Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000A77 ( Pmc/Corpus ); précédent : 000A769; suivant : 000A780 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Purification, molecular cloning, and characterization of glutathione
<italic>S</italic>
-transferases (GSTs) from pigmented
<italic>Vitis vinifera</italic>
L. cell suspension cultures as putative anthocyanin transport proteins</title>
<author>
<name sortKey="Conn, Simon" sort="Conn, Simon" uniqKey="Conn S" first="Simon" last="Conn">Simon Conn</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia, 5064</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Curtin, Chris" sort="Curtin, Chris" uniqKey="Curtin C" first="Chris" last="Curtin">Chris Curtin</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Australian Wine Research Institute, Waite Campus, Urrbrae, Australia, 5064</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bezier, Annie" sort="Bezier, Annie" uniqKey="Bezier A" first="Annie" last="Bézier">Annie Bézier</name>
<affiliation>
<nlm:aff id="aff4">Laboratoire de Biologie et Physiologie Végétales, Equipe de Biochimie et Biologie Moléculaire des Plantes, Université de Reims Champagne-Ardenne, 51687 Reims cedex 2, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franco, Chris" sort="Franco, Chris" uniqKey="Franco C" first="Chris" last="Franco">Chris Franco</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wei" sort="Zhang, Wei" uniqKey="Zhang W" first="Wei" last="Zhang">Wei Zhang</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18836188</idno>
<idno type="pmc">2561157</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561157</idno>
<idno type="RBID">PMC:2561157</idno>
<idno type="doi">10.1093/jxb/ern217</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000A77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Purification, molecular cloning, and characterization of glutathione
<italic>S</italic>
-transferases (GSTs) from pigmented
<italic>Vitis vinifera</italic>
L. cell suspension cultures as putative anthocyanin transport proteins</title>
<author>
<name sortKey="Conn, Simon" sort="Conn, Simon" uniqKey="Conn S" first="Simon" last="Conn">Simon Conn</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia, 5064</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Curtin, Chris" sort="Curtin, Chris" uniqKey="Curtin C" first="Chris" last="Curtin">Chris Curtin</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Australian Wine Research Institute, Waite Campus, Urrbrae, Australia, 5064</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bezier, Annie" sort="Bezier, Annie" uniqKey="Bezier A" first="Annie" last="Bézier">Annie Bézier</name>
<affiliation>
<nlm:aff id="aff4">Laboratoire de Biologie et Physiologie Végétales, Equipe de Biochimie et Biologie Moléculaire des Plantes, Université de Reims Champagne-Ardenne, 51687 Reims cedex 2, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franco, Chris" sort="Franco, Chris" uniqKey="Franco C" first="Chris" last="Franco">Chris Franco</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wei" sort="Zhang, Wei" uniqKey="Zhang W" first="Wei" last="Zhang">Wei Zhang</name>
<affiliation>
<nlm:aff id="aff1">Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Experimental Botany</title>
<idno type="ISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The ligandin activity of specific glutathione
<italic>S</italic>
-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from
<italic>Vitis vinifera</italic>
L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with heterologous expression in
<italic>Escherichia coli</italic>
used to confirm GST activity. Transcriptional profiling of these candidate GST genes and key anthocyanin biosynthetic pathway genes (
<italic>PAL</italic>
,
<italic>CHS</italic>
,
<italic>DFR</italic>
, and
<italic>UFGT</italic>
) in cell suspensions and grape berries against anthocyanin accumulation demonstrated strong positive correlation with two sequences,
<italic>VvGST1</italic>
and
<italic>VvGST4</italic>
, respectively. The ability of VvGST1 and VvGST4 to transport anthocyanins was confirmed in the heterologous maize
<italic>bronze-2</italic>
complementation model, providing further evidence for their function as anthocyanin transport proteins in grape cells. Furthermore, the differential induction of VvGST1 and VvGST4 in suspension cells and grape berries suggests functional differences between these two proteins. Further investigation of these candidate ligandins may identify a mechanism for manipulating anthocyanin accumulation
<italic>in planta</italic>
and
<italic>in vitro</italic>
suspension cells.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Exp Bot</journal-id>
<journal-id journal-id-type="hwp">jexbot</journal-id>
<journal-id journal-id-type="publisher-id">exbotj</journal-id>
<journal-title>Journal of Experimental Botany</journal-title>
<issn pub-type="ppub">0022-0957</issn>
<issn pub-type="epub">1460-2431</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18836188</article-id>
<article-id pub-id-type="pmc">2561157</article-id>
<article-id pub-id-type="doi">10.1093/jxb/ern217</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Purification, molecular cloning, and characterization of glutathione
<italic>S</italic>
-transferases (GSTs) from pigmented
<italic>Vitis vinifera</italic>
L. cell suspension cultures as putative anthocyanin transport proteins</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Conn</surname>
<given-names>Simon</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Curtin</surname>
<given-names>Chris</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bézier</surname>
<given-names>Annie</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Franco</surname>
<given-names>Chris</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Medical Biotechnology, Flinders University, Adelaide, Australia, 5042</aff>
<aff id="aff2">
<label>2</label>
School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia, 5064</aff>
<aff id="aff3">
<label>3</label>
Australian Wine Research Institute, Waite Campus, Urrbrae, Australia, 5064</aff>
<aff id="aff4">
<label>4</label>
Laboratoire de Biologie et Physiologie Végétales, Equipe de Biochimie et Biologie Moléculaire des Plantes, Université de Reims Champagne-Ardenne, 51687 Reims cedex 2, France</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
To whom correspondence should be addressed. E-mail:
<email>wei.zhang@flinders.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="epub-ppub">
<month>10</month>
<year>2008</year>
</pub-date>
<pmc-comment>Fake ppub date generated by PMC from publisher pub-date/@pub-type='epub-ppub' </pmc-comment>
<pub-date pub-type="ppub">
<month>10</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="pmc-release">
<month>10</month>
<year>2008</year>
</pub-date>
<volume>59</volume>
<issue>13</issue>
<fpage>3621</fpage>
<lpage>3634</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>5</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>1</day>
<month>7</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>7</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>© 2008 The Author(s).</copyright-statement>
<copyright-year>2008</copyright-year>
<license license-type="open-access">
<p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/2.0/uk/">http://creativecommons.org/licenses/by-nc/2.0/uk/</ext-link>
) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<p>This paper is available online free of all access charges (see
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/open_access.html">http://jxb.oxfordjournals.org/open_access.html</ext-link>
for further details)</p>
</license>
</permissions>
<abstract>
<p>The ligandin activity of specific glutathione
<italic>S</italic>
-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from
<italic>Vitis vinifera</italic>
L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with heterologous expression in
<italic>Escherichia coli</italic>
used to confirm GST activity. Transcriptional profiling of these candidate GST genes and key anthocyanin biosynthetic pathway genes (
<italic>PAL</italic>
,
<italic>CHS</italic>
,
<italic>DFR</italic>
, and
<italic>UFGT</italic>
) in cell suspensions and grape berries against anthocyanin accumulation demonstrated strong positive correlation with two sequences,
<italic>VvGST1</italic>
and
<italic>VvGST4</italic>
, respectively. The ability of VvGST1 and VvGST4 to transport anthocyanins was confirmed in the heterologous maize
<italic>bronze-2</italic>
complementation model, providing further evidence for their function as anthocyanin transport proteins in grape cells. Furthermore, the differential induction of VvGST1 and VvGST4 in suspension cells and grape berries suggests functional differences between these two proteins. Further investigation of these candidate ligandins may identify a mechanism for manipulating anthocyanin accumulation
<italic>in planta</italic>
and
<italic>in vitro</italic>
suspension cells.</p>
</abstract>
<kwd-group>
<kwd>Anthocyanin transport</kwd>
<kwd>glutathione
<italic>S</italic>
-transferase</kwd>
<kwd>ligandin</kwd>
<kwd>plant cell culture</kwd>
<kwd>
<italic>Vitis vinifera</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Plants contain a variety of glutathione-binding proteins, including glutathione lyases, peroxidases, reductases, and
<italic>S</italic>
-transferases (GSTs) (
<xref ref-type="bibr" rid="bib49">Marrs, 1996</xref>
). The GSTs are unique in this group as they are all soluble or loosely membrane-associated dimers with a monomeric size of 15–28 kDa, and together comprise 1–3.5% of total cellular protein (
<xref ref-type="bibr" rid="bib27">Droog
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib61">Pairoba and Walbot, 2003</xref>
