Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000E13 ( Pmc/Corpus ); précédent : 000E129; suivant : 000E140 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (
<italic>Citrus trifoliata</italic>
)</title>
<author>
<name sortKey="Song, Changnian" sort="Song, Changnian" uniqKey="Song C" first="Changnian" last="Song">Changnian Song</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chen" sort="Wang, Chen" uniqKey="Wang C" first="Chen" last="Wang">Chen Wang</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Changqing" sort="Zhang, Changqing" uniqKey="Zhang C" first="Changqing" last="Zhang">Changqing Zhang</name>
<affiliation>
<nlm:aff id="I2">Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Korir, Nicholas Kibet" sort="Korir, Nicholas Kibet" uniqKey="Korir N" first="Nicholas Kibet" last="Korir">Nicholas Kibet Korir</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Huaping" sort="Yu, Huaping" uniqKey="Yu H" first="Huaping" last="Yu">Huaping Yu</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Zhengqiang" sort="Ma, Zhengqiang" uniqKey="Ma Z" first="Zhengqiang" last="Ma">Zhengqiang Ma</name>
<affiliation>
<nlm:aff id="I3">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20626894</idno>
<idno type="pmc">2996959</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996959</idno>
<idno type="RBID">PMC:2996959</idno>
<idno type="doi">10.1186/1471-2164-11-431</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000E13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (
<italic>Citrus trifoliata</italic>
)</title>
<author>
<name sortKey="Song, Changnian" sort="Song, Changnian" uniqKey="Song C" first="Changnian" last="Song">Changnian Song</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chen" sort="Wang, Chen" uniqKey="Wang C" first="Chen" last="Wang">Chen Wang</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Changqing" sort="Zhang, Changqing" uniqKey="Zhang C" first="Changqing" last="Zhang">Changqing Zhang</name>
<affiliation>
<nlm:aff id="I2">Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Korir, Nicholas Kibet" sort="Korir, Nicholas Kibet" uniqKey="Korir N" first="Nicholas Kibet" last="Korir">Nicholas Kibet Korir</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Huaping" sort="Yu, Huaping" uniqKey="Yu H" first="Huaping" last="Yu">Huaping Yu</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Zhengqiang" sort="Ma, Zhengqiang" uniqKey="Ma Z" first="Zhengqiang" last="Ma">Zhengqiang Ma</name>
<affiliation>
<nlm:aff id="I3">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Jinggui" sort="Fang, Jinggui" uniqKey="Fang J" first="Jinggui" last="Fang">Jinggui Fang</name>
<affiliation>
<nlm:aff id="I1">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as
<italic>Arabidopsis </italic>
and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.</p>
</sec>
<sec>
<title>Results</title>
<p>In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (
<italic>Citrus trifoliata</italic>
) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from
<italic>C. trifoliata </italic>
flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in
<italic>C. trifoliata</italic>
.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Deep sequencing of short RNAs from
<italic>C. trifoliata </italic>
flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in
<italic>C. trifoliata</italic>
. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Llave, C" uniqKey="Llave C">C Llave</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauter, N" uniqKey="Lauter N">N Lauter</name>
</author>
<author>
<name sortKey="Kampani, A" uniqKey="Kampani A">A Kampani</name>
</author>
<author>
<name sortKey="Carlson, S" uniqKey="Carlson S">S Carlson</name>
</author>
<author>
<name sortKey="Goebel, M" uniqKey="Goebel M">M Goebel</name>
</author>
<author>
<name sortKey="Moose, Sp" uniqKey="Moose S">SP Moose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Gustafson, Am" uniqKey="Gustafson A">AM Gustafson</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berezikov, E" uniqKey="Berezikov E">E Berezikov</name>
</author>
<author>
<name sortKey="Cuppen, E" uniqKey="Cuppen E">E Cuppen</name>
</author>
<author>
<name sortKey="Plasterk, Rh" uniqKey="Plasterk R">RH Plasterk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carthew, Rw" uniqKey="Carthew R">RW Carthew</name>
</author>
<author>
<name sortKey="Sontheimer, Ej" uniqKey="Sontheimer E">EJ Sontheimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X Pan</name>
</author>
<author>
<name sortKey="Cannon, Ch" uniqKey="Cannon C">CH Cannon</name>
</author>
<author>
<name sortKey="Cobb, Gp" uniqKey="Cobb G">GP Cobb</name>
</author>
<author>
<name sortKey="Anderson, Ta" uniqKey="Anderson T">TA Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Jagadeeswaran, G" uniqKey="Jagadeeswaran G">G Jagadeeswaran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Axtell, Mj" uniqKey="Axtell M">MJ Axtell</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
<author>
<name sortKey="Baulcombe, D" uniqKey="Baulcombe D">D Baulcombe</name>
</author>
<author>
<name sortKey="Bowman, J" uniqKey="Bowman J">J Bowman</name>
</author>
<author>
<name sortKey="Cao, X" uniqKey="Cao X">X Cao</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Green, Pj" uniqKey="Green P">PJ Green</name>
</author>
<author>
<name sortKey="Griffithsnes, S" uniqKey="Griffithsnes S">S Griffithsnes</name>
</author>
<author>
<name sortKey="Jacobsen, Se" uniqKey="Jacobsen S">SE Jacobsen</name>
</author>
<author>
<name sortKey="Mallory, Ac" uniqKey="Mallory A">AC Mallory</name>
</author>
<author>
<name sortKey="Martienssen, Ra" uniqKey="Martienssen R">RA Martienssen</name>
</author>
<author>
<name sortKey="Poethig, Rs" uniqKey="Poethig R">RS Poethig</name>
</author>
<author>
<name sortKey="Qi, Y" uniqKey="Qi Y">Y Qi</name>
</author>
<author>
<name sortKey="Vaucheret, H" uniqKey="Vaucheret H">H Vaucheret</name>
</author>
<author>
<name sortKey="Voinnet, O" uniqKey="Voinnet O">O Voinnet</name>
</author>
<author>
<name sortKey="Watanabe, Y" uniqKey="Watanabe Y">Y Watanabe</name>
</author>
<author>
<name sortKey="Weigel, D" uniqKey="Weigel D">D Weigel</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Gustafson, Am" uniqKey="Gustafson A">AM Gustafson</name>
</author>
<author>
<name sortKey="Sung, Gh" uniqKey="Sung G">GH Sung</name>
</author>
<author>
<name sortKey="Spatafora, Jw" uniqKey="Spatafora J">JW Spatafora</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajagopalan, R" uniqKey="Rajagopalan R">R Rajagopalan</name>
</author>
<author>
<name sortKey="Vaucheret, H" uniqKey="Vaucheret H">H Vaucheret</name>
</author>
<author>
<name sortKey="Trejo, J" uniqKey="Trejo J">J Trejo</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carra, A" uniqKey="Carra A">A Carra</name>
</author>
<author>
<name sortKey="Mica, E" uniqKey="Mica E">E Mica</name>
</author>
<author>
<name sortKey="Gambino, G" uniqKey="Gambino G">G Gambino</name>
</author>
<author>
<name sortKey="Pindo, M" uniqKey="Pindo M">M Pindo</name>
</author>
<author>
<name sortKey="Moser, C" uniqKey="Moser C">C Moser</name>
</author>
<author>
<name sortKey="Enrico, Mp" uniqKey="Enrico M">MP Enrico</name>
</author>
<author>
<name sortKey="Schubert, A" uniqKey="Schubert A">A Schubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Axtell, Mj" uniqKey="Axtell M">MJ Axtell</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fahlgren, N" uniqKey="Fahlgren N">N Fahlgren</name>
</author>
<author>
<name sortKey="Howell, Md" uniqKey="Howell M">MD Howell</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Chapman, Ej" uniqKey="Chapman E">EJ Chapman</name>
</author>
<author>
<name sortKey="Sullivan, Cm" uniqKey="Sullivan C">CM Sullivan</name>
</author>
<author>
<name sortKey="Cumbie, Js" uniqKey="Cumbie J">JS Cumbie</name>
</author>
<author>
<name sortKey="Givan, Sa" uniqKey="Givan S">SA Givan</name>
</author>
<author>
<name sortKey="Law, Tf" uniqKey="Law T">TF Law</name>
</author>
<author>
<name sortKey="Grant, Sr" uniqKey="Grant S">SR Grant</name>
</author>
<author>
<name sortKey="Dangl, Jl" uniqKey="Dangl J">JL Dangl</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y Zheng</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Qh" uniqKey="Zhu Q">QH Zhu</name>
</author>
<author>
<name sortKey="Spriggs, A" uniqKey="Spriggs A">A Spriggs</name>
</author>
<author>
<name sortKey="Matthew, L" uniqKey="Matthew L">L Matthew</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
<author>
<name sortKey="Kennedy, G" uniqKey="Kennedy G">G Kennedy</name>
</author>
<author>
<name sortKey="Gubler, F" uniqKey="Gubler F">F Gubler</name>
</author>
<author>
<name sortKey="Helliwell, C" uniqKey="Helliwell C">C Helliwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barakat, A" uniqKey="Barakat A">A Barakat</name>
</author>
<author>
<name sortKey="Wall, Pk" uniqKey="Wall P">PK Wall</name>
</author>
<author>
<name sortKey="Diloreto, S" uniqKey="Diloreto S">S Diloreto</name>
</author>
<author>
<name sortKey="Depamphilis, Cw" uniqKey="Depamphilis C">CW Depamphilis</name>
</author>
<author>
<name sortKey="Carlson, Je" uniqKey="Carlson J">JE Carlson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klevebring, D" uniqKey="Klevebring D">D Klevebring</name>
</author>
<author>
<name sortKey="Street, Nr" uniqKey="Street N">NR Street</name>
</author>
<author>
<name sortKey="Fahlgren, N" uniqKey="Fahlgren N">N Fahlgren</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Lundeberg, J" uniqKey="Lundeberg J">J Lundeberg</name>
</author>
<author>
<name sortKey="Jansson, S" uniqKey="Jansson S">S Jansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Guo, G" uniqKey="Guo G">G Guo</name>
</author>
<author>
<name sortKey="Ni, Z" uniqKey="Ni Z">Z Ni</name>
</author>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J Du</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, B" uniqKey="Wei B">B Wei</name>
</author>
<author>
<name sortKey="Cai, T" uniqKey="Cai T">T Cai</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R Zhang</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A Li</name>
</author>
<author>
<name sortKey="Huo, N" uniqKey="Huo N">N Huo</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Gu, Yq" uniqKey="Gu Y">YQ Gu</name>
</author>
<author>
<name sortKey="Vogel, J" uniqKey="Vogel J">J Vogel</name>
</author>
<author>
<name sortKey="Jia, J" uniqKey="Jia J">J Jia</name>
</author>
<author>
<name sortKey="Qi, Y" uniqKey="Qi Y">Y Qi</name>
</author>
<author>
<name sortKey="Mao, L" uniqKey="Mao L">L Mao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nobuta, K" uniqKey="Nobuta K">K Nobuta</name>
</author>
<author>
<name sortKey="Venu, Rc" uniqKey="Venu R">RC Venu</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Belo, A" uniqKey="Belo A">A Belo</name>
</author>
<author>
<name sortKey="Vemaraju, K" uniqKey="Vemaraju K">K Vemaraju</name>
</author>
<author>
<name sortKey="Kulkarni, K" uniqKey="Kulkarni K">K Kulkarni</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Pillay, M" uniqKey="Pillay M">M Pillay</name>
</author>
<author>
<name sortKey="Green, Pj" uniqKey="Green P">PJ Green</name>
</author>
<author>
<name sortKey="Wang, Gl" uniqKey="Wang G">GL Wang</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Chia, Jm" uniqKey="Chia J">JM Chia</name>
</author>
<author>
<name sortKey="Kumari, S" uniqKey="Kumari S">S Kumari</name>
</author>
<author>
<name sortKey="Stein, Jc" uniqKey="Stein J">JC Stein</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Narechania, A" uniqKey="Narechania A">A Narechania</name>
</author>
<author>
<name sortKey="Maher, Ca" uniqKey="Maher C">CA Maher</name>
</author>
<author>
<name sortKey="Guill, K" uniqKey="Guill K">K Guill</name>
</author>
<author>
<name sortKey="Mcmullen, Md" uniqKey="Mcmullen M">MD McMullen</name>
</author>
<author>
<name sortKey="Ware, Da" uniqKey="Ware D">DA Ware</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moxon, S" uniqKey="Moxon S">S Moxon</name>
</author>
<author>
<name sortKey="Jing, R" uniqKey="Jing R">R Jing</name>
</author>
<author>
<name sortKey="Szittya, G" uniqKey="Szittya G">G Szittya</name>
</author>
<author>
<name sortKey="Schwach, F" uniqKey="Schwach F">F Schwach</name>
</author>
<author>
<name sortKey="Rusholme Pilcher, Rl" uniqKey="Rusholme Pilcher R">RL Rusholme Pilcher</name>
</author>
<author>
<name sortKey="Moulton, V" uniqKey="Moulton V">V Moulton</name>
</author>
<author>
<name sortKey="Dalmay, T" uniqKey="Dalmay T">T Dalmay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szittya, G" uniqKey="Szittya G">G Szittya</name>
</author>
<author>
<name sortKey="Moxon, S" uniqKey="Moxon S">S Moxon</name>
</author>
<author>
<name sortKey="Santos, Dm" uniqKey="Santos D">DM Santos</name>
</author>
<author>
<name sortKey="Jing, R" uniqKey="Jing R">R Jing</name>
</author>
<author>
<name sortKey="Fevereiro, Mp" uniqKey="Fevereiro M">MP Fevereiro</name>
</author>
<author>
<name sortKey="Moulton, V" uniqKey="Moulton V">V Moulton</name>
</author>
<author>
<name sortKey="Dalmay, T" uniqKey="Dalmay T">T Dalmay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, Mb" uniqKey="Ruan M">MB Ruan</name>
</author>
<author>
<name sortKey="Zhao, Yt" uniqKey="Zhao Y">YT Zhao</name>
</author>
<author>
<name sortKey="Meng, Zh" uniqKey="Meng Z">ZH Meng</name>
