Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal vein density in artificial and real leaves

Identifieur interne : 000D32 ( Pmc/Corpus ); précédent : 000D31; suivant : 000D33

Optimal vein density in artificial and real leaves

Auteurs : X. Noblin ; L. Mahadevan ; I. A. Coomaraswamy ; D. A. Weitz ; N. M. Holbrook ; M. A. Zwieniecki

Source :

RBID : PMC:2453744

Abstract

The long evolution of vascular plants has resulted in a tremendous variety of natural networks responsible for the evaporatively driven transport of water. Nevertheless, little is known about the physical principles that constrain vascular architecture. Inspired by plant leaves, we used microfluidic devices consisting of simple parallel channel networks in a polymeric material layer, permeable to water, to study the mechanisms of and the limits to evaporation-driven flow. We show that the flow rate through our biomimetic leaves increases linearly with channel density (1/d) until the distance between channels (d) is comparable with the thickness of the polymer layer (δ), above which the flow rate saturates. A comparison with the plant vascular networks shows that the same optimization criterion can be used to describe the placement of veins in leaves. These scaling relations for evaporatively driven flow through simple networks reveal basic design principles for the engineering of evaporation–permeation-driven devices, and highlight the role of physical constraints on the biological design of leaves.


Url:
DOI: 10.1073/pnas.0709194105
PubMed: 18599446
PubMed Central: 2453744

Links to Exploration step

PMC:2453744

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal vein density in artificial and real leaves</title>
<author>
<name sortKey="Noblin, X" sort="Noblin, X" uniqKey="Noblin X" first="X." last="Noblin">X. Noblin</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Laboratoire de Physique de la Matière Condensée, Centre National de la Recherche Scientifique–Unité Mixte de Recherche 6622, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahadevan, L" sort="Mahadevan, L" uniqKey="Mahadevan L" first="L." last="Mahadevan">L. Mahadevan</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coomaraswamy, I A" sort="Coomaraswamy, I A" uniqKey="Coomaraswamy I" first="I. A." last="Coomaraswamy">I. A. Coomaraswamy</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weitz, D A" sort="Weitz, D A" uniqKey="Weitz D" first="D. A." last="Weitz">D. A. Weitz</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holbrook, N M" sort="Holbrook, N M" uniqKey="Holbrook N" first="N. M." last="Holbrook">N. M. Holbrook</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zwieniecki, M A" sort="Zwieniecki, M A" uniqKey="Zwieniecki M" first="M. A." last="Zwieniecki">M. A. Zwieniecki</name>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Arnold Arboretum, Harvard University, Cambridge, MA 02138</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18599446</idno>
<idno type="pmc">2453744</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453744</idno>
<idno type="RBID">PMC:2453744</idno>
<idno type="doi">10.1073/pnas.0709194105</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000D32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Optimal vein density in artificial and real leaves</title>
<author>
<name sortKey="Noblin, X" sort="Noblin, X" uniqKey="Noblin X" first="X." last="Noblin">X. Noblin</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Laboratoire de Physique de la Matière Condensée, Centre National de la Recherche Scientifique–Unité Mixte de Recherche 6622, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mahadevan, L" sort="Mahadevan, L" uniqKey="Mahadevan L" first="L." last="Mahadevan">L. Mahadevan</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coomaraswamy, I A" sort="Coomaraswamy, I A" uniqKey="Coomaraswamy I" first="I. A." last="Coomaraswamy">I. A. Coomaraswamy</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weitz, D A" sort="Weitz, D A" uniqKey="Weitz D" first="D. A." last="Weitz">D. A. Weitz</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Engineering and Applied Sciences</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holbrook, N M" sort="Holbrook, N M" uniqKey="Holbrook N" first="N. M." last="Holbrook">N. M. Holbrook</name>
<affiliation>
<nlm:aff id="aff1">*Department of Organismic and Evolutionary Biology,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zwieniecki, M A" sort="Zwieniecki, M A" uniqKey="Zwieniecki M" first="M. A." last="Zwieniecki">M. A. Zwieniecki</name>
<affiliation>
<nlm:aff wicri:cut="; and" id="aff3">Arnold Arboretum, Harvard University, Cambridge, MA 02138</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The long evolution of vascular plants has resulted in a tremendous variety of natural networks responsible for the evaporatively driven transport of water. Nevertheless, little is known about the physical principles that constrain vascular architecture. Inspired by plant leaves, we used microfluidic devices consisting of simple parallel channel networks in a polymeric material layer, permeable to water, to study the mechanisms of and the limits to evaporation-driven flow. We show that the flow rate through our biomimetic leaves increases linearly with channel density (1/
<italic>d</italic>
) until the distance between channels (
<italic>d</italic>
