Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria

Identifieur interne : 000B61 ( Pmc/Corpus ); précédent : 000B60; suivant : 000B62

Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria

Auteurs : Orish Ebere Orisakwe ; John Kanayochukwu Nduka ; Cecilia Nwadiuto Amadi ; Daniel Onyekachi Dike ; Onyinyechi Bede

Source :

RBID : PMC:3567425

Abstract

Background

This study assessed lead, cadmium, and nickel level in food crops, fruits and soil samples from Ohaji and Umuagwo and Owerri in South Eastern Nigeria and estimated the potential health risks of metals. Samples were washed, oven-dried at 70–80°C for 24 h and powdered. Samples were digested with perchloric acid and nitric acid. Metals were analysed with Unicam Atomic Absorption Spectrophotometer.

Result

The concentration of Pb, Cd, and Ni in Ohaji exceeded the maximum allowable concentrations for agricultural soil as recommended by EU. Lead, Cd, and Ni in the food crops were highest in Oryza sativa, Glycine max, and Pentabacta microfila respectively. Highest levels of Pb, Cd, and Ni, in fruits were detected in Canarium schweinfurthii, Citrus reticulata, Ananas comosus respectively. The true lead and cadmium intake for the rice based meal were 3.53 and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 and 0.049 g/kg respectively.

Conclusion

Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance.