</author>
<author>
<name sortKey="Wang, Xj" uniqKey="Wang X">XJ Wang</name>
</author>
<author>
<name sortKey="Yang, Wc" uniqKey="Yang W">WC Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, D" uniqKey="Qiu D">D Qiu</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X Pan</name>
</author>
<author>
<name sortKey="Wilson, Iw" uniqKey="Wilson I">IW Wilson</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
<author>
<name sortKey="Teng, W" uniqKey="Teng W">W Teng</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Tej, Ss" uniqKey="Tej S">SS Tej</name>
</author>
<author>
<name sortKey="Luo, S" uniqKey="Luo S">S Luo</name>
</author>
<author>
<name sortKey="Haudenschild, Cd" uniqKey="Haudenschild C">CD Haudenschild</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
<author>
<name sortKey="Green, Pj" uniqKey="Green P">PJ Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Bh" uniqKey="Zhang B">BH Zhang</name>
</author>
<author>
<name sortKey="Pan, Xp" uniqKey="Pan X">XP Pan</name>
</author>
<author>
<name sortKey="Wang, Ql" uniqKey="Wang Q">QL Wang</name>
</author>
<author>
<name sortKey="Cobb, Gp" uniqKey="Cobb G">GP Cobb</name>
</author>
<author>
<name sortKey="Anderson, Ta" uniqKey="Anderson T">TA Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, C" uniqKey="Song C">C Song</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Chao, Tc" uniqKey="Chao T">TC Chao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, C" uniqKey="Song C">C Song</name>
</author>
<author>
<name sortKey="Jia, Q" uniqKey="Jia Q">Q Jia</name>
</author>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morin, Rd" uniqKey="Morin R">RD Morin</name>
</author>
<author>
<name sortKey="Aksay, G" uniqKey="Aksay G">G Aksay</name>
</author>
<author>
<name sortKey="Dolgosheina, E" uniqKey="Dolgosheina E">E Dolgosheina</name>
</author>
<author>
<name sortKey="Ebhardt, Ha" uniqKey="Ebhardt H">HA Ebhardt</name>
</author>
<author>
<name sortKey="Magrini, V" uniqKey="Magrini V">V Magrini</name>
</author>
<author>
<name sortKey="Mardis, Er" uniqKey="Mardis E">ER Mardis</name>
</author>
<author>
<name sortKey="Sahinalp, Sc" uniqKey="Sahinalp S">SC Sahinalp</name>
</author>
<author>
<name sortKey="Unrau, Pj" uniqKey="Unrau P">PJ Unrau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolgosheina, Ev" uniqKey="Dolgosheina E">EV Dolgosheina</name>
</author>
<author>
<name sortKey="Morin, Rd" uniqKey="Morin R">RD Morin</name>
</author>
<author>
<name sortKey="Aksay, G" uniqKey="Aksay G">G Aksay</name>
</author>
<author>
<name sortKey="Sahinalp, Sc" uniqKey="Sahinalp S">SC Sahinalp</name>
</author>
<author>
<name sortKey="Magrini, V" uniqKey="Magrini V">V Magrini</name>
</author>
<author>
<name sortKey="Mardis, Er" uniqKey="Mardis E">ER Mardis</name>
</author>
<author>
<name sortKey="Mattsson, J" uniqKey="Mattsson J">J Mattsson</name>
</author>
<author>
<name sortKey="Unrau, Pj" uniqKey="Unrau P">PJ Unrau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffiths Jones, S" uniqKey="Griffiths Jones S">S Griffiths-Jones</name>
</author>
<author>
<name sortKey="Saini H, K" uniqKey="Saini H K">K Saini H</name>
</author>
<author>
<name sortKey="Dongen S, V" uniqKey="Dongen S V">V Dongen S</name>
</author>
<author>
<name sortKey="Enrigh, Aj" uniqKey="Enrigh A">AJ Enrigh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoen, Pa" uniqKey="Hoen P">PA Hoen</name>
</author>
<author>
<name sortKey="Ariyurek, Y" uniqKey="Ariyurek Y">Y Ariyurek</name>
</author>
<author>
<name sortKey="Thygesen, Hh" uniqKey="Thygesen H">HH Thygesen</name>
</author>
<author>
<name sortKey="Vreugdenhil, E" uniqKey="Vreugdenhil E">E Vreugdenhil</name>
</author>
<author>
<name sortKey="Vossen, Rh" uniqKey="Vossen R">RH Vossen</name>
</author>
<author>
<name sortKey="De Menezes, Rx" uniqKey="De Menezes R">RX de Menezes</name>
</author>
<author>
<name sortKey="Boer, Jm" uniqKey="Boer J">JM Boer</name>
</author>
<author>
<name sortKey="Van Ommen, Gj" uniqKey="Van Ommen G">GJ van Ommen</name>
</author>
<author>
<name sortKey="Den Dunnen, Jt" uniqKey="Den Dunnen J">JT den Dunnen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jofuku, Kd" uniqKey="Jofuku K">KD Jofuku</name>
</author>
<author>
<name sortKey="Den Boer, Bg" uniqKey="Den Boer B">BG den Boer</name>
</author>
<author>
<name sortKey="Van Montagu, M" uniqKey="Van Montagu M">M Van Montagu</name>
</author>
<author>
<name sortKey="Okamuro, Jk" uniqKey="Okamuro J">JK Okamuro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aukerman, Mj" uniqKey="Aukerman M">MJ Aukerman</name>
</author>
<author>
<name sortKey="Sakai, H" uniqKey="Sakai H">H Sakai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Fahlgren, N" uniqKey="Fahlgren N">N Fahlgren</name>
</author>
<author>
<name sortKey="Calamar, A" uniqKey="Calamar A">A Calamar</name>
</author>
<author>
<name sortKey="Givan, Sa" uniqKey="Givan S">SA Givan</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones Rhoades, Mw" uniqKey="Jones Rhoades M">MW Jones-Rhoades</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elbashir, Sm" uniqKey="Elbashir S">SM Elbashir</name>
</author>
<author>
<name sortKey="Lendeckel, W" uniqKey="Lendeckel W">W Lendeckel</name>
</author>
<author>
<name sortKey="Tuschl, T" uniqKey="Tuschl T">T Tuschl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Xie, Z" uniqKey="Xie Z">Z Xie</name>
</author>
<author>
<name sortKey="Allen, E" uniqKey="Allen E">E Allen</name>
</author>
<author>
<name sortKey="Llave, C" uniqKey="Llave C">C Llave</name>
</author>
<author>
<name sortKey="Chapman, Ej" uniqKey="Chapman E">EJ Chapman</name>
</author>
<author>
<name sortKey="Krizan, Ka" uniqKey="Krizan K">KA Krizan</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ambros, V" uniqKey="Ambros V">V Ambros</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
<author>
<name sortKey="Burge, Cb" uniqKey="Burge C">CB Burge</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Dreyfuss, G" uniqKey="Dreyfuss G">G Dreyfuss</name>
</author>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
<author>
<name sortKey="Griffiths Jones, S" uniqKey="Griffiths Jones S">S Griffiths-Jones</name>
</author>
<author>
<name sortKey="Marshall, M" uniqKey="Marshall M">M Marshall</name>
</author>
<author>
<name sortKey="Matzke, M" uniqKey="Matzke M">M Matzke</name>
</author>
<author>
<name sortKey="Ruvkun, G" uniqKey="Ruvkun G">G Ruvkun</name>
</author>
<author>
<name sortKey="Tuschl, T" uniqKey="Tuschl T">T Tuschl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moxon, S" uniqKey="Moxon S">S Moxon</name>
</author>
<author>
<name sortKey="Schwach, F" uniqKey="Schwach F">F Schwach</name>
</author>
<author>
<name sortKey="Maclean, D" uniqKey="Maclean D">D Maclean</name>
</author>
<author>
<name sortKey="Dalmay, T" uniqKey="Dalmay T">T Dalmay</name>
</author>
<author>
<name sortKey="Studholme, Dj" uniqKey="Studholme D">DJ Studholme</name>
</author>
<author>
<name sortKey="Moulton, V" uniqKey="Moulton V">V Moulton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhoades, Mw" uniqKey="Rhoades M">MW Rhoades</name>
</author>
<author>
<name sortKey="Reinhart, Bj" uniqKey="Reinhart B">BJ Reinhart</name>
</author>
<author>
<name sortKey="Lim, Lp" uniqKey="Lim L">LP Lim</name>
</author>
<author>
<name sortKey="Burge, Cb" uniqKey="Burge C">CB Burge</name>
</author>
<author>
<name sortKey="Bartel, B" uniqKey="Bartel B">B Bartel</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Floyd, Sk" uniqKey="Floyd S">SK Floyd</name>
</author>
<author>
<name sortKey="Bowman, Jl" uniqKey="Bowman J">JL Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sunkar, R" uniqKey="Sunkar R">R Sunkar</name>
</author>
<author>
<name sortKey="Girke, T" uniqKey="Girke T">T Girke</name>
</author>
<author>
<name sortKey="Jain, Pk" uniqKey="Jain P">PK Jain</name>
</author>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, S" uniqKey="Lu S">S Lu</name>
</author>
<author>
<name sortKey="Sun, Yh" uniqKey="Sun Y">YH Sun</name>
</author>
<author>
<name sortKey="Amerson, H" uniqKey="Amerson H">H Amerson</name>
</author>
<author>
<name sortKey="Chiang, Vl" uniqKey="Chiang V">VL Chiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adai, A" uniqKey="Adai A">A Adai</name>
</author>
<author>
<name sortKey="Johnson, C" uniqKey="Johnson C">C Johnson</name>
</author>
<author>
<name sortKey="Mlotshwa, S" uniqKey="Mlotshwa S">S Mlotshwa</name>
</author>
<author>
<name sortKey="Archer Evans, S" uniqKey="Archer Evans S">S Archer-Evans</name>
</author>
<author>
<name sortKey="Manocha, V" uniqKey="Manocha V">V Manocha</name>
</author>
<author>
<name sortKey="Vance, V" uniqKey="Vance V">V Vance</name>
</author>
<author>
<name sortKey="Sundaresan, V" uniqKey="Sundaresan V">V Sundaresan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, H" uniqKey="Fu H">H Fu</name>
</author>
<author>
<name sortKey="Tie, Y" uniqKey="Tie Y">Y Tie</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y Shi</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z Sun</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Ridzon, Da" uniqKey="Ridzon D">DA Ridzon</name>
</author>
<author>
<name sortKey="Broomer, Aj" uniqKey="Broomer A">AJ Broomer</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z Zhou</name>
</author>
<author>
<name sortKey="Lee, Dh" uniqKey="Lee D">DH Lee</name>
</author>
<author>
<name sortKey="Nguyen, Jt" uniqKey="Nguyen J">JT Nguyen</name>
</author>
<author>
<name sortKey="Barbisin, M" uniqKey="Barbisin M">M Barbisin</name>
</author>
<author>
<name sortKey="Xu, Nl" uniqKey="Xu N">NL Xu</name>
</author>
<author>
<name sortKey="Mahuvakar, Vr" uniqKey="Mahuvakar V">VR Mahuvakar</name>
</author>
<author>
<name sortKey="Andersen, Mr" uniqKey="Andersen M">MR Andersen</name>
</author>
<author>
<name sortKey="Lao, Kq" uniqKey="Lao K">KQ Lao</name>
</author>
<author>
<name sortKey="Livak, Kj" uniqKey="Livak K">KJ Livak</name>
</author>
<author>
<name sortKey="Guegler, Kj" uniqKey="Guegler K">KJ Guegler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, R" uniqKey="Shi R">R Shi</name>
</author>
<author>
<name sortKey="Chiang, Vl" uniqKey="Chiang V">VL Chiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramakers, C" uniqKey="Ramakers C">C Ramakers</name>
</author>
<author>
<name sortKey="Ruijter, Jm" uniqKey="Ruijter J">JM Ruijter</name>
</author>
<author>
<name sortKey="Deprez, Rh" uniqKey="Deprez R">RH Deprez</name>
</author>
<author>
<name sortKey="Moorman, Af" uniqKey="Moorman A">AF Moorman</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-title-group>
<journal-title>BMC Genomics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20626894</article-id>
<article-id pub-id-type="pmc">2996959</article-id>
<article-id pub-id-type="publisher-id">1471-2164-11-431</article-id>
<article-id pub-id-type="doi">10.1186/1471-2164-11-431</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (
<italic>Citrus trifoliata</italic>
)</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Song</surname>
<given-names>Changnian</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>2008204002@njau.edu.cn</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Wang</surname>
<given-names>Chen</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>2008104022@njau.edu.cn</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Zhang</surname>
<given-names>Changqing</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>zcq@jit.edu.cn</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Korir</surname>
<given-names>Nicholas Kibet</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>2009204036@njau.edu.cn</email>
</contrib>
<contrib contrib-type="author" id="A5">
<name>
<surname>Yu</surname>
<given-names>Huaping</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>2008104024@njau.edu.cn</email>
</contrib>
<contrib contrib-type="author" id="A6">
<name>
<surname>Ma</surname>
<given-names>Zhengqiang</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>zqm2@njau.edu.cn</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A7">
<name>
<surname>Fang</surname>
<given-names>Jinggui</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>fanggg@njau.edu.cn</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</aff>
<aff id="I2">
<label>2</label>
Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China</aff>
<aff id="I3">
<label>3</label>
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China</aff>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>7</month>
<year>2010</year>
</pub-date>
<volume>11</volume>
<fpage>431</fpage>
<lpage>431</lpage>
<history>
<date date-type="received">
<day>9</day>
<month>2</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>7</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2010 Song et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Song et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2164/11/431"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as
<italic>Arabidopsis </italic>
and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.</p>
</sec>
<sec>
<title>Results</title>
<p>In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (
<italic>Citrus trifoliata</italic>
) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from
<italic>C. trifoliata </italic>
flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in