). GSTs catalyse the conjugation of the tripeptide glutathione (γ-Glu-Cys-Gly; GSH) to a variety of electrophilic compounds to direct them to specific sites both intra- and extracellularly. In mammals, GST subunits are classified into α, μ, π, σ, and θ classes on the basis of amino acid identity, immuno-cross-reactivity, and substrate specificity (
<xref ref-type="bibr" rid="bib11">Buetler and Eaton, 1992</xref>
; Mannervik
<italic>et al.</italic>
, 1992). The majority of plant GSTs are most similar to the θ class, and are further classified into three phylogenetic types based on sequence similarity and intron/exon structure (
<xref ref-type="bibr" rid="bib26">Droog
<italic>et al.</italic>
, 1993</xref>
;
<xref ref-type="bibr" rid="bib25">Droog, 1997</xref>
). Type I GSTs, with two introns, have been identified in numerous plant species. Type II GSTs have been identified in wheat and carnation, with the gene in carnation containing nine introns (
<xref ref-type="bibr" rid="bib53">McGonigle
<italic>et al.</italic>
, 2000</xref>
). Type III GSTs contain a single intron and make up the second largest family of plant GSTs, including many of the GSTs originally identified as auxin-regulated proteins (
<xref ref-type="bibr" rid="bib70">Takahashi
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib29">Edwards and Dixon, 2005</xref>
).</p>
<p>GSTs, originally characterized by their ability to modify xenobiotics covalently by glutathionation, are rapidly induced by their substrates—in particular plant herbicides (
<xref ref-type="bibr" rid="bib50">Marrs
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib1">Aharoni
<italic>et al.</italic>
, 2002</xref>
;
<xref ref-type="bibr" rid="bib18">Dean
<italic>et al.</italic>
, 2005</xref>
). In addition, GSTs act as non-enzymatic carrier proteins (ligandins) enabling intracellular shuttling of endogenous compounds in animals, plants, and prokaryotes. Within plants, these ligands include indole-3-acetic acid (IAA), naphthalene acetic acid (NAA), labile cytochrome precursors, and the ubiquitous plant pigments, anthocyanins (
<xref ref-type="bibr" rid="bib39">Jones, 1994</xref>
;
<xref ref-type="bibr" rid="bib7">Bilang and Sturm, 1995</xref>
;
<xref ref-type="bibr" rid="bib50">Marrs
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="bib44">Lederer and Böger, 2005</xref>
). The soybean GH2/4 gene is inducible not only by strong auxins (2,4-D; 2,4,5-T; α-NAA) and salicylic acid (SA), but also by numerous other electrophilic compounds, including weak auxins (β-NAA), inactive auxin analogues (2,3-D and 2,3,6-T), and inactive SA analogues (3-hydroxybenzoic acid, 4-hydroxybenzoic acid) (
<xref ref-type="bibr" rid="bib73">Ulmasov
<italic>et al.</italic>
, 1994, 1995</xref>
). Furthermore, the Hmgst-1 protein from
<italic>Hyoscyamus muticus</italic>
able to bind IAA exhibits an expression profile that correlates with accumulation of IAA, suggesting that this GST is involved in intracellular IAA transport (
<xref ref-type="bibr" rid="bib6">Bilang
<italic>et al.</italic>
, 1993</xref>
;
<xref ref-type="bibr" rid="bib7">Bilang and Sturm, 1995</xref>
). Thus, it is clear that different auxins and potentially other ligands induce and bind GSTs differently. Beyond this work on auxins, few studies relate GST transcription or expression with accumulation of endogenous substrates. The well-characterized anthocyanin biosynthetic pathway in grapevines thus provides an ideal target for analysing transcriptional correlation of GSTs with another family of non-substrate ligands.</p>
<p>The state of protonation influences the colour of anthocyanins, and in many plant species they are concentrated within structures known as anthocyanic vacuolar inclusions, within the acidic central vacuole (
<xref ref-type="bibr" rid="bib62">Pecket and Small, 1980</xref>
;
<xref ref-type="bibr" rid="bib13">Conn
<italic>et al.</italic>
, 2003</xref>
). Their synthesis, however, has been demonstrated to occur predominantly in the cytosol. Indeed for
<italic>Arabidopsis</italic>
, the anthocyanin biosynthetic complex has been localized to the cytosolic face of the rough endoplasmic reticulum (reviewed in
<xref ref-type="bibr" rid="bib81">Winkel, 2004</xref>
). Furthermore, the localization of an anthocyanin methyltransferase from
<italic>Petunia hybrida</italic>
(
<xref ref-type="bibr" rid="bib40">Jonsson
<italic>et al.</italic>
, 1983</xref>
) and anthocyanin acyltransferases from
<italic>Gentiana triflora</italic>
(
<xref ref-type="bibr" rid="bib30">Fujiwara
<italic>et al.</italic>
, 1998</xref>
) and
<italic>Perilla frutescens</italic>
(
<xref ref-type="bibr" rid="bib83">Yonekura-Sakakibara
<italic>et al.</italic>
, 2000</xref>
) to the cytosol suggests that complete anthocyanins, rather than intermediates, are transported into the vacuole.</p>
<p>Gene knockout and complementation studies have demonstrated that GSTs are indelibly involved in anthocyanin transport. A
<italic>Zea mays</italic>
knockout mutant of a single GST [
<italic>Bronze-2</italic>
(
<italic>Bz2</italic>
)] accumulated anthocyanins in the cytosol only, at concentrations <10% of those found in wild-type lines (
<xref ref-type="bibr" rid="bib56">Mueller and Walbot, 2001</xref>
;
<xref ref-type="bibr" rid="bib33">Goodman
<italic>et al.</italic>
, 2004</xref>
). Anthocyanin-transporting GSTs have been identified by large-scale mutagenesis screens in other species, including petunia (
<italic>An9</italic>
;
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
), carnation (
<italic>Fl3</italic>
;
<xref ref-type="bibr" rid="bib43">Larsen
<italic>et al.</italic>
, 2003</xref>
), and
<italic>Arabidopsis</italic>
(
<italic>TT19</italic>
;
<xref ref-type="bibr" rid="bib42">Kitamura
<italic>et al.</italic>
, 2004</xref>
).
<xref ref-type="bibr" rid="bib42">Kitamura
<italic>et al.</italic>
(2004)</xref>
demonstrated that TT19 played an additional role in seed deposition of proanthocyanidins (tannins). While binding of both Bz2 and An9 to anthocyanins has not been directly shown, various studies have inferred this interaction by the use of equilibrium dialysis and tryptophan quenching with the recombinant proteins (
<xref ref-type="bibr" rid="bib50">Marrs
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
).
<italic>Bz2</italic>
knockout (
<italic>bz2</italic>
) suspension cells, when complemented with
<italic>Bz2</italic>
and exposed to [
<sup>35</sup>
S]GSH, produced
<sup>35</sup>
S-labelled compounds that co-migrated with anthocyanins when separated by thin-layer chromatography. While this is suggestive of covalent glutathionation
<italic>in vivo</italic>
, no further analysis was performed on these compounds (
<xref ref-type="bibr" rid="bib50">Marrs
<italic>et al.</italic>
, 1995</xref>
). Further evidence for ligandin activity in anthocyanin transport is the ability of the petunia An9 protein to complement the
<italic>Bz2</italic>
mutation, despite the inability of An9 to produce detectable [
<sup>35</sup>
S]anthocyanin conjugates. Together, these results suggest that only ligandin activity is necessary for anthocyanin transport in these systems (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
). In addition to anthocyanins, GSTs have been shown to bind other flavonoids
<italic>in vitro</italic>
and be important for their transport (
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="bib80">Winefield
<italic>et al.</italic>
, 2006</xref>
).</p>
<p>A proteomics approach, combining affinity chromatography and mass spectrometry (MS)/Edman sequencing was used to clone GSTs from pigmented
<italic>Vitis vinifera</italic>
cell cultures as putative anthocyanin transport proteins. Characterization of these proteins in
<italic>V. vinifera</italic>
will enable a better understanding of how transport influences accumulation of anthocyanins in the vacuole. This may assist in the augmentation of anthocyanin accumulation in plant cell cultures, as previous methods including precursor feeding, end-product removal, various biotic and abiotic treatments, and overexpression of transcription factors and enzymes in the anthocyanin biosynthetic pathway have been largely unsuccessful (
<xref ref-type="bibr" rid="bib35">Grotewold
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib86">Zhang
<italic>et al.</italic>
, 2002
<italic>a</italic>
</xref>
; Grotewald, 2006). This may also facilitate more widespread manipulation of the plant metabolome, enhancing accumulation of desirable compounds including glutathione-bound aromatic compounds (
<xref ref-type="bibr" rid="bib80">Winefield
<italic>et al.</italic>
, 2006</xref>
) and other flavonoids.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Plant cell culture and anthocyanin induction</title>
<p>
<italic>Vitis vinifera</italic>
cv. Gamay Fréaux var. Teinturier suspension cell line FU-01 was maintained under conditions previously described (
<xref ref-type="bibr" rid="bib87">Zhang
<italic>et al.</italic>
, 2002
<italic>b</italic>
</xref>
). The FU-01 cell line, selected for anthocyanin production in the dark, was originally developed and characterized by
<xref ref-type="bibr" rid="bib17">Cormier
<italic>et al.</italic>
(1994)</xref>
.</p>
<p>After 4 d of incubation, cultures were induced by constant irradiation with cool white light (96.8 ± 2.2 μmol s
<sup>−1</sup>
m
<sup>−2</sup>
), 10 μM jasmonic acid, and 20 g l
<sup>−1</sup>
sucrose. Control cultures received equal volumes of vehicle solutions in place of jasmonic acid and sucrose.</p>
</sec>
<sec>
<title>Growth and anthocyanin content analysis</title>
<p>Growth of cultures was measured by determining dry cell weight (DCW). Briefly, fresh cells were vacuum-filtered, washed with milliQ water, and transferred to pre-weighed aluminium foil squares. Fresh cell weight (FCW) was recorded and the foil parcels were dried at 90 °C for at least 48 h prior to DCW measurement.</p>
<p>Anthocyanins were extracted quantitatively from fresh, filter-dried suspension cells with 20 vols of acetic acid:H
<sub>2</sub>