Url:
DOI: 10.1186/1752-153X-6-77
PubMed: 22853175
PubMed Central: 3567425

Links to Exploration step

PMC:3567425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria</title>
<author>
<name sortKey="Orisakwe, Orish Ebere" sort="Orisakwe, Orish Ebere" uniqKey="Orisakwe O" first="Orish Ebere" last="Orisakwe">Orish Ebere Orisakwe</name>
<affiliation>
<nlm:aff id="I1">Toxicology Unit, Clinical Pharmacy Faculty of Pharmacy University of PortHacourt Rivers State Nigeria, PortHacourt, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nduka, John Kanayochukwu" sort="Nduka, John Kanayochukwu" uniqKey="Nduka J" first="John Kanayochukwu" last="Nduka">John Kanayochukwu Nduka</name>
<affiliation>
<nlm:aff id="I2">Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nnewi, Awka Anambra State, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amadi, Cecilia Nwadiuto" sort="Amadi, Cecilia Nwadiuto" uniqKey="Amadi C" first="Cecilia Nwadiuto" last="Amadi">Cecilia Nwadiuto Amadi</name>
<affiliation>
<nlm:aff id="I1">Toxicology Unit, Clinical Pharmacy Faculty of Pharmacy University of PortHacourt Rivers State Nigeria, PortHacourt, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dike, Daniel Onyekachi" sort="Dike, Daniel Onyekachi" uniqKey="Dike D" first="Daniel Onyekachi" last="Dike">Daniel Onyekachi Dike</name>
<affiliation>
<nlm:aff id="I3">Deartment of Medical Lab Science, Faculty of Science, Rivers State University of Science and Technology, PortHacourt, Rivers State, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bede, Onyinyechi" sort="Bede, Onyinyechi" uniqKey="Bede O" first="Onyinyechi" last="Bede">Onyinyechi Bede</name>
<affiliation>
<nlm:aff id="I3">Deartment of Medical Lab Science, Faculty of Science, Rivers State University of Science and Technology, PortHacourt, Rivers State, Nigeria</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22853175</idno>
<idno type="pmc">3567425</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567425</idno>
<idno type="RBID">PMC:3567425</idno>
<idno type="doi">10.1186/1752-153X-6-77</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000B61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria</title>
<author>
<name sortKey="Orisakwe, Orish Ebere" sort="Orisakwe, Orish Ebere" uniqKey="Orisakwe O" first="Orish Ebere" last="Orisakwe">Orish Ebere Orisakwe</name>
<affiliation>
<nlm:aff id="I1">Toxicology Unit, Clinical Pharmacy Faculty of Pharmacy University of PortHacourt Rivers State Nigeria, PortHacourt, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nduka, John Kanayochukwu" sort="Nduka, John Kanayochukwu" uniqKey="Nduka J" first="John Kanayochukwu" last="Nduka">John Kanayochukwu Nduka</name>
<affiliation>
<nlm:aff id="I2">Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nnewi, Awka Anambra State, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amadi, Cecilia Nwadiuto" sort="Amadi, Cecilia Nwadiuto" uniqKey="Amadi C" first="Cecilia Nwadiuto" last="Amadi">Cecilia Nwadiuto Amadi</name>
<affiliation>
<nlm:aff id="I1">Toxicology Unit, Clinical Pharmacy Faculty of Pharmacy University of PortHacourt Rivers State Nigeria, PortHacourt, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dike, Daniel Onyekachi" sort="Dike, Daniel Onyekachi" uniqKey="Dike D" first="Daniel Onyekachi" last="Dike">Daniel Onyekachi Dike</name>
<affiliation>
<nlm:aff id="I3">Deartment of Medical Lab Science, Faculty of Science, Rivers State University of Science and Technology, PortHacourt, Rivers State, Nigeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bede, Onyinyechi" sort="Bede, Onyinyechi" uniqKey="Bede O" first="Onyinyechi" last="Bede">Onyinyechi Bede</name>
<affiliation>
<nlm:aff id="I3">Deartment of Medical Lab Science, Faculty of Science, Rivers State University of Science and Technology, PortHacourt, Rivers State, Nigeria</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemistry Central Journal</title>
<idno type="eISSN">1752-153X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>This study assessed lead, cadmium, and nickel level in food crops, fruits and soil samples from Ohaji and Umuagwo and Owerri in South Eastern Nigeria and estimated the potential health risks of metals. Samples were washed, oven-dried at 70–80°C for 24 h and powdered. Samples were digested with perchloric acid and nitric acid. Metals were analysed with Unicam Atomic Absorption Spectrophotometer.</p>
</sec>
<sec>
<title>Result</title>
<p>The concentration of Pb, Cd, and Ni in Ohaji exceeded the maximum allowable concentrations for agricultural soil as recommended by EU. Lead, Cd, and Ni in the food crops were highest in Oryza sativa, Glycine max, and Pentabacta microfila respectively. Highest levels of Pb, Cd, and Ni, in fruits were detected in
<italic>Canarium schweinfurthii</italic>
,
<italic>Citrus reticulata</italic>
,
<italic>Ananas comosus</italic>
respectively. The true lead and cadmium intake for the rice based meal were 3.53 and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 and 0.049 g/kg respectively.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zukowska, J" uniqKey="Zukowska J">J Zukowska</name>
</author>
<author>
<name sortKey="Biziuk, M" uniqKey="Biziuk M">M Biziuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arora, M" uniqKey="Arora M">M Arora</name>
</author>
<author>
<name sortKey="Kiran, B" uniqKey="Kiran B">B Kiran</name>
</author>
<author>
<name sortKey="Rani, S" uniqKey="Rani S">S Rani</name>
</author>
<author>
<name sortKey="Rani, A" uniqKey="Rani A">A Rani</name>
</author>
<author>
<name sortKey="Kaur, B" uniqKey="Kaur B">B Kaur</name>
</author>
<author>
<name sortKey="Mittal, N" uniqKey="Mittal N">N Mittal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gidlow, Da" uniqKey="Gidlow D">DA Gidlow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, Ky" uniqKey="Ge K">KY Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Xing, B" uniqKey="Xing B">B Xing</name>
</author>
<author>
<name sortKey="Tao, S" uniqKey="Tao S">S Tao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parkhurst, Df" uniqKey="Parkhurst D">DF Parkhurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akpokodje, G" uniqKey="Akpokodje G">G Akpokodje</name>
</author>
<author>
<name sortKey="Lancon, F" uniqKey="Lancon F">F Lançon</name>
</author>
<author>
<name sortKey="Erenstein, O" uniqKey="Erenstein O">O Erenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anita, S" uniqKey="Anita S">S Anita</name>
</author>
<author>
<name sortKey="Rajesh, Ks" uniqKey="Rajesh K">KS Rajesh</name>
</author>
<author>
<name sortKey="Madhoolika, A" uniqKey="Madhoolika A">A Madhoolika</name>
</author>
<author>
<name sortKey="Fiona, Mm" uniqKey="Fiona M">MM Fiona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khairiah, J" uniqKey="Khairiah J">J Khairiah</name>
</author>
<author>
<name sortKey="Ding Woei, Y" uniqKey="Ding Woei Y">Y Ding-Woei</name>
</author>
<author>
<name sortKey="Habibah, J" uniqKey="Habibah J">J Habibah</name>
</author>
<author>
<name sortKey="Ahmed Mahir, R" uniqKey="Ahmed Mahir R">R Ahmed-Mahir</name>
</author>
<author>
<name sortKey="Aminah, A" uniqKey="Aminah A">A Aminah</name>
</author>
<author>
<name sortKey="Ismail, Bs" uniqKey="Ismail B">BS Ismail</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Wh" uniqKey="Liu W">WH Liu</name>
</author>
<author>
<name sortKey="Zhao, Jz" uniqKey="Zhao J">JZ Zhao</name>
</author>
<author>
<name sortKey="Ouyang, Zy" uniqKey="Ouyang Z">ZY Ouyang</name>
</author>
<author>
<name sortKey="Soderlund, L" uniqKey="Soderlund L">L Soderlund</name>
</author>
<author>
<name sortKey="Liu, Gh" uniqKey="Liu G">GH Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muchuweti, M" uniqKey="Muchuweti M">M Muchuweti</name>
</author>
<author>
<name sortKey="Birkett, Jw" uniqKey="Birkett J">JW Birkett</name>
</author>
<author>
<name sortKey="Chinyanga, E" uniqKey="Chinyanga E">E Chinyanga</name>
</author>
<author>
<name sortKey="Zvauya, R" uniqKey="Zvauya R">R Zvauya</name>
</author>
<author>
<name sortKey="Scrimshaw, Md" uniqKey="Scrimshaw M">MD Scrimshaw</name>
</author>
<author>
<name sortKey="Lester, Jn" uniqKey="Lester J">JN Lester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apostoli, P" uniqKey="Apostoli P">P Apostoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christensen, Ob" uniqKey="Christensen O">OB Christensen</name>
</author>
<author>
<name sortKey="Moller, H" uniqKey="Moller H">H Moller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abeck, D" uniqKey="Abeck D">D Abeck</name>
</author>
<author>
<name sortKey="Traenckner, I" uniqKey="Traenckner I">I Traenckner</name>
</author>
<author>
<name sortKey="Steinkraus, V" uniqKey="Steinkraus V">V Steinkraus</name>
</author>
<author>
<name sortKey="Vieluf, D" uniqKey="Vieluf D">D Vieluf</name>
</author>
<author>
<name sortKey="Ring, J" uniqKey="Ring J">J Ring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ysart, G" uniqKey="Ysart G">G Ysart</name>
</author>
<author>
<name sortKey="Miller, P" uniqKey="Miller P">P Miller</name>
</author>
<author>
<name sortKey="Crews, H" uniqKey="Crews H">H Crews</name>
</author>
<author>
<name sortKey="Robb, P" uniqKey="Robb P">P Robb</name>
</author>
<author>
<name sortKey="Baxter, M" uniqKey="Baxter M">M Baxter</name>
</author>
<author>
<name sortKey="De L Argy, C" uniqKey="De L Argy C">C De L'Argy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varo, P" uniqKey="Varo P">P Varo</name>
</author>
<author>
<name sortKey="Koivistonen, P" uniqKey="Koivistonen P">P Koivistonen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nielsen, Fh" uniqKey="Nielsen F">FH Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dabeka, Rw" uniqKey="Dabeka R">RW Dabeka</name>
</author>
<author>
<name sortKey="Mackenzie, Ad" uniqKey="Mackenzie A">AD MacKenzie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orisakwe, Oe" uniqKey="Orisakwe O">OE Orisakwe</name>
</author>
<author>
