">
<italic>Austrotaxus spicata </italic>
(R. Br. ) Compton</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF456385">AF456385</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Torreya</italic>
</td>
<td align="left">
<italic>Torreya californica </italic>
Torr.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY664858">AY664858</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya taxifolia </italic>
Arn.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF456389">AF456389</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya nucifera </italic>
(L.) Siebold & Zucc.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AB027317">AB027317</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya grandis </italic>
Fortune</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660733">EF660733</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya fargesii </italic>
Franch.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660735">EF660735</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya fargesii </italic>
var.
<italic>yunnanensis </italic>
(W. C. Cheng & L. K. Fu) N. Kang</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450861">AY450861</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Torreya jackii </italic>
Chun</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660734">EF660734</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Amentotaxus</italic>
</td>
<td align="left">
<italic>Amentotaxus argotaenia </italic>
(Hance) Pilg.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450859">AY450859</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Amentotaxus yunnanensis </italic>
H. L. Li</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450860">AY450860</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Amentotaxus formosana </italic>
H.L. Li</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660708">EF660708</ext-link>
</td>
</tr>
<tr>
<td align="left">Cephalotaxaceae</td>
<td align="left">
<italic>Cephalotaxus</italic>
</td>
<td align="left">
<italic>Cephalotaxus harringtonia </italic>
(Knight ex J.Forbes) K. Koch</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660730">EF660730</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus sinensis </italic>
(Rehder & E.H.Wilson) H. L. Li</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450864">AY450864</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus koreana </italic>
Nakai</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660726">EF660726</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus wilsoniana </italic>
Hayata</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AB027312">AB027312</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus oliveri </italic>
Mast.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450865">AY450865</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus hainanensis </italic>
H. L. Li</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450862">AY450862</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus griffithii </italic>
Hook. f.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660704">EF660704</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus mannii </italic>
Hook. f.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660707">EF660707</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus fortunei </italic>
Hook.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450863">AY450863</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus latifolia </italic>
Cheng & L. K. Fu</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660712">EF660712</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus fortunei </italic>
var.
<italic>alpina </italic>
H. L. Li</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660714">EF660714</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus lanceolata </italic>
K. M. Feng</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660709">EF660709</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cephalotaxus drupacea </italic>
Siebold & Zucc.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="EF660716">EF660716</ext-link>
</td>
</tr>
<tr>
<td align="left">Podocarpaceae</td>
<td align="left">
<italic>Podocarpus</italic>
</td>
<td align="left">
<italic>Podocarpus lawrencei </italic>
Hook. f.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249600">AF249600</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus nivalis </italic>
Hook.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249619">AF249619</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus gnidioides </italic>
Carriere</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249607">AF249607</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus totara </italic>
G. Benn. ex D. Don</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF307931">AF307931</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus acutifolius </italic>
Kirk</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249599">AF249599</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus saligna </italic>
D. Don</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249628">AF249628</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus smithii </italic>
de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249629">AF249629</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus hallii </italic>
Kirk</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249609">AF249609</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus nubigenus </italic>
Lindl.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249621">AF249621</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus latifolius </italic>
(Thunb.) R.Br. ex Mirb.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249612">AF249612</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus reichei </italic>
J. Buchholz et N. E. Gray</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF479879">AF479879</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus cunninghamii </italic>
Colenso</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249603">AF249603</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus chinensis </italic>
Wall. ex J. Forbes</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249602">AF249602</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus fasciculus </italic>
de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249622">AF249622</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus aff. pilgeri </italic>
MH6655</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249624">AF249624</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus aff. insularis </italic>
MH6612</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249611">AF249611</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus macrophyllus </italic>
(Thunb.) D. Don</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450866">AY450866</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus aff. degeneri </italic>
MtLoftyBG</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249627">AF249627</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus elatus </italic>
R. Br. ex Endl.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249606">AF249606</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus polystachyus </italic>
R. Br. ex Endl.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249626">AF249626</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus lucienii </italic>
de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249615">AF249615</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus polyspermus </italic>
de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249625">AF249625</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus neriifolius </italic>
D. Don</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450867">AY450867</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus longifoliolatus </italic>
Pilger</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249614">AF249614</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus novae-caledoniae </italic>
Viell.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249620">AF249620</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Podocarpus spinulosus </italic>
(Sm.) R.Br. ex Mirb.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249630">AF249630</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Nageia</italic>
</td>
<td align="left">
<italic>Nageia nagi </italic>
(Thunb.) Kuntze</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450868">AY450868</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Nageia nankoensis </italic>
(Hayata) R.R. Mill</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249649">AF249649</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Dacrycarpus</italic>
</td>
<td align="left">
<italic>Dacrycarpus imbricatus </italic>
(Thunb.) de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450869">AY450869</ext-link>
*</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Dacrycarpus dacrydioides </italic>
(Rich.) de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AF249597">AF249597</ext-link>
</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>Dacrydium</italic>
</td>
<td align="left">
<italic>Dacrydium pierrei </italic>
de Laub.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="AY450870">AY450870</ext-link>
*</td>
</tr>
<tr>
<td align="left">Outgroup</td>
<td></td>
<td align="left">
<italic>Pinus koraiensis </italic>
Siebold & Zucc.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_004677">NC_004677</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Pinus thunbergii </italic>
Parl.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_001631">NC_001631</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Welwitschia mirabilis </italic>
Hook.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_010654">NC_010654</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Gnetum parvifolium </italic>
(Warb.) W. C. Cheng</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_011942">NC_011942</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Cycas taitungensis </italic>
C. F. Shen
<italic>et al.</italic>
</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_009618">NC_009618</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Ephedra equisetina </italic>
Bunge</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="NC_011954">NC_011954</ext-link>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="left">
<italic>Ginkgo biloba </italic>
L.</td>
<td align="left">
<ext-link ext-link-type="gen" xlink:href="DQ069500">DQ069500</ext-link>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The sign * denotes sequences experimentally determined in the present study.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Total genomic DNA extraction</title>