<italic>C. trifoliata</italic>
.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Deep sequencing of short RNAs from
<italic>C. trifoliata </italic>
flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in
<italic>C. trifoliata</italic>
. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>MicroRNAs (miRNAs) are 19-23 nucleotide long non-coding RNAs that regulate gene expression at the post-transcriptional level, either by endonucleolytic cleavage or by translational inhibition [
<xref ref-type="bibr" rid="B1">1</xref>
-
<xref ref-type="bibr" rid="B3">3</xref>
]. Increasing evidence indicates that miRNAs play major roles in key aspects of plant development and their response to environmental stresses [
<xref ref-type="bibr" rid="B4">4</xref>
-
<xref ref-type="bibr" rid="B7">7</xref>
]. The fact that a large number of the known miRNAs in the plant kingdom from mosses and ferns to higher flowering plants are evolutionarily conserved has been used as a practical indicator for identification or prediction of miRNAs by homology searches in other species [
<xref ref-type="bibr" rid="B8">8</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
]. miRNAs predicted by bioinformatics should be validated for their expression by experimental methods. Northern blotting and PCR based amplification of adaptor-ligated cDNA have been used for validation of predicted miRNAs [
<xref ref-type="bibr" rid="B10">10</xref>
]. Northern blotting might not be sensitive enough to detect less-abundant miRNAs and it does not reveal the actual miRNA sequences while PCR-based amplification can be difficult in practice when the actual mature miRNA region is unknown. Recently developed next-generation high throughput sequencing technologies provide a powerful strategy to identify as well as quantify miRNAs. These technologies open up possibilities of exploring sRNA populations in economically important species that lack adequate genome information, such as trifoliate orange (
<italic>Citrus trifoliata</italic>
).</p>
<p>Increasing evidence shows that the miRNA repertoire of any plant or animal species comprises of a set of conserved ancient miRNAs as well as many recently evolved species-specific miRNAs [
<xref ref-type="bibr" rid="B11">11</xref>
-
<xref ref-type="bibr" rid="B13">13</xref>
]. Since the species-specific miRNAs often accumulate at lower levels than conserved ancient miRNAs, it is sometimes difficult to assess them when derived from traditional sequencing approaches such as the Sanger sequencing method which has been widely used in model plant species with known genome sequences e.g
<italic>Arabidopsis</italic>
, poplar, and rice [
<xref ref-type="bibr" rid="B14">14</xref>
]. The availability of next generation sequencing technologies provide high throughput tools to make new discoveries of additional species-specific or lowly expressed miRNAs, e.g. in
<italic>Arabidopsis </italic>
[
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
], rice [
<xref ref-type="bibr" rid="B16">16</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
], poplar [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B19">19</xref>
],
<italic>Triticum aestivum </italic>
[
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B21">21</xref>
],
<italic>Zea mays </italic>
[
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B23">23</xref>
],
<italic>Medicago tuncatula </italic>
[
<xref ref-type="bibr" rid="B24">24</xref>
],
<italic>Lycopersicon esculentum </italic>
[
<xref ref-type="bibr" rid="B25">25</xref>
],
<italic>Gossypium hirsutum </italic>
[
<xref ref-type="bibr" rid="B26">26</xref>
], and
<italic>Taxus chinensis </italic>
[
<xref ref-type="bibr" rid="B27">27</xref>
]. With the availability of high throughput sequencing technology, like the 454 Technology, Solexa Platform, and Massively Parallel Sequencing (MPSS), it may be possible to make new discoveries of species specific or lowly expressed miRNAs. However, there still exist some differences between these novel sequencing technologies. It is reported that the longest reads can be obtained using 454 Technology, while the Solexa platform can yield a higher number of reads [
<xref ref-type="bibr" rid="B24">24</xref>
], and is fit for sequencing of shorter reads (up to 35 bp) [
<xref ref-type="bibr" rid="B25">25</xref>
]. Although MPSS can also give a huge number of reads, it gives even shorter reads i.e only 17 bp [
<xref ref-type="bibr" rid="B28">28</xref>
] that are shorter than that of miRNAs. Since the miRNAs sequences are only about 21 nt in length, the Solexa platform seems to be the preferable choice for miRNA discovery.</p>
<p>Citrus is one of the most economically important evergreen fruit crop in the world.
<italic>Citrus trifoliata </italic>
(representing
<italic>Poncirus trifoliata </italic>
in the NCBI taxonomy) has consistently been one of the most important rootstock species used in the citrus industry, and has even been used as a model species for citrus molecular biology and genomic studies. The availability of a large number of expressed sequence tags (ESTs) from
<italic>C. trifoliata </italic>
is also an excellent source of experimental material for elucidation of gene expression and regulation. Although miRNAs have been extensively studied in the past five years, limited systematic study of miRNAs has been performed on the citrus genus and especially
<italic>C. trifoliata</italic>
. Sequencing of all expressed sRNAs is required for complete identification of conserved miRNAs in
<italic>C. trifoliata</italic>
.</p>
<p>Identification of several miRNAs from citrus by computational approaches [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
] and the verification of conserved citrus miRNA by homology to
<italic>Arabidopsis </italic>
have been reported [
<xref ref-type="bibr" rid="B31">31</xref>
]. However, the number of predicted
<italic>C. trifoliata </italic>
miRNAs still remains quite low. Recent miRNA analysis in
<italic>Arabidopsis </italic>
and rice using the deep sequencing approach discovered that the encoding loci of non-conserved miRNAs were more than that of conserved miRNAs [
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
]. Therefore, it was necessary to carry out further research on the miRNAs in
<italic>C. trifoliata</italic>
, and deep sequencing as a method was given preference.</p>
<p>To investigate the role of miRNAs during reproductive growth, high throughput sequencing technology (Illumina) was employed to survey sRNA populations from
<italic>C. trifoliata </italic>
flower buds, flowers and fruits at different development stages. In this study, a total of 13,106,753 sRNAs representing 4,876,395 unique sRNAs were sequenced. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. Our results indicate that a complex and diverse sRNA population exists in
<italic>C. trifoliata</italic>
. Based on the identified miRNA and some miRNA* sequences, 29 conversed miRNA (miR156, miR160, miR162, miR164, miR165, miR166, miR167, miR168, miR169, miR170, miR171, miR172, miR319, miR390, miR394, miR396, miR398, miR399, miR403, miR408, miR419, miR530, miR835, miR844, miR950, miR1027, miR1044, miR1426, and miR1446) precursors have been identified from the citrus EST library [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
-
<xref ref-type="bibr" rid="B31">31</xref>
]. Through deep sequencing we also identified ten species-specific miRNAs whose precursors were all potentially generated from 560,271 citrus ESTs, of which five miRNA* sequences were also sequenced. Furthermore, we studied expression patterns of the 10 novel miRNA candidates by qRT-PCR in different tissues of
<italic>C. trifoliata</italic>
. Potential target genes were predicted for most conserved and novel miRNAs, of which four target genes including one IRX12 encoding copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in
<italic>C. trifoliata</italic>
.</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>
<italic>C. trifoliata </italic>
has a complex sRNA population</title>
<p>To identify miRNAs involved in development of the citrus rootstock,
<italic>C. trifoliata</italic>
, a separate sRNA library was generated from the earlier mentioned reproductive tissues. The library was sequenced by Solexa (Illumina), yielding a total of 13,106,573 sRNA raw reads with lengths of 18 to 30nt and consisting of 4,876,395 unique sequences (Table
<xref ref-type="table" rid="T1">1</xref>
). After further removal of tRNAs (265,796), rRNAs (1,643,869), snRNAs (67,225), snoRNAs (30, 909), exon RNA (7,136), intron sense (3,947), and repeat region (67,225), a total of 11,091,865 sRNA sequences were obtained. Although some sRNAs were highly abundant and present thousands of times in our dataset, majority of sRNAs were sequenced only a few times. For example, 4,876,395 out of 13, 113, 220 sRNAs were sequenced only once. The results show that (1) the expression of different sRNAs in trifoliate orange varies drastically and (2) survey of sRNA is far from being exhausted in the trifoliate orange. This also suggests that trifoliate orange contains a large and diverse sRNA population. Compared to equivalent studies from other plants (Table
<xref ref-type="table" rid="T2">2</xref>
), the quantity of sRNAs acquired from
<italic>C. trifoliata </italic>
is at least 14 times more, which might be due to the difference of depth of the sequencing effort, the genome size of the plants, or the development stages of the samples collected in the different sequencing projects.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>SRNAs annotation and length distribution</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">SRNA</th>
<th align="left">Unique reads</th>
<th align="left">redundant reads</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">rRNA</td>
<td align="left">76,683</td>
<td align="left">1,643,869</td>
</tr>
<tr>
<td align="left">tRNA</td>
<td align="left">12,410</td>
<td align="left">265,796</td>
</tr>
<tr>
<td align="left">snRNA</td>
<td align="left">3,246</td>
<td align="left">67,225</td>
</tr>
<tr>
<td align="left">exon RNA</td>
<td align="left">3,358</td>
<td align="left">7,136</td>
</tr>
<tr>
<td align="left">snoRNA</td>
<td align="left">1,483</td>
<td align="left">30,909</td>
</tr>
<tr>
<td align="left">intron sense</td>
<td align="left">1,406</td>
<td align="left">2,473</td>
</tr>
<tr>
<td align="left">repeat region</td>
<td align="left">1,386</td>
<td align="left">3,947</td>
</tr>
<tr>
<td align="left">Known miRNAs (exact match)</td>
<td align="left">42</td>
<td align="left">156,639</td>
</tr>
<tr>
<td align="left">New miRNA candidates With sequenced miRNA*</td>
<td align="left">23</td>
<td align="left">764</td>
</tr>
<tr>
<td align="left">Un-annotated</td>
<td align="left">4,776,358</td>
<td align="left">10,934,462</td>
</tr>
<tr>
<td align="left">Total</td>
<td align="left">4,876,395</td>
<td align="left">13,113,220</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>High-throughput sequencing of sRNAs in some plants</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Species</th>
<th align="left">Tissues</th>
<th align="left">Techniques</th>
<th align="left">Redundant reads
<break></break>
<bold> (× 10</bold>
<sup>
<bold>4</bold>
</sup>
<bold>)</bold>
</th>
<th align="left">Unique reads
<break></break>
<bold> (× 10</bold>
<sup>
<bold>4</bold>
</sup>
<bold>)</bold>
</th>
<th align="left">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>
<italic>Arabidopsis</italic>
</bold>
</td>
<td align="left">Inflorescence and seedling</td>
<td align="left">MPSS</td>
<td align="left">221.01</td>
<td align="left">10.48</td>
<td align="left">Science, 2005, 309 (5740): 1567-1569</td>
</tr>
<tr>
<td></td>
<td align="left">Mixture materials of all developmental stages</td>
<td align="left">454-FLX</td>
<td align="left">88.70</td>
<td align="left">34.00</td>
<td align="left">Genes & Development, 2006, 20 (24): 3407-3425</td>
</tr>
<tr>
<td></td>
<td align="left">Wild-type
<italic>Arabidopsis </italic>
inflorescence</td>
<td align="left">MPSS</td>
<td align="left">72.10</td>
<td align="left">6.75</td>
<td align="left">Genome Research, 2006, 16 (10): 1276-1288</td>
</tr>
<tr>
<td></td>
<td align="left">Inflorescence of
<italic>rdr2 </italic>
mutant</td>
<td align="left">MPSS</td>
<td align="left">91.59</td>
<td align="left">1.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">Wild-type
<italic>Arabidopsis </italic>
and
<italic>dcl1-7</italic>
,
<italic>dcl2-1 </italic>
and
<italic>dcl3-1 </italic>
mutant</td>
<td align="left">454-FLX</td>
<td align="left">47.04</td>
<td align="left">21.86</td>
<td align="left">PLoS ONE, 2007, 2 (2): e219.</td>
</tr>
<tr>
<td align="left">Rice</td>
<td align="left">Inflorescence, shoot and seedling</td>
<td align="left">MPSS</td>
<td align="left">295.39</td>
<td align="left">28.43</td>
<td align="left">Nature Biotechnology, 2007, 25 (4):473-477</td>
</tr>
<tr>
<td></td>
<td align="left">Mixture materials of all developmental stages</td>
<td align="left">454-FLX</td>
<td align="left">9.23</td>
<td align="left">1.28</td>
<td align="left">Nucleic Acids Research, 2007, 35: 829-833</td>
</tr>
<tr>
<td></td>
<td align="left">Wild-type rice seedling</td>
<td align="left">454-FLX</td>
<td align="left">71.42</td>