<name sortKey="Asomugha, R" uniqKey="Asomugha R">R Asomugha</name>
</author>
<author>
<name sortKey="Obi, E" uniqKey="Obi E">E Obi</name>
</author>
<author>
<name sortKey="Afonne, Oj" uniqKey="Afonne O">OJ Afonne</name>
</author>
<author>
<name sortKey="Anisi, Cn" uniqKey="Anisi C">CN Anisi</name>
</author>
<author>
<name sortKey="Dioka, Ce" uniqKey="Dioka C">CE Dioka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansen, P" uniqKey="Johansen P">P Johansen</name>
</author>
<author>
<name sortKey="Pars, T" uniqKey="Pars T">T Pars</name>
</author>
<author>
<name sortKey="Bjerregaard, P" uniqKey="Bjerregaard P">P Bjerregaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganry, J" uniqKey="Ganry J">J Ganry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orisakwe, Oe" uniqKey="Orisakwe O">OE Orisakwe</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Chem Cent J</journal-id>
<journal-id journal-id-type="iso-abbrev">Chem Cent J</journal-id>
<journal-title-group>
<journal-title>Chemistry Central Journal</journal-title>
</journal-title-group>
<issn pub-type="epub">1752-153X</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22853175</article-id>
<article-id pub-id-type="pmc">3567425</article-id>
<article-id pub-id-type="publisher-id">1752-153X-6-77</article-id>
<article-id pub-id-type="doi">10.1186/1752-153X-6-77</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes" id="A1">
<name>
<surname>Orisakwe</surname>
<given-names>Orish Ebere</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>eorish@aol.com</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Nduka</surname>
<given-names>John Kanayochukwu</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>john.nduka2001@yahoo.co.uk</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Amadi</surname>
<given-names>Cecilia Nwadiuto</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>nwadiuto@yahoo.com</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Dike</surname>
<given-names>Daniel Onyekachi</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>globaldesire@yahoo.com</email>
</contrib>
<contrib contrib-type="author" id="A5">
<name>
<surname>Bede</surname>
<given-names>Onyinyechi</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>globaldesire@yahoo.com</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Toxicology Unit, Clinical Pharmacy Faculty of Pharmacy University of PortHacourt Rivers State Nigeria, PortHacourt, Nigeria</aff>
<aff id="I2">
<label>2</label>
Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nnewi, Awka Anambra State, Nigeria</aff>
<aff id="I3">
<label>3</label>
Deartment of Medical Lab Science, Faculty of Science, Rivers State University of Science and Technology, PortHacourt, Rivers State, Nigeria</aff>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>8</month>
<year>2012</year>
</pub-date>
<volume>6</volume>
<fpage>77</fpage>
<lpage>77</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>3</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>7</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2012 Orisakwe et al.; licensee Chemistry Central Ltd.</copyright-statement>
<copyright-year>2012</copyright-year>
<copyright-holder>Orisakwe et al.; licensee Chemistry Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://journal.chemistrycentral.com/content/6/1/77"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>This study assessed lead, cadmium, and nickel level in food crops, fruits and soil samples from Ohaji and Umuagwo and Owerri in South Eastern Nigeria and estimated the potential health risks of metals. Samples were washed, oven-dried at 70–80°C for 24 h and powdered. Samples were digested with perchloric acid and nitric acid. Metals were analysed with Unicam Atomic Absorption Spectrophotometer.</p>
</sec>
<sec>
<title>Result</title>
<p>The concentration of Pb, Cd, and Ni in Ohaji exceeded the maximum allowable concentrations for agricultural soil as recommended by EU. Lead, Cd, and Ni in the food crops were highest in Oryza sativa, Glycine max, and Pentabacta microfila respectively. Highest levels of Pb, Cd, and Ni, in fruits were detected in
<italic>Canarium schweinfurthii</italic>
,
<italic>Citrus reticulata</italic>
,
<italic>Ananas comosus</italic>
respectively. The true lead and cadmium intake for the rice based meal were 3.53 and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 and 0.049 g/kg respectively.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Heavy metal</kwd>
<kwd>Food crops</kwd>
<kwd>Toxicity</kwd>
<kwd>Dietary intake</kwd>
<kwd>Risk assessment</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Contamination of foods by heavy metals has become an inevitable challenge these days. Air, soil, and water pollution are contributing to the presence of harmful elements, such as cadmium, lead, and mercury in foodstuff. The occurrences of heavy metals-enriched ecosystem components, firstly, arise from rapid industrial growth, advances in agricultural chemicalization, or the urban activities of human beings. These agents have led to metal dispersion in the environment and, consequently, impaired health of the population by the ingestion of victuals contaminated by harmful elements [
<xref ref-type="bibr" rid="B1">1</xref>
].</p>
<p>Flooding from heavy downpour may lead to horizontal leaching from dump sites causing metal uptake by root of crops; the rest may find their way into open water bodies and the entire aquatic ecosystem. The entry into food chain of these metals leads to increased susceptibility and exposure to metal poisoning of the local population.</p>
<p>A number of serious health problems can develop as a result of excessive uptake of dietary heavy metals. Furthermore, the consumption of heavy metal-contaminated food can seriously deplete some essential nutrients in the body causing a decrease in immunological defenses, intrauterine growth retardation, impaired psycho- social behaviors, disabilities associated with malnutrition and a high prevalence of upper gastrointestinal cancer [
<xref ref-type="bibr" rid="B2">2</xref>
]. In Nigeria there is lack of food intake diaries to monitor the intake of heavy metals and therefore their levels in blood and urine. It is advocated that any legislation to check lead exposure to humans should be based on genuine scientific evaluation of the available data [
<xref ref-type="bibr" rid="B3">3</xref>
].</p>
<p>We have estimated the heavy metal (lead, cadmium, nickel and mercury) concentrations in soil and food crops commonly grown or sold in South Eastern Nigeria with the aim of evaluating the potential dietary toxicity by determination of daily intake of these metals. The effect of transfer factors of heavy metals from different soil sites are also studied in the food crops and fruits to quantify the concentration of accumulated metals to which the local population are exposed.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Study area and sampling</title>
<p>Samples of some commonly grown fruits and food crops were collected from three different sites namely Ohaji (1, 2 & 3), Umuagwo and Owerri all in Imo State in southern Nigeria. For metal analysis, only the edible parts of food crops, and fruit samples were used.</p>
</sec>
<sec>
<title>Sample preparation</title>
<p>All the collected samples of various food crops samples were washed with deionised to remove airborne pollutants. The edible parts of the samples were weighed and air-dried for a day, to reduce water content. All the samples were then oven-dried at 70–80°C for 24 h, to remove all moisture. Dried samples were powdered using a pestle and mortar and sieved through Muslin cloth.</p>
</sec>
<sec>
<title>Digestion of the samples</title>
<p>For each food crop, three powdered samples from each soil site (0.5 g each) were accurately weighed and placed in crucibles, three replicates for each sample. The ash was digested with perchloric acid and nitric acid (1:4) solution. The samples were left to cool and made up to a final volume of 25 ml with deionised water. The hydrolysed samples were well shaken and transferred to a centrifuge tube for centrifugation at the rate of 3000 rpm to remove solid particles. The resulting homogenised samples were thoroughly mixed before sub-samples were taken for analysis to ensure homogeneity of the mixture. The presence of lead, cadmium and nickel were analysed in samples using the Unicam Atomic Absorption Spectrophotometer (AAS) Model 929) at 217.0, 228.8 and 232.0 nm wavelength respectively . The limit of detection for lead, cadmium, and nickel were all 0.001 ppm with blank values reading as 0.00 ppm for all the metals in deionized water with electrical conductivity value of lower than 5 μS/cm. Samples were analysed in triplicates.</p>
</sec>
<sec>
<title>Quality control</title>
<p>Appropriate quality procedures and precautions were carried out to assure the reliability of the results. Reagents used to calibrate the instrumentation were of analytical grades. A spike-and-recovery analysis was performed to assess the accuracy of the analytical techniques used. Post-analysed samples were spiked and homogenized with varying amounts of the standard solutions of the different metals. The spiked samples were then processed for the analysis by the dry ashing method. Quality control measures were taken to assess contamination and reliability of data. The coefficients of variation of replicate analysis were determined for precision of analysis; the variations were found to be less than 10%.</p>
</sec>
<sec>
<title>Data analyses</title>
<p>The daily intake rate of metals (DIR) was calculated by the following equation:</p>
<p>
<disp-formula id="bmcM1">
<label>(1)</label>
<mml:math id="M1" name="1752-153X-6-77-i1" overflow="scroll">
<mml:mrow>
<mml:mtext>DIR</mml:mtext>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi>C</mml:mi>
<mml:mtext>metal</mml:mtext>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mi>D</mml:mi>