<p>Genomic DNA was extracted from leaves of individual trees by a modified cetyltrimethyl ammonium bromide (CTAB) method. 0.2 g fresh leaf tissue was ground to fine powder with a mortar and pestle in liquid nitrogen. The leaf powder was allotted equally into two Eppendorf tubes. One mL -20°C propanone was added to each tube. The tube was rocked gently for l min, centrifuged at 5,000 rpm for 10 min, and the supernatant was discarded; the procedure was repeated once. Each tube was added with 1 mL 60°C CTAB extraction buffer, mixed well, and incubated at 80°C for 4 hours. After incubation, 500 μl chloroform: isoamyl alcohol (24: 1) was added, mixed and then centrifuged at 13,000 rpm for 10 min. The top aqueous phase was removed to a new tube, added with 2/3 volume cold isopropanol, and mixed gently to precipitate DNA. DNA was dissolved in 70 μl TE buffer, and the quality was determined by 1% agarose gel electrophoresis.</p>
</sec>
<sec>
<title>PCR amplification and DNA sequencing</title>
<p>PCR amplification of
<italic>rbcL </italic>
sequences was carried out in 100 μl volumes containing 50 mM KCl, 10 mM Tris-HCl (pH 8.0), 0.1% Triton X-100, 1.5 mM MgCl
<sub>2</sub>
, 0.2 mM each deoxynucleoside triphosphate, 2 U
<italic>Taq </italic>
DNA polymerase, 0.3 μM primer, 30 ng genomic DNA, and DNA-free water. The thermo-cycling program was set for 5 min at 95°C, 35 cycles of 1 min at 94°C, 2 min at 54°C, 3 min at 72°C, and 10 min at 72 °C. Negative controls where all reagents but DNA were added to the reaction mix were included in order to verify the absence of contamination. The forward and reverse primers were 5'-ATGTCACCACAAACAGAGACT-3' and 5'-CCTTCATTACGAGCTTGCACAC-3', respectively. PCR products and sizes were verified in agarose gels. The purified PCR products were sequenced directly in both forward and reverse directions. Three repeats of each fragment were determined to control for
<italic>Taq </italic>
polymerase errors.</p>
</sec>
<sec>
<title>Phylogeny with timescale</title>
<p>DNA sequences of the coding regions obtained experimentally plus those retrieved from the public databases (Table
<xref ref-type="table" rid="T5">5</xref>
) were multiple aligned using the MUSCLE software [
<xref ref-type="bibr" rid="B70">70</xref>
]. To improve the accuracy of phylogenetic inference, we excluded: i) multiple data from identical species, ii) sequences containing frame-shift mutations, and iii) ambiguously aligned regions. The appropriate DNA substitution model was identified by Modeltest v.3.7 package [
<xref ref-type="bibr" rid="B27">27</xref>
] via comparing 56 available models using the Akaike Information Criterion (AIC). The data set was also uploaded to the Datamonkey 2010 website for the estimation of the best fit model [
<xref ref-type="bibr" rid="B28">28</xref>
]. The tree topology inferred using the appropriate model for
<italic>rbcL </italic>
sequences was utilized as pre-defined tree in the adaptive and non-independent evolution analysis.</p>
<p>The following nodes within the phylogeny were chosen to constrain for a rate consistent with the known relationships: i) based on the
<italic>Cratonia cotyledon </italic>
fossils [
<xref ref-type="bibr" rid="B71">71</xref>
], the split of
<italic>Gnetum </italic>
and
<italic>Welwitschia </italic>
was constrained to 110 Mya (Node 72); ii) the good estimation of the split of
<italic>Taxus </italic>
and Cephalotaxaceae was constrained to 169 Mya (Node 66) [
<xref ref-type="bibr" rid="B56">56</xref>
]; iii) Node 75 was constrained to 225 Mya based on the earliest Pinaceae-type seed [
<xref ref-type="bibr" rid="B72">72</xref>
]; iv) Node 73 was constrained to 125 Mya based on the earliest
<italic>Ephedra</italic>
-type seed [
<xref ref-type="bibr" rid="B73">73</xref>
]. Following the suggestion of the authors of BEAST, we ran the empty alignment before the real data to avoid misspecification of dating and taxon sampling.</p>
<p>We applied BEAST to infer topology, branch lengths, and dates for the
<italic>rbcL </italic>
gene. As the relationships of Taxaceae and Cephalotaxaceae families have been historically under debates, the prior information on these two families was not given before the estimation. A normal distribution was applied over the estimating of the absolute ages via the MCMC process. BEAST runs of 4 × 10
<sup>7 </sup>
generations, saving data every 1,000 generations, produced 40,000 estimates of dates under a Yule speciation prior and an uncorrelated relaxed clock [
<xref ref-type="bibr" rid="B74">74</xref>
] for the
<italic>rbcL </italic>
gene dataset. Convergence statistics was analyzed in Tracer, resulting in 36,000 post-burn-in trees. We used TreeAnnotator v. 1.5.3 [
<xref ref-type="bibr" rid="B74">74</xref>
] to produce maximum clade credibility trees from the post-burn-in trees and to determine the 95% probability density of ages for all nodes in the tree.</p>
<p>To illustrate the relationship between the ancestral adaptation and the concentration of CO
<sub>2 </sub>
in the atmosphere, the RCO
<sub>2 </sub>
value along with the time scale was mapped under the phylogeny (Figure
<xref ref-type="fig" rid="F1">1</xref>
) [
<xref ref-type="bibr" rid="B55">55</xref>
].</p>
</sec>
<sec>
<title>Detection of positive and negative selection sites</title>
<p>Identification of adaptive evolution (positive selection) is fundamental to our understanding of the process of adaptation and diversifying selection. The general consensus is that nonsynonymous nucleotide substitutions (
<italic>d</italic>
<sub>N</sub>
), whose alternatives leading to a change in the codon and its corresponding amino acid, can be scaled by the number of synonymous replacements (
<italic>d</italic>
<sub>S</sub>
), which are nucleotide changes that only change the codon but not the amino acid and are consequently neutrally fixed and proportional to the divergence time between the sequences. Because the
<italic>d</italic>
<sub>N </sub>
changed the amino acid sequence and protein function depending on its structure, this parameter is often under the filter of Natural selection. It follows consequently that the nonsynonymous-to-synonymous rates ratio (ω =
<italic>d</italic>
<sub>N</sub>
/
<italic>d</italic>
<sub>S</sub>
) can be considered as a stringent measure of selection [
<xref ref-type="bibr" rid="B75">75</xref>
,
<xref ref-type="bibr" rid="B76">76</xref>
]. Positive adaptive evolution occurs episodically during the evolution of proteins and this selection signal is generally swamped in a background signal of negative selection, which makes it difficult to robustly identify adaptive evolution. In order to identify signs of adaptive evolution we used two maximum-likelihood based models implemented in the CODEML program from PAML package version 4.1 [
<xref ref-type="bibr" rid="B32">32</xref>
], the random-site model and the modified branch-site model, for detecting the positive and negative selection sites within
<italic>rbcL </italic>
sequences among lineages. The random-site model allows the
<italic>ω </italic>
to vary among amino acid sites within the multiple sequence alignment and this parameter is estimated by maximum-likelihood following Goldman and Yang (1994) [
<xref ref-type="bibr" rid="B77">77</xref>
]. Conversely, the branch-site model (BSM) accounts for the variation in selective constraints among sites and lineages in the phylogeny synchronously. Within the BSM, we applied the modified model A test to reduce the false positive results as advised in the manual file of PAML version 4.1 [
<xref ref-type="bibr" rid="B78">78</xref>
]. In addition to the previous models, we also compared codon-based models that estimate one or several
<italic>ω </italic>
values for the different categories of codons. We conducted the likelihood ratio test (LRT) [
<xref ref-type="bibr" rid="B79">79</xref>
] to compare the different nested models (M0 vs. M3, M1a vs. M2a, M7 vs. M8, M8a vs. M8, and alternative test (
<italic>ω</italic>
<sub>
<italic>2 </italic>
</sub>
estimated) vs. null test (
<italic>ω</italic>
<sub>
<italic>2 </italic>
</sub>
= 1,fixed)) [
<xref ref-type="bibr" rid="B80">80</xref>
]. In the branch-site models, the branches were selected to testify whether the species have a bigger opportunity to undergo an episodic adaptive evolution along with the acutely changing atmospheric CO
<sub>2 </sub>
concentration (Figure
<xref ref-type="fig" rid="F1">1</xref>
, grey regions). The following seven lineages were selected: (i) Taxaceae-Cephalotaxaceae, (ii)
<italic>Taxus</italic>
; (iii)
<italic>Torreya</italic>
; (iv) Podocarpaceae; (v)
<italic>Podocarpus </italic>
I; (vi)
<italic>Podocarpus </italic>
II; and (vii) Cephalotaxaceae. To address the problem of multiple comparisons, the Bonferroni correction was employed during the continuous checking with the A-A1 models [
<xref ref-type="bibr" rid="B29">29</xref>
].</p>
<p>The multiple sequence alignment (MSA) was also submitted to the Selecton website [
<xref ref-type="bibr" rid="B81">81</xref>
] for the comparison between empirical models and mechanistic empirical combination (MEC) models. Moreover, the ancestral states of the
<italic>rbcL </italic>
sequences were reconstructed via the DAMBE package [
<xref ref-type="bibr" rid="B82">82</xref>
] and the ASR module on the Datamonkey website [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B83">83</xref>
]. The offspring sequences were compared with the ancestral sequences on each node. And the sequence was submitted to European Bioinformatics Institute (
<ext-link ext-link-type="uri" xlink:href="http://www.isb-sib.ch/">http://www.isb-sib.ch/</ext-link>
Swiss-model) for predicting the three-dimensional structure of the RbcL subunit.</p>
</sec>
<sec>
<title>Identification of intra-protein coevolutionary pattern</title>
<p>To understand the broad implications of the amino acid replacements in the RbcL subunit we conducted an analysis of the evolutionary dependencies among sites to identify functional/structural dependencies among residues. If two amino acid sites were under adaptive evolution and these sites were co-evolving, this may indicate their functional/structural dependency. Intra-protein co-evolution in
<italic>rbcL </italic>
was tested via the program CAPS [
<xref ref-type="bibr" rid="B20">20</xref>
]. This algorithm implemented in this program takes the phylogenetic dependencies into account and correct them [
<xref ref-type="bibr" rid="B84">84</xref>
] and has been reported to outperform other approaches [
<xref ref-type="bibr" rid="B85">85</xref>
].</p>
<p>Broadly, CAPS compares the correlated variance of the evolutionary rates at two sites corrected by the time since the divergence of the two sequences. The significance of the results was evaluated by randomization of pairs in the alignment, calculation of their correlation values, and comparison of the real values with the distribution of 10,000 randomly sampled values. The step-down permutation procedure was employed to correct for multiple tests and non-independence of data [
<xref ref-type="bibr" rid="B86">86</xref>
]. An alpha value of 0.001 was applied to minimize type I error. The correlated variability between amino acid sites was weighted by the level of substitutions per synonymous site in order to normalize parameters by the time of sequence divergence [
<xref ref-type="bibr" rid="B87">87</xref>
].</p>