O (1:1, v/v) for 1 h at room temperature. Extracts were clarified by centrifugation at 12 000 
<italic>g</italic>
for 5 min and the supernatant diluted 1:4 (v/v) in 40 mM Na
<sub>2</sub>
HPO
<sub>4</sub>
:80 mM citrate buffer, pH 3.0. The absorbance at 535 nm was measured on a Shimadzu UV mini 1240 UV-Vis spectrophotometer, and anthocyanins were quantified in terms of colour value (CV), as described previously (
<xref ref-type="bibr" rid="bib87">Zhang
<italic>et al.</italic>
, 2002
<italic>b</italic>
</xref>
). Following determination of the FCW to DCW ratio, CV/g-DCW was calculated.</p>
</sec>
<sec>
<title>Analysis of total soluble solids</title>
<p>
<italic>Vitis vinifera</italic>
cv. Shiraz berries from the Coombe Vineyard, Waite campus, Adelaide University, were analysed by a hand refractometer (Rochert, Buffalo, NY, USA) by crushing individual berries onto the optical path. For each condition, six berries were quantified (°Brix), and the results are presented as the mean ±SD.</p>
</sec>
<sec>
<title>Glutathione affinity chromatography</title>
<p>Glutathione affinity chromatography was performed on the 60% ammonium sulphate precipitate of whole-cell protein extracted from day 5 cultures with GS-Trap columns (GE Healthcare) according to the manufacturer's instructions. Specifically, the flow rate was set to 0.3 ml min
<sup>−1</sup>
and recirculated overnight at 4 °C using a P-1 peristaltic pump (GE Healthcare). Washes and elution (10 mM glutathione) were performed at 1 ml min
<sup>−1</sup>
using the ÄKTAPrime™ Plus LC system (GE Healthcare) and monitored with the online UV/conductivity recorder at 280 nm.</p>
</sec>
<sec>
<title>GST assay</title>
<p>The method of
<xref ref-type="bibr" rid="bib36">Habig
<italic>et al.</italic>
(1974)</xref>
was used to assay for GST activity on protein extracts, with the following modifications. The spectrophotometric assay was performed over 2 min in 1 ml quartz cuvettes with a final concentration of 3 mM GSH and the model substrate 1 mM 1-chloro-2,4-dinitrobenzene (CDNB; ε = 9.2 mM
<sup>−1</sup>
cm
<sup>−1</sup>
) in 100 mM phosphate buffer, pH 7.4.</p>
</sec>
<sec>
<title>Two-dimensional polyacrylamide gel electrophoresis</title>
<p>Protein samples were purified with the 2D-Plus One Cleanup Kit (GE Healthcare) and the pellet solubilized in 7 M urea, 2 M thiourea, 0.5% IPG buffer, pI 3–10 (GE Healthcare), 4% CHAPS, and 0.4% dithiothreitol (DTT). Thirteen centimeter IPG strips (pI3-10NL, GE Healthcare) were rehydrated in the above protein solution and focused for 48 kVh. Proteins were separated on a 10% polyacrylamide gel and subsequently stained with SYPRO Ruby (GE Healthcare) or by silver staining (
<xref ref-type="bibr" rid="bib66">Sambrook and Maniatis, 1989</xref>
). The BioRad precision plus dual colour protein marker (BioRad) was run as the molecular weight standard.</p>
</sec>
<sec>
<title>Protein identification</title>
<sec>
<title>MS fingerprinting:</title>
<p>Protein spots were excised from SYPRO Ruby-stained gels with a sterile scalpel and placed into separate sterile Eppendorf tubes. Samples were sent to the Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia, for in-gel trypsin digestion and nano-LC MS/MS analysis as described by
<xref ref-type="bibr" rid="bib89">Zhao
<italic>et al.</italic>
(2004)</xref>
.</p>
</sec>
<sec>
<title>Edman sequencing:</title>
<p>Two-dimensional gel electrophoresis was performed as previously mentioned, with the gels pre-run in 1 mM thioglycolic acid. The gel was subsequently equilibrated in 10 mM CAPS buffer and transferred by semi-dry apparatus to nitrocellulose membranes. Membranes were Coomassie stained, dried, and spots excised for Edman sequencing. Automated Edman degradation was performed using a Beckman sequencer (model LF 3400) with online analysis on a Beckman system Gold HPLC (Beckman Coultier).</p>
</sec>
</sec>
<sec>
<title>Sequence analysis</title>
<p>DNA sequencing was performed by the dideoxynucleotide chain termination reaction (BigDye Terminator version 3.1). Once verified, coding sequences were translated using the ExPaSy interface (
<ext-link ext-link-type="uri" xlink:href="http://au.expasy.org/tools/dna.html">http://au.expasy.org/tools/dna.html</ext-link>
) and protein descriptives obtained with the PeptideMass tool (
<ext-link ext-link-type="uri" xlink:href="http://au.expasy.org/tools/peptide-mass.html">http://au.expasy.org/tools/peptide-mass.html</ext-link>
) using default settings, enabling prediction of the molecular weight and pI of unmodified proteins (
<xref ref-type="bibr" rid="bib79">Wilkins
<italic>et al.</italic>
, 1997</xref>
;
<xref ref-type="bibr" rid="bib32">Gasteiger
<italic>et al.</italic>
, 2005</xref>
). Pairwise alignments were performed with BestFit alignment using default settings via the BioManager on ANGIS (
<ext-link ext-link-type="uri" xlink:href="http://www.angis.org.au">http://www.angis.org.au</ext-link>
). Multiple sequence alignments were produced with a Web-based version of ClustalW (
<ext-link ext-link-type="uri" xlink:href="http://align.genome.jp">http://align.genome.jp</ext-link>
,
<xref ref-type="bibr" rid="bib72">Thompson
<italic>et al.</italic>
, 1994</xref>
) using default settings (Matrix = BLOSUM; GAPOPEN = 10, GAPEXT = 0.05). The phylogenetic tree was calculated using the Neighbor-Joining method with PHYLIP via the same website and visualized with Treeview version 1.6.6 (
<ext-link ext-link-type="uri" xlink:href="http://taxonomy.zoology.gla.ac.uk/rod/rod.html">http://taxonomy.zoology.gla.ac.uk/rod/rod.html</ext-link>
).</p>
</sec>
<sec>
<title>Nucleic acid extraction and reverse transcription</title>
<p>Genomic DNA was extracted from 0.5 g-FCW of FU-01 suspension cells, harvested after 7 d of culture with a Nucleospin
<sup>®</sup>
Plant II DNA extraction kit (Macherey-Nagel). Total RNA was extracted from frozen, ground cell material using Concert RNA Reagent (Invitrogen, Carslbad, CA, USA) according to the manufacturer's instructions, and the resultant pellet was resuspended in 30 ml of diethylpyrocarbonate (DEPC)-treated water. RNA samples were quantified using a Genequant Pro nucleic acid spectrophotometer (GE Healthcare). Samples were DNase treated with RQ1 RNase-free DNase I (1 U; Promega, Madison, WI, USA) in 50 ml total volume with RQ1 buffer. RNA was then re-extracted using Trizol reagent (Gibco-BRL, Carlsbad, CA, USA) and resuspended in 10 ml of DEPC-treated water. Sample quality was verified by agarose gel electrophoresis. Reverse transcription was carried out with 500 ng of DNase-treated RNA using 100 U of Superscript III reverse transcriptase (Invitrogen) and oligo(dT)
<sub>20</sub>
as per the manufacturer's instructions. DTT was omitted from the buffer due to its impact on SYBR-green 1-based quantitative real-time PCR (qPCR) (
<xref ref-type="bibr" rid="bib19">Deprez
<italic>et al.</italic>
, 2002</xref>
).</p>
</sec>
<sec>
<title>Amplification of full-length GST genes</title>
<p>Primers were designed to amplify the open reading frame (ORF) of
<italic>V. vinifera</italic>
GST genes and incorporate restriction sites with Platinum
<italic>Pfx</italic>
DNA polymerase (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/cgi/content/full/ern217/DC1">Supplementary Table S1</ext-link>
available at
<italic>JXB</italic>
online) (Applied Biosystems) from both cDNA and genomic DNA. These were A-tailed (
<xref ref-type="bibr" rid="bib66">Sambrook and Maniatis, 1989</xref>
) and ligated into pGEM-T Easy (Promega), with three clones sequenced to check for correct amplification. These were directionally cloned into pQE9 (N-terminal HIS fusion vector, Qiagen) and pJD288 (35S expression vector,
<xref ref-type="bibr" rid="bib47">Luehrsen
<italic>et al.</italic>
, 1992</xref>
).</p>
<p>
<italic>VvGST3</italic>
was cloned by differential display using the Delta Differential Display Kit (Clontech) on
<italic>Botrytis cinerea</italic>
-infected and mock-infected grapevine plantlet leaves as per
<xref ref-type="bibr" rid="bib5">Bézier
<italic>et al.</italic>
(2002)</xref>
. A 380 bp fragment was identified possessing a plant GST gene-like C-terminus following BLAST database searches. Based on this 3′ sequence, two gene-specific primers, GST3R112 (5′-ACCATGCCTTCACGTGTTTC-3′) and GST3R174 (5′-CAAGAGGGGCCATCTAGAGC-3′), were used in two successive RACE (rapid amplification of cDNA ends)-PCR amplifications, as described by the manufacturer (SMART-RACE cDNA Amplification Kit, Clontech), to amplify the 5’ region of this transcript. The resulting 800 bp fragment was cloned in pGEM-T II vector (Promega) and three clones were sequenced.</p>
</sec>
<sec>
<title>Maize kernel bombardment</title>
<p>Kernels were bombarded according to the method of
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
(1998)</xref>
.</p>
</sec>
<sec>
<title>Expression analysis by qPCR</title>
<p>Primers for phenylalanine ammonia-lyase (
<italic>VvPAL</italic>
, X75967), chalcone synthase (
<italic>VvCHS</italic>
, X575969), and UDP-glucose:flavonoid glucosyltransferase (
<italic>VvUFGT</italic>
, X75968) were each designed against full-length
<italic>V. vinifera</italic>
cDNA clones (
<xref ref-type="bibr" rid="bib69">Sparvoli
<italic>et al.</italic>
, 1994</xref>
). Primers are shown in
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/cgi/content/full/ern217/DC1">Supplementary Table S2</ext-link>
at
<italic>JXB</italic>
online. Dihydroflavonol 4-reductase (
<italic>VvDFR</italic>
, X75964) and β-tubulin 1 (
<italic>VvTUB</italic>
, TC4564) primer sequences were provided by personal communication from Dr John Harvey (CSIRO Plant Industry, Adelaide), while primers for the grape berry housekeeping gene
<italic>VvUbiquitin1</italic>
(BN000705) were previously described by
<xref ref-type="bibr" rid="bib10">Bogs
<italic>et al.</italic>
(2006)</xref>
. Samples were performed in duplicate. Amplification, detection, and relative quantification of gene expression using the ΔΔ-Ct equation developed by