<td align="left">5.88</td>
<td align="left">BMC Plant Biology, 2008, 8: 25</td>
</tr>
<tr>
<td></td>
<td align="left">Seedling treated with salt stress</td>
<td></td>
<td></td>
<td align="left">4.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">Seedling treated with drought</td>
<td></td>
<td></td>
<td align="left">8.10</td>
<td></td>
</tr>
<tr>
<td align="left">Populus</td>
<td align="left">Leaf</td>
<td align="left">454-FLX</td>
<td align="left">4.13</td>
<td align="left">0.60</td>
<td align="left">BMC Genomics, 2007, 8: 481</td>
</tr>
<tr>
<td></td>
<td align="left">Bud</td>
<td></td>
<td align="left">3.56</td>
<td align="left">0.63</td>
<td></td>
</tr>
<tr>
<td align="left">Wheat</td>
<td align="left">Mixture of leaf, root and spike</td>
<td align="left">454-FLX</td>
<td align="left">26.30</td>
<td align="left">25.25</td>
<td align="left">Genome Biology, 2007, 8 (6): R96</td>
</tr>
<tr>
<td align="left">Soybean</td>
<td align="left">Wild-type soybean root</td>
<td align="left">454-FLX</td>
<td align="left">15.91</td>
<td></td>
<td align="left">BMC Genomics, 2008, 9: 160</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>japonicum</italic>
-inoculated soybean roots</td>
<td></td>
<td align="left">19.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">Tomato</td>
<td align="left">Fruit Leaf</td>
<td align="left">454-FLX</td>
<td align="left">53.70 18.48</td>
<td align="left">2.25 10.28</td>
<td align="left">Genome Research, 2008, 18(10): 1602-1609</td>
</tr>
<tr>
<td align="left">Maize</td>
<td align="left">Wild-type maize spike</td>
<td align="left">Solexa</td>
<td align="left">560.00</td>
<td></td>
<td align="left">Proceedings of the National Academy of Sciences of the USA, 2008, 105 (39): 14958-14963</td>
</tr>
<tr>
<td></td>
<td align="left">
<italic>mop1-1 </italic>
mutant</td>
<td></td>
<td align="left">720.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">
<italic>C. trifoliata</italic>
</td>
<td align="left">flower buds, flowers, fruits</td>
<td align="left">Solexa</td>
<td align="left">1310.7</td>
<td align="left">487.6</td>
<td></td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The size distribution of all sRNAs is as summarized in Figure
<xref ref-type="fig" rid="F1">1A</xref>
. The length of the trifoliate orange sRNAs varied from 18 nt to 30 nt, and the majority of them (approximately 92%) were in the range from 19 to 24 nt in length with 21 (13.2%) and 24 (44.1%) nt ones as the two major size classes (Figure
<xref ref-type="fig" rid="F1">1A</xref>
). This result was consistent with those of
<italic>Arabidopsis </italic>
[
<xref ref-type="bibr" rid="B12">12</xref>
],
<italic>Medicago truncatula </italic>
[
<xref ref-type="bibr" rid="B24">24</xref>
], and
<italic>Oryza sativa </italic>
[
<xref ref-type="bibr" rid="B32">32</xref>
]. In
<italic>Arabidopsis</italic>
, the 24 nt sRNAs even accounted to about 60% of its sRNA transcriptome [
<xref ref-type="bibr" rid="B28">28</xref>
]. However, the trifoliate orange sRNA size distribution differed from those of wheat and conifer obtained through 454 high throughput sequencing [
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
] and from
<italic>Taxus chinensis </italic>
ones obtained through Solexa sequencing [
<xref ref-type="bibr" rid="B27">27</xref>
]. To further compare the average abundance of sRNAs with different lengths, we measured the ratio of raw and unique sequences. SRNAs varied widely in length, and there is variation in redundancies of them, among which the sRNAs class with 21 and 22 nt showed the highest redundancies (Figure
<xref ref-type="fig" rid="F1">1B</xref>
). The average ratio of redundant and unique sequences of sRNAs with different sizes showed no obvious changes. Although the sRNAs annotated as miRNAs in the sizes of 18 nt, 19 nt, 20 nt, and 21 nt all had about 96-102 unique reads, their redundant reads surprisingly varied widely especially for the 21 nt group (Figure
<xref ref-type="fig" rid="F2">2</xref>
) which had 140,004 redundant reads and occupied almost 73% of the sRNAs assigned to miRNA therefore indicating that 21 nt long sRNAs are the most outstanding miRNA.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Sequence length distribution of
<italic>C. trifoliata </italic>
sRNAs</bold>
.</p>
</caption>
<graphic xlink:href="1471-2164-11-431-1"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Mapping of
<italic>C. trifoliata </italic>
sRNAs to other plant miRNAs</bold>
.</p>
</caption>
<graphic xlink:href="1471-2164-11-431-2"></graphic>
</fig>
</sec>
<sec>
<title>Identifying conserved miRNAs in
<italic>C. trifoliata</italic>
</title>
<p>To identify the conserved miRNAs from the
<italic>C. trifoliata</italic>
, sRNA sequences identified from
<italic>C. trifoliata </italic>
by deep sequencing were compared with the currently known mature plant miRNAs in miRBase [
<xref ref-type="bibr" rid="B34">34</xref>
]. After Blastn searches and further sequence analysis, a total of 63 conserved miRNAs, belonging to 42 miRNA families, were identified in
<italic>C. trifoliate</italic>
. 23 miRNA* of these miRNAs were also sequenced (Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
, Figure
<xref ref-type="fig" rid="F3">3</xref>
). The most of the identified miRNA families have been shown to be conserved in a variety of plant species using a comparative genomics-based strategy. For example, miR319, miR156/157, miR169, miR165/166, and miR394 have been found in 51, 45, 41, 40, and 40 plant species, respectively [
<xref ref-type="bibr" rid="B9">9</xref>
]. There is only one member identified in the majority of miRNA families, whereas some miRNA families contained many potential members (Figure
<xref ref-type="fig" rid="F3">3</xref>
) that need some further validation based on genomic or EST sequences.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Numbers of identical miRNA member in each family in
<italic>C. trifoliata</italic>
</bold>
.</p>
</caption>
<graphic xlink:href="1471-2164-11-431-3"></graphic>
</fig>
<p>It has been demonstrated that high throughput sequencing can provide an alternative way to estimate the expression profiles of miRNA genes [
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B35">35</xref>
] and allow us to determine the abundance of various miRNA families and even distinguish between different members of a given family of one organism. The highly expressed miRNA will likely have a large number of sequenced clones. Among the 42 miRNA families, the miR172 family had the most reads, accounting for 22.5% of the conserved miRNA reads. Additionally, fifteen miRNA families namely miR156, miR159, miR160, miR162, miR164, miR166, miR167, miR168, miR169, miR171, miR172, miR390, miR394, miR403, and miR1446, were found to have some thousands to tens of thousands of redundancies while four families (miR395, miR396, miR397, miR414, and miR827), had more than one hundred redundancies. The remaining families were infrequently sequenced (less than 100). In this study, we have tried to identify the precursor sequences for the 63 conserved
<italic>C. trifoliata </italic>
miRNAs, and only 29 pre-miRNAs and their secondary structures have been identified from the available citrus EST databases [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
-
<xref ref-type="bibr" rid="B31">31</xref>
].</p>
</sec>
<sec>
<title>Identifying novel potential miRNAs in
<italic>C. trifoliata</italic>
</title>
<p>Since the whole genomic sequence of
<italic>C. trifoliata </italic>
is unavailable, unique sRNA sequences were mapped to EST sequences restored in NCBI using
<italic>C. trifoliata</italic>
, as well as the other citrus species. By searching all
<italic>C. trifoliata </italic>
sRNAs against ESTs and predicting the secondary structures of a series of sequences surrounding them (Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
), we identified 10 sequences that satisfied the secondary structure criteria as established by Zhang
<italic>et al. </italic>
[
<xref ref-type="bibr" rid="B29">29</xref>
] and shown in Table
<xref ref-type="table" rid="T3">3</xref>
with all the sequences meeting the new criteria of miRNA annotation [
<xref ref-type="bibr" rid="B10">10</xref>
]. Five of these putative miRNAs i.e. 50% were supported by miRNA*. Based on their near perfect secondary structure and following recent miRNA annotation criteria, these miRNAs were considered novel miRNAs [
<xref ref-type="bibr" rid="B10">10</xref>
]. Although not all were supported by miRNA*s, the novel
<italic>C. trifoliata</italic>
-specific miRNAs generally have a significant number of reads in the small library. Similar to conserved miRNAs, 8 of the 10 novel miRNAs begin with a 5' uridine, which is a characteristic feature of miRNAs (Table
<xref ref-type="table" rid="T3">3</xref>
). The expression of the 10 miRNAs was assayed using qRT-PCR analysis and signals were detected for all of them (Figure
<xref ref-type="fig" rid="F4">4</xref>
). miRNAs specific to
<italic>C. trifoliata </italic>
exhibited different tissue-specific expression patterns. For example, Ctr-miRn1 was found to be specifically expressed in fruit tissue, whereas ctr-miRn2, which targeted
<italic>NB-LRR </italic>
gene (see below), was expressed in all the tissues assayed (Figure
<xref ref-type="fig" rid="F4">4</xref>
).</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Novel miRNA candidates in
<italic>C. trifoliata</italic>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">ID</th>
<th align="left">
<bold>Sequence (5'</bold>
<bold>3')</bold>
</th>
<th align="left">Precursor accession</th>
<th align="left">A+U (%)</th>
<th align="left">MFES</th>
<th align="left">Location</th>
<th align="left">LM</th>
<th align="left">LP</th>
<th align="left">No reads</th>
<th align="left">RT-PCR</th>
<th align="left">miRNA*</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">ctr-miRn1</td>
<td align="left">AGAGAUCAAGUUGCAGAGCAA</td>
<td align="left">EX447269</td>
<td align="left">69.9</td>
<td align="left">19.2</td>
<td align="left">5'</td>
<td align="left">21</td>
<td align="left">83</td>
<td align="left">41</td>
<td align="left">+</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">ctr-miRn2</td>
<td align="left">UUAAGAUUGAGUUACCAUCAU</td>
<td align="left">EY823533</td>
<td align="left">55.8</td>
<td align="left">18</td>
<td align="left">5'</td>
<td align="left">21</td>
<td align="left">86</td>
<td align="left">5</td>
<td align="left">+</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">ctr-miRn3</td>
<td align="left">AUAAUGAUGUCUGUGAUGCCU</td>
<td align="left">EY674266</td>
<td align="left">55.4</td>
<td align="left">21.7</td>
<td align="left">3'</td>
<td align="left">21</td>
<td align="left">81</td>
<td align="left">14</td>
<td align="left">+</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">ctr-miRn4</td>
<td align="left">UAGACCGCAAGAGACUAGCAA</td>
<td align="left">EY845571</td>
<td align="left">54.9</td>
<td align="left">22.9</td>
<td align="left">3'</td>
<td align="left">21</td>
<td align="left">82</td>
<td align="left">37</td>
<td align="left">+</td>
<td align="left">Yes</td>
</tr>
<tr>
<td align="left">ctr-miRn5</td>
<td align="left">UGAAGGUCCGAGGUCGAGGUU</td>
<td align="left">EY669005</td>
<td align="left">66.3</td>
<td align="left">19.8</td>
<td align="left">3'</td>
<td align="left">21</td>
<td align="left">83</td>
<td align="left">10</td>
<td align="left">+</td>
<td align="left">No</td>
</tr>
<tr>
<td align="left">ctr-mi Rn6</td>
<td align="left">UAAAUGUUGAGAGGAUUUGGC</td>
<td align="left">DC890743</td>
<td align="left">67.1</td>
<td align="left">21</td>
<td align="left">3'</td>
<td align="left">21</td>
<td align="left">76</td>
<td align="left">5</td>
<td align="left">+</td>
<td align="left">No</td>
</tr>
<tr>
<td align="left">ctr-miRn7</td>
<td align="left">UGAGCGGCUGAAAAGAGGGAGAAA</td>
<td align="left">DC893595</td>
<td align="left">61.8</td>
<td align="left">18.2</td>
<td align="left">5'</td>
<td align="left">24</td>
<td align="left">89</td>
<td align="left">6</td>
<td align="left">+</td>
<td align="left">No</td>
</tr>
<tr>
<td align="left">ctr-miRn8</td>
<td align="left">UAGGUGUAGAGAAGCACGAGA</td>
<td align="left">CV712896</td>
<td align="left">64.7</td>
<td align="left">18.7</td>
<td align="left">3'</td>
<td align="left">21</td>
<td align="left">85</td>
<td align="left">10</td>
<td align="left">+</td>
<td align="left">No</td>
</tr>
<tr>
<td align="left">ctr-miRn9</td>
<td align="left">UUAGGGAUAUAACAGUUGAAU</td>
<td align="left">CX297999</td>
<td align="left">71.3</td>
<td align="left">22.2</td>
<td align="left">5'</td>
<td align="left">21</td>
<td align="left">73</td>
<td align="left">110</td>
<td align="left">+</td>
<td align="left">No</td>
</tr>
<tr>
<td align="left">ctr-miRn10</td>
<td align="left">UUUCUUCAUGAGAGCUGGCCA</td>
<td align="left">DT214737</td>
<td align="left">47.1</td>
<td align="left">54.5</td>
<td align="left">5'</td>
<td align="left">21</td>
<td align="left">87</td>
<td align="left">268</td>
<td align="left">+</td>
<td align="left">Yes</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Expression patterns of novel miRNA predicted from
<italic>C. trifoliata</italic>
</bold>
. qRT-PCR of Low Molecular Weight RNA isolated from tissues at different development stages.