<mml:mtext>food intake</mml:mtext>
</mml:msub>
<mml:mo>/</mml:mo>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mtext>average weight</mml:mtext>
</mml:msub>
</mml:mrow>
</mml:math>
</disp-formula>
</p>
<p>Where C
<sub>metal</sub>
is Heavy metal concentration in plants (μg/g)</p>
<p>D
<sub>food intake</sub>
is daily intake of vegetable (kg/person)</p>
<p>B
<sub>average weight</sub>
is average body weight.</p>
<p>The average adult body weights were considered to be 55.9kg, while average daily vegetable intakes for adults is considered to be 0.345 kg/person/day, respectively [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B5">5</xref>
].</p>
<p>The true intake using the arithmetic mean according to Parkhurst (1998) [
<xref ref-type="bibr" rid="B6">6</xref>
] was calculated by multiplying contaminant level i.e. (yearly intake of rice, cassava and fruits multiplied by heavy metal contaminant for each of the food items). In all the estimated or calculated levels of lead and cadmium in the food samples yearly averages as quoted by various workers were used [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B8">8</xref>
].</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>Table
<xref ref-type="table" rid="T1">1</xref>
shows the lead, cadmium nickel and mercury levels (mg/kg) in commonly consumed food crops in Nigeria. Lead ranged from 0.00 – 61.17 mg/kg found in
<italic>Oryza sativa</italic>
. The range of various metals in food crops were 0.00–61.17, 0.00-0.24, and 0.00-3.13 mg/kg and for lead (Pb), cadmium (Cd), and nickel (Ni) respectively. The highest levels of Pb, Cd, and Ni in the food crops were detected in rice (
<italic>Oryza sativa</italic>
), soybean (
<italic>Glycine max</italic>
), and
<italic>Pentabacta microfila</italic>
respectively.</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Lead, cadmium nickel and mercury levels (mg/kg) in commonly consumed food crops</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Sample</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Cocoyam (
<italic>Colocasia esculenta</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.58
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Plantain (
<italic>Musa paradisiaca</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.11
<hr></hr>
</td>
<td align="left" valign="bottom">1.00
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Cassava (
<italic>Manihot spp</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.33
<hr></hr>
</td>
<td align="left" valign="bottom">0.10
<hr></hr>
</td>
<td align="left" valign="bottom">0.30
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Yam (
<italic>Diascoria rotundata</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.11
<hr></hr>
</td>
<td align="left" valign="bottom">1.04
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Breadfruit (
<italic>Artocarpus altilis</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.24
<hr></hr>
</td>
<td align="left" valign="bottom">1.04
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Popcorn (
<italic>Senna didymobotrya</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.31
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Edible mushroom
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">0.10
<hr></hr>
</td>
<td align="left" valign="bottom">0.49
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Groundnut (
<italic>Arachis hypogea</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.23
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.99
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Pentabacta microfila</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">2.31
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Irvingia wombolu</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.80
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">3.13
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Vigna subterranean</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">1.01
<hr></hr>
</td>
<td align="left" valign="bottom">0.13
<hr></hr>
</td>
<td align="left" valign="bottom">2.64
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Beans (
<italic>Phaseolus vulgaris</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">2.65
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Soybean (
<italic>Glycine max</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.46
<hr></hr>
</td>
<td align="left" valign="bottom">0.24
<hr></hr>
</td>
<td align="left" valign="bottom">1.72
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Potato (
<italic>Ipomea batatas</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">1.16
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">(
<italic>Tetracarpidium conophorum</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">8.52
<hr></hr>
</td>
<td align="left" valign="bottom">0.14
<hr></hr>
</td>
<td align="left" valign="bottom">1.92
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Rice (
<italic>Oryza sativa</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">61.17
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Maize (
<italic>Zea mays</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">1.01
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">(
<italic>Brachystegia eurycoma</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.90
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.71
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">sorghum (
<italic>Sorghum bicolor</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.53
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Mucuna
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.48
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Melon (
<italic>Cucumia melo</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.13
<hr></hr>
</td>
<td align="left" valign="bottom">0.49
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Wheat (
<italic>Triticum spp</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.39
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Millet (
<italic>Penicum Milliaceum</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">3.54
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.44
<hr></hr>
</td>
</tr>
<tr>
<td align="left">(
<italic>Detarium microcarpum</italic>
</td>
<td align="left">0.22</td>
<td align="left">0.13</td>
<td align="left">1.21</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Nd = Not detectable.</p>
</table-wrap-foot>
</table-wrap>
<p>Table
<xref ref-type="table" rid="T2">2</xref>
shows the lead, cadmium and nickel levels (mg/kg) in fruits. The range of various metals in fruits was 0.00-4.23, 0.00-0.24,and 0.00-1.76 mg/kg and for Pb, Cd, and Ni respectively. The highest mean levels of Pb, Cd, and Ni, in the fruits were detected in
<italic>Canarium schweinfurthii</italic>
, tangerine
<italic>Citrus reticulata</italic>
, and pineapple
<italic>Ananas comosus</italic>
respectively. Taken together, about 36% of the sampled food crops, and fruits had non-detectable levels of lead, 49% had non-detectable levels of cadmium, and 15.7% had non-detectable levels of nickel. Forty-five percent of the sampled food crops violated the permissible limits of 0.01 mg/kg and 0mg/kg for lead as prescribed by WHO, EU and EPA respectively, 49% violated the limits for cadmium and 82% violated the limits for nickel.</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Lead, cadmium nickel and mercury levels (mg/kg) in fruits</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Sample</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Guava (
<italic>Psidium guajava)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.58
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Bannana (
<italic>Musa spp)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.46
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Apple (
<italic>Malus spp.)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Bush butter/African pear (
<italic>Dacryodes edulis</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">0.17
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Grape (
<italic>Citrus paradise)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.33
<hr></hr>
</td>
<td align="left" valign="bottom">0.14
<hr></hr>
</td>
<td align="left" valign="bottom">0.08
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Orange (
<italic>Citrus sinensis)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.34
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.08
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Pawpaw (
<italic>Carica papaya)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.26
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Avocado (
<italic>Persea Americana)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.72
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Pineaple (
<italic>Ananas comosus)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">1.76
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Local pear (
<italic>Canarium schweinfurthii</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">4.23
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.26
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Tangerine (
<italic>Citrus reticulate)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.69
<hr></hr>
</td>
<td align="left" valign="bottom">0.24
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Bush mango (
<italic>Irvingia gabonensis</italic>
</td>
<td align="left">Nd</td>
<td align="left">Nd</td>
<td align="left">0.22</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Nd = Not detectable.</p>
</table-wrap-foot>
</table-wrap>
<p>Heavy metal concentrations (mg/kg) in soil samples are shown on Table
<xref ref-type="table" rid="T3">3</xref>
. The range of various metals in the soil samples was 0.00–3.53, 0.00-0.18, and 0.26-1.56 for lead (Pb), cadmium (Cd), and nickel (Ni) respectively. The concentration of Pb, Cd, and Ni in Ohaji 1, 2 and 3 soil samples exceeded the maximum allowable concentrations for agricultural soil as recommended by EU but lower than Canadian human quality health soil quality guideline when compared with Table