</sec>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>LS carried out the molecular evolution analysis, participated in the sequence alignment and drafted the manuscript. MAF contributed to the analysis tools and drafted the manuscript. BL participated in the design of the study and helped to draft the manuscript. LG helped to draft the manuscript. BW performed the statistical analysis. TW and YJS conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.</p>
</sec>
<sec>
<title>Reviewers' comments</title>
<sec>
<title>Reviewer's report 1</title>
<p>Prof. Christian Blouin (nominated by W Ford Doolittle), Dalhousie University Halifax, Nova Scotia, Canada</p>
<p>This reviewer provided no comments for publication.</p>
</sec>
<sec>
<title>Reviewer's report 2</title>
<p>Dr Endre Barta (nominated by Sandor Pongor), International Centre for Genetic Engineering and Biotechnology, Trieste, Italy</p>
<p>Gymnosperm plants played an important role in Earth's flora, especially in the prehistoric ages. In this manuscript, the authors use elegant molecular evolutionary analyses to answer some open questions about the evolutionary processes tailoring the chloroplast-coded
<italic>rbcL </italic>
gene during the adaptation to the changing CO
<sub>2 </sub>
concentration in the atmosphere. The authors use
<italic>rbcL </italic>
coding sequences from three gymnosperm families. The
<italic>rbcL </italic>
is a very specific and very constrained protein, coded in the chloroplast genome and also being in complex with the
<italic>rbcS</italic>
, which is coded in the nucleus. The three gymnosperm families are good subjects for this analysis because i) they represent almost 14% of the gymnosperm diversity and can be found globally on the Earth, ii) we have fossil records allowing to constrain the phylogenetic tree timescale.</p>
<p>The authors present a robust evolutionary analysis based on the multiple alignment of
<italic>rbcL </italic>
coding sequences from different gymnosperm species. They found that a complex adaptation process occurred during the evolution of these taxa. They also discussed the structural and functional consequences of these processes and concluded that certain compensatory replacement mutations could play important role in the fixation of the functionally novel mutations. The analysis is very sound and in most cases based on different methods and models. The basic idea and the results can be interesting for the broader community.</p>
<p>I have only some theoretical questions and three minor technical comments.</p>
<p>Questions:</p>
<p>Are there any known examples for the same compensatory mutation pairs from other plant species (i.e. evidence for convergent evolution)?</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>Recent report of the modification on both large and small subunits of Rubisco enzyme in </italic>
Flaveria
<italic>(Asteraceae) might be an example for the similar patterns </italic>
[
<xref ref-type="bibr" rid="B88">88</xref>
]
<italic>. The two subunits are under selection during the evolution from C</italic>
<sub>
<italic>3 </italic>
</sub>
<italic>to C</italic>
<sub>
<italic>4 </italic>
</sub>
<italic>photosynthesis. This pattern may be an evidence for convergent evolution under ecological pressures. However, the compensatory mutation pair is not coincided in the study</italic>
.</p>
<p>How could the geographical isolation of different populations influence the results of this study? Are there any samples (
<italic>rbcL </italic>
sequences) from geographically well separated plants from the same species? Do you expect any polymorphisms at any replacement site in the small populations of these gymnosperm species?</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>If we take the geographical CO</italic>
<sub>
<italic>2 </italic>
</sub>
<italic>variation into account, the geographical isolation of different populations will significantly influence the results of the present study. As has been reported previously, the </italic>
rbcL
<italic>gene has undergone adaptive evolution during the radiation in the Hawaiian endemic genus </italic>
Schiedea,
<italic>which demonstrates that </italic>
rbcL
<italic>gene evolved under strong positive selection impacted by the geographical isolation </italic>
[
<xref ref-type="bibr" rid="B13">13</xref>
]
<italic>. Nonetheless, the present research is mainly focused on the relations above species level, so the samples (</italic>
rbcL
<italic>sequences) from the same species are excluded in the analyses. The polymorphisms at those replacement sites probably exist in the small populations of these gymnosperm species</italic>
.</p>
<p>The inferred tree topology and the taxonomic classification of the genera in Taxaceae seem to be different. How can you explain this?</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>Since its lower evolutionary rate, the </italic>
rbcL
<italic>gene has certain limitations on the deeper phylogenetic levels (e.g. at the genus level) </italic>
[
<xref ref-type="bibr" rid="B89">89</xref>
]
<italic>. On the other respect, the molecular adaptation in </italic>
rbcL
<italic>gene per se also has impact on the inferring of the phylogenetic trees </italic>
[
<xref ref-type="bibr" rid="B17">17</xref>
]
<italic>. The above two factors may be the explanation for the disagreement between the inferred tree topology and the taxonomic classification</italic>
.</p>
<p>Is it possible to deduce from this analysis the ancestral sequence of the
<italic>rbcL </italic>
gene characteristic for the different nodes?</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>Positive answer. However, more experimental data is required for the inference of the </italic>
rbcL
<italic>gene characteristic even though the inferring of the ancestral sequence from the current ones is of statistical efficiency </italic>
[
<xref ref-type="bibr" rid="B90">90</xref>
,
<xref ref-type="bibr" rid="B91">91</xref>
].
<italic>We believe that much more work have been left for the further research after our computational estimation</italic>
.</p>
<p>Comments:</p>
<p>Reading the abstract at a first glance, it is not clear what is the relation between Rubisco and
<italic>rbcL</italic>
. Clarifying this would help the readers who are not familiar in plant biology.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>We agree with this remark and changed the sentence accordingly. One sentence has been added into the abstract especially for the introduction of the relation between Rubisco and </italic>
rbcL
<italic>gene</italic>
.</p>
<p>It is very difficult to review the tables in general, and especially the Table
<xref ref-type="table" rid="T3">3</xref>
. Using grids, or re-structuring them would help a lot.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>We agree with this remark and re-structured Table </italic>
<xref ref-type="table" rid="T3">3</xref>
<italic>(new Table </italic>
<xref ref-type="table" rid="T2">2</xref>
)
<italic>accordingly</italic>
.</p>
<p>Referencing Figure
<xref ref-type="fig" rid="F4">4</xref>
is before the first reference to Figure
<xref ref-type="fig" rid="F3">3</xref>
, and no reference for Table
<xref ref-type="table" rid="T1">1</xref>
in the text.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>We appreciate the constructive comment. The order of referencing figures has been re-checked. Since Table </italic>
<xref ref-type="table" rid="T1">1</xref>
<italic>shows the original plant materials of this research, which cannot be omitted, we changed its appearance from the first table (former Table </italic>
<xref ref-type="table" rid="T1">1</xref>
)
<italic>into the last one (new Table </italic>
<xref ref-type="table" rid="T5">5</xref>
).</p>
</sec>
<sec>
<title>Reviewer's report 3</title>
<p>Dr Nicolas Galtier, CNRS-Université Montpellier II Laboratoire "Genome, Populations, Interactions, Adaptation", Montpellier, France</p>
<p>This manuscript analyses the molecular evolution of the essential
<italic>rbcL </italic>
gene in three gymnosperm families. The functional relevance of amino-acid sites detected as positively selected or co-evolving is discussed. Here are my major comments:</p>
<p>The text is quite affirmative regarding divergence dates, and their relationship with atmospheric CO
<sub>2 </sub>
abundance. I am not sure that molecular dating is that trustable, even with the use of clock-relaxed models, as illustrated by many controversies in the recent literature (e.g. Graur & Martin 2004 Trends Genet, Douzery
<italic>et al. </italic>
2004 PNAS, Peterson
<italic>et al. </italic>
2004 PNAS, Roger & Hug 2006 Philos Trans, Emerson 2007 Syst Biol), owing to paleontological uncertainty and tricky rate/time decoupling [
<xref ref-type="bibr" rid="B92">92</xref>
-
<xref ref-type="bibr" rid="B96">96</xref>
]. Some prudence would appear required here, and the uncertainty of date estimates could be discussed. This is especially true knowing that the uncorrelated model in BEAST was used here, an approach which was criticized in the recent past (Lepage
<italic>et al. </italic>
2007 Mol Biol Evol) [
<xref ref-type="bibr" rid="B97">97</xref>
].</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>Due to the paleontological uncertainty and trick rate/time decoupling, it is still an unresolved scientific theme whether the modern molecular clock has the ability to reconcile the fossil evidence and the time estimation </italic>
[
<xref ref-type="bibr" rid="B98">98</xref>
]
<italic>. However, as indicated in many other literature (e.g. Welch & Bromham 2005 Trends Ecol Evol, Ho 2007 J Avian Biol, Ho 2009 Biol Lett), lots of recent methodological advances have been carried out focusing on the topic </italic>
[
<xref ref-type="bibr" rid="B99">99</xref>
-
<xref ref-type="bibr" rid="B101">101</xref>
]
<italic>. Specifically, although correlated model (also known as correlated-rates model, or CR model) outperforms the uncorrelated model (also known as independent-rates model, or IR model) in the instance provided by Lepage et al (2007) </italic>
[
<xref ref-type="bibr" rid="B97">97</xref>
]
<italic>, several authors have noticed that the uncorrelated model is better than the correlated model during estimating the dynamics of evolutionary rates in other instances </italic>
[
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B102">102</xref>
-
<xref ref-type="bibr" rid="B104">104</xref>
]
<italic>. Moreover, Zhong et al. (2009) argued quite recently that the uncorrelated model is superior to the correlated model in guesstimating the episodic rate acceleration in ancestral plant lineages </italic>
[
<xref ref-type="bibr" rid="B105">105</xref>
]
<italic>. Collectively, all the above conclusions indicate that the modern molecular clock relied on uncorrelated model is applicable for our present study on the gymnosperm plants</italic>
.</p>
<p>The reason for species sampling in this study is not obvious. Just three families were (thoroughly enough) sampled, when the focus of the study is on
<italic>rbcL </italic>