<italic>Lanes: </italic>
r, root; s1, young stem; s2, old stem; l1, leaf1 (0.2 cm in diameter); l2, leaf2 (0.5 cm in diameter); l3, leaf3 (1 cm in diameter); fl1, flower bud; fl2, partly open flower; fl3, full open flower; fr1, fruit 1 (about 0.5 cm in diameter); fr2, fruit 2 (about 1.5 cm in diameter); and fr3, fruit 3 (about 2 cm in diameter). Each reaction was repeated three times and the template amount was corrected by 5.8 s rRNAs.</p>
</caption>
<graphic xlink:href="1471-2164-11-431-4"></graphic>
</fig>
</sec>
<sec>
<title>Detection and expression patterns of novel potential miRNAs in
<italic>C. trifoliata</italic>
</title>
<p>Preferential expression of novel miRNAs in specific tissues might provide clues about the physiological function of these miRNAs. qRT-PCR is a reliable method for detecting and measuring the expression levels of miRNAs. In this study, we adopted this technique to validate and measure the expression of 10 novel potential miRNAs (ctr-miRn1, ctr-miRn2, ctr-miRn3, ctr-miRn4, ctr-miRn5, ctr-miRn6, ctr-miRn7, ctr-miRn8, ctr-miRn9 and ctr-miRn10). All of these potential miRNAs were identified in
<italic>C. trifoliata </italic>
by Solexa sequencing. To aid in determination of
<italic>C. trifoliata </italic>
novel miRNA functions, we examined their expression in different organs (Figure
<xref ref-type="fig" rid="F4">4</xref>
) by qRT-PCR analysis of LMW-RNA samples from various tissues of trifoliate orange trees. The data obtained can form powerful evidence to support the existence of the novel miRNAs in
<italic>C. trifoliata</italic>
. The expression patterns of most novel miRNAs in
<italic>C. trifoliata </italic>
appear to be tissue or development stage specific, with all the expression patterns of these miRNAs in citrus being grouped into several situations. The expression patterns of ctr-miRn1 and ctr-miRn8 were similar and revealed to be specifically expressed in
<italic>C. trifoliata </italic>
fruit tissue (fruit diameter = 2 cm) as shown in Figure
<xref ref-type="fig" rid="F4">4A</xref>
and
<xref ref-type="fig" rid="F4">4H</xref>
. However, ctr-miRn2 displayed different expression patterns in various organs and development stages where there was high expression in leaves of 1 cm diameter, weaker expression in leaves of 0.5 cm diameter and no expression in leaves of 0.2 cm diameter. Furthermore, ctr-miRn2 had different expression patterns in stem, flower, and fruits. It seems that ctr-miRn2 becomes strongly expressed as different tissues age. Some of the miRNAs might display species-specific and/or developmental stage-specific expression patterns, as exemplified by ctr-miRn3, ctr-miRn6 and ctr-miRn7 (Figure
<xref ref-type="fig" rid="F4">4C, F</xref>
and
<xref ref-type="fig" rid="F4">4G</xref>
). Ctr-miRn3 had preferential expression only in open flowers, while ctr-miRn6 had strong expression in leaves of 0.2 cm in diameter and weak expression in developing flower bud. Ctr-miRn7 was expressed only in flowers at different development stages (Figure
<xref ref-type="fig" rid="F4">4H</xref>
), while ctr-miRn4 seemed to be expressed strongly in old stems, moderately in leaves of 0.2 cm in diameter and weakly in roots of trifoliate orange (Figure
<xref ref-type="fig" rid="F4">4D</xref>
). Ctr-miRn5 was expressed in all tissues tested with the highest expression level in fruits of 2 cm in diameter and relatively strong expression in flower buds (Figure
<xref ref-type="fig" rid="F4">4E</xref>
). Ctr-miRn9 was expressed in all tissues tested except in root and young stem, with at highest expression level in flower and relatively strong expression in leaves of 1 cm in diameter (Figure
<xref ref-type="fig" rid="F4">4I</xref>
). Ctr-miRn10 was expressed in most of tissues except in leaves of 0.2 cm diameter. Specifically, ctr-miRn10 had strong expression in flowers at different stages and moderate expression in fruits of different sizes (Figure
<xref ref-type="fig" rid="F4">4J</xref>
).</p>
<p>In summary, 10 novel potential miRNAs, all identified by Solexa sequencing, were validated by qRT-PCR with some being expressed ubiquitously in all tissues with tissue, species, and/or growth stage specific characteristics reflected at different expression levels.</p>
</sec>
<sec>
<title>Prediction of the
<italic>C. trifoliata </italic>
miRNA target genes</title>
<p>To better understand the functions of the newly identified species-specific as well as conserved
<italic>C. trifoliata </italic>
miRNAs, putative targets of these miRNAs were predicted using the described criteria and methods. We predicted target genes, and putative targets were identified for 24 out of 42 conserved families (Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
). We also found homologs of known miRNA target genes for several conserved
<italic>C. trifoliata </italic>
miRNAs, such as SBP for miR156, ATP synthase for miR159, ARF for miR160, NAC for miR164, HD-Zip for miR165 and miR166, Anthocyanidin synthase for miR169, GRAS for miR171, AP2 for miR172, TCP for miR319, TIR for miR393, F-box for miR394, Sulfate transporter 2.1 for miR395, IRX12 copper ion binding/oxidoreductase for miR397, ARGONAUTE 2 for miR403, Basic blue copper protein for miR408 and Zinc finger protein-related for miR414. Additionally, we predicted a few genes with unknown function and hypothetical genes for miRNA targeting (Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
). Careful analysis of these potential targets will contribute to our understanding of the role of miRNAs in fruit trees. No targets were found in
<italic>C. trifoliata </italic>
for miR398, miR399, miR419, miR530, miR535, miR827, miR828, miR35, miR844, miR861, miR902, miR950, miR1027, miR1044, miR1310, miR1426, miR1436, and miR1440.</p>
<p>Using the criteria used by Song et al. [
<xref ref-type="bibr" rid="B30">30</xref>
], targets were predicted for 3 of these novel miRNAs. It has been confirmed that miR172 targets the mRNA coding for
<italic>APETALA2</italic>
-like transcription factors, an important gene known for controlling flower development [
<xref ref-type="bibr" rid="B36">36</xref>
-
<xref ref-type="bibr" rid="B38">38</xref>
]. The important targets included
<italic>NB-LRR </italic>
disease resistance gene analogs, such as UC46-24238 and UC46-17900 that were found to be similar to
<italic>Populus trichocarpa </italic>
XM_002328188 cc-nbs-lrr resistance protein and UC46-20080 that was similar to
<italic>P. trichocarpa </italic>
XM_002301537 cc-nbs-lrr resistance protein.</p>
</sec>
<sec>
<title>Identification of miRNA-guided cleavage of target mRNAs in
<italic>C. trifoliata</italic>
</title>
<p>Most
<italic>Arabidopsis </italic>
miRNAs have been shown to guide cleavage of their target genes [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B39">39</xref>
]. To verify the nature of the potential miRNA targets and to study how the miRNAs in
<italic>C. trifoliata </italic>
regulate their target genes, a modified RLM-RACE experiment was set up, as described in the materials and methods section. In this study, the RLM-RACE procedure was successfully used to map the cleavage sites in four predicted target genes of
<italic>C. trifoliata</italic>
. Given the clear tissue-specific pattern of expression of ctr-miR397, ctr-miRn1, ctr-miRn2 and ctr-miRn3 in all types of vegetative organs of trifoliate orange (Figure
<xref ref-type="fig" rid="F4">4</xref>
), these analyses were performed on a few of their putative targets, using RNA extracted from leaves, stems, roots, flowers, and fruits of trifoliate orange, where ctr-miR397, ctr-miRn2, ctr-miRn3 and ctr-miRn4 were all abundantly expressed. UC46-13453, UC46-20080, UC46-17900, and UC46-24238 were confirmed as the real targets of ctr-miR397, ctr-miRn2, ctr-miRn3 and ctr-miRn4 respectively, since all the 5'ends of the mRNA fragments were mapped to the nucleotide that pairs to the tenth nucleotide of each miRNA with higher frequencies than depicted for each pairing oligo (Figure
<xref ref-type="fig" rid="F5">5</xref>
). All four predicted targets were found to have specific cleavage sites corresponding to the miRNA complementary sequences (Figure
<xref ref-type="fig" rid="F5">5</xref>
) and might be regulated by the four miRNAs in the style of small interfering RNAs (siRNAs) directing the cleavage of mRNA targets [
<xref ref-type="bibr" rid="B40">40</xref>
,
<xref ref-type="bibr" rid="B41">41</xref>
]. UC46-13453 is similar to
<italic>Arabidopsis </italic>
proteins coded by IRX12 copper ion binding/oxidoreductase (IRX12CBO) (Table
<xref ref-type="table" rid="T1">1</xref>
), while UC46-20080, UC46-17900 and UC46-24238 all coded for a protein highly homologous to NB-LRR disease resistance protein (Table
<xref ref-type="table" rid="T4">4</xref>
).</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Mapping of mRNA cleavage sites by RNA ligase-mediated 5' RACE</bold>
. Each top strand (black) depicts a miRNA-complementary site in the target mRNA, and each bottom strand (red) depicts the miRNA. Watson-Crick pairing (vertical dashes) and G:U wobble pairing (circles) are indicated. Arrows indicate the 5' termini of mRNA fragments isolated from Citrus, as identified by cloned 5'RACE products, with the frequency of clones shown. Only cloned sequences that matched the correct gene and had 5' ends within a 100 nt window centered on the miRNA complementary site are counted. Partial mRNA sequences from target genes were aligned with miRNAs. Numbers indicate the fraction of cloned PCR products terminating at different positions. UC46-13453 was similar to AT2G38080 (NM_129364) IRX12 (IRREGULAR XYLEM 12); laccase (IRX12); UC46-24238 and UC46-17900 were similar to
<italic>Populus trichocarpa </italic>
(XM_002328188) cc-nbs-lrr resistance protein; UC46-20080 was similar to
<italic>Populus trichocarpa </italic>
(XM_002301537) cc-nbs-lrr resistance protein.</p>
</caption>
<graphic xlink:href="1471-2164-11-431-5"></graphic>
</fig>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>Predicted targets for identified novel miRNAs in
<italic>C. trifoliata</italic>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">ID</th>
<th align="left">miRNA(3'-5')/mRNA(5'-3')</th>
<th align="left">Target unigene no. (number of mismatches)</th>
<th align="left">Target protein</th>
<th align="left">Target function</th>
<th align="left">Conserved gene in other plants (E-score)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">ctr-miRn1</td>
<td align="left">3'AACGAGACGUUGAACUAGAGA5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn2 (R)</td>
<td align="left">3'UACUACCAUUGAGUUAGAAUU5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">AUGAUGGUAACUCAAUCUUAA</td>
<td align="left">24238 (0)</td>
<td align="left">disease resistance protein (NBS-LRR class)</td>
<td align="left">defense response</td>
<td align="left">
<italic>Populus trichocarpa </italic>
(2e-58)</td>
</tr>
<tr>
<td align="left">ctr-miRn3 (R)</td>
<td align="left">3'UCCGUAGUGUCUGUAGUAAUA5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">AGGCAUCACAGACAUCAUUAU</td>
<td align="left">20080 (0)</td>
<td align="left">disease resistance protein (NBS-LRR class)</td>
<td></td>
<td align="left">
<italic>Populus trichocarpa </italic>
(5e-007)</td>
</tr>
<tr>
<td align="left">ctr-miRn4 (R)</td>
<td align="left">3'AACGAUCAGAGAACGCCAGAU5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">UUGCUAGUCUCUUGCGAUCUA</td>
<td align="left">17900 (1)</td>
<td align="left">disease resistance protein (NBS-LRR class)</td>
<td align="left">defense response</td>
<td align="left">AT3G14470 (2e-56)</td>
</tr>
<tr>
<td align="left">ctr-miRn5</td>
<td align="left">3'UUGGAGCUGGAGCCUGGAAGU5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn6</td>
<td align="left">3'UAAAUGUUGAGAGGAUUUGGC5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn7</td>
<td align="left">3'AAAGAGGGAGAAAAGUCGGCGAGU5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn8</td>
<td align="left">3'AGAGCACGAAGAGAUGUGGAU5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn9</td>
<td align="left">3'UAAGUUGACAAUAUAGGGAUU5'</td>
<td align="left">No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td align="left">ctr-miRn10</td>
<td align="left">3'ACCGGUCGAGAGUACUUCUUU5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td align="left">UGGCCAGCUCUCAUGAAGAAA</td>
<td align="left">42150 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>R, 5' RACE of target mRNA was done</p>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec>
<title>Discussion</title>
<sec>
<title>
<italic>C. trifoliata </italic>
conserved miRNAs</title>
<p>Although many miRNAs had been identified by traditional Sanger sequencing or computational approaches [
<xref ref-type="bibr" rid="B30">30</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
], most species-specific miRNAs are still unidentified. This is because traditional sequencing methods tend to generate a relatively small number of sequences while the plant species-specific miRNAs are often present at a lower level than the conserved miRNAs [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
]. Thousands of plant miRNA genes have been annotated and some of them have been well characterized [
<xref ref-type="bibr" rid="B16">16</xref>
]. However, most plant miRNAs appears to be the conserved ones and many other functional miRNAs in plant species remain to be investigated. Compared to annotated miRNAs from
<italic>Arabidopsis </italic>
and rice, much fewer miRNAs from
<italic>C. trifoliata </italic>
plants have been identified. Recently, several studies performed in silico identification of miRNAs from citrus [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
-
<xref ref-type="bibr" rid="B31">31</xref>
] and about 29 conserved miRNA families were detected, which is still not of a large number of the citrus miRNAs. Pursuing new sequencing technology can be good choice for the discovery of more miRNAs in citrus. Solexa deep sequencing platform is an ideal choice for miRNA discovery, and the sequencing results in this study showed its capability in that no complete genome is available. As to the miRNAs computationally predicted, most of them could also be discovered by this deep sequencing, except two of them (e.g. miR482 and miR435) [
<xref ref-type="bibr" rid="B9">9</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
-
<xref ref-type="bibr" rid="B31">31</xref>
]. It might be due to the spatiotemporal expression and depth of sequencing that miR482 and miR435 could not be sequenced. Deep sequencing can provide us the precise sequences of the miRNAs in an organism. The miRNAs sequenced in this study can definitely provide the information of
<italic>C. trifoliate </italic>
miRNAs for further study on their gene regulation function, the evolution and biogenesis of them.</p>
</sec>
<sec>
<title>Novel miRNAs in
<italic>C. trifoliata</italic>
</title>
<p>Besides the conserved miRNAs, we also report 10 novel miRNAs by deep sequencing. Although the
<italic>C. trifoliata </italic>
full genome sequence is not available, the large number of citrus expressed sequence tags is an excellent source for precursor identification. Based on BLASTn search and hairpin structure prediction, we found potential precursors for all the 10 novel miRNAs. Because these 10 miRNAs were not similar to any known conserved miRNAs, and were predicted from citrus ESTs, then they might be specific to citrus and could play more species-specific roles. Prediction of these novel miRNAs involves the identification of stem-loop structure of the potential pre-miRNAs and sequencing of the miRNA* molecules [
<xref ref-type="bibr" rid="B10">10</xref>