<xref ref-type="table" rid="T4">4</xref>
.</p>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Heavy metal concentrations (mg/kg) in soil samples</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Soil sampling site</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Ohaji 1
<hr></hr>
</td>
<td align="left" valign="bottom">0.68
<hr></hr>
</td>
<td align="left" valign="bottom">0.16
<hr></hr>
</td>
<td align="left" valign="bottom">0.90
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Ohaji 2
<hr></hr>
</td>
<td align="left" valign="bottom">3.53
<hr></hr>
</td>
<td align="left" valign="bottom">0.10
<hr></hr>
</td>
<td align="left" valign="bottom">1.56
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Umuagwo
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.18
<hr></hr>
</td>
<td align="left" valign="bottom">0.89
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Owerri
<hr></hr>
</td>
<td align="left" valign="bottom">0.22
<hr></hr>
</td>
<td align="left" valign="bottom">Nd
<hr></hr>
</td>
<td align="left" valign="bottom">0.26
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Ohaji 3</td>
<td align="left">0.22</td>
<td align="left">0.10</td>
<td align="left">0.69</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Nd = Not detectable.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T4">
<label>Table 4</label>
<caption>
<p>Guideline for safe limits of heavy metals</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Sample</bold>
</th>
<th align="left">
<bold>Standard</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Soil, ug·g
<sup>-1</sup>
<hr></hr>
</td>
<td align="left" valign="bottom">Indian Standard Awashthi
<hr></hr>
</td>
<td align="left" valign="bottom">3-6
<hr></hr>
</td>
<td align="left" valign="bottom">250-500
<hr></hr>
</td>
<td align="left" valign="bottom">75-150
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">WHO/FAO, 2007
<hr></hr>
</td>
<td align="left" valign="bottom">-
<hr></hr>
</td>
<td align="left" valign="bottom">-
<hr></hr>
</td>
<td align="left" valign="bottom">-
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">European Union, 2002
<hr></hr>
</td>
<td align="left" valign="bottom">3-0
<hr></hr>
</td>
<td align="left" valign="bottom">300
<hr></hr>
</td>
<td align="left" valign="bottom">75
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Soil, mg·kg
<sup>-1</sup>
<hr></hr>
</td>
<td align="left" valign="bottom">Canadian human quality health soil quality guideline
<hr></hr>
</td>
<td align="left" valign="bottom">14
<hr></hr>
</td>
<td align="left" valign="bottom">140
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Plant, ug·g
<sup>-1</sup>
<hr></hr>
</td>
<td align="left" valign="bottom">Indian Standard Awashthi
<hr></hr>
</td>
<td align="left" valign="bottom">1.5
<hr></hr>
</td>
<td align="left" valign="bottom">2.5
<hr></hr>
</td>
<td align="left" valign="bottom">1.5
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">WHO/FAO, 2007
<hr></hr>
</td>
<td align="left" valign="bottom">0.2
<hr></hr>
</td>
<td align="left" valign="bottom">5.0
<hr></hr>
</td>
<td align="left" valign="bottom">
<bold>-</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">Commission regulation (EU, 2006)
<hr></hr>
</td>
<td align="left" valign="bottom">0.2
<hr></hr>
</td>
<td align="left" valign="bottom">0.30
<hr></hr>
</td>
<td align="left" valign="bottom">
<bold>-</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Leaf vegetables Tubers, cereals and fruits
<hr></hr>
</td>
<td align="left" valign="bottom">European Union maximum levels in foods (mg·kg
<sup>-1</sup>
wet weight)
<hr></hr>
</td>
<td align="left" valign="bottom">0.20
<sup>a</sup>
<hr></hr>
</td>
<td align="left" valign="bottom">0.3b
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">0.050
<sup>a</sup>
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Stem vegetables, root vegetables, and potatoes
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom">0.10
<sup>a</sup>
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
<td align="left" valign="bottom"> 
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Bran, germ, wheat, and rice, Soyabean</td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
<td align="left"> </td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
COMMISSION REGULATION (EU) No 420/2011 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs.</p>
<p>
<sup>b</sup>
FAO/WHO (2001), Joint Codex Alimentarius Commission.</p>
</table-wrap-foot>
</table-wrap>
<p>Tables 
<xref ref-type="table" rid="T5">5</xref>
and
<xref ref-type="table" rid="T6">6</xref>
show the daily intake rate (g person
<sup>-1</sup>
day
<sup>-1</sup>
) of lead, cadmium, nickel and mercury DIR through consumption of food crops, and fruits respectively. Rice (
<italic>Oryza sativa</italic>
) and Wall nut (
<italic>Tetracarpidium conophorum)</italic>
had the highest DIR of 0.3775 and 0.0526 for lead respectively. The highest DIR (0.0015) for cadmium were seen in Soybean (
<italic>Glycine max</italic>
) and Breadfruit (
<italic>Artocarpus altilis</italic>
), while the highest DIR for nickel were
<italic>Vigna subterranean</italic>
and Beans (
<italic>Phaseolus vulgaris</italic>
) with DIR of 0.0163 and Wall nut (
<italic>Tetracarpidium conophorum</italic>
) (0.0118).</p>
<table-wrap position="float" id="T5">
<label>Table 5</label>
<caption>
<p>Daily intake rate (g person
<sup>-</sup>
¹day
<sup>-</sup>
¹) of heavy metals DIR through consumption of contaminated food crops</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Food crops</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Cocoyam (
<italic>Colocasia esculenta</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0036
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Plantain (
<italic>Musa paradisiaca</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0007
<hr></hr>
</td>
<td align="left" valign="bottom">0.0062
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Cassava (
<italic>Manihot spp</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.002
<hr></hr>
</td>
<td align="left" valign="bottom">0.0006
<hr></hr>
</td>
<td align="left" valign="bottom">0.0019
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Yam (
<italic>Diascoria rotundata</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0007
<hr></hr>
</td>
<td align="left" valign="bottom">0.0064
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Breadfruit (
<italic>Artocarpus altilis</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0015
<hr></hr>
</td>
<td align="left" valign="bottom">0.0064
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Popcorn (
<italic>Senna didymobotrya)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0019
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Edible mushroom
<hr></hr>
</td>
<td align="left" valign="bottom">O.0014
<hr></hr>
</td>
<td align="left" valign="bottom">0.0006
<hr></hr>
</td>
<td align="left" valign="bottom">0.0030
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Groundnut (
<italic>Arachis hypogea</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0061
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Oil bean (
<italic>Pentabacta microfila</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0142
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Irvingia wombolu</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0049
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0193
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Vigna subterranean</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0062
<hr></hr>
</td>
<td align="left" valign="bottom">0.0008
<hr></hr>
</td>
<td align="left" valign="bottom">0.0163
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Beans (
<italic>Phaseolus vulgaris</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">0.0163
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Soybean (
<italic>Glycine max)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0028
<hr></hr>
</td>
<td align="left" valign="bottom">0.0015
<hr></hr>
</td>
<td align="left" valign="bottom">0.0106
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Potato (
<italic>Ipomea batatas</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0072
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Rice (
<italic>Oryza sativa)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.3775
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Maize (
<italic>Zea mays)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0062
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">
<italic>Brachystegia eurycoma</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0056
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0044
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Sorghum (
<italic>Sorghum bicolor</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0033
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Mucuna
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0030
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Melon (
<italic>Cucumia melo</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0008
<hr></hr>
</td>
<td align="left" valign="bottom">0.0030
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Wheat (
<italic>Triticum spp</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0024
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Millet (
<italic>Penicum Milliaceum</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.0218
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0027
<hr></hr>
</td>
</tr>
<tr>
<td align="left">
<italic>Detarium microcarpum</italic>
</td>
<td align="left">0.0014</td>
<td align="left">0.0008</td>
<td align="left">0.0075</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Nil = 0.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T6">