) is comparable with the thickness of the polymer layer (δ), above which the flow rate saturates. A comparison with the plant vascular networks shows that the same optimization criterion can be used to describe the placement of veins in leaves. These scaling relations for evaporatively driven flow through simple networks reveal basic design principles for the engineering of evaporation–permeation-driven devices, and highlight the role of physical constraints on the biological design of leaves.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Natl Acad Sci U S A</journal-id>
<journal-id journal-id-type="hwp">pnas</journal-id>
<journal-id journal-id-type="pmc">pnas</journal-id>
<journal-id journal-id-type="publisher-id">PNAS</journal-id>
<journal-title-group>
<journal-title>Proceedings of the National Academy of Sciences of the United States of America</journal-title>
</journal-title-group>
<issn pub-type="ppub">0027-8424</issn>
<issn pub-type="epub">1091-6490</issn>
<publisher>
<publisher-name>National Academy of Sciences</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18599446</article-id>
<article-id pub-id-type="pmc">2453744</article-id>
<article-id pub-id-type="publisher-id">0451</article-id>
<article-id pub-id-type="doi">10.1073/pnas.0709194105</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Applied Physical Sciences</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Biological Sciences</subject>
<subj-group>
<subject>Environmental Sciences</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Optimal vein density in artificial and real leaves</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Noblin</surname>
<given-names>X.</given-names>
</name>
<xref ref-type="aff" rid="aff1">*</xref>
<xref ref-type="aff" rid="aff4">
<sup></sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mahadevan</surname>
<given-names>L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">*</xref>
<xref ref-type="aff" rid="aff2">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Coomaraswamy</surname>
<given-names>I. A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weitz</surname>
<given-names>D. A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Holbrook</surname>
<given-names>N. M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zwieniecki</surname>
<given-names>M. A.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup></sup>
</xref>
</contrib>
<aff id="aff1">*Department of Organismic and Evolutionary Biology,</aff>
<aff id="aff2">
<sup>§</sup>
School of Engineering and Applied Sciences, and</aff>
<aff id="aff3">
<sup></sup>
Arnold Arboretum, Harvard University, Cambridge, MA 02138; and</aff>
<aff id="aff4">
<sup></sup>
Laboratoire de Physique de la Matière Condensée, Centre National de la Recherche Scientifique–Unité Mixte de Recherche 6622, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup></sup>
To whom correspondence should be addressed. E-mail:
<email>xavier.noblin@unice.fr</email>
</corresp>
<fn fn-type="edited-by">
<p>Edited by Karl J. Niklas, Cornell University, Ithaca, NY, and accepted by the Editorial Board March 31, 2008</p>
</fn>
<fn fn-type="con">
<p>Author contributions: X.N., L.M., D.A.W., N.M.H., and M.A.Z. designed research; X.N., L.M., I.A.C., N.M.H., and M.A.Z. performed research; X.N., L.M., N.M.H., and M.A.Z. analyzed data; and X.N., L.M., N.M.H., and M.A.Z. wrote the paper.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>8</day>
<month>7</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>7</month>
<year>2008</year>
</pub-date>
<volume>105</volume>
<issue>27</issue>
<fpage>9140</fpage>
<lpage>9144</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>9</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>© 2008 by The National Academy of Sciences of the USA</copyright-statement>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zpq02708009140.pdf"></self-uri>
<abstract>
<p>The long evolution of vascular plants has resulted in a tremendous variety of natural networks responsible for the evaporatively driven transport of water. Nevertheless, little is known about the physical principles that constrain vascular architecture. Inspired by plant leaves, we used microfluidic devices consisting of simple parallel channel networks in a polymeric material layer, permeable to water, to study the mechanisms of and the limits to evaporation-driven flow. We show that the flow rate through our biomimetic leaves increases linearly with channel density (1/
<italic>d</italic>
) until the distance between channels (
<italic>d</italic>
) is comparable with the thickness of the polymer layer (δ), above which the flow rate saturates. A comparison with the plant vascular networks shows that the same optimization criterion can be used to describe the placement of veins in leaves. These scaling relations for evaporatively driven flow through simple networks reveal basic design principles for the engineering of evaporation–permeation-driven devices, and highlight the role of physical constraints on the biological design of leaves.</p>
</abstract>
<kwd-group>
<kwd>water transport</kwd>
<kwd>microfluidic</kwd>
<kwd>biomimetics</kwd>
<kwd>leaf hydraulic properties</kwd>
<kwd>evaporative pump</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000D32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2453744
   |texte=   Optimal vein density in artificial and real leaves
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:18599446" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024