]. All the 10 novel non conserved potential miRNAs more, 5 of these miRNA* yielded more than one read. In this study, qRT-PCR was found to be a reliable method for detecting and measuring the expression levels of miRNAs. We adopted this technique to validate and measure the expression of 10 novel miRNAs in trifoliate orange tissues (root, young and old stems, leaves of different sizes, flower bud, flower, and fruits at different development stages). All of these novel miRNAs were identified in trifoliate orange by Solexa sequencing. The qRT-PCR results demonstrate that most tested novel miRNAs were expressed with tissue-, species-, and/or growth-stage-specific characteristics, while a few were expressed ubiquitously in all tissues. Moreover our qRT-PCR results can not only validate the miRNA prediction in
<italic>C. trifoliata</italic>
, but also show that their preferential expression can provide important clues about where these miRNAs function. However, more studies need to be performed to elucidate the functions that these novel miRNAS have in the growth and development of trifoliate orange.</p>
</sec>
<sec>
<title>miRNA target prediction</title>
<p>To assess and define a putative function for a miRNA in plant, a further step of target identification is necessary. Currently, the most efficient tool available for this is the bioinformatics approach facilitated by the high degree of homology between miRNA and its target sequences in plants [
<xref ref-type="bibr" rid="B44">44</xref>
]. Analysis of several targets has now confirmed this prediction, making it feasible to identify plant miRNA targets [
<xref ref-type="bibr" rid="B1">1</xref>
]. We first searched candidate targets of the citrus miRNAs and the putative miRNAs by Blast, and confirmed them by alignment with their orthologs in
<italic>Arabidopsis</italic>
. Our analysis reveals that most of the predicted targets in citrus have a conserved function with miRNA targets in
<italic>Arabidopsis </italic>
and these miRNA target sequences are also highly conserved among a wide variety of plant species as reported by Floyd and Bowman [
<xref ref-type="bibr" rid="B45">45</xref>
]. Consistent with previous reports, most of these targets in citrus were plant-specific transcription factors, such as
<italic>AP2</italic>
,
<italic>NAC</italic>
,
<italic>SBP </italic>
and the
<italic>ARF </italic>
family.</p>
<p>A large number of plant miRNA targets predicted bioinformatically have also been experimentally confirmed. Even though miRNAs generally function as negative regulators of gene expression by mediating the cleavage of target mRNAs [
<xref ref-type="bibr" rid="B1">1</xref>
] or by repressing their translation [
<xref ref-type="bibr" rid="B2">2</xref>
], the cleavage of target mRNAs appears to be the predominant mode of gene regulation by plant miRNAs [
<xref ref-type="bibr" rid="B46">46</xref>
]. Finding the cleavage site supposedly located in the sequence complementary to miRNA in the target gene is necessary to verify the cleavage of target mRNAs. Among the methods used to observe miRNA-dependent cleavage of targets, RLM-RACE is the most useful [
<xref ref-type="bibr" rid="B1">1</xref>
]. We performed the RACE on unigene to detect and clone the mRNA fragment corresponding precisely to the predicted product of miRNA processing. In total, we performed 5' RACE assays on four predicted target genes i.e. the representative targets of four conserved miRNAs (UC46-13453, UC46-20080, UC46-17900, and UC46-24238 were confirmed as the real targets of ctr-miR397, ctr-miRn2, ctr-miRn3 and ctr-miRn4 respectively). UC46-13453 is similar to
<italic>Arabidopsis </italic>
proteins coded by IRX12 copper ion binding/oxidoreductase (IRX12CBO) (Table
<xref ref-type="table" rid="T1">1</xref>
), while UC46-20080, UC46-17900, and UC46-24238 all coded for a protein highly homologous to NB-LRR disease resistance protein. Targeting of NB-LRR genes by miRNAs has previously been reported in poplar [
<xref ref-type="bibr" rid="B28">28</xref>
],
<italic>Arabidopsis </italic>
[
<xref ref-type="bibr" rid="B15">15</xref>
], loblolly pine [
<xref ref-type="bibr" rid="B47">47</xref>
], and grape [
<xref ref-type="bibr" rid="B13">13</xref>
], but its contribution to disease resistance is still poorly characterized. In our study, all four predicted targets were found to have specific cleavage sites corresponding to the miRNA complementary sequences (Figure
<xref ref-type="fig" rid="F5">5</xref>
), and the most common 5' end of the mRNA fragments mapped to the nucleotides that pair with the 10
<sup>th </sup>
miRNA nucleotide from the 5' ends. This validation was obtained by performing the modified 5' RACE protocol on mRNA extracted from pooled tissues of leaf, stem, root, and flower where it had been previously demonstrated that ctr-miRn2, ctr-miRn3, and ctr-miRn4 are all abundant (Figure
<xref ref-type="fig" rid="F4">4B, C</xref>
, and
<xref ref-type="fig" rid="F4">4D</xref>
). miRNAs may directly target transcription factors that affect plant development and also specific genes that control metabolism. In our study, it appears that our predicted targets play roles not only in development, but also in diverse physiological processes.</p>
</sec>
</sec>
<sec>
<title>Conclusion</title>
<p>For the first time we discovered through high through-put Solexa sequencing of short RNAs from
<italic>C. trifoliata </italic>
flowers and fruits 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in citrus species. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Plant material</title>
<p>Flower buds, partly-open and fully-open flowers, and developing fruits in different sizes (0.3, 0.5, 0.8, 1, and 1.5 cm in diameter) were collected from five-year old trifoliate orange (
<italic>Citrus trifoliata</italic>
.) trees at the Tree Fruit Research and Extension Center, Suzhou Fruit Tree Research Institute, China in 2009. After collection, all the samples were immediately frozen in liquid Nitrogen and stored at -80ºC until used.</p>
</sec>
<sec>
<title>RNA isolation</title>
<p>Following the manufacturer's instructions, total RNA was isolated from the above described tissues by using Trizol (Invitrogen, Life Technologies, Carlsbad, CA). 100 mg of plant tissues were ground with liquid Nitrogen followed by thorough mixing with 2 mL lysis solution and transfer to a centrifuge tube. After placing on ice for 30 min, the mixtures were centrifuged for 15 min at 11,000 g and 4°C. The upper aqueous phase was transferred into a new centrifuge tube and 500 μL of extraction reagent was added and thoroughly mixed on ice for 15 min, the mixtures were then centrifuged for 15 min at 11,000 g and 4°C. The upper aqueous phase was further transferred into another centrifuge tube and 500 μL of isopropanol added to each sample. After precipitating for 30 min at 37°C, the mixtures were centrifuged for 15 min 12,000 g and 4°C. The supernatant was discarded and the RNA pellet was dried. The RNA pellet was then washed using 1 mL 75% ethanol and total RNA precipitated by centrifuging for 5 min 7,500 g and 4°C. After this, RNA pellets were completely dried, then dissolved in 50 μL of RNase free water, and stored at -80°C until sRNA sequencing. All the RNA samples from different tissues were mixed to form a single RNA pool.</p>
</sec>
<sec>
<title>SRNA sequencing and sequence processing</title>
<p>SRNA samples were sequenced by Beijing Genomics Institute (BGI) (Shenzhen, Guangdong, China) using the high throughput pyrosequencing technology developed by Illumina. SRNAs with 16-30 nt in length were first separated from the total RNA by size fractionation with 15% TBE urea polyacrylamide gel (TBU). The sRNA (16-30 nt in length) were excised from the gel and submerged in 600 μL of 0.3 M sodium chloride overnight at 4°C. The gel slurry was then passed through a Spinfilter column (Corning, Beijing, China), and RNA precipitated by addition of 3 μL of 5 mg/mL mussel glycogen (Invitrogen, Carlsbad, CA, USA) and 800 μL of ethanol. The RNA pellets were then washed with 75% ethanol and air dried at 25°C. The sRNA was resuspended in 5.0 μL of diethylpyrocarbonate (DEPC) treated water (Ambion, Austin, TX, USA). The isolated sRNAs were then ligated to 5' adaptor (5'UCAGAGUUCUACAGUCCGACGAUC) using T4 RNA ligase (Promega, Madison, WI) in the presence of RNase Out (Invitrogen) overnight at 4°C according to the manufacturer's instructions. After selecting the ligated products by size fractionation, a 3'adaptor (5'UCGUAUGCCGUCUUCUGCUUGUidT) was ligated to the sRNAs following the same procedure as the ligation of the 5'adaptor. Finally, the ligated RNAs were size fractionated on a 10% TBE urea polyacrylamide gel and the 70 nt RNAs were excised. The 3'adaptorgated sRNAs were then purified from the gel and precipitated as described above followed by re-suspension in 5.0 μL DEPC treated water (Ambion). The sRNA with 5' and 3'adaptors were selected and reversely transcribed to cDNA with the RT primer (CAAGCAGAAGACGGCATACGA) using Superscript II reverse transcriptase (Invitrogen). The cDNA was further purified by 15% TBU followed by dissolving in 100 μL1 × NEB. The cDNA was quantified by Agilent 2100 and diluted to 10 nM at final concentration. 18 ng cDNA was loaded into the Illumina 1 G Genome Analyzer for sequencing.</p>
</sec>
<sec>
<title>Bioinformatic analysis of miRNA identified</title>
<p>The raw sequences were processed as described by Sunkar et al. [
<xref ref-type="bibr" rid="B16">16</xref>
,
<xref ref-type="bibr" rid="B46">46</xref>
]. After removing the vector sequences, modified sequences from 18 nt to 30 nt were used for further analyses. First, rRNA, tRNA, snRNA, and snoRNA, as well as those containing the polyA tail, were removed from the sRNA sequences and the remaining sequences were compared against rice and
<italic>Arabidopsis </italic>
ncRNAs deposited in the NCBI Genbank database and Rfam8.0 database. Then, the unique sRNA sequences were used to do a Blastn search against the miRNA database [
<xref ref-type="bibr" rid="B34">34</xref>
], miRBase 13.0, to identify the conserved miRNAs in
<italic>C. trifoliata</italic>
. Only the perfectly matched sequences were considered to be conserved miRNAs.</p>
<p>To study potential miRNA precursor sequences, all 560, 271 citrus ESTs were downloaded from the National Center for Biotechnology Information (NCBI) GenBank EST database (March 2009;
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
, including data from
<italic>Citrus sinensis </italic>
(207,500),
<italic>C. clementina </italic>
(118,365),
<italic>C. trifoliata </italic>
(58,483),
<italic>C. reticulata </italic>
(55,319) and all other taxa (120,604). The ESTs were aligned to all the sRNA sequences from
<italic>C. trifoliata</italic>
, and then the miRNA candidates were processed by miRCat
<ext-link ext-link-type="uri" xlink:href="http://srna-tools.cmp.uea.ac.uk/">http://srna-tools.cmp.uea.ac.uk/</ext-link>
; [
<xref ref-type="bibr" rid="B43">43</xref>
]), using default parameters, to generate the secondary structures.</p>
</sec>
<sec>
<title>Prediction of potential target mRNAs for
<italic>C. trifoliata </italic>
miRNAs</title>
<p>Putative
<italic>C. trifoliata </italic>
miRNAs were first blasted against Harvest C46 Citrus unigene database on the Harvest Blast Search web server
<ext-link ext-link-type="uri" xlink:href="http://138.23.191.145/blast/index.html">http://138.23.191.145/blast/index.html</ext-link>
. BLASTn hits with less than four nucleotide mismatches (plus/minus) were chosen as the candidate targets, and were then searched in Citrus Harvest 1.20 program using BLASTx to obtain their putative functions. Meanwhile, citrus miRNAs were blasted with the citrus ESTs by Blast2.17 (Elue set as 10). ESTs with less than four nucleotide mismatches (plus/minus) were extracted and then annotated by the online BLASTx search against the Swissprot protein sequences (swissprot) or nondundant protein sequence (nr) database on the NCBI web server.</p>
</sec>
<sec>
<title>Real-Time PCR of miRNAs</title>
<p>Roots, leaves (0.2, 0.5 and 1 cm in diameter), young stems, old stems, flower bud, half open flower, fully open flower, and fruits (0.5, 1.5, and 2 cm diameter) were collected from the trifoliate orange (the same as used for deep sequencing), and the total RNA was isolated from 100 mg of these tissues using TRIZOL reagent (Invitrogen, Life Technologies, Carlsbad, CA). Low molecular weight RNA and high molecular weight RNA were separated with 4 M LiCl [
<xref ref-type="bibr" rid="B30">30</xref>
,
<xref ref-type="bibr" rid="B48">48</xref>
]. SRNAs were polyadenylated at 37°C for 60 min in a 50 μl reaction mixture with 1.5 μg of total RNA, 1 mM ATP, 2.5 mM MgCl
<sub>2</sub>
, and 4 U poly(A) polymerase (Ambion, Austin, TX). Poly (A)-tailed sRNA was recovered by phenol/chloroform extraction and ethanol precipitation. The sRNAs were dissolved, treated with RNase-free DnaseI (Takara, Japan) and reversely transcribed using poly (T) adapter [
<xref ref-type="bibr" rid="B49">49</xref>
]. qPCR was performed using SYBR
<sup>® </sup>
Green Realtime PCR Master Mix (Toyobo, Osaka, Japan) and all the primers used were as listed in Additional file
<xref ref-type="supplementary-material" rid="S3">3</xref>
. The values of threshold cycle (CT, the fractional cycle number at which the fluorescence passes the fixed threshold), were calculated by Rotor-Gene 6 software (Corbett Robotics, Australia). For each reaction, 1 μL of diluted cDNA (equivalent to 100 pg of total RNA) was mixed with 10 μL of 2× SYBR green reaction mix (SYBR
<sup>® </sup>
Green qRT-PCR Master Mix; Toyobo, Osaka, Japan), and 5 pmol of the forward and the reverse primers were added to make a final volume 20 μL. The conditions for the PCR amplification were as follows: polymerase activation at 95°C for 1 min; followed by 50 cycles of 95°C for 15 s, 95°C for 15 s, 60°C for 20 s, and 72°C for 20 s. The fluorescence signal was measured once every 1°C. Negative PCR controls (no cDNA template) were prepared to detect possible contamination. The specificity of the primer amplicons was texted by analysis of a melting curve. The CT values were converted into relative copy numbers using a standard curve [
<xref ref-type="bibr" rid="B50">50</xref>
]. The 5.8S rRNA was used as a reference gene in the qPCR detection of miRNAs in
<italic>Arabidopsis </italic>
[
<xref ref-type="bibr" rid="B51">51</xref>
]. The data was analyzed with an R
<sup>2 </sup>
above 0.998 using the LinRegPCR program [
<xref ref-type="bibr" rid="B52">52</xref>
].</p>
</sec>
<sec>
<title>Identification of miRNA-mediated cleavage of target mRNAs in
<italic>C. trifoliata</italic>
</title>
<p>For mapping internal cleavage sites in the mRNA of UC46-13453, UC46-20080, UC46-17900, and UC46-24238 unigenes, which are targeted by ctr-miR397, ctr-miRn2, ctr-miRn3, and ctr-miRn4, respectively, RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) was performed using a GeneRacer Kit (Invitrogen Life Technologies). Total RNA was extracted from the root, stem, leaf, flower and fruit tissues of an adult
<italic>C. trifoliata </italic>
tree using TRIZOL reagent then equivalent total RNA of different tissues were mixed. Poly(A)
<sup>+ </sup>
mRNA was purified from all tissues using a PolyA kit (Promega, Madison, WI) according to manufacturer's instructions. A modified procedure for 5'-RLM-RACE was followed using the GeneRacer Kit as described previously [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
]. A GeneRacer RNA Oligo adapter (5'CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA 3') was directly ligated to mRNA (250 ng) without calf intestinal phosphatase and tobacco acid pyrophosphatase treatment. The GeneRacer Oligod