<label>Table 6</label>
<caption>
<p>
<bold>Daily intake rate (g person</bold>
<sup>-</sup>
¹
<bold>day</bold>
<sup>-</sup>
¹
<bold>) of heavy metals DIR through consumption of contaminated fruits</bold>
</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Fruits</bold>
</th>
<th align="left">
<bold>Pb</bold>
</th>
<th align="left">
<bold>Cd</bold>
</th>
<th align="left">
<bold>Ni</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Guava (
<italic>Psidium guajava)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0036
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Bannana (
<italic>Musa spp)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0028
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Apple (
<italic>Malus spp.)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Bush butter/African pear (
<italic>Dacryodes edulis</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Grape (
<italic>Citrus paradise)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0020
<hr></hr>
</td>
<td align="left" valign="bottom">0.0009
<hr></hr>
</td>
<td align="left" valign="bottom">0.0005
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Orange (
<italic>Citrus sinensis)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0021
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0005
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Pawpaw (
<italic>Carica papaya)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0016
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Avocado (
<italic>Persea Americana)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0044
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Pineaple (Ananas comosus
<italic>)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0108
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Local pear (
<italic>Canarium schweinfurthii</italic>
)
<hr></hr>
</td>
<td align="left" valign="bottom">0.026
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0016
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Tangerine (
<italic>Citrus reticulate)</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">0.0043
<hr></hr>
</td>
<td align="left" valign="bottom">0.0015
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Bush mango (
<italic>Irvingia gabonensis</italic>
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">Nil
<hr></hr>
</td>
<td align="left" valign="bottom">0.0014
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Wall nut (Tetracarpidium conophorum)</td>
<td align="left">0.0526</td>
<td align="left">0.0009</td>
<td align="left">0.0118</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Nil = 0.</p>
</table-wrap-foot>
</table-wrap>
<p>The estimated or the calculated intake of lead and cadmium according to Parkhurst equation is contained in Example of calculating true metal intake. The calculated amount of lead and cadmium for a person on rice, and tangerine (
<italic>Citrus reticulate)</italic>
and another person on Cassava (
<italic>Manihot spp</italic>
) and Bannana (
<italic>Musa spp).</italic>
The true lead and cadmium intake for the rice based meal were 3.531g/kg and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 g/kg and 0.049 g/kg respectively.</p>
<sec>
<title>Example of calculating true metal intake</title>
<p>
<inline-formula>
<mml:math id="M2" name="1752-153X-6-77-i2" overflow="scroll">
<mml:mrow>
<mml:mtext>True Pb intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>24</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>8</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext> days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mi>x</mml:mi>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>61</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>17</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>200</mml:mn>
<mml:mtext> g x</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>69</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>3</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>53</mml:mn>
<mml:mi>g</mml:mi>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>
<inline-formula>
<mml:math id="M3" name="1752-153X-6-77-i3" overflow="scroll">
<mml:mrow>
<mml:mtext>True Cd intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>24</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>8</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext>days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mtext>x</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>0</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg </mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>200</mml:mn>
<mml:mtext> g x </mml:mtext>
<mml:mn>0.24</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mo>0</mml:mo>
<mml:mn>34</mml:mn>
<mml:mtext> g</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>
<inline-formula>
<mml:math id="M4" name="1752-153X-6-77-i4" overflow="scroll">
<mml:mrow>
<mml:mtext>True Ni intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>24</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>8</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext>days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mi>x</mml:mi>
<mml:mspace width="0.12em"></mml:mspace>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>0</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg </mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>200</mml:mn>
<mml:mtext> gx</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>00</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>0.00</mml:mn>
<mml:mi>g</mml:mi>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>
<inline-formula>
<mml:math id="M5" name="1752-153X-6-77-i5" overflow="scroll">
<mml:mrow>
<mml:mtext>True Pb intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>214</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext>days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mi>x</mml:mi>
<mml:mn>0.33</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg </mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>200</mml:mn>
<mml:mtext>gx</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>46</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>19</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>42</mml:mn>
<mml:mtext> g</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>
<inline-formula>
<mml:math id="M6" name="1752-153X-6-77-i6" overflow="scroll">
<mml:mrow>
<mml:mtext>True Cd intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>214</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext>days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mi>x</mml:mi>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>10</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mn>200</mml:mn>
<mml:mtext>gx</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>0</mml:mn>
<mml:mtext> mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>049</mml:mn>
<mml:mtext> g</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>
<inline-formula>
<mml:math id="M7" name="1752-153X-6-77-i7" overflow="scroll">
<mml:mrow>
<mml:mtext>True Ni intake</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>214</mml:mn>
<mml:mtext> kg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mn>365</mml:mn>
<mml:mtext>days</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mtext>x0.0.</mml:mtext>
<mml:mn>30</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
<mml:mo stretchy="true">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mfenced open="(" close=")">
<mml:mrow>
<mml:mn>200</mml:mn>
<mml:mtext>gx</mml:mtext>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>0</mml:mn>
<mml:mtext>mg</mml:mtext>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mn>18</mml:mn>
<mml:mi>g</mml:mi>
<mml:mo>/</mml:mo>
<mml:mtext>kg</mml:mtext>
</mml:mrow>
</mml:math>
</inline-formula>
</p>
<p>i.e. (yearly intake of rice, cassava and fruits (tangerine and banana) multiplied by concentration of heavy metal contaminant in each of the food item).</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>The thrust of this study was to determine the levels of lead and cadmium, and nickel in commonly ingested farm produce that form the staple foods of Nigerians with a view to lending credence to the assertion by Gidlow (2004) [
<xref ref-type="bibr" rid="B3">3</xref>
] that irrespective of the pressure to reduce lead exposure in the general population and working environment, legislation must be based on genuine scientific evaluation of the available evidence. We have presented data on lead, cadmium, and nickel levels in food crops and fruits of southeastern Nigeria and the soil levels in corresponding farmlands. These values are higher in the sampled food crops and fruits compared to the soil samples. Some plants are capable of taking up lead from soil through their root systems, although this uptake does not appear to be appreciable [
<xref ref-type="bibr" rid="B9">9</xref>
] Soil samples from different farm lands where crops and fruits were harvested showed the presence of Pb, Cd and Ni. The concentration of soil lead was highest followed by Ni, and Cd in a descending order. The concentration of Pb, Cd, and Ni in Ohaji 1, 2 and 3 soil samples exceeded the maximum allowable concentrations for agricultural soil as recommended by EU but lower than Canadian human quality health soil quality guideline when compared with Table
<xref ref-type="table" rid="T4">4</xref>
.</p>
<p>Cereals are a major component of the human diet and a source of essential nutrients, antioxidants and metabolites [
<xref ref-type="bibr" rid="B10">10</xref>
]. However, intake of toxic metal-contaminated cereals may pose a risk to human health. Agricultural activities have been identified as contributors to increasing toxic metal contamination through the application of various types of pesticides and fertilizers [
<xref ref-type="bibr" rid="B11">11</xref>
]. Results from present and previous studies [