adaptation during the > 200 Mya of gymnosperm evolution. A more balanced sampling across gymnosperm families might help corroborate some of the results reported here.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>The three families (Podocarpaceae, Taxaceae and Cephalotaxaceae) represent over 14% of the gymnosperm diversity and can be found globally on the Earth </italic>
[
<xref ref-type="bibr" rid="B23">23</xref>
,
<xref ref-type="bibr" rid="B24">24</xref>
]
<italic>. Moreover, reliable fossil records can be obtained to calibrate molecular clock for dating the time of the phylogenetic trees </italic>
[
<xref ref-type="bibr" rid="B56">56</xref>
]
<italic>. So the thoroughly enough sampled species in the three families could partially represent adaptive and coevolutionary patterns of </italic>
rbcL
<italic>gene in the related gymnosperms under geological timeline. And we also believe that further research including other families will shed new lights on the big thesis</italic>
.</p>
<p>Along the same lines, it would be good to know whether the sites identified as positively selected or coevolving in gymnosperms behave similarly in angiosperms (and perhaps other groups of plants), for which a huge database of
<italic>rbcL </italic>
sequences is available.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>As far as we can see, the atmospheric CO</italic>
<sub>
<italic>2 </italic>
</sub>
<italic>concentration is one important factor (also known as ecological pressure) related to the adaptation of Rubisco enzyme </italic>
[
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
]
<italic>. Nevertheless, other factors also have impact on the evolution of this enzyme. For instance, the C</italic>
<sub>
<italic>3</italic>
</sub>
<italic>/C</italic>
<sub>
<italic>4 </italic>
</sub>
<italic>photosynthesis in angiosperms have effects on the modification of </italic>
rbcL
<italic>gene </italic>
[
<xref ref-type="bibr" rid="B5">5</xref>
]
<italic>and </italic>
rbcS
<italic>gene </italic>
[
<xref ref-type="bibr" rid="B88">88</xref>
]
<italic>. The comparison analyses merely along the identical timeline, ignoring other ecological pressures, may mislead the conclusions. Since the above reasons, we only focus our sampling on the present families</italic>
.</p>
<p>The discussion emphasizes potential adaptive processes, in possible connection to CO
<sub>2 </sub>
availability across time. I note that if
<italic>rbcL </italic>
evolution was related to atmospheric CO
<sub>2 </sub>
variations, we would expect adaptive evolution to occur simultaneously in contemporary branches of the tree, in line with sudden RCO
<sub>2 </sub>
changes. Such a pattern is not clearly detected, so I wonder what in the data makes the author link
<italic>rbcL </italic>
evolution to atmospheric CO
<sub>2 </sub>
concentration, especially knowing that the adaptative signal is not prominent.</p>
<p>
<bold>
<italic>Authors' response: </italic>
</bold>
<italic>The ability to undertake adaptive evolution depends on several factors. Gymnosperm plants played an important role in Earth's flora, especially in the prehistoric ages. This implies that the species of the three gymnosperm families have a higher feasibility to undergo adaptation in the prehistoric branches. Along with the rising of angiosperms, members from the contemporary branches of gymnosperm plants are characterized by their small population sizes, which make them feasible for genetic drift. The current analysis results and the biological background drew us a big imagination of the ancestral </italic>
rbcL
<italic>gene adaptation associating with the variations of the atmospheric CO</italic>
<sub>
<italic>2 </italic>
</sub>
<italic>concentration</italic>
.</p>
</sec>
</sec>
<sec>
<title>List of abbreviations used</title>
<p>Rubisco: ribulose-1, 5-biphosphate carboxylase/oxygenase; RuBP: D-ribulose-1, 5-bisphosphate; cp: chloroplast; RbcL: large subunit of Rubisco enzyme; RbcS: small subunit of Rubisco enzyme; LSU: large subunit; SSU: small subunit; MSA: multiple sequence alignment; Mya: million years ago; MRCA: the most recent common ancestor; K/T extinction: Cretaceous-Tertiary extinction; UCLD: uncorrelated lognormal model.</p>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>We appreciate the helpful assistance from Zhiwei Wang and Yuan Zhou at the Wuhan Botanical Garden, Chinese Academy of Sciences, China.</p>
<p>This work was supported by grants from National Natural Science Foundation of China (30771763, 30970290, and 31070594); the "100 Talent Project" of the Chinese Academy of Sciences (0729281F02); and the Open Project of the State Key Laboratory of Biocontrol (2007-01), China. Mario A Fares was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (BFU2009-12022) and a Research Frontiers Program (10/RFP/GEN2685) grant from Science Foundation Ireland.</p>
<p>According to the authors' consensus, we decide to proceed to publication directly.</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Ellis</surname>
<given-names>R</given-names>
</name>
<article-title>The most abundant protein in the world</article-title>
<source>Trends Biochem Sci</source>
<year>1979</year>
<volume>4</volume>
<fpage>241</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="doi">10.1016/0968-0004(79)90212-3</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Nishimura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ashida</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yokota</surname>
<given-names>A</given-names>
</name>
<article-title>Molecular mechanisms of RuBisCO biosynthesis in higher plants</article-title>
<source>Plant Biotech</source>
<year>2008</year>
<volume>25</volume>
<fpage>285</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="doi">10.5511/plantbiotechnology.25.285</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Kellogg</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Juliano</surname>
<given-names>ND</given-names>
</name>
<article-title>The structure and function of Rubisco and their implications for systematic studies</article-title>
<source>Am J Bot</source>
<year>1997</year>
<volume>84</volume>
<fpage>413</fpage>
<lpage>428</lpage>
<pub-id pub-id-type="doi">10.2307/2446015</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Lorimer</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>TJ</given-names>
</name>
<article-title>Plant photorespiration-inevitable consequence of existence of atmospheric oxygen</article-title>
<source>Nature</source>
<year>1973</year>
<volume>243</volume>
<fpage>359</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="doi">10.1038/243359a0</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Christin</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Salamin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Muasya</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Roalson</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Russier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Besnard</surname>
<given-names>G</given-names>
</name>
<article-title>Evolutionary switch and genetic convergence on
<italic>rbcL </italic>
following the evolution of C4 photosynthesis</article-title>
<source>Mol Biol Evol</source>
<year>2008</year>
<volume>25</volume>
<fpage>2361</fpage>
<lpage>2368</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msn178</pub-id>
<pub-id pub-id-type="pmid">18695049</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Erixon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Oxelman</surname>
<given-names>B</given-names>
</name>
<article-title>Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast
<italic>clpP1 </italic>
gene</article-title>
<source>PLoS ONE</source>
<year>2008</year>
<volume>3</volume>
<fpage>e1386</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0001386</pub-id>
<pub-id pub-id-type="pmid">18167545</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Muse</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Gaut</surname>
<given-names>BS</given-names>
</name>
<article-title>A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with applications to the chloroplast genome</article-title>
<source>Mol Biol Evol</source>
<year>1994</year>
<volume>11</volume>
<fpage>715</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="pmid">7968485</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Nozawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
<article-title>Reliabilities of identifying positive selection by the branch-site and the site-prediction methods</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>6700</fpage>
<lpage>6705</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0901855106</pub-id>
<pub-id pub-id-type="pmid">19339501</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Xiong</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Zhuang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>XF</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>QH</given-names>
</name>
<article-title>Gene duplication, transfer, and evolution in the chloroplast genome</article-title>
<source>Biotechnol Adv</source>
<year>2009</year>
<volume>27</volume>
<fpage>340</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1016/j.biotechadv.2009.01.012</pub-id>
<pub-id pub-id-type="pmid">19472510</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conery</surname>
<given-names>JS</given-names>
</name>
<article-title>The evolutionary fate and consequences of duplicate genes</article-title>
<source>Science</source>
<year>2000</year>
<volume>290</volume>
<fpage>1151</fpage>
<lpage>1155</lpage>
<pub-id pub-id-type="doi">10.1126/science.290.5494.1151</pub-id>
<pub-id pub-id-type="pmid">11073452</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Adachi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Waddell</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>M</given-names>
</name>
<article-title>Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA</article-title>
<source>J Mol Evol</source>
<year>2000</year>
<volume>50</volume>
<fpage>348</fpage>
<lpage>358</lpage>
<pub-id pub-id-type="pmid">10795826</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Delport</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Scheffler</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Seoighe</surname>
<given-names>C</given-names>
</name>
<article-title>Models of coding sequence evolution</article-title>
<source>Brief Bioinform</source>
<year>2009</year>
<volume>10</volume>
<fpage>97</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="pmid">18971241</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Kapralov</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Filatov</surname>
<given-names>DA</given-names>
</name>
<article-title>Molecular adaptation during adaptive radiation in the Hawaiian endemic genus
<italic>Schiedea</italic>
</article-title>
<source>PLoS ONE</source>
<year>2006</year>
<volume>1</volume>
<fpage>e8</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000008</pub-id>
<pub-id pub-id-type="pmid">17183712</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Tcherkez</surname>
<given-names>GGB</given-names>
</name>
<name>
<surname>Farquhar</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>TJ</given-names>