<xref ref-type="bibr" rid="bib64">Pfaffl (2001)</xref>
was performed using SYBR-green as described previously (
<xref ref-type="bibr" rid="bib14">Conn
<italic>et al.</italic>
, 2008</xref>
).</p>
</sec>
<sec>
<title>Accession numbers</title>
<p>Sequence data from this article have been deposited with the GenBank/EMBL databases under accession numbers
<ext-link ext-link-type="gen" xlink:href="EF088687">EF088687</ext-link>
(VvGST2),
<ext-link ext-link-type="gen" xlink:href="EF469244">EF469244</ext-link>
(VvGST3),
<ext-link ext-link-type="gen" xlink:href="AY971515">AY971515</ext-link>
(VvGST4), and
<ext-link ext-link-type="gen" xlink:href="EF140721">EF140721</ext-link>
(VvGST5).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Purification of GSTs from grape cell cultures</title>
<p>GST activity of anthocyanin-accumulating
<italic>V. vinifera</italic>
L. Gamay Freaux suspension cells fluctuated over time, reflecting the combined activities of individual GSTs during the culture period (
<xref ref-type="fig" rid="fig1">Fig. 1a</xref>
). Both GST activity and anthocyanin accumulation were enhanced by treatment with sucrose, jasmonic acid, and light (
<xref ref-type="fig" rid="fig1">Figs. 1a</xref>
and
<xref ref-type="fig" rid="fig5">5a</xref>
, respectively). Glutathione-binding proteins were purified using glutathione affinity chromatography on protein from 5-day-old cells, corresponding to high GST activity (
<xref ref-type="fig" rid="fig1">Fig. 1a</xref>
) and the highest rate of anthocyanin accumulation in both treated and control cultures (data not shown). Control cultures, rather than treated cultures, were used for purification of GSTs in order to identify those proteins necessary and sufficient for anthocyanin transport. Multiple proteins were identified in the fractions displaying GST activity by one-dimensional gel electrophoresis (1D-GE;
<xref ref-type="fig" rid="fig1">Fig. 1b</xref>
). The GST activity of the fractions was proportional to the prevalence of proteins with a molecular weight of 21–26 kDa (
<xref ref-type="fig" rid="fig1">Fig. 1b, c</xref>
). The 45 kDa band, present in most fractions, may represent another glutathione-binding protein, with no apparent correlation with GST activity. GSTs were estimated to comprise >95% of protein in the bound fractions from the 1D-GE (equivalent to 2.3% of total protein from
<italic>V. vinifera</italic>
cell cultures).</p>
<fig id="fig1" position="float">
<label>Fig. 1.</label>
<caption>
<p>Purification of glutathione-binding proteins from pigmented
<italic>V. vinifera</italic>
cell suspension cultures. (A)
<italic>Vitis vinifera</italic>
FU-01 cells were cultured in GC-2 medium (filled circles) for 4 d, then elicited with 10 μM jasmonic acid, 20 g l
<sup>−1</sup>
sucrose (or an equal volume of vehicle control), and constant white light irradiation (open circles, 96.8±2.2 μmol s
<sup>−1</sup>
m
<sup>−2</sup>
). Cultures were incubated at 27±1 °C on a reciprocating shaker at 100 strokes min
<sup>−1</sup>
, in 500 ml Erlenmeyer flasks containing 100 ml of B5 medium (
<xref ref-type="bibr" rid="bib31">Gamborg
<italic>et al.</italic>
, 1968</xref>
) supplemented with 30 g l
<sup>−1</sup>
sucrose, 250 mg l
<sup>−1</sup>
casein hydrolysate, 0.1 mg l
<sup>−1</sup>
α-naphthaleneacetic acid, and 0.2 mg l
<sup>−1</sup>
kinetin. GST activity, presented as the mean ±SD of three biological replicates performed in triplicate, was determined for the 60% ammonium sulphate precipitate (
<italic>n</italic>
=9). (B) Sixty percent ammonium sulphate precipitate from day 5, non-elicited FU-01 line subjected to GST affinity chromatography. One-dimensional gel electropherogram of fractions (0.5 ml) from the GSTrap column. (C) Corresponding GST activity on the same fractions using CDNB as the model substrate.</p>
</caption>
<graphic xlink:href="jexbotern217f01_ht"></graphic>
</fig>
</sec>
<sec>
<title>Two-dimensional gel electrophoresis and peptide mass fingerprinting</title>
<p>Fractions from the glutathione affinity chromatography with GST activity were pooled and separated by 2D-GE (
<xref ref-type="fig" rid="fig2">Fig. 2</xref>
). Proteins were visualized using the MS-compatible SYPRO Ruby stain, following verification that overexposed silver staining (data not shown) did not indicate the presence of otherwise undetected low abundance proteins.</p>
<fig id="fig2" position="float">
<label>Fig. 2.</label>
<caption>
<p>(A) Two-dimensional gel electropherogram of glutathione affinity chromatography fractions possessing GST activity. (B) Enlarged image of the boxed region showing grouping based on mass spectrometry fingerprints (refer to
<xref ref-type="table" rid="tbl1">Table 1</xref>
). IEF strip pI3-10NL was rehydrated in the protein precipitate from GST active fractions of the GSTrap column. This was focused for 48 kVh and then separated on a 10% polyacrylamide gel and stained with SYPRO Ruby.</p>
</caption>
<graphic xlink:href="jexbotern217f02_ht"></graphic>
</fig>
<table-wrap id="tbl1" position="float">
<label>Table 1.</label>
<caption>
<p>Peptide fingerprint analysis identifying the proteins as GSTs</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td rowspan="1" colspan="1">Group</td>
<td rowspan="1" colspan="1">Strongest match</td>
<td rowspan="1" colspan="1">Amino acid region</td>
<td rowspan="1" colspan="1">Mass fingerprints</td>
<td rowspan="1" colspan="1">Matching grape GST [accession number(s)]</td>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">a</td>
<td rowspan="1" colspan="1">
<italic>Glycine max</italic>
, Q9FQE5</td>
<td align="char" char="." rowspan="1" colspan="1">1–11</td>
<td rowspan="1" colspan="1">MVVKVYGPDFA
<xref ref-type="table-fn" rid="tblfn1">a</xref>
</td>
<td rowspan="1" colspan="1">VvGST3 [NP864089, AAG34814, AY156050]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">205–210</td>
<td rowspan="1" colspan="1">KVFSSR</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">b</td>
<td rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
, Q84N22</td>
<td align="char" char="." rowspan="1" colspan="1">41–52</td>
<td rowspan="1" colspan="1">SPLLLEMNPVHK</td>
<td rowspan="1" colspan="1">VvGST5 [AF501625]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">106–111</td>
<td rowspan="1" colspan="1">LYELGR</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">139–149</td>
<td rowspan="1" colspan="1">LGEKPYFGGEK</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">c</td>
<td rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
, AF288176</td>
<td align="char" char="." rowspan="1" colspan="1">17–25</td>
<td rowspan="1" colspan="1">RVVAALYEK</td>
<td rowspan="1" colspan="1">VvGST2 [TC44916,TC14045, TC25424]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">65–69</td>
<td rowspan="1" colspan="1">LFESR</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">144–151</td>
<td rowspan="1" colspan="1">VLDVYEAR</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">d</td>
<td rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
, AAP54756</td>
<td align="char" char="." rowspan="1" colspan="1">87–95</td>
<td rowspan="1" colspan="1">LLPADPYQR</td>
<td rowspan="1" colspan="1">VvGST1 [AY156048]</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">137–143</td>
<td rowspan="1" colspan="1">MLEGELK</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">e</td>
<td rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
, AC013430</td>
<td align="char" char="." rowspan="1" colspan="1">1–7</td>
<td rowspan="1" colspan="1">MVMKVYG
<xref ref-type="table-fn" rid="tblfn1">a</xref>
</td>
<td rowspan="1" colspan="1">VvGST4</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">143–150</td>
<td rowspan="1" colspan="1">VFDVYEQR</td>
<td rowspan="1" colspan="1">[TC39256]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Peptide fingerprints of
<italic>V. vinifera</italic>
glutathione-binding proteins separated by 2D-GE and analysed by MS and Edman sequencing. Alignment of the predicted peptide fingerprint sequences with known ESTs from public databases (GenBank, ExPaSY, and TIGR; see Fig.2 for grouping) to identify the strongest match.</p>
</fn>
<fn id="tblfn1">
<label>a</label>
<p>Sequence obtained by Edman sequencing.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Proteins were digested in-gel with trypsin, and a mass spectrum of the resulting peptides (a peptide mass fingerprint) was acquired with a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometer as per
<xref ref-type="bibr" rid="bib89">Zhao
<italic>et al.</italic>
(2004)</xref>
. The list of apparent peptide masses was then aligned with predicted tryptic digests of known proteins by MASCOT and BLASTp (
<xref ref-type="bibr" rid="bib4">Altschul
<italic>et al.</italic>
, 1990</xref>
). A combination of low abundance and/or poor ionization did not enable the analysis of individual peptides by MS/MS.</p>
<p>This alignment enabled grouping of protein spots based on identical peptide fingerprints, with the variation in pI within each group a result of carbamylation of lysine residues diagnosed by the MS profile, a common artefact during the 2D separation procedures (
<xref ref-type="bibr" rid="bib52">McCarthy
<italic>et al.</italic>
, 2003</xref>
). Two groups (α, ε) required Edman sequencing to identify the N-terminus for stronger inference of the candidate expressed sequence tag (EST). The N-terminal sequence for group α did not enable robust degenerate PCR primer design, thus the gene designated as
<italic>VvGST3</italic>
was obtained by 5′ RACE-PCR from its 3′ EST which had been identified by a single matching peptide fragment. The cloned gene matched the N-terminal sequence obtained by Edman degradation for this protein.</p>
<p>Once a contig was generated within The Institute of Genomic Research (TIGR) grape database, all GSTs were amplified from pigmented
<italic>V. vinifera</italic>
suspension cell cDNA.