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
] demonstrate that the foods grown on contaminated soils are more contaminated with heavy metals, which pose a major health concern.</p>
<p>In the present study the high percentage of food crops and fruits that violated the permissible limits of lead and cadmium as set by WHO, EU and EPA respectively is of public health concern. Among possible target organs of heavy metals, are soft tissues such as the kidney and liver and the central nervous system appear to be especially sensitive [
<xref ref-type="bibr" rid="B14">14</xref>
]. Some patients develop vesicular type of hand eczema following the ingestion of nickel in diet [
<xref ref-type="bibr" rid="B15">15</xref>
]. Although rare, chronic urticaria, a type 1 hypersensitivity response, has been attributed to dietary nickel [
<xref ref-type="bibr" rid="B16">16</xref>
]. The mean total dietary intake of nickel has been reported to be between 0.12-0.21 mg in UK [
<xref ref-type="bibr" rid="B17">17</xref>
], 0.13 mg in Finland [
<xref ref-type="bibr" rid="B18">18</xref>
], 0.17 mg in US [
<xref ref-type="bibr" rid="B19">19</xref>
] and between 0.207-0.406 mg in Canada [
<xref ref-type="bibr" rid="B20">20</xref>
]. The true intake of nickel in two Nigerian staple foods namely rice and cassava based meals calculated in this study appear to be within this range. This could be higher depending on food-fruits combinations. The high lead level seen in fruits especially local pear
<italic>Canarium schweinfurthii</italic>
is in an agreement with our previous finding of high lead level in same local pear in another city of South Eastern Nigeria [
<xref ref-type="bibr" rid="B21">21</xref>
].</p>
<p>Provisional tolerable weekly intake (PTWI) depends on the amount, consumption period and contamination level of consumed food. The FAO/WHO in 1993 established a provisional tolerable weekly intake (PTWI) of 25 μg lead/kg body weight for humans, equaling 1500 μg lead/week for a 60 kg person [
<xref ref-type="bibr" rid="B22">22</xref>
]. In 1995, the WHO estimated that total lead intake in adults worldwide range from 105 to 2212 μg/week [
<xref ref-type="bibr" rid="B22">22</xref>
]. In Canada the dietary intake of lead may be calculated to 168 μg/week for a 60 kg person [
<xref ref-type="bibr" rid="B23">23</xref>
]. The PTWI of cadmium has been set at 7 μg/kg body weight [
<xref ref-type="bibr" rid="B24">24</xref>
], equaling 420 μg cadmium/week for a 60-kg person. The dietary intake of lead, cadmium and nickel seem to be higher than the FAO/WHO PTWI.</p>
<p>Nigeria’s food regime is based essentially on two foods: grains, which provide 46% of calories and 52% of proteins consumed, and root crops/tubers, which provide 20% of calories and 8% of proteins consumed. Consumption of grains and root crops/tubers amounts to 150 kg and 214 kg respectively per person and per year [
<xref ref-type="bibr" rid="B8">8</xref>
]. The average Nigerian now consumes 24.8 kg of rice per year, representing 9% of total caloric intake [
<xref ref-type="bibr" rid="B7">7</xref>
]. The WHO/FAO report, "Diet, Nutrition and the Prevention of Chronic Diseases" recommends a population dietary intake goal of more than 400 g per day for fruits and vegetables. Many advanced counties have already launched campaigns for promoting the consumption of fruits and vegetables, especially in the framework of the International Fruits and Vegetables Alliance (IFAVA) [
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
]. In addition to the FAO-WHO initiative, such an approach is supported by the Global Horticultural Initiative (GlobalHort) and is now considered globally as a good way for reaching the United Nations Millenium Development Goals (MDGs) [
<xref ref-type="bibr" rid="B26">26</xref>
]. Should Nigeria adhere to this recommendation, it will be worthwhile to ascertain the safety of fruits consumption with respect to these heavy metals especially lead and cadmium. Although the present study has not employed the use of food intake diaries, the calculated/estimated intake of lead and cadmium using arithmetic mean, for a Nigerians on the popular staple foods namely rice or cassava were 3.53 - 19.42g/kg and 0.034 - 0.049 g/kg for lead and cadmium respectively. It could be feared therefore that if from staple foods alone excluding, the body burden of lead in an average Nigerian exceeds that of values obtained in Europe and America, a cumulative amount from other sources may make it even higher. Only recently Orisakwe 2009 [
<xref ref-type="bibr" rid="B27">27</xref>
] noted that while blood lead levels (BLLs) in many western countries have progressively declined over the years, in Nigeria high BLL continue to be documented not only in exposed workers but also in “unexposed” control subjects. There exist many sources of environmental lead exposure in Nigeria. At the top of the list is leaded gasoline. Although there was a plan to reduce the lead content of Nigerian gasoline from 0.74 g/L to 0.15 g/L by 2002 there is a doubt that it was implemented [
<xref ref-type="bibr" rid="B28">28</xref>
].</p>
<p>The degree of toxicity of heavy metals to human being depends upon their daily intake. Heavy metals intake through consumption of various types of food stuffs grown and sold in Southeastern Nigeria showed large variations. The standard of FAO/WHO (1999) [
<xref ref-type="bibr" rid="B29">29</xref>
] has established a reference value for tolerable daily intake. Our estimated daily intake rate for lead and cadmium DIR were above the tolerable daily intake rates for some of the food stuffs. In addition, the body weight of the human can influence the tolerance of pollutants. The DIM values for heavy metals were high when based on the consumption of food crops and fruits grown in the soils sampled in this study. The highest intakes of Pb, Cd, Ni and Hg were from the consumption of Rice (Oryza sativa), Soybean Soybean (
<italic>Glycine max</italic>
), oil bean (
<italic>Pentabacta microfila</italic>
) and (
<italic>Vigna subterranean</italic>
) respectively.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusion</title>
<p>Among other routes, food is one of the main sources of consumer exposure to heavy metals. Since increased dietary metals intake may contribute to the development of various disorders, there is a necessity for monitoring of these substances in the human diet. Heavy metals show a significant build-up with contamination and long-term accumulation of heavy metals in soils has led to contamination of food crops in the study area. All the food crops and fruits containing heavy metals were higher than the recommended tolerable levels proposed EU, USEPA and WHO. Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance.</p>
<p>It is recommended that people living in this area should not eat large quantities of these foods, so as to avoid excessive accumulation of heavy metals in the body. Dietary intake of food results in long-term low level body accumulation of heavy metals and the detrimental impact becomes apparent only after several years of exposure. Thus regular monitoring of these toxic heavy metals from effluents and sewage, in foods is essential, to prevent their excessive build-up in the food chain.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors’ contributions</title>
<p>OOE and NJK designed and handled write up, ACN analysed the data while DDO and OO handled collection of data, food sampling and laboratory experimentation. All authors read and approved the final manuscript.</p>
</sec>
</body>
<back>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Zukowska</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Biziuk</surname>
<given-names>M</given-names>
</name>
<article-title>Methodological Evaluation of Method for Dietary Heavy Metal Intake</article-title>
<source>J Food Sci</source>
<year>2008</year>
<volume>73</volume>
<issue>2</issue>
<fpage>R21</fpage>
<lpage>R29</lpage>
<pub-id pub-id-type="pmid">18298744</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Arora</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kiran</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rani</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mittal</surname>
<given-names>N</given-names>
</name>
<article-title>Heavy metal accumulation in vegetables irrigated with water from different sources</article-title>
<source>Food Chem</source>
<year>2008</year>
<volume>11</volume>
<fpage>811</fpage>
<lpage>815</lpage>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Gidlow</surname>
<given-names>DA</given-names>
</name>
<article-title>Lead toxicity</article-title>
<source>Occupational Medicine (Lond)</source>
<year>2004</year>
<volume>54</volume>
<issue>2</issue>
<fpage>76</fpage>
<lpage>81</lpage>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Ge</surname>
<given-names>KY</given-names>
</name>
<article-title>The status of nutrient and meal of Chinese in the</article-title>
<source>Beijing People’s Hygiene Press</source>
<year>1990</year>
<volume>1992</volume>
<fpage>415</fpage>
<lpage>434</lpage>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>S</given-names>
</name>
<article-title>Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish</article-title>
<source>Sci Total Environ</source>
<year>2005</year>
<volume>350</volume>
<fpage>28</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="pmid">16227070</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Parkhurst</surname>
<given-names>DF</given-names>
</name>
<article-title>Arithmetic versus geometric means for environmental concentration data</article-title>
<source>Environ Sci Technol</source>
<year>1998</year>
<volume>32</volume>
<fpage>92A</fpage>
<lpage>98A</lpage>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="other">
<name>
<surname>Akpokodje</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lançon</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Erenstein</surname>