</name>
<article-title>Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>7246</fpage>
<lpage>7251</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0600605103</pub-id>
<pub-id pub-id-type="pmid">16641091</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Kapralov</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Filatov</surname>
<given-names>DA</given-names>
</name>
<article-title>Widespread positive selection in the photosynthetic Rubisco enzyme</article-title>
<source>BMC Evol Biol</source>
<year>2007</year>
<volume>7</volume>
<fpage>73</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-7-73</pub-id>
<pub-id pub-id-type="pmid">17498284</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Iida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miyagi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kadono</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kosuge</surname>
<given-names>K</given-names>
</name>
<article-title>Molecular adaptation of
<italic>rbcL </italic>
in the heterophyllous aquatic plant
<italic>Potamogeton</italic>
</article-title>
<source>PLoS ONE</source>
<year>2009</year>
<volume>4</volume>
<fpage>e4633</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0004633</pub-id>
<pub-id pub-id-type="pmid">19247501</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Miwa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Odrzykoski</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Akiyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sabirov</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Boufford</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>N</given-names>
</name>
<article-title>Adaptive evolution of
<italic>rbcL </italic>
in
<italic>Conocephalum </italic>
(Hepaticae, bryophytes)</article-title>
<source>Gene</source>
<year>2009</year>
<volume>441</volume>
<fpage>169</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1016/j.gene.2008.11.020</pub-id>
<pub-id pub-id-type="pmid">19100313</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Igamberdiev</surname>
<given-names>AU</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>PJ</given-names>
</name>
<article-title>Land plants equilibrate O
<sub>2 </sub>
and CO
<sub>2 </sub>
concentrations in the atmosphere</article-title>
<source>Photosynth Res</source>
<year>2006</year>
<volume>87</volume>
<fpage>177</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1007/s11120-005-8388-2</pub-id>
<pub-id pub-id-type="pmid">16432665</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<article-title>Computational and statistical methods to explore the various dimensions of protein evolution</article-title>
<source>Curr Bioinform</source>
<year>2006</year>
<volume>1</volume>
<fpage>207</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="doi">10.2174/157489306777011950</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>McNally</surname>
<given-names>D</given-names>
</name>
<article-title>CAPS: coevolution analysis using protein sequences</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<fpage>2821</fpage>
<lpage>2822</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btl493</pub-id>
<pub-id pub-id-type="pmid">17005535</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Kishino</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Thorne</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Bruno</surname>
<given-names>WJ</given-names>
</name>
<article-title>Performance of a divergence time estimation method under a probabilistic model of rate evolution</article-title>
<source>Mol Biol Evol</source>
<year>2001</year>
<volume>18</volume>
<fpage>352</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="pmid">11230536</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<article-title>Relaxed phylogenetics and dating with confidence</article-title>
<source>PLoS Biol</source>
<year>2006</year>
<volume>4</volume>
<fpage>e88</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.0040088</pub-id>
<pub-id pub-id-type="pmid">16683862</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Conran</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Dowd</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Quinn</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Gadek</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>RA</given-names>
</name>
<article-title>Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene
<italic>rbcL</italic>
</article-title>
<source>Aust J Bot</source>
<year>2000</year>
<volume>48</volume>
<fpage>715</fpage>
<lpage>724</lpage>
<pub-id pub-id-type="doi">10.1071/BT99062</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Quinn</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Gadek</surname>
<given-names>PA</given-names>
</name>
<article-title>Familial concepts and relationships in the conifers based on
<italic>rbcL </italic>
and
<italic>matK </italic>
sequence comparisons</article-title>
<source>Kew Bulletin</source>
<year>2002</year>
<volume>57</volume>
<fpage>513</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="doi">10.2307/4110984</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Van Tieghem</surname>
<given-names>MP</given-names>
</name>
<article-title>Structure et affinities des
<italic>Cephalotaxus</italic>
</article-title>
<source>Bull Soc Bot Fr</source>
<year>1891</year>
<volume>38</volume>
<fpage>184</fpage>
<lpage>190</lpage>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Cheng</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Nicolson</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Tripp</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chaw</surname>
<given-names>SM</given-names>
</name>
<article-title>Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast
<italic>matK </italic>
gene and nuclear rDNA ITS region</article-title>
<source>Mol Phylogenet Evol</source>
<year>2000</year>
<volume>14</volume>
<fpage>353</fpage>
<lpage>365</lpage>
<pub-id pub-id-type="doi">10.1006/mpev.1999.0710</pub-id>
<pub-id pub-id-type="pmid">10712841</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
<article-title>Modeltest: testing the model of DNA substitution</article-title>
<source>Bioinformatics</source>
<year>1998</year>
<volume>14</volume>
<fpage>817</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/14.9.817</pub-id>
<pub-id pub-id-type="pmid">9918953</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Delport</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>AFY</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Kosakovsky Pond</surname>
<given-names>SL</given-names>
</name>
<article-title>Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology</article-title>
<source>Bioinformatics</source>
<year>2010</year>
<volume>26</volume>
<fpage>2455</fpage>
<lpage>2457</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btq429</pub-id>
<pub-id pub-id-type="pmid">20671151</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Anisimova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites</article-title>
<source>Mol Biol Evol</source>
<year>2007</year>
<volume>24</volume>
<fpage>1219</fpage>
<lpage>1228</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msm042</pub-id>
<pub-id pub-id-type="pmid">17339634</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Swanson</surname>
<given-names>WJ</given-names>
</name>
<article-title>Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes</article-title>
<source>Mol Biol Evol</source>
<year>2002</year>
<volume>19</volume>
<fpage>49</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">11752189</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Anisimova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bielawski</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>Accuracy and power of Bayes prediction of amino acid sites under positive selection</article-title>
<source>Mol Biol Evol</source>
<year>2002</year>
<volume>19</volume>
<fpage>950</fpage>
<lpage>958</lpage>
<pub-id pub-id-type="pmid">12032251</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>PAML 4: Phylogenetic analysis by maximum likelihood</article-title>
<source>Mol Biol Evol</source>
<year>2007</year>
<volume>24</volume>
<fpage>1586</fpage>
<lpage>1591</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msm088</pub-id>
<pub-id pub-id-type="pmid">17483113</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Makowski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sobolewski</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Czaplewski</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Oldziej</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liwo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scheraga</surname>
<given-names>HA</given-names>
</name>
<article-title>Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. IV. pairs of different hydrophobic side chains</article-title>
<source>J Phys Chem B</source>
<year>2008</year>
<volume>112</volume>
<fpage>11385</fpage>
<lpage>11395</lpage>
<pub-id pub-id-type="doi">10.1021/jp803896b</pub-id>
<pub-id pub-id-type="pmid">18700740</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Ong</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Kolatkar</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>EL</given-names>
</name>
<article-title>Androgen receptor mutations causing human androgen insensitivity syndromes show a key role of residue M807 in Helix 8-Helix 10 interactions and in receptor ligand-binding domain stability</article-title>
<source>Mol Hum Reprod</source>
<year>2002</year>
<volume>8</volume>
<fpage>101</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1093/molehr/8.2.101</pub-id>
<pub-id pub-id-type="pmid">11818512</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Shiver</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Cramer</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Bishop</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>de Jong</surname>
<given-names>PJ</given-names>
</name>
<article-title>On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468</article-title>
<source>J Biol Chem</source>
<year>1987</year>
<volume>262</volume>
<fpage>14273</fpage>
<lpage>14281</lpage>
<pub-id pub-id-type="pmid">2443503</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Salvucci</surname>
<given-names>ME</given-names>
</name>
<article-title>Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme</article-title>
<source>Annu Rev Plant Biol</source>
<year>2002</year>
<volume>53</volume>
<fpage>449</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.arplant.53.100301.135233</pub-id>
<pub-id pub-id-type="pmid">12221984</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Russo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Murarka</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Copley</surname>
<given-names>JRD</given-names>
</name>
<name>
<surname>Head-Gordon</surname>
<given-names>T</given-names>
</name>
<article-title>Molecular view of water dynamics near model peptides</article-title>
<source>J Phys Chem B</source>
<year>2005</year>
<volume>109</volume>
<fpage>12966</fpage>