<italic>VvGST1</italic>
,
<italic>VvGST2</italic>
,
<italic>VvGST3</italic>
, and
<italic>VvGST4</italic>
all produced single PCR products of the predicted size, while
<italic>Q84N22</italic>
yielded two PCR products. While the longer product possessed numerous stop codons in all frames, the shorter PCR product possessed 99% identity with the published
<italic>Q84N22</italic>
sequence. Of note is a frameshift mutation common in all clones sequenced (AAA, instead of the published AAAA), altering all amino acids downstream of Leu45 and the predicted protein molecular weight for the Q84N22 EST from 15.7 kDa to 25.5 kDa. This agreed with the molecular weight of proteins purified from the cell culture (
<xref ref-type="fig" rid="fig1">Figs 1</xref>
,
<xref ref-type="fig" rid="fig2">2</xref>
), and therefore this coding sequence and protein are hereafter referred to as VvGST5.</p>
<p>Amplification of GST gene sequences from genomic DNA revealed the presence of a single intron in both
<italic>VvGST1</italic>
and
<italic>VVGST5</italic>
, two introns in
<italic>VvGST2</italic>
and
<italic>VvGST3</italic>
, while
<italic>VvGST4</italic>
did not contain an intron (
<xref ref-type="fig" rid="fig3">Fig. 3a</xref>
). Alignments with other plant GST proteins indicate VvGST4 to be a type I GST (
<xref ref-type="fig" rid="fig3">Fig. 3b</xref>
) and support the classification of the other GSTs based on intron/exon structure alone.</p>
<fig id="fig3" position="float">
<label>Fig. 3.</label>
<caption>
<p>(A) Genomic structure of
<italic>V. vinifera</italic>
GSTs cloned in this study. Exons are indicated by black arrows, and introns are indicated by double lines. (B) Phylogenetic tree of GSTs in the plant kingdom, showing classification into type I, II, and III GSTs as per
<xref ref-type="bibr" rid="bib25">Droog (1997)</xref>
. Sequences aligned are listed on the right-hand side of the tree and were obtained by retrieval of protein sequences from GenBank. Multiple sequence alignments were created by ClustalW (
<xref ref-type="bibr" rid="bib72">Thompson
<italic>et al.</italic>
, 1994</xref>
) and the phylogenetic tree was generated using PHYLIP under default settings and viewed with Treeview version 1.6.6. Origins of the proteins are indicated by a two-letter prefix to the protein name: At,
<italic>Arabidopsis</italic>
, Dc, carnation; Nt, tobacco; Sc, cucumber; St, potato; Ta, wheat; Vv, grape (highlighted); Zm, maize. An9, TT19, and Bz2 are shown without prefixes for consistency.</p>
</caption>
<graphic xlink:href="jexbotern217f03_ht"></graphic>
</fig>
</sec>
<sec>
<title>Functional expression of genes encoding VvGSTs</title>
<p>Recombinant expression of these sequences was performed to confirm GST activity. Each cDNA clone was expressed in
<italic>Escherichia coli</italic>
with an N-terminal 6×HIS fusion to facilitate purification and western blotting. The fusion products were of the predicted size, and GST activity was confirmed in crude extracts from isopropyl-β-
<sc>D</sc>
-thiogalactopyranoside (IPTG)-induced
<italic>E. coli</italic>
for all genes (
<xref ref-type="fig" rid="fig4">Fig. 4</xref>
) and also following partial enrichment by Ni-NTA chromatography, showing activity similar to that of other recombinant GSTs cloned from poppy and petunia (data not shown;
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib84">Yu and Facchini, 2000</xref>
).</p>
<fig id="fig4" position="float">
<label>Fig. 4.</label>
<caption>
<p>Western blot and GST activity performed on crude soluble protein extract from
<italic>E. coli</italic>
carrying vectors as indicated. –ve,
<italic>E. coli</italic>
carrying pQE9:
<italic>VvGST5</italic>
without IPTG induction; p,
<italic>E. coli</italic>
carrying the pQE9 backbone only; GST coding sequences in pQE9 5, VvGST5; 1, VvGST1; 2, VvGST2; 3, VvGST3; 4, VvGST4. The arrow indicates the 6×HIS fusion product. M15:pREP4
<italic>E. coli</italic>
were transformed with
<italic>VvGST</italic>
cDNAs in pQE9, N-terminal HIS fusion vector (Invitrogen) and grown at 37 °C. Induction of HIS fusion proteins was achieved with 1 mM IPTG for 18 h, with soluble protein extracted according to
<xref ref-type="bibr" rid="bib66">Sambrook and Maniatis (1989)</xref>
. Western blotting was performed using an anti-HIS detection kit (Macherey-Nagel).</p>
</caption>
<graphic xlink:href="jexbotern217f04_ht"></graphic>
</fig>
</sec>
<sec>
<title>Transcription of GSTs and anthocyanin biosynthetic genes in cultured cells following induction with sucrose, jasmonic acid, and light irradiation</title>
<p>Treatment of
<italic>V. vinifera</italic>
cell suspension cultures with continuous white-light irradiation, sucrose, and jasmonic acid from day 4 increased the anthocyanin content (
<xref ref-type="fig" rid="fig5">Fig. 5a</xref>
) compared with control cultures at day 8. Jasmonic acid was the most effective single treatment, eliciting a 3.1-fold increase, while induction with all three treatments in combination yielded the maximum increase in anthocyanin content, ∼6-fold that in control cultures. Over the 96 h immediately following induction, distinct temporal patterns of transcript abundance for key anthocyanin biosynthetic genes (
<xref ref-type="fig" rid="fig5">Fig. 5b</xref>
) and putative GST genes (
<xref ref-type="fig" rid="fig5">Fig. 5c</xref>
) were observed in induced cultures, indicating differential regulation. Transcription of the first committed precursor pathway gene
<italic>PAL</italic>
increased to a maximum 12 h after induction, whereas transcripts for committed steps to flavonoids (
<italic>CHS</italic>
), leucocyanidins (
<italic>DFR</italic>
), and anthocyanins (
<italic>UFGT</italic>
) were co-ordinately up-regulated, with maxima at 24 h post-induction (
<xref ref-type="fig" rid="fig5">Fig. 5b</xref>
). The degree of up-regulation was comparable for each gene, within the range of 7- to 12-fold that in control cultures.</p>
<fig id="fig5" position="float">
<label>Fig. 5.</label>
<caption>
<p>Anthocyanin accumulation and relative mRNA transcript levels for key anthocyanin biosynthetic genes in cultures following induction after 4 d with sucrose, jasmonic acid, and continuous light irradiation. (A) Anthocyanin content in
<italic>V. vinifera</italic>
cell suspensions following induction, compared with control cultures. Data are presented as the mean ±SD of triplicate analyses. The fold increase in steady-state transcript was calculated using the ΔΔ-Ct equation (
<xref ref-type="bibr" rid="bib64">Pfaffl, 2001</xref>
), with β-tubulin as internal control, for (B) phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and UDP-glucose:flavonoid glucosyltransferase (UFGT), and (C) glutathione
<italic>S</italic>
-transferases 1–5 (VvGST1–5). All data are expressed relative to untreated cultures at each time point and are presented as the mean of duplicate analyses.</p>
</caption>
<graphic xlink:href="jexbotern217f05_lw"></graphic>
</fig>
<p>Under the induction conditions used here to enhance anthocyanin biosynthesis, all putative grape GST genes, with the exception of
<italic>VvGST5</italic>
, were up-regulated relative to control cultures (
<xref ref-type="fig" rid="fig5">Fig. 5c</xref>
). The greatest degree of up-regulation (12-fold) was observed for
<italic>VvGST1</italic>
, exhibiting a temporal pattern similar to
<italic>PAL</italic>
. Up-regulation of
<italic>VvGST3</italic>
transcription also followed this pattern, although it was not as strongly induced (5.5-fold) over controls. The pattern of up-regulation for
<italic>VvGST4</italic>
was similar to that of
<italic>CHS</italic>
,
<italic>DFR</italic>
, and
<italic>UFGT</italic>
, while
<italic>VvGST2</italic>
exhibited delayed and sustained up-regulation of transcription (
<xref ref-type="fig" rid="fig5">Fig. 5c</xref>
).</p>
</sec>
<sec>