<sub>T </sub>
primer (5'GCTGTCAACGATACG CTACGTAACGGCATGACAGTG (T)
<sub>30 </sub>
3') was then used to synthesize the first-strand cDNA by reverse transcription. The cDNA was amplified by GeneRacer 5' primer and GeneRacer 3' primer to generate a pool of non-gene-specific 5'-RACE products. The conditions for this amplification were the same as those for gene-specific RACE recommended by the manufacturer, with the exception that an extension time of 3 min was employed. Gene-specific 5'-RACE reactions were performed using GeneRacer 5' nested primer and the following gene-specific primers: UC46-13453-832R (5'-GACATTGGTGGTTTGGCCTGGAGCTATTAC-3'), UC46-24238-648R (5'-CATGCTGAGT GGGACGGTATATTGG-3'), UC46-20080-492R (5'-GTGAAAGCGGCAGTTCTTCTAATG-3') and UC46-17900-786R (5'-TGGGCAAAGTCGTGCACTATATCAT-3'). In each case, a unique gene-specific DNA fragment was amplified. These products were gel purified and cloned. At least 15 independent clones from each reaction were sequenced.</p>
</sec>
<sec>
<title>Data access</title>
<p>The sRNA sequence data from this study have been submitted to Gene Expression Omnibus (GEO) under accession No. GSE22089 at website:
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjqnhwgaagisqfm&acc=GSE22089">http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjqnhwgaagisqfm&acc=GSE22089</ext-link>
.</p>
</sec>
</sec>
<sec>
<title>Authors' contributions</title>
<p>SC carried out the laboratory work and participated in manuscript draft writing. ZC performed bioinformatics analyses. YH and MZ participated in the design and coordination the study. WC constructed the sRNA library. KKN revised this paper. FJ conceived, designed the study and revised this paper. All authors read and approved the final manuscript.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="S1">
<caption>
<title>Additional file 1</title>
<p>
<bold>Conserved miRNAs in C. trifoliata sRNA library</bold>
.</p>
</caption>
<media xlink:href="1471-2164-11-431-S1.DOC" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S2">
<caption>
<title>Additional file 2</title>
<p>
<bold>Secondary structures of novel potential miRNAs in
<italic>C. trifoliata</italic>
</bold>
. Red colored letter: mature miRNA sequence; pick colored letter: miRNA* sequence.</p>
</caption>
<media xlink:href="1471-2164-11-431-S2.DOC" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S3">
<caption>
<title>Additional file 3</title>
<p>
<bold>The sequences of primer used for qRT-PCR validation of the novel miRNAs</bold>
.</p>
</caption>
<media xlink:href="1471-2164-11-431-S3.DOC" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>This research was supported by grants of the Science & Technology Key Project of Ministry of Education of China (No. 109084), the Program of NCET (No. NCET96), and the Fundamental Research Funds for the Central Universities (No. KYJ200909).</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Llave</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>Claevage of Scarecrow-like mRNA targets directed by a class of
<italic>Arabidopsis </italic>
miRNA</article-title>
<source>Science</source>
<year>2002</year>
<volume>297</volume>
<fpage>2053</fpage>
<lpage>2056</lpage>
<pub-id pub-id-type="doi">10.1126/science.1076311</pub-id>
<pub-id pub-id-type="pmid">12242443</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<article-title>A microRNA as a translational repressor of
<italic>APETALA2 </italic>
in Arabidopsis flower development</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<fpage>202</fpage>
<lpage>225</lpage>
<pub-id pub-id-type="doi">10.1126/science.1090300</pub-id>
<pub-id pub-id-type="pmid">14716006</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Lauter</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kampani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Goebel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moose</surname>
<given-names>SP</given-names>
</name>
<article-title>microRNA172 downgulates
<italic>glossy15 </italic>
to promote vegetative phase change in maize</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>9412</fpage>
<lpage>9417</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0503927102</pub-id>
<pub-id pub-id-type="pmid">15958531</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gustafson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>microRNArected phasing during transting siRNA biogenesis in plants</article-title>
<source>Cell</source>
<year>2005</year>
<volume>121</volume>
<fpage>2071</fpage>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<article-title>MicroRNA biogenesis and function in plants</article-title>
<source>FEBS Lett</source>
<year>2005</year>
<volume>579</volume>
<fpage>5923</fpage>
<lpage>5931</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2005.07.071</pub-id>
<pub-id pub-id-type="pmid">16144699</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Berezikov</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cuppen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Plasterk</surname>
<given-names>RH</given-names>
</name>
<article-title>Approaches to microRNA discovery</article-title>
<source>Nat Genet</source>
<year>2006</year>
<volume>38</volume>
<fpage>S2</fpage>
<pub-id pub-id-type="doi">10.1038/ng1794</pub-id>
<pub-id pub-id-type="pmid">16736019</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Carthew</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Sontheimer</surname>
<given-names>EJ</given-names>
</name>
<article-title>Origins and mechanisms of miRNAs and siRNAs</article-title>
<source>Cell</source>
<year>2009</year>
<volume>136</volume>
<fpage>642</fpage>
<lpage>655</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.01.035</pub-id>
<pub-id pub-id-type="pmid">19239886</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cannon</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>TA</given-names>
</name>
<article-title>Conservation and divergence of plant microRNA genes</article-title>
<source>Plant J</source>
<year>2006</year>
<volume>46</volume>
<fpage>243</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2006.02697.x</pub-id>
<pub-id pub-id-type="pmid">16623887</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jagadeeswaran</surname>
<given-names>G</given-names>
</name>
<article-title>
<italic>In silico </italic>
identification of conserved microRNAs in large number of diverse plant species</article-title>
<source>BMC Plant Biol</source>
<year>2008</year>
<volume>8</volume>
<fpage>37</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-8-37</pub-id>
<pub-id pub-id-type="pmid">18416839</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Axtell</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Baulcombe</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Griffithsnes</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Mallory</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Martienssen</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Poethig</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vaucheret</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Voinnet</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Weigel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<article-title>Criteria for annotation of plant MicroRNAs</article-title>
<source>Plant Cell</source>
<year>2008</year>
<volume>20</volume>
<fpage>3186</fpage>
<lpage>3190</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.108.064311</pub-id>
<pub-id pub-id-type="pmid">19074682</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gustafson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Spatafora</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>Evolution of microRNA genes by inverted duplication of target gene sequences in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Nat Genet</source>
<year>2004</year>
<volume>36</volume>
<fpage>1282</fpage>
<lpage>1292</lpage>
<pub-id pub-id-type="doi">10.1038/ng1478</pub-id>
<pub-id pub-id-type="pmid">15565108</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Rajagopalan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Vaucheret</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Trejo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<article-title>A diverse and evolutionarily fluid set of microRNAs in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Genes Dev</source>
<year>2006</year>
<volume>20</volume>
<fpage>3407</fpage>
<lpage>3425</lpage>
<pub-id pub-id-type="doi">10.1101/gad.1476406</pub-id>
<pub-id pub-id-type="pmid">17182867</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Carra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mica</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gambino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pindo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Enrico</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>A</given-names>
</name>
<article-title>Cloning and characterization of small non-coding RNAs from grape</article-title>
<source>Plant J</source>
<year>2009</year>
<volume>59</volume>
<fpage>750</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2009.03906.x</pub-id>
<pub-id pub-id-type="pmid">19453456</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Axtell</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<article-title>Antiquity of microRNAs and their targets in land plants</article-title>
<source>Plant Cell</source>
<year>2005</year>
<volume>17</volume>
<fpage>1658</fpage>
<lpage>1673</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.105.032185</pub-id>
<pub-id pub-id-type="pmid">15849273</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Fahlgren</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Howell</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Cumbie</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Givan</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Law</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>Highroughput sequencing of
<italic>Arabidopsis </italic>
microRNAs: evidence for frequent birth and death of MIRNA genes</article-title>
<source>PLoS One</source>
<year>2007</year>
<volume>2</volume>
<fpage>e219</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000219</pub-id>
<pub-id pub-id-type="pmid">17299599</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<article-title>Identification of novel and candidate miRNAs in rice by high throughput sequencing</article-title>
<source>BMC Plant Biol</source>
<year>2008</year>
<volume>8</volume>
<fpage>25</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-8-25</pub-id>
<pub-id pub-id-type="pmid">18312648</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Zhu</surname>
<given-names>QH</given-names>
</name>
<name>
<surname>Spriggs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Matthew</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gubler</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Helliwell</surname>
<given-names>C</given-names>
</name>
<article-title>A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains</article-title>
<source>Genome Res</source>
<year>2008</year>
<volume>18</volume>
<fpage>1456</fpage>
<lpage>1465</lpage>
<pub-id pub-id-type="doi">10.1101/gr.075572.107</pub-id>
<pub-id pub-id-type="pmid">18687877</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Barakat</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Diloreto</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Depamphilis</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>JE</given-names>
</name>
<article-title>Conservation and divergence of microRNAs in Populus</article-title>
<source>BMC Genomics</source>
<year>2007</year>
<volume>8</volume>
<fpage>481</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-8-481</pub-id>
<pub-id pub-id-type="pmid">18166134</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Klevebring</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Street</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Fahlgren</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Lundeberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jansson</surname>
<given-names>S</given-names>
</name>
<article-title>A Genome-wide profiling of
<italic>populus </italic>
small RNAs</article-title>
<source>BMC Genomics</source>
<year>2009</year>
<volume>10</volume>
<fpage>620</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-10-620</pub-id>
<pub-id pub-id-type="pmid">20021695</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
<article-title>Cloning and characterization of microRNAs from wheat (
<italic>Triticum aestivum </italic>
L.)</article-title>
<source>Genome Biol</source>
<year>2007</year>
<volume>8</volume>
<fpage>R96</fpage>
<pub-id pub-id-type="doi">10.1186/gb-2007-8-6-r96</pub-id>
<pub-id pub-id-type="pmid">17543110</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Wei</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>L</given-names>
</name>
<article-title>Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (
<italic>Triticum aestivum </italic>
L.) and
<italic>Brachypodium distachyon </italic>
(L.) Beauv</article-title>
<source>Funct Integr Genomics</source>
<year>2009</year>
<volume>9</volume>
<fpage>4991</fpage>
<pub-id pub-id-type="doi">10.1007/s10142-009-0128-9</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Nobuta</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Venu</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Belo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vemaraju</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kulkarni</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Pillay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<article-title>An expression atlas of rice mRNAs and small RNAs</article-title>
<source>Nature Biotech</source>
<year>2007</year>
<volume>254</volume>
<fpage>73</fpage>
<lpage>77</lpage>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chia</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Narechania</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Guill</surname>
<given-names>K</given-names>
</name>
<name>
<surname>McMullen</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Ware</surname>
<given-names>DA</given-names>
</name>
<article-title>A genome-wide characterization of microRNA genes in maize</article-title>
<source>PLoS Genet</source>
<year>2009</year>
<volume>5</volume>
<fpage>e1000716</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pgen.1000716</pub-id>
<pub-id pub-id-type="pmid">19936050</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Moxon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Szittya</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schwach</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rusholme Pilcher</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Moulton</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dalmay</surname>
<given-names>T</given-names>
</name>
<article-title>Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening</article-title>
<source>Genome Res</source>
<year>2008</year>
<volume>18</volume>
<fpage>1602</fpage>
<lpage>1609</lpage>
<pub-id pub-id-type="doi">10.1101/gr.080127.108</pub-id>
<pub-id pub-id-type="pmid">18653800</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Szittya</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Moxon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Jing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Fevereiro</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Moulton</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dalmay</surname>