<lpage>12975</lpage>
<pub-id pub-id-type="doi">10.1021/jp051137k</pub-id>
<pub-id pub-id-type="pmid">16852609</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Dahl</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Bohsnnan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Vannucci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>J</given-names>
</name>
<article-title>Assessing side-chain perturbations of the protein backbone: A knowledge-based classification of residue Ramachandran space</article-title>
<source>J Mol Biol</source>
<year>2008</year>
<volume>378</volume>
<fpage>749</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="doi">10.1016/j.jmb.2008.02.043</pub-id>
<pub-id pub-id-type="pmid">18377931</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Sharwood</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>von Caemmerer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maliga</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Whitney</surname>
<given-names>SM</given-names>
</name>
<article-title>The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth</article-title>
<source>Plant Physiol</source>
<year>2008</year>
<volume>146</volume>
<fpage>83</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">17993544</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Portis</surname>
<given-names>AR</given-names>
</name>
<article-title>Rubisco activase-Rubisco's catalytic chaperone</article-title>
<source>Photosynth Res</source>
<year>2003</year>
<volume>75</volume>
<fpage>11</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1023/A:1022458108678</pub-id>
<pub-id pub-id-type="pmid">16245090</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Salvucci</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Portis</surname>
<given-names>AR</given-names>
</name>
<article-title>Two residues of Rubisco activase involved in recognition of the Rubisco substrate</article-title>
<source>J Biol Chem</source>
<year>2005</year>
<volume>280</volume>
<fpage>24864</fpage>
<lpage>24869</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M503547200</pub-id>
<pub-id pub-id-type="pmid">15866868</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Portis</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Salvucci</surname>
<given-names>ME</given-names>
</name>
<article-title>Regulation of Rubisco activase and its interaction with Rubisco</article-title>
<source>J Exp Bot</source>
<year>2008</year>
<volume>59</volume>
<fpage>1597</fpage>
<lpage>1604</lpage>
<pub-id pub-id-type="pmid">18048372</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Strauss</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Howe</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Doerksen</surname>
<given-names>AH</given-names>
</name>
<article-title>Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1988</year>
<volume>85</volume>
<fpage>3898</fpage>
<lpage>3902</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.85.11.3898</pub-id>
<pub-id pub-id-type="pmid">2836862</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Bausher</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Daniell</surname>
<given-names>H</given-names>
</name>
<article-title>The complete chloroplast genome sequence of
<italic>Citrus sinensis </italic>
(L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms</article-title>
<source>BMC Plant Biol</source>
<year>2006</year>
<volume>6</volume>
<fpage>21</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-6-21</pub-id>
<pub-id pub-id-type="pmid">17010212</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Gould</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Lewontin</surname>
<given-names>RC</given-names>
</name>
<article-title>The spandrels of San Marco and the Panglossian Paradigm: a critique of the adaptationist programme</article-title>
<source>Proc R Soc B</source>
<year>1979</year>
<volume>205</volume>
<fpage>581</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.1979.0086</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>Tokuriki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tawfik</surname>
<given-names>DS</given-names>
</name>
<article-title>Protein dynamism and evolvability</article-title>
<source>Science</source>
<year>2009</year>
<volume>324</volume>
<fpage>203</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="doi">10.1126/science.1169375</pub-id>
<pub-id pub-id-type="pmid">19359577</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>JZ</given-names>
</name>
<article-title>Evolution by gene duplication: an update</article-title>
<source>Trends Ecol Evol</source>
<year>2003</year>
<volume>18</volume>
<fpage>292</fpage>
<lpage>298</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-5347(03)00033-8</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Bershtein</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tawfik</surname>
<given-names>DS</given-names>
</name>
<article-title>Ohno's model revisited: Measuring the frequency of potentially adaptive mutations under various mutational drifts</article-title>
<source>Mol Biol Evol</source>
<year>2008</year>
<volume>25</volume>
<fpage>2311</fpage>
<lpage>2318</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msn174</pub-id>
<pub-id pub-id-type="pmid">18687656</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="book">
<name>
<surname>Piatigorsky</surname>
<given-names>J</given-names>
</name>
<source>Gene sharing and evolution: The diversity of protein functions</source>
<year>2007</year>
<edition>1</edition>
<publisher-name>Cambridge: Harvard University Press, USA</publisher-name>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Piatigorsky</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wistow</surname>
<given-names>G</given-names>
</name>
<article-title>The recruitment of crystanllins: New fuctions precede gene duplication</article-title>
<source>Science</source>
<year>1991</year>
<volume>252</volume>
<fpage>1078</fpage>
<lpage>1079</lpage>
<pub-id pub-id-type="doi">10.1126/science.252.5009.1078</pub-id>
<pub-id pub-id-type="pmid">17797903</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Wistow</surname>
<given-names>G</given-names>
</name>
<article-title>Lens crystallins-Gene recruitment and evolutionary dynamism</article-title>
<source>Trends Biochem Sci</source>
<year>1993</year>
<volume>18</volume>
<fpage>301</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1016/0968-0004(93)90041-K</pub-id>
<pub-id pub-id-type="pmid">8236445</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Satagopan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<article-title>Substitutions at the Asp-473 latch residue of
<italic>Chlamydomonas </italic>
ribulosebisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO
<sub>2</sub>
/O
<sub>2 </sub>
specificity</article-title>
<source>J Biol Chem</source>
<year>2004</year>
<volume>279</volume>
<fpage>14240</fpage>
<lpage>14244</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M313215200</pub-id>
<pub-id pub-id-type="pmid">14734540</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Guisinger</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Kuehl</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Boore</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
<article-title>Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2008</year>
<volume>105</volume>
<fpage>18424</fpage>
<lpage>18429</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0806759105</pub-id>
<pub-id pub-id-type="pmid">19011103</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Losos</surname>
<given-names>JB</given-names>
</name>
<article-title>Adaptive radiation, ecological opportunity, and evolutionary determinism</article-title>
<source>Am Nat</source>
<year>2010</year>
<volume>175</volume>
<fpage>623</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1086/652433</pub-id>
<pub-id pub-id-type="pmid">20412015</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Berner</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Kothavala</surname>
<given-names>Z</given-names>
</name>
<article-title>GEOCARB III: A revised model of atmospheric CO
<sub>2 </sub>
over Phanerozoic time</article-title>
<source>Am J Sci</source>
<year>2001</year>
<volume>301</volume>
<fpage>182</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.2475/ajs.301.2.182</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Won</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Renner</surname>
<given-names>SS</given-names>
</name>
<article-title>Dating dispersal and radiation in the gymnosperm
<italic>Gnetum </italic>
(Gnetales)-Clock calibration when outgroup relationships are uncertain</article-title>
<source>Syst Biol</source>
<year>2006</year>
<volume>55</volume>
<fpage>610</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.1080/10635150600812619</pub-id>
<pub-id pub-id-type="pmid">16969937</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Sage</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>JR</given-names>
</name>
<article-title>Effects of low atmospheric CO
<sub>2 </sub>
on plants: more than a thing of the past</article-title>
<source>Trends Plant Sci</source>
<year>2001</year>
<volume>6</volume>
<fpage>18</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/S1360-1385(00)01813-6</pub-id>
<pub-id pub-id-type="pmid">11164373</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<name>
<surname>Andrews</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Whitney</surname>
<given-names>SM</given-names>
</name>
<article-title>Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants</article-title>
<source>Arch Biochem Biophys</source>
<year>2003</year>
<volume>414</volume>
<fpage>159</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">12781767</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<name>
<surname>Jordan</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Ogren</surname>
<given-names>WL</given-names>
</name>
<article-title>Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase</article-title>
<source>Nature</source>
<year>1981</year>
<volume>291</volume>
<fpage>513</fpage>
<lpage>515</lpage>
<pub-id pub-id-type="doi">10.1038/291513a0</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<name>
<surname>Savir</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Noor</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Milo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tlusty</surname>
<given-names>T</given-names>
</name>
<article-title>Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>3475</fpage>
<lpage>3480</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0911663107</pub-id>
<pub-id pub-id-type="pmid">20142476</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<name>
<surname>Mueller-Cajar</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Whitney</surname>
<given-names>SM</given-names>
</name>
<article-title>Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research</article-title>
<source>Photosynth Res</source>
<year>2008</year>
<volume>98</volume>
<fpage>667</fpage>
<lpage>675</lpage>
<pub-id pub-id-type="doi">10.1007/s11120-008-9324-z</pub-id>