<title>Transcription of GST genes in grape berry skins at veráison</title>
<p>Bunches of
<italic>V. vinifera</italic>
L. cv. Shiraz berries were obtained from the same vine at veráison from predominantly green (<10% lightly pigmented berries, which were not chosen for extraction) and fully coloured bunches. The measure of total soluble solids for the green and red Shiraz berries was calculated as 6.4±0.3 °B and 14.8±1.4 °B, respectively. While no anthocyanin was detected by high-performance liquid chromatography (HPLC) from green berries, the red berry skins had an anthocyanin content of 1.4±0.05 mg g-FCW
<sup>−1</sup>
. These measurements justified the attribution of them as pre- and post-veráison stage berries (
<xref ref-type="bibr" rid="bib41">Kennedy
<italic>et al.</italic>
, 2000</xref>
).</p>
<p>Expression of
<italic>VvGST4</italic>
,
<italic>VvGST3</italic>
, and
<italic>VvGST2</italic>
was found to be greater—60-, 2-, and 1.4-fold, respectively—in the post-veraison berry skins, concurrent with the accumulation of anthocyanin in this tissue (
<xref ref-type="fig" rid="fig6">Fig. 6</xref>
). In contrast,
<italic>VvGST1</italic>
was the most strongly induced (∼13-fold) when suspension cell cultures were elicited to accumulate more anthocyanins. In grape berry skins,
<italic>VvGST1</italic>
and
<italic>VvGST5</italic>
expression was unaffected. Taken together, qPCR transcription analyses suggest a strong correlation of GST up-regulation with anthocyanin accumulation. Differences in the transcription profile may arise from interspecies variation, or a differential response to specific stimuli.</p>
<fig id="fig6" position="float">
<label>Fig. 6.</label>
<caption>
<p>Relative mRNA transcript levels for GSTs in post-veraison
<italic>V. vinifera</italic>
L. cv. Shiraz berry skins compared with pre-veraison. Fold increase in steady-state transcripts calculated using the ΔΔ-Ct equation, with
<italic>VvUbiquitin1</italic>
as internal control. Data are presented as mean of triplicate analyses.</p>
</caption>
<graphic xlink:href="jexbotern217f06_lw"></graphic>
</fig>
</sec>
<sec>
<title>VvGST1 and VvGST4 are involved in anthocyanin accumulation in the vacuole</title>
<p>A complementation model for anthocyanin transport, based on reversion of the
<italic>bz2</italic>
phenotype, was utilized to determine the ability of the putative
<italic>V. vinifera</italic>
L. GSTs to transport cytosolic anthocyanins to the vacuole. Each GST was transiently expressed in
<italic>bz2</italic>
kernels to identify revertant zones (
<xref ref-type="fig" rid="fig7">Fig. 7</xref>
). These zones can be easily distinguished from the background and necrotic areas resulting from the high pressure bombardment due to the non-delimited anthocyanin deposition, appearing as a ‘halo’ of red pigmentation (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib43">Larsen
<italic>et al.</italic>
, 2003</xref>
). Of the grape GST genes tested,
<italic>VvGST1</italic>
exhibited the greatest degree of
<italic>bz2</italic>
complementation (37 zones mm
<sup>−2</sup>
,
<xref ref-type="table" rid="tbl2">Table 2</xref>
) and an average diameter of the revertant zones approaching that of
<italic>Bz2</italic>
, at 3.2 and 3.6 cell widths, respectively.</p>
<table-wrap id="tbl2" position="float">
<label>Table 2.</label>
<caption>
<p>Quantitative complementation of
<italic>Bz2</italic>
knockout corn seeds by
<italic>V. vinifera</italic>
GSTs</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td rowspan="1" colspan="1">Construct</td>
<td rowspan="1" colspan="1">Sectors per mm
<sup>2</sup>
field</td>
<td colspan="3" rowspan="1">Complementation zones (% of each category)
<hr></hr>
</td>
<td rowspan="1" colspan="1">Average spot diameter (cells)</td>
<td colspan="3" rowspan="1">Peptide similarity to anthocyanin-transporting GSTs
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">1- to 2-cell diameter</td>
<td rowspan="1" colspan="1">3- to 4-cell diameter</td>
<td rowspan="1" colspan="1">>5-cell diameter</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Maize (Bronze-2)</td>
<td rowspan="1" colspan="1">
<italic>Arabidopsis</italic>
(TT19)</td>
<td rowspan="1" colspan="1">Petunia (An9)</td>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Control plasmid</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">N/A</td>
<td align="center" rowspan="1" colspan="1">N/A</td>
<td align="center" rowspan="1" colspan="1">N/A</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Bronze-2</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">15.6±0.9</td>
<td align="char" char="." rowspan="1" colspan="1">22.7%</td>
<td align="char" char="." rowspan="1" colspan="1">60.8%</td>
<td align="char" char="." rowspan="1" colspan="1">16.5%</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">3.6±0.18</td>
<td align="char" char="." rowspan="1" colspan="1">100%</td>
<td align="char" char="." rowspan="1" colspan="1">35.5%</td>
<td align="char" char="." rowspan="1" colspan="1">37.2%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">AtH36860</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">37.1%</td>
<td align="char" char="." rowspan="1" colspan="1">76.2%</td>
<td align="char" char="." rowspan="1" colspan="1">64.0%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">VvGST1</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">14.3±0.6</td>
<td align="char" char="." rowspan="1" colspan="1">31.9%</td>
<td align="char" char="." rowspan="1" colspan="1">56.3%</td>
<td align="char" char="." rowspan="1" colspan="1">11.8%</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">3.2±0.13</td>
<td align="char" char="." rowspan="1" colspan="1">48.2%</td>
<td align="char" char="." rowspan="1" colspan="1">36.9%</td>
<td align="char" char="." rowspan="1" colspan="1">34.4%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">VvGST2</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">39.6%</td>
<td align="char" char="." rowspan="1" colspan="1">49.3%</td>
<td align="char" char="." rowspan="1" colspan="1">48.3%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">VvGST3</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">37.8%</td>
<td align="char" char="." rowspan="1" colspan="1">59.2%</td>
<td align="char" char="." rowspan="1" colspan="1">66.0%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">VvGST4</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">3.9±0.7</td>
<td align="char" char="." rowspan="1" colspan="1">56.5%</td>
<td align="char" char="." rowspan="1" colspan="1">43.5%</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="plusmn" rowspan="1" colspan="1">2.3±0.20</td>
<td align="char" char="." rowspan="1" colspan="1">37.7%</td>
<td align="char" char="." rowspan="1" colspan="1">68.4%</td>
<td align="char" char="." rowspan="1" colspan="1">75.8%</td>
</tr>
<tr>
<td rowspan="1" colspan="1">VvGST5</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">0</td>
<td align="char" char="." rowspan="1" colspan="1">48.3%</td>
<td align="char" char="." rowspan="1" colspan="1">37.8%</td>
<td align="char" char="." rowspan="1" colspan="1">41.8%</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Counts of complementation zones seen per 1 mm
<sup>2</sup>
field.
<italic>n</italic>
=3 experiments with triplicate seeds, with 10 fields counted per seed. Counts are presented as mean ±SD. Protein sequence similarity between anthocyanin-transporting GSTs and sequences utilized in the complementation assay (BestFit).</p>
</fn>
<fn>
<p>N/A, not applicable.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig7" position="float">
<label>Fig. 7.</label>
<caption>
<p>Complementation of anthocyanin transport by
<italic>V. vinifera</italic>
GSTs in
<italic>Bronze-2</italic>
-deficient corn kernels. Corn kernels 48 h after bombardment with GST constructs in pJD288 (35S) maize expression vector; 20× magnification. Bar = 300 μm.