<given-names>T</given-names>
</name>
<article-title>High-throughput sequencing of
<italic>Medicago truncatula </italic>
short RNAs identifies eight new miRNA families</article-title>
<source>BMC Genomics</source>
<year>2008</year>
<volume>9</volume>
<fpage>593</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-9-593</pub-id>
<pub-id pub-id-type="pmid">19068109</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Ruan</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>WC</given-names>
</name>
<article-title>Conserved miRNA analysis in
<italic>Gossypium hirsutum </italic>
through small RNA sequencing</article-title>
<source>Genomics</source>
<year>2009</year>
<volume>94</volume>
<fpage>263</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="doi">10.1016/j.ygeno.2009.07.002</pub-id>
<pub-id pub-id-type="pmid">19628031</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Qiu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>IW</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<article-title>High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (
<italic>Taxus chinensis</italic>
)</article-title>
<source>Gene</source>
<year>2009</year>
<volume>436</volume>
<fpage>37</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1016/j.gene.2009.01.006</pub-id>
<pub-id pub-id-type="pmid">19393185</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tej</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Haudenschild</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PJ</given-names>
</name>
<article-title>Elucidation of the small RNA component of the transcriptome</article-title>
<source>Science</source>
<year>2005</year>
<volume>309</volume>
<fpage>1567</fpage>
<lpage>1569</lpage>
<pub-id pub-id-type="doi">10.1126/science.1114112</pub-id>
<pub-id pub-id-type="pmid">16141074</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>XP</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>QL</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>TA</given-names>
</name>
<article-title>Identification and characterization of new plant microRNAs using EST analysis</article-title>
<source>Cell Res</source>
<year>2005</year>
<volume>15</volume>
<fpage>336</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="doi">10.1038/sj.cr.7290302</pub-id>
<pub-id pub-id-type="pmid">15916721</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chao</surname>
<given-names>TC</given-names>
</name>
<article-title>Identification and characterization of 27 conserved microRNAs in citrus</article-title>
<source>Planta</source>
<year>2009</year>
<volume>230</volume>
<fpage>671</fpage>
<lpage>685</lpage>
<pub-id pub-id-type="doi">10.1007/s00425-009-0971-x</pub-id>
<pub-id pub-id-type="pmid">19585144</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="other">
<name>
<surname>Song</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<article-title>Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags</article-title>
<source>Plant Biology</source>
<year>2010</year>
<comment>doi: 10.1111/j.1438-8677.2009.00300.x</comment>
<pub-id pub-id-type="pmid">20398293</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Morin</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Aksay</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dolgosheina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ebhardt</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Magrini</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mardis</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Sahinalp</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Unrau</surname>
<given-names>PJ</given-names>
</name>
<article-title>Comparative analysis of the small RNA transcriptomes of
<italic>Pinus contorta </italic>
and
<italic>Oryza sativa</italic>
</article-title>
<source>Genome Res</source>
<year>2008</year>
<volume>18</volume>
<fpage>571</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="doi">10.1101/gr.6897308</pub-id>
<pub-id pub-id-type="pmid">18323537</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Dolgosheina</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Aksay</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sahinalp</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Magrini</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mardis</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Mattsson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Unrau</surname>
<given-names>PJ</given-names>
</name>
<article-title>Conifers have a unique small RNA silencing signature</article-title>
<source>RNA</source>
<year>2008</year>
<volume>14</volume>
<fpage>1508</fpage>
<lpage>1515</lpage>
<pub-id pub-id-type="doi">10.1261/rna.1052008</pub-id>
<pub-id pub-id-type="pmid">18566193</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Griffiths-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saini H</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dongen S</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Enrigh</surname>
<given-names>AJ</given-names>
</name>
<article-title>miRBase: tools for microRNA genomics</article-title>
<source>Nucleic Acids Res</source>
<year>2008</year>
<volume>36</volume>
<fpage>D154</fpage>
<lpage>D158</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkm952</pub-id>
<pub-id pub-id-type="pmid">17991681</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Hoen</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Ariyurek</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Thygesen</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Vreugdenhil</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Vossen</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>de Menezes</surname>
<given-names>RX</given-names>
</name>
<name>
<surname>Boer</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>van Ommen</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>den Dunnen</surname>
<given-names>JT</given-names>
</name>
<article-title>Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms</article-title>
<source>Nucleic Acids Res</source>
<year>2008</year>
<volume>36</volume>
<fpage>e141</fpage>
<pub-id pub-id-type="doi">10.1093/nar/gkn705</pub-id>
<pub-id pub-id-type="pmid">18927111</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Jofuku</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>den Boer</surname>
<given-names>BG</given-names>
</name>
<name>
<surname>Van Montagu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Okamuro</surname>
<given-names>JK</given-names>
</name>
<article-title>Control of
<italic>Arabidopsis </italic>
flower and seed development by the homeotic gene
<italic>APETALA2</italic>
</article-title>
<source>Plant Cell</source>
<year>1994</year>
<volume>6</volume>
<fpage>1211</fpage>
<lpage>1225</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.6.9.1211</pub-id>
<pub-id pub-id-type="pmid">7919989</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Aukerman</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>H</given-names>
</name>
<article-title>Regulation of flowering time and floral organ identity by a microRNA and its
<italic>APETALA2</italic>
-like target genes</article-title>
<source>Plant Cell</source>
<year>2003</year>
<volume>15</volume>
<fpage>2730</fpage>
<lpage>2741</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.016238</pub-id>
<pub-id pub-id-type="pmid">14555699</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fahlgren</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Calamar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Givan</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>Expression of
<italic>Arabidopsis </italic>
MIRNA genes</article-title>
<source>Plant Physiol</source>
<year>2005</year>
<volume>138</volume>
<fpage>2145</fpage>
<lpage>2154</lpage>
<pub-id pub-id-type="doi">10.1104/pp.105.062943</pub-id>
<pub-id pub-id-type="pmid">16040653</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Jones-Rhoades</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<article-title>Computational identification of plant microRNAs and their targets, including a stress-induced miRNA</article-title>
<source>Mol Cell</source>
<year>2004</year>
<volume>14</volume>
<fpage>787</fpage>
<lpage>799</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2004.05.027</pub-id>
<pub-id pub-id-type="pmid">15200956</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Elbashir</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Lendeckel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tuschl</surname>
<given-names>T</given-names>
</name>
<article-title>RNA interference is mediated by 21-and 22-nucleotide RNAs</article-title>
<source>Genes Dev</source>
<year>2001</year>
<volume>15</volume>
<fpage>188</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1101/gad.862301</pub-id>
<pub-id pub-id-type="pmid">11157775</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Llave</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Krizan</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<article-title>P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function</article-title>
<source>Dev Cell</source>
<year>2003</year>
<volume>4</volume>
<fpage>205</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="doi">10.1016/S1534-5807(03)00025-X</pub-id>
<pub-id pub-id-type="pmid">12586064</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Ambros</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Burge</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dreyfuss</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Griffiths-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matzke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ruvkun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tuschl</surname>
<given-names>T</given-names>
</name>
<article-title>A uniform system for microRNA annotation</article-title>
<source>RNA</source>
<year>2003</year>
<volume>9</volume>
<fpage>277</fpage>
<lpage>279</lpage>
<pub-id pub-id-type="doi">10.1261/rna.2183803</pub-id>
<pub-id pub-id-type="pmid">12592000</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Moxon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schwach</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maclean</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dalmay</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Studholme</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Moulton</surname>
<given-names>V</given-names>
</name>
<article-title>A tool kit for analysing large-scale plant small RNA datasets</article-title>
<source>Bioinformatics</source>
<year>2008</year>
<volume>24</volume>
<fpage>2252</fpage>
<lpage>2253</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btn428</pub-id>
<pub-id pub-id-type="pmid">18713789</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Rhoades</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Reinhart</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Burge</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
<article-title>Prediction of plant microRNA targets</article-title>
<source>Cell</source>
<year>2002</year>
<volume>110</volume>
<fpage>513</fpage>
<lpage>520</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(02)00863-2</pub-id>
<pub-id pub-id-type="pmid">12202040</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Floyd</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>JL</given-names>
</name>
<article-title>Gene regulation: ancient microRNA target sequences in plants</article-title>
<source>Nature</source>
<year>2004</year>
<volume>435</volume>
<fpage>441</fpage>
<lpage>445</lpage>
<comment>London</comment>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>Sunkar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Girke</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
<article-title>Cloning and characterization of microRNAs from rice</article-title>
<source>Plant Cell</source>
<year>2005</year>
<volume>17</volume>
<fpage>1397</fpage>
<lpage>1411</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.105.031682</pub-id>
<pub-id pub-id-type="pmid">15805478</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Amerson</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>VL</given-names>
</name>
<article-title>MicroRNAs in loblolly pine (
<italic>Pinus taeda </italic>
L.) and their association with fusiform rust gall development</article-title>
<source>Plant J</source>
<year>2007</year>
<volume>51</volume>
<fpage>1077</fpage>
<lpage>1098</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03208.x</pub-id>
<pub-id pub-id-type="pmid">17635765</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Adai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mlotshwa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Archer-Evans</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Manocha</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sundaresan</surname>
<given-names>V</given-names>
</name>
<article-title>Computational prediction of miRNAs in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Genome Res</source>
<year>2005</year>
<volume>15</volume>
<fpage>78</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1101/gr.2908205</pub-id>
<pub-id pub-id-type="pmid">15632092</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<name>
<surname>Fu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<article-title>Identification of human fetal liver miRNAs by a novel method</article-title>
<source>FEBS Lett</source>
<year>2005</year>
<volume>579</volume>
<fpage>3849</fpage>
<lpage>3854</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2005.05.064</pub-id>
<pub-id pub-id-type="pmid">15978578</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ridzon</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Broomer</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Barbisin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Mahuvakar</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Lao</surname>
<given-names>KQ</given-names>
</name>
<name>
<surname>Livak</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Guegler</surname>
<given-names>KJ</given-names>
</name>
<article-title>Real-time quantification of microRNAs by stem-loop RT-PCR</article-title>
<source>Nucleic Acids Res</source>
<year>2005</year>
<volume>33</volume>
<fpage>e179</fpage>
<pub-id pub-id-type="doi">10.1093/nar/gni178</pub-id>
<pub-id pub-id-type="pmid">16314309</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Shi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>VL</given-names>
</name>
<article-title>Facile means for quantifying microRNA expression by real-time PCR</article-title>
<source>Biotechniques</source>
<year>2005</year>
<volume>39</volume>
<fpage>519</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="doi">10.2144/000112010</pub-id>
<pub-id pub-id-type="pmid">16235564</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Ramakers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ruijter</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Deprez</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Moorman</surname>
<given-names>AF</given-names>
</name>
<article-title>Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data</article-title>
<source>Neuroscience Lett</source>
<year>2003</year>
<volume>339</volume>
<fpage>62</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1016/S0304-3940(02)01423-4</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E13  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E13  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024