<given-names>O</given-names>
</name>
<source>Nigeria’s Rice Economy: State of the Art West Africa Rice Development Association (WARDA) Bouake, Côte d’Ivoire</source>
<year>2007</year>
<comment>p10</comment>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<collab>Inter-réseaux,</collab>
<article-title>Staple Crop Production and Consumption: Nigeria on the Way to Food Self-Sufficiency</article-title>
<source>Grain de sel</source>
<year>2010</year>
<volume>51</volume>
<fpage>10</fpage>
<lpage>12</lpage>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="book">
<collab>Agency for Toxic Substances and Disease Registry (ATSDR)</collab>
<source>Toxicological profile for Lead</source>
<year>2007</year>
<publisher-name>Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service</publisher-name>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Anita</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rajesh</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Madhoolika</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fiona</surname>
<given-names>MM</given-names>
</name>
<article-title>Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India</article-title>
<source>Food Chemical Toxicology</source>
<year>2010</year>
<volume>48</volume>
<fpage>611</fpage>
<lpage>619</lpage>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Khairiah</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ding-Woei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Habibah</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ahmed-Mahir</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Aminah</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ismail</surname>
<given-names>BS</given-names>
</name>
<article-title>Concentration of heavy metals in guava plant parts and soil in the Sungai Wangi Plantation, Perak, Malaysia</article-title>
<source>International Journal Agriculture Research</source>
<year>2009</year>
<volume>4</volume>
<fpage>310</fpage>
<lpage>316</lpage>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Soderlund</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>GH</given-names>
</name>
<article-title>Impacts of sewage irrigation on heavy metals distribution and contamination</article-title>
<source>Environ Int</source>
<year>2005</year>
<volume>31</volume>
<fpage>805</fpage>
<lpage>812</lpage>
<pub-id pub-id-type="pmid">15979146</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Muchuweti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Birkett</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Chinyanga</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zvauya</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Scrimshaw</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Lester</surname>
<given-names>JN</given-names>
</name>
<article-title>Heavy metal content of vegetables irrigated with mixture of wastewater and sewage sludge in Zimbabwe: implications for human health</article-title>
<source>Agriculture Ecosystem Environment</source>
<year>2006</year>
<volume>112</volume>
<fpage>41</fpage>
<lpage>48</lpage>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Apostoli</surname>
<given-names>P</given-names>
</name>
<article-title>Elements in environmental and occupational medicine</article-title>
<source>J Chromatogr B</source>
<year>2002</year>
<volume>778</volume>
<issue>1</issue>
<fpage>63</fpage>
<lpage>97</lpage>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Christensen</surname>
<given-names>OB</given-names>
</name>
<name>
<surname>Moller</surname>
<given-names>H</given-names>
</name>
<article-title>External and internal exposure to the antigen in the hand eczema of nickel allergy</article-title>
<source>Contact Dermatitis</source>
<year>1975</year>
<volume>1</volume>
<fpage>136</fpage>
<lpage>141</lpage>
<pub-id pub-id-type="pmid">797515</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Abeck</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Traenckner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Steinkraus</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vieluf</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ring</surname>
<given-names>J</given-names>
</name>
<article-title>Chronic urticaria due to nickel intake</article-title>
<source>Acta Dermatology Venereology</source>
<year>1993</year>
<volume>73</volume>
<fpage>438</fpage>
<lpage>439</lpage>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Ysart</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Crews</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Robb</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Baxter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>De L'Argy</surname>
<given-names>C</given-names>
</name>
<etal></etal>
<article-title>Dietary exposure estimates of 30 elements from the UK Total Diet Study</article-title>
<source>Food Additives and Contaminants</source>
<year>1999</year>
<volume>16</volume>
<issue>9</issue>
<fpage>391</fpage>
<lpage>403</lpage>
<pub-id pub-id-type="pmid">10755130</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Varo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Koivistonen</surname>
<given-names>P</given-names>
</name>
<article-title>Mineral composition of Finnish foods XII. General discussion and nutritional evaluation</article-title>
<source>Acta Agricultura Scandinavica</source>
<year>1980</year>
<volume>S22</volume>
<fpage>165</fpage>
<lpage>170</lpage>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Nielsen</surname>
<given-names>FH</given-names>
</name>
<article-title>Fluoride, vanadium, nickel, arsenic and silicon in total parenteral nutrition</article-title>
<source>Bulletine New York Academy Medicine</source>
<year>1984</year>
<volume>60</volume>
<fpage>177</fpage>
<lpage>195</lpage>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Dabeka</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>MacKenzie</surname>
<given-names>AD</given-names>
</name>
<article-title>Survey of lead, cadmium, fluoride, nickel and cobalt in food composites and estimations of dietary intakes of these elements by Canadians in 1986–88</article-title>
<source>J AOAC Int</source>
<year>1995</year>
<volume>78</volume>
<fpage>897</fpage>
<lpage>909</lpage>
<pub-id pub-id-type="pmid">7580328</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Orisakwe</surname>
<given-names>OE</given-names>
</name>
<name>
<surname>Asomugha</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Obi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Afonne</surname>
<given-names>OJ</given-names>
</name>
<name>
<surname>Anisi</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Dioka</surname>
<given-names>CE</given-names>
</name>
<article-title>Impact of effluents from car battery manufacturing plant on water, soil and food qualities in Nnewi, Nigeria</article-title>
<source>Archives Environment Health</source>
<year>2004</year>
<volume>59</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>36</lpage>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Johansen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pars</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bjerregaard</surname>
<given-names>P</given-names>
</name>
<article-title>Lead, cadmium, mercury, and selenium intake by Greenlanders from local marine food</article-title>
<source>Sci Total Environ</source>
<year>2000</year>
<volume>245</volume>
<fpage>187</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="pmid">10682366</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="book">
<collab>Health and Welfare Canada</collab>
<source>Lead and human health</source>
<year>1989</year>
<publisher-name>Ottawa: Health Protection Branch</publisher-name>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="book">
<collab>FAO/WHO</collab>
<source>Evaluation of certain food additives and contaminants</source>
<year>1989</year>
<publisher-name>Rome, Italy: WHO Technical Report Series</publisher-name>
<comment>No. 776</comment>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="book">
<collab>FAO/WHO</collab>
<source>Fruit and vegetables for health</source>
<year>2004</year>
<publisher-name>Kobe, Japan: Report of Joint FAO/WHO Workshop</publisher-name>
<comment>1–3 September 2004</comment>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="book">
<name>
<surname>Ganry</surname>
<given-names>J</given-names>
</name>
<source>Current status of fruits and vegetables production and consumption in Francophone African Countries - Potential impact on health</source>
<year>2007</year>
<publisher-name>Yaounde, Cameroon: FAO-WHO Workshop</publisher-name>
<comment>23–26 October</comment>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Orisakwe</surname>
<given-names>OE</given-names>
</name>
<article-title>Environmental pollution and blood lead levels in Nigeria: Who is unexposed?</article-title>
<source>Int J Occup Environ Heal</source>
<year>2009</year>
<volume>15</volume>
<issue>3</issue>
<fpage>315</fpage>
<lpage>317</lpage>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="other">
<collab>Clean Air Initiative</collab>
<source>Mobile sources - Sub-Saharan Africa; Group Report, Nigeria & Neighbors</source>
<year>2007</year>
<comment>Available on-line at:
<ext-link ext-link-type="uri" xlink:href="http://www.cleanairnet.org/ssa/1414/propertyvalue-13627.html">http://www.cleanairnet.org/ssa/1414/ propertyvalue-13627.html</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="book">
<collab>Joint FAO/WHO Expert Committee on Food Additives Toxicological Evaluation of Certain Food Additives. ILSI Press International Life Sciences Institute</collab>
<source>Washington</source>
<year>1999</year>
<publisher-name>USA: DC</publisher-name>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3567425
   |texte=   Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:22853175" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024