<pub-id pub-id-type="pmid">18626786</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<name>
<surname>Orr</surname>
<given-names>HA</given-names>
</name>
<article-title>Fitness and its role in evolutionary genetics</article-title>
<source>Nat Rev Genet</source>
<year>2009</year>
<volume>10</volume>
<fpage>531</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">19546856</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<name>
<surname>Carneiro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hartl</surname>
<given-names>DL</given-names>
</name>
<article-title>Adaptive landscapes and protein evolution</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>1747</fpage>
<lpage>1751</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0906192106</pub-id>
<pub-id pub-id-type="pmid">19805125</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Peddi</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Satagopan</surname>
<given-names>S</given-names>
</name>
<article-title>Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>17225</fpage>
<lpage>17230</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0508042102</pub-id>
<pub-id pub-id-type="pmid">16282373</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<name>
<surname>Marin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Gonzalez-Candelas</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Barrio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Moya</surname>
<given-names>A</given-names>
</name>
<article-title>Detecting changes in the functional constraints of paralogous genes</article-title>
<source>J Mol Evol</source>
<year>2001</year>
<volume>52</volume>
<fpage>17</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">11139291</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Elena</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Ortiz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Barrio</surname>
<given-names>E</given-names>
</name>
<article-title>A sliding window-based method to detect selective constraints in protein-coding genes and its application to RNA viruses</article-title>
<source>J Mol Evol</source>
<year>2002</year>
<volume>55</volume>
<fpage>509</fpage>
<lpage>521</lpage>
<pub-id pub-id-type="doi">10.1007/s00239-002-2346-9</pub-id>
<pub-id pub-id-type="pmid">12399925</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<name>
<surname>Codoñer</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Elena</surname>
<given-names>SF</given-names>
</name>
<article-title>Adaptive covariation between the coat and movement proteins of prunus necrotic ringspot virus</article-title>
<source>J Virol</source>
<year>2006</year>
<volume>80</volume>
<fpage>5833</fpage>
<lpage>5840</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00122-06</pub-id>
<pub-id pub-id-type="pmid">16731922</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<name>
<surname>Travers</surname>
<given-names>SAA</given-names>
</name>
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<article-title>Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses</article-title>
<source>Mol Biol Evol</source>
<year>2007</year>
<volume>24</volume>
<fpage>1032</fpage>
<lpage>1044</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msm022</pub-id>
<pub-id pub-id-type="pmid">17267421</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<name>
<surname>Codoñer</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<article-title>Why should we care about molecular coevolution?</article-title>
<source>Evol Bioinform</source>
<year>2008</year>
<volume>4</volume>
<fpage>29</fpage>
<lpage>38</lpage>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
<article-title>MUSCLE: a multiple sequence alignment method with reduced time and space complexity</article-title>
<source>BMC Bioinformatics</source>
<year>2004</year>
<volume>5</volume>
<fpage>113</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-5-113</pub-id>
<pub-id pub-id-type="pmid">15318951</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<name>
<surname>Rydin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mohr</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Friis</surname>
<given-names>EM</given-names>
</name>
<article-title>
<italic>Cratonia cotyledon </italic>
gen. et sp nov.: a unique Cretaceous seedling related to
<italic>Welwitschia</italic>
</article-title>
<source>Proc R Soc B</source>
<year>2003</year>
<volume>270</volume>
<fpage>S29</fpage>
<lpage>S32</lpage>
<pub-id pub-id-type="doi">10.1098/rsbl.2003.0044</pub-id>
<pub-id pub-id-type="pmid">12952628</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<name>
<surname>Miller</surname>
<given-names>CN</given-names>
</name>
<article-title>Implications of fossil conifers for the phylogenetic relationships of living families</article-title>
<source>Bot Rev</source>
<year>1999</year>
<volume>65</volume>
<fpage>239</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="doi">10.1007/BF02857631</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>BY</given-names>
</name>
<name>
<surname>Dilcher</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZD</given-names>
</name>
<name>
<surname>Lott</surname>
<given-names>TA</given-names>
</name>
<article-title>Morphology and affinities of an early Cretaceous
<italic>Ephedra </italic>
(Ephedraceae) from China</article-title>
<source>Am J Bot</source>
<year>2005</year>
<volume>92</volume>
<fpage>231</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="doi">10.3732/ajb.92.2.231</pub-id>
<pub-id pub-id-type="pmid">21652400</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<article-title>BEAST: Bayesian evolutionary analysis by sampling trees</article-title>
<source>BMC Evol Biol</source>
<year>2007</year>
<volume>7</volume>
<fpage>214</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-7-214</pub-id>
<pub-id pub-id-type="pmid">17996036</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Bielawski</surname>
<given-names>JP</given-names>
</name>
<article-title>Statistical methods for detecting molecular adaptation</article-title>
<source>Trends Ecol Evol</source>
<year>2000</year>
<volume>15</volume>
<fpage>496</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-5347(00)01994-7</pub-id>
<pub-id pub-id-type="pmid">11114436</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<name>
<surname>Hurst</surname>
<given-names>LD</given-names>
</name>
<article-title>The
<italic>Ka/Ks </italic>
ratio: diagnosing the form of sequence evolution</article-title>
<source>Trends Genet</source>
<year>2002</year>
<volume>18</volume>
<fpage>486</fpage>
<lpage>489</lpage>
<pub-id pub-id-type="doi">10.1016/S0168-9525(02)02722-1</pub-id>
<pub-id pub-id-type="pmid">12175810</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<name>
<surname>Goldman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>A codon-based model of nucleotide substitution for protein-coding DNA sequences</article-title>
<source>Mol Biol Evol</source>
<year>1994</year>
<volume>11</volume>
<fpage>725</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="pmid">7968486</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>PAML: a program package for phylogenetic analysis by maximum likelihood</article-title>
<source>Comput Appl Biosci</source>
<year>1997</year>
<volume>13</volume>
<fpage>555</fpage>
<lpage>556</lpage>
<pub-id pub-id-type="pmid">9367129</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<name>
<surname>Anisimova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bielawski</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<article-title>Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution</article-title>
<source>Mol Biol Evol</source>
<year>2001</year>
<volume>18</volume>
<fpage>1585</fpage>
<lpage>1592</lpage>
<pub-id pub-id-type="pmid">11470850</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="book">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<source>Computational molecular evolution</source>
<year>2006</year>
<publisher-name>London: Oxford University Press, USA</publisher-name>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<name>
<surname>Stern</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Doron-Faigenboim</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Erez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bacharach</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pupko</surname>
<given-names>T</given-names>
</name>
<article-title>Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach</article-title>
<source>Nucl Acids Res</source>
<year>2007</year>
<volume>35</volume>
<fpage>W506</fpage>
<lpage>W511</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkm382</pub-id>
<pub-id pub-id-type="pmid">17586822</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<name>
<surname>Xia</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<article-title>DAMBE: software package for data analysis in molecular biology and evolution</article-title>
<source>J Hered</source>
<year>2001</year>
<volume>92</volume>
<fpage>371</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="doi">10.1093/jhered/92.4.371</pub-id>
<pub-id pub-id-type="pmid">11535656</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<name>
<surname>Kosakovsky Pond</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>SD</given-names>
</name>
<article-title>Datamonkey: rapid detection of selective pressure on individual sites of codon alignments</article-title>
<source>Bioinformatics</source>
<year>2005</year>
<volume>21</volume>
<fpage>2531</fpage>
<lpage>2533</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bti320</pub-id>
<pub-id pub-id-type="pmid">15713735</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<name>
<surname>Fares</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Travers</surname>
<given-names>SAA</given-names>
</name>
<article-title>A novel method for detecting intramolecular coevolution: Adding a further dimension to selective constraints analyses</article-title>
<source>Genetics</source>
<year>2006</year>
<volume>173</volume>
<fpage>9</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.105.053249</pub-id>
<pub-id pub-id-type="pmid">16547113</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<name>
<surname>Caporaso</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Huttley</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>R</given-names>
</name>
<article-title>Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics</article-title>
<source>BMC Evol Biol</source>
<year>2008</year>
<volume>8</volume>
<fpage>327</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-8-327</pub-id>
<pub-id pub-id-type="pmid">19055758</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="book">
<name>
<surname>Westfall</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>SS</given-names>
</name>
<source>Resampling-based multiple testing</source>
<year>1993</year>
<publisher-name>New York: John Wiley & Sons, USA</publisher-name>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>WH</given-names>
</name>
<article-title>Unbiased estimation of the rates of synonymous and nonsynonymous substitution</article-title>