<italic>Bronze-2</italic>
-deficient corn kernels were bombarded with 1 μm diameter gold particles coated with plasmid, and analysed as per
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
(1998)</xref>
. Images were captured using an Olympus BX50 light microscope equipped with a Canon EOS digital camera.</p>
</caption>
<graphic xlink:href="jexbotern217f07_3c"></graphic>
</fig>
<p>VvGST4 was the only other GST tested to exhibit the complemented phenotype (10 zones mm
<sup>−2</sup>
) and a greatly reduced average diameter of these zones (2.3 cell widths,
<xref ref-type="table" rid="tbl2">Table 2</xref>
). All other VvGSTs and an unrelated GST from
<italic>Arabidopsis thaliana</italic>
possessed a background level of necrosis (
<xref ref-type="fig" rid="fig7">Fig. 7</xref>
) due to the bombardment, but no characteristic anthocyanin ‘halo’.</p>
</sec>
<sec>
<title>Conservation of protein residues found among plant GSTs is linked to the rescue of anthocyanin transport</title>
<p>Bestfit alignments were made between the amino acid sequence of all
<italic>V. vinifera</italic>
GSTs and those plant GSTs previously demonstrated to complement the
<italic>bz2</italic>
mutant; An9, TT19, and Bz2 (
<xref ref-type="table" rid="tbl2">Table 2</xref>
;
<xref ref-type="bibr" rid="bib50">Marrs
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
). It was found that VvGST1 possessed the second highest similarity to Bz2 (48.2% similarity), while the most similar sequence, VvGST5 (48.3% similarity), did not complement
<italic>bz2</italic>
in this assay. VvGST4 was most similar to An9 and TT19, 75.8% and 68.4% similarity, respectively. VvGST4 also gave a similar level of complementation in the maize bombardment assay to these GSTs (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
), inferring that the protein sequence was influential in governing anthocyanin transport in the
<italic>bz2</italic>
complementation model. All VvGST sequences were aligned with Bz2, TT19, ZmGSTIII, and An9 to identify conserved residues (
<xref ref-type="fig" rid="fig8">Fig. 8</xref>
). Few key regions were identified as being unique to anthocyanin-transporting GSTs, with other single or double amino acid residues differing between GSTs with low and high activity in the
<italic>bz2</italic>
complementation assay.</p>
<fig id="fig8" position="float">
<label>Fig. 8.</label>
<caption>
<p>Inference of functional residues in anthocyanin transport by protein modelling. Three-dimensional model of
<italic>E. coli</italic>
GST chain A, interacting with its substrate (glutathione sulphonic acid). The highlighted regions are within 3 Å of the substrate and expanded to show the respective coding sequences for the aligned GSTs. Alignment of VvGSTs with known anthocyanin-transporting GSTs complementing the
<italic>bz2</italic>
maize model. Amino acids shaded in black are present in ≥50% of the proteins at that residue, while alternative conserved residues at that site are shaded in grey, with other unique residues left unshaded.</p>
</caption>
<graphic xlink:href="jexbotern217f08_3c"></graphic>
</fig>
<p>These regions were located on a three-dimensional model of two GSTs interacting with non-substrate ligands. The primary crystal structure used for this alignment was the
<italic>E. coli</italic>
GST chain A, complexed with the ligand glutathione sulphonic acid (
<xref ref-type="bibr" rid="bib58">Nishida
<italic>et al.</italic>
, 1998</xref>
) as the sequence was most similar to the VvGSTs, but sequences were also overlaid with the maize ZmGSTI complexed with lactoylglutathione (
<xref ref-type="bibr" rid="bib57">Neuefeind
<italic>et al.</italic>
, 1997</xref>
). Three of these homologous regions (ligand-binding sites, L-sites) were located on the outside of the protein between α-helices and within 3 Å, or in proximity for physical interaction with these ligands (
<xref ref-type="fig" rid="fig8">Fig. 8</xref>
).</p>
<p>There is a strong conservation in the core of these regions between VvGST1 and Bz2, while there are residues that differ from other anthocyanin-transporting GSTs. Also, residue differences between the highly similar VvGST5 and VvGST1 sequences fall in two of these regions (
<xref ref-type="fig" rid="fig8">Fig. 8</xref>
).</p>
<p>VvGST4, An9, and, to a lesser extent, ZmGSTIII (all type I GSTs) exhibit a similar response in the complementation assay (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
). As well as high overall similarity, these GSTs possess strong homology in the aforementioned mini-regions, but differ from the GST1/Bz2 mini-regions and also for the non-transporting AtGSTF11. This includes high similarity within the glutathione-binding sites (G-sites) and L-sites.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Cloning of plant GSTs to date has predominantly been achieved through large-scale mutagenesis experiments, EST and differential display approaches, or genome sequencing projects such as with
<italic>Arabidopsis</italic>
, rice, and maize (
<xref ref-type="bibr" rid="bib53">McGonigle
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="bib3">Alonso
<italic>et al.</italic>
, 2003</xref>
). Affinity chromatography was used to purify two GSTs from oat seedlings, although they were only partially characterized; one GST from
<italic>Z. mays</italic>
was cloned via screening a cDNA library with antisera against the purified protein, and a single type III GST was cloned by degenerate PCR from opium poppy suspension cells (
<xref ref-type="bibr" rid="bib20">Dixon
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib84">Yu and Facchini, 2000</xref>
;
<xref ref-type="bibr" rid="bib85">Zachariah
<italic>et al.</italic>
, 2000</xref>
). This is the first report of a proteomics approach for the purification and cloning of GSTs from any plant tissue. Anthocyanin-producing
<italic>V. vinifera</italic>
cv. Gamay Freaux cell suspension cultures were used to characterize anthocyanin transport proteins as they produce the same anthocyanin profile as in the berry, and for the ability to manipulate anthocyanin production in culture (
<xref ref-type="bibr" rid="bib24">Dornenburg and Knorr, 1996</xref>
;
<xref ref-type="bibr" rid="bib82">Yeoman and Yeoman, 1996</xref>
;
<xref ref-type="bibr" rid="bib76">Verpoorte
<italic>et al.</italic>
, 1999</xref>
).</p>
<p>The number of GST-like sequences found in different plant species ranges from 25 in soybean to 42 and 48 in maize and
<italic>Arabidopsis</italic>
, respectively (
<xref ref-type="bibr" rid="bib53">McGonigle
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="bib21">Dixon
<italic>et al.</italic>
, 2002</xref>
;
<xref ref-type="bibr" rid="bib77">Wagner
<italic>et al.</italic>
, 2002</xref>
).
<xref ref-type="bibr" rid="bib61">Pairoba and Walbot (2003)</xref>
demonstrated that the 26 kDa Bz2 protein is accumulated only in anthocyanin-accumulating tissues, suggesting the presence of functional anthocyanin-specific GST protein in pigmented grape cells. Therefore, while this study cannot be considered exhaustive with regards to characterization of all the GSTs from
<italic>V. vinifera</italic>
, it is a comprehensive study of functional anthocyanin transport. Of the five GST sequences cloned in this study from pigmented suspension cells, there were three type I GSTs (VvGST2, VvGST3, and VvGST4) and two type III GSTs (VvGST1 and VVGST5) based on intron structure and protein sequence alignments.</p>
<p>Anthocyanin accumulation, including post-biosynthetic steps such as transport into the vacuole, has been shown in various systems to be regulated at the transcriptional level (
<xref ref-type="bibr" rid="bib51">Matsui
<italic>et al.</italic>
, 2004</xref>
;
<xref ref-type="bibr" rid="bib37">Hirai
<italic>et al.</italic>
, 2005</xref>
;
<xref ref-type="bibr" rid="bib12">Castellarin
<italic>et al.</italic>
, 2006</xref>
). It was hypothesized that if GSTs were involved in anthocyanin transport in
<italic>V. vinifera</italic>
, they would be present and transcriptionally up-regulated during anthocyanin synthesis. Using both
<italic>V. vinifera</italic>
suspension cells and grape berries, qPCR was employed to determine which of the five GSTs identified could be responsible for transporting anthocyanins in grape cells, through observation of co-regulation with anthocyanin biosynthetic genes and correlation to anthocyanin accumulation.</p>
<p>Biotic and abiotic elicitation is a common methodology for probing of metabolic pathways in
<italic>in vitro</italic>
systems, and a combination of jasmonic acid and light irradiation has been demonstrated to enhance anthocyanin biosynthesis in
<italic>V. vinifera</italic>
suspension cultures (
<xref ref-type="bibr" rid="bib87">Zhang
<italic>et al.</italic>
, 2002
<italic>b</italic>
</xref>
). High-sucrose stress, known to influence anthocyanin synthesis (
<xref ref-type="bibr" rid="bib15">Cormier
<italic>et al.</italic>
, 1990</xref>
;
<xref ref-type="bibr" rid="bib68">Solfanelli
<italic>et al.</italic>
, 2006</xref>
), in combination with jasmonic acid and light after 4 d of culture, enhanced anthocyanin accumulation >6-fold and enabled robust transcriptional profiles to be obtained for key anthocyanin biosynthetic genes. Differential regulation of
<italic>PAL</italic>
compared with later pathway genes was not unexpected. The most responsive GST gene to these conditions,
<italic>VvGST1</italic>
, also displayed a transcriptional profile similar to that of
<italic>PAL</italic>
, while the profile for
<italic>VvGST4</italic>
was more similar to that of the late anthocyanin pathway genes,
<italic>CHS</italic>
,
<italic>DFR</italic>
, and
<italic>UFGT</italic>
, indicative of co-regulation. In orange fruit, the expression of a putative anthocyanin-transporting GST also correlated with the expression of the
<italic>PAL</italic>
,
<italic>CHS</italic>
,
<italic>DFR</italic>
, and
<italic>UFGT</italic>
genes under cold stress (
<xref ref-type="bibr" rid="bib46">Lo Piero
<italic>et al.</italic>
, 2005, 2006</xref>
).</p>
<p>Both C1 (Myb DNA-binding factor) and R (bHLH domain of Myc) transcription factor-binding elements reside in committed maize anthocyanin biosynthetic genes (
<xref ref-type="bibr" rid="bib23">Dooner
<italic>et al.</italic>
, 1991</xref>
). These elements have also been found in a 262 bp region of the
<italic>Bz2</italic>
promoter, sufficient to confer co-ordinate regulation of this gene with those of the biosynthetic pathway (
<xref ref-type="bibr" rid="bib8">Bodeau and Walbot, 1992</xref>
,
<xref ref-type="bibr" rid="bib9">1996</xref>
). Only
<italic>VvGST1</italic>
possesses both of the the C1/R-binding motifs in its 5′-untranslated region. These elements may lead to the altered pattern of transcription seen in suspension cells versus grape berries.</p>
<p>There was no increase in
<italic>VvGST5</italic>
in suspension cells, thus it was unlikely to be involved in anthocyanin transport under these conditions. Results with post-veráison berries provided further evidence that
<italic>VvGST5</italic>
was not involved in anthocyanin transport, while the strongest up-regulation was for
<italic>VvGST4</italic>
, inferring a key role in anthocyanin transport in shiraz grapes. A similar pattern of induction was noted for numerous genes in Shiraz berries by
<xref ref-type="bibr" rid="bib71">Terrier
<italic>et al.</italic>
(2005)</xref>
, including a partial EST with high similarity to a GST gene (now known to correspond to
<italic>VvGST4</italic>
, cloned in this study). Interestingly,
<italic>VvGST3</italic>
was the only other candidate that exhibited up-regulation in grape berries post-veráison. From the combined data, it appeared that
<italic>VvGST1</italic>
,
<italic>VvGST3</italic>
, and
<italic>VvGST4</italic>