<source>J Mol Evol</source>
<year>1993</year>
<volume>36</volume>
<fpage>96</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1007/BF02407308</pub-id>
<pub-id pub-id-type="pmid">8433381</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<name>
<surname>Kapralov</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Kubien</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Filatov</surname>
<given-names>DA</given-names>
</name>
<article-title>Changes in Rubisco kinetics during the evolution of C4 photosynthesis in
<italic>Flaveria </italic>
(Asteraceae) are associated with positive selection on genes encoding the enzyme</article-title>
<source>Mol Biol Evol</source>
<year>2011</year>
<volume>28</volume>
<fpage>1491</fpage>
<lpage>1503</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msq335</pub-id>
<pub-id pub-id-type="pmid">21172830</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<name>
<surname>Müller</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Borsch</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hilu</surname>
<given-names>KW</given-names>
</name>
<article-title>Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting
<italic>matK, trnT-F</italic>
, and
<italic>rbcL </italic>
in basal angiosperms</article-title>
<source>Mol Phylogenet Evol</source>
<year>2006</year>
<volume>41</volume>
<fpage>99</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2006.06.017</pub-id>
<pub-id pub-id-type="pmid">16904914</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
<article-title>Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods</article-title>
<source>J Mol Evol</source>
<year>1997</year>
<volume>44</volume>
<fpage>139</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1007/PL00000067</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<name>
<surname>Pupko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Shamir</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
<article-title>A fast algorithm for joint reconstruction of ancestral amino acid sequences</article-title>
<source>Mol Biol Evol</source>
<year>2000</year>
<volume>17</volume>
<fpage>890</fpage>
<lpage>896</lpage>
<pub-id pub-id-type="pmid">10833195</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<name>
<surname>Douzery</surname>
<given-names>EJP</given-names>
</name>
<name>
<surname>Snell</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Bapteste</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Delsuc</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Philippe</surname>
<given-names>H</given-names>
</name>
<article-title>The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>15386</fpage>
<lpage>15391</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0403984101</pub-id>
<pub-id pub-id-type="pmid">15494441</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>W</given-names>
</name>
<article-title>Reading the entrails of chickens:molecular timescales of evolution and the illusion of precision</article-title>
<source>Trends Genet</source>
<year>2004</year>
<volume>20</volume>
<fpage>80</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1016/j.tig.2003.12.003</pub-id>
<pub-id pub-id-type="pmid">14746989</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<name>
<surname>Peterson</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Takacs</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Wargo</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>McPeek</surname>
<given-names>MA</given-names>
</name>
<article-title>Estimating metazoan divergence times with a molecular clock</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>6536</fpage>
<lpage>6541</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0401670101</pub-id>
<pub-id pub-id-type="pmid">15084738</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<name>
<surname>Roger</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Hug</surname>
<given-names>LA</given-names>
</name>
<article-title>The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation</article-title>
<source>Philos Trans R Soc B-Biol Sci</source>
<year>2006</year>
<volume>361</volume>
<fpage>1039</fpage>
<lpage>1054</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2006.1845</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<name>
<surname>Emerson</surname>
<given-names>BC</given-names>
</name>
<article-title>Alarm bells for the molecular clock? No support for Ho et al.'s model of time-dependent molecular rate estimates</article-title>
<source>Syst Biol</source>
<year>2007</year>
<volume>56</volume>
<fpage>337</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="doi">10.1080/10635150701258795</pub-id>
<pub-id pub-id-type="pmid">17464888</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<name>
<surname>Lepage</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Philippe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lartillot</surname>
<given-names>N</given-names>
</name>
<article-title>A general comparison of relaxed molecular clock models</article-title>
<source>Mol Biol Evol</source>
<year>2007</year>
<volume>24</volume>
<fpage>2669</fpage>
<lpage>2680</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msm193</pub-id>
<pub-id pub-id-type="pmid">17890241</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<name>
<surname>Shields</surname>
<given-names>R</given-names>
</name>
<article-title>Pushing the envelope on molecular dating</article-title>
<source>Trend Genet</source>
<year>2004</year>
<volume>20</volume>
<fpage>221</fpage>
<lpage>222</lpage>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<name>
<surname>Welch</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Bromham</surname>
<given-names>L</given-names>
</name>
<article-title>Molecular dating when rates vary</article-title>
<source>Trends Ecol Evol</source>
<year>2005</year>
<volume>20</volume>
<fpage>320</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2005.02.007</pub-id>
<pub-id pub-id-type="pmid">16701388</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>SYM</given-names>
</name>
<article-title>Calibrating molecular estimates of substitution rates and divergence times in birds</article-title>
<source>J Avian Biol</source>
<year>2007</year>
<volume>38</volume>
<fpage>409</fpage>
<lpage>414</lpage>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>SYW</given-names>
</name>
<article-title>An examination of phylogenetic models of substitution rate variation among lineages</article-title>
<source>Biol Lett</source>
<year>2009</year>
<volume>5</volume>
<fpage>421</fpage>
<pub-id pub-id-type="doi">10.1098/rsbl.2008.0729</pub-id>
<pub-id pub-id-type="pmid">19324651</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<name>
<surname>Kitazoe</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kishino</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Waddell</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Okabayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Watabe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Okuhara</surname>
<given-names>Y</given-names>
</name>
<article-title>Robust time estimation reconciles views of the antiquity of placental mammals</article-title>
<source>PLoS ONE</source>
<year>2007</year>
<volume>2</volume>
<fpage>e384</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000384</pub-id>
<pub-id pub-id-type="pmid">17440620</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Rest</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>García-Moreno</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sorenson</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Mindell</surname>
<given-names>DP</given-names>
</name>
<article-title>Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages</article-title>
<source>BMC Biol</source>
<year>2008</year>
<volume>6</volume>
<fpage>6</fpage>
<pub-id pub-id-type="pmid">18226223</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<name>
<surname>Renner</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Grimm</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Schneeweiss</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Stuessy</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Ricklefs</surname>
<given-names>RE</given-names>
</name>
<article-title>Rooting and dating maples (
<italic>Acer</italic>
) with an uncorrelated-rates molecular clock: Implications for north American/Asian disjunctions</article-title>
<source>Syst Biol</source>
<year>2008</year>
<volume>57</volume>
<fpage>795</fpage>
<lpage>808</lpage>
<pub-id pub-id-type="doi">10.1080/10635150802422282</pub-id>
<pub-id pub-id-type="pmid">18853365</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<name>
<surname>Zhong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yonezawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>M</given-names>
</name>
<article-title>Episodic evolution and adaptation of chloroplast genomes in ancestral grasses</article-title>
<source>PLoS ONE</source>
<year>2009</year>
<volume>4</volume>
<fpage>e5297</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0005297</pub-id>
<pub-id pub-id-type="pmid">19390686</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<name>
<surname>Ott</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Portis</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<article-title>Activase region on chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase: Nonconservative substitution in the large subunit alters species specificity of protein interaction</article-title>
<source>J Biol Chem</source>
<year>2000</year>
<volume>275</volume>
<fpage>26241</fpage>
<lpage>26244</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M004580200</pub-id>
<pub-id pub-id-type="pmid">10858441</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<name>
<surname>Du</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<article-title>Suppressor mutations in the chloroplast-encoded large subunit improve the thermal stability of wild-type ribulose-1,5-bisphosphate carboxylase/oxygenase</article-title>
<source>J Biol Chem</source>
<year>2000</year>
<volume>275</volume>
<fpage>19844</fpage>
<lpage>19847</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M002321200</pub-id>
<pub-id pub-id-type="pmid">10779514</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<name>
<surname>Du</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Peddi</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Spreitzer</surname>
<given-names>RJ</given-names>
</name>
<article-title>Assessment of structural and functional divergence far from the large subunit active site of ribulose-1,5-bisphosphate carboxylase/oxygenase</article-title>
<source>J Biol Chem</source>
<year>2003</year>
<volume>278</volume>
<fpage>49401</fpage>
<lpage>49405</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M309993200</pub-id>
<pub-id pub-id-type="pmid">14506244</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3129321
   |texte=   Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:21639885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024