may be involved in anthocyanin transport, but in response to different stimuli—stress and grape berry ripening, respectively.</p>
<p>Complementation of anthocyanin transport in
<italic>Bz2</italic>
-deficient maize kernels was considered appropriate for inference of anthocyanin transport for VvGST genes as cyanidin 3-glucoside and its acylated derivatives are common anthocyanins in both plants (
<xref ref-type="bibr" rid="bib16">Cormier and Do, 1993</xref>
). As in maize, two GST genes—
<italic>VvGST1</italic>
and
<italic>VvGST4</italic>
—yielded positive results with this assay, although with different efficiencies.</p>
<p>Sequence analysis for all anthocyanin-transporting GSTs able to complement
<italic>bz2</italic>
gave no consensus of substrate-binding residues (H-sites), supporting the findings of other researchers (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="bib42">Kitamura
<italic>et al.</italic>
, 2004</xref>
). However, both G-sites and L-sites on the exterior of the protein, thought to be prime candidate regions for binding non-substrate ligands, were shown to be conserved within the VvGST1/Bz2 and VvGST4/An9/ZmGSTIII groups, respectively. These regions were a source of dissimilarity between the otherwise similar VvGST1 and VvGST5, and may contribute to the lack of activity observed for VvGST5 in the maize complementation assay. All these critical binding sites were within 3 Å of the substrate. While ligandin-binding sites have been suggested to reside distinct from the active site (
<xref ref-type="bibr" rid="bib54">McTigue
<italic>et al.</italic>
, 1995</xref>
;
<xref ref-type="bibr" rid="bib38">Ji
<italic>et al.</italic>
, 1996</xref>
;
<xref ref-type="bibr" rid="bib59">Oakley
<italic>et al.</italic>
, 1999</xref>
), competitive activity has been demonstrated between model substrates (CDNB) and ligandins (anthocyanins, auxins), implicating the same binding site, i.e. the L-site (
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="bib67">Smith
<italic>et al.</italic>
, 2003</xref>
;
<xref ref-type="bibr" rid="bib45">Lo Piero
<italic>et al.</italic>
, 2006</xref>
).</p>
<p>VvGST1 possessed the second highest similarity to Bz2 behind the non-complementing VvGST5, and suggests the involvement of distinct residues in achieving anthocyanin transport. Interestingly, the similarity to Bz2 was proposed as the reason for the slightly higher complementation phenotype of ZmGSTIII as opposed to An9 (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
). Certainly, the modification of individual flavonoids, by addition or translocation of a glucoside residue in cyanidin or luteolin, leads to a greatly reduced ability to bind An9 (
<xref ref-type="bibr" rid="bib55">Mueller
<italic>et al.</italic>
, 2000</xref>
).</p>
<p>Despite the dissimilarity of the dicot and monocot GST sequences, the strongest complementing GST in the dicot grape (VvGST1) is more similar to the monocot maize GST (Bz2) than any of the other transporting GSTs. The other
<italic>V. vinifera</italic>
GST capable of transport, VvGST4, possessed the highest similarity to the petunia An9 and yielded a similar result in the
<italic>bz2</italic>
complementation assay (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
). Maize and petunia have different dominant anthocyanin species, cyanidin and petunidin/cyanidin, respectively, with different GSTs required for transport being defined by unique consensus sequences inferred in this study. This may reflect the independent evolution of GSTs with regard to the anthocyanin profile within each species, with the prevalence of five anthocyanin compounds in grape requiring a second GST ligandin. In an evolutionary sense, plant GSTs belong to the most ancient class of GSTs, also present in vertebrates,
<italic>Drosophila</italic>
, and
<italic>Methylobacterium</italic>
(
<xref ref-type="bibr" rid="bib48">Mannervik and Danielson, 1988</xref>
;
<xref ref-type="bibr" rid="bib63">Pemble and Taylor, 1992</xref>
). This suggests that they are a representative of a progenitor GST arising before the divergence of prokaryotes and eukaryotes, maximizing the potential for independent gene duplication/sequence divergence to facilitate catalytic adaptation (
<xref ref-type="bibr" rid="bib63">Pemble and Taylor, 1992</xref>
).</p>
<p>As is the case for many secondary metabolite biosynthetic proteins, there is an apparent redundancy with the anthocyanin-transporting GSTs in
<italic>V. vinifera</italic>
. This redundancy is seen with numerous functional copies of biosynthetic enzymes, including PAL (
<xref ref-type="bibr" rid="bib60">Ozeki
<italic>et al.</italic>
, 1990</xref>
), CHS (
<xref ref-type="bibr" rid="bib65">Reif
<italic>et al.</italic>
, 1985</xref>
;
<xref ref-type="bibr" rid="bib28">Durbin
<italic>et al.</italic>
, 2000</xref>
), and CHI (
<xref ref-type="bibr" rid="bib75">van Tunen
<italic>et al.</italic>
, 1988</xref>
); but also the putative anthocyanin transport pumps—ZmMRP3 and ZmMRP4 (
<xref ref-type="bibr" rid="bib33">Goodman
<italic>et al.</italic>
, 2004</xref>
). While maize also boasts two GSTs with transport activity, ZmGSTIII and Bz2, a knockout of the latter abrogates anthocyanin vacuolar deposition (
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
). This demonstrates a dependency on
<italic>Bz2</italic>
, yet does not eliminate the possibility of (i)
<italic>ZmGSTIII</italic>
transcriptional repression in these tissues, or (ii) potential heterodimerization with Bz2 for a functional ligandin. Furthermore, co-cultivation with abscisic acid induces vacuolar deposition of anthocyanins in
<italic>bz2</italic>
maize kernels, supporting a partial redundancy by the auxin-inducible ZmGSTIII for Bz2, despite its reduced transport capacity (
<xref ref-type="bibr" rid="bib78">Walbot
<italic>et al.</italic>
, 1994</xref>
;
<xref ref-type="bibr" rid="bib2">Alfenito
<italic>et al.</italic>
, 1998</xref>
). Analysis of gene expression for ZmGSTIII in abscisic acid-treated
<italic>bz2</italic>
kernels, or creation of ZmGSTIII knockout maize would be necessary to resolve this. Either of these models may also apply for VvGST1 and VvGST4 in
<italic>V. vinifera</italic>
.</p>
<p>Results presented in this study demonstrate the strong correlation between GST proteins, abundance of transcripts encoding them, and anthocyanin accumulation in
<italic>V. vinifera</italic>
. Specifically,
<italic>VvGST1</italic>
and
<italic>VvGST4</italic>
are the most responsive GSTs under synthetic (elicitation) and native (veráison) conditions increasing anthocyanin accumulation, respectively. In support of this, both
<italic>VvGST1</italic>
and
<italic>VvGST4</italic>
possess a capacity to complement for the loss of Bz2 in a maize anthocyanin transport complementation assay. Furthermore, the sequence conservation of specific residues in the GSTs contributes to their anthocyanin-transporting phenotype.</p>
<p>Understanding critical regions in the interaction, GSTs can be manipulated to alter or enhance accumulation of desired compounds, i.e. valuable flavonoids.
<xref ref-type="bibr" rid="bib22">Dixon
<italic>et al.</italic>
(2005)</xref>
advocate the heterodimerization/co-expression, chimera formation, and random mutagenesis/recombination of maize GSTs for enhanced herbicide detoxification. Furthermore, overexpression of certain GSTs may enhance the accumulation of endogenous nutraceuticals, or GST repression may lead to enhanced accumulation of pytochelatins (heavy metal-binding proteins, reviewed in
<xref ref-type="bibr" rid="bib22">Dixon
<italic>et al.</italic>
, 2005</xref>
). These two opposing effects could result in a food source with greater nutrition in poor quality soils.</p>
</sec>
<sec>
<title>Supplementary data</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/cgi/content/full/ern217/DC1">Supplementary data</ext-link>
for this manuscript detailing primers used for directional cloning of all GSTs and qPCR primers used can be accessed at
<italic>JXB</italic>
online.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>[Supplementary Material]</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="ern217_index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="ern217_1.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to thank Professor Virginia Walbot for supplying
<italic>bronze-2</italic>
corn kernels, Drs Mark Alfenito and Dean Goodman for valuable assistance in complementation analysis, and Professor Antony Bacic and Dr Shaio-Lim Mau at the School of Botany, University of Melbourne for Edman sequencing. This work was supported by Flinders University and the Cooperative Research Centre for Bioproducts.</p>
</ack>
<ref-list>
<ref id="bib1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aharoni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Keizer</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>van den Broeck</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Blanco-Portales</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Munoz-Blanco</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bois</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>P</given-names>
</name>
<name>
<surname>de Vos</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>O'Connell</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit</article-title>
<source>Plant Physiology</source>
<year>2002</year>
<volume>129</volume>
<fpage>1019</fpage>
<lpage>1031</lpage>
<pub-id pub-id-type="pmid">12114557</pub-id>
</citation>
</ref>
<ref id="bib2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfenito</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Souer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Buell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mol</surname>
<given-names>JNM</given-names>
</name>
<name>
<surname>Koes</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione
<italic>S</italic>
-transferases</article-title>
<source>The Plant Cell</source>
<year>1998</year>
<volume>10</volume>
<fpage>1135</fpage>
<lpage>1149</lpage>
<pub-id pub-id-type="pmid">9668133</pub-id>
</citation>
</ref>
<ref id="bib3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alonso</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Stepanova</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Leisse</surname>
<given-names>TJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide insertional mutagenesis of
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<fpage>653</fpage>
<lpage>657</lpage>
<pub-id pub-id-type="pmid">12893945</pub-id>
</citation>
</ref>
<ref id="bib4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Basic local alignment search tool</article-title>
<source>Journal of Molecular Biology</source>
<year>1990</year>
<volume>215</volume>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">2231712</pub-id>
</citation>
</ref>
<ref id="bib5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bézier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Baillieul</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Study of defense-related gene expression in grapevine leaves and berries infected with
<italic>Botrytis cinerea</italic>
</article-title>
<source>European Journal of Plant Pathology</source>
<year>2002</year>
<volume>108</volume>
<fpage>111</fpage>
<lpage>120</lpage>
</citation>
</ref>
<ref id="bib6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bilang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Macdonald</surname>
<given-names>H</given-names>
</name>
<name>
<surname>King</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Sturm</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>A soluble auxin-binding protein from
<italic>Hyoscyamus muticus</italic>
is a glutathione
<italic>S</italic>
-transferase</article-title>
<source>Plant Physiology</source>
<year>1993</year>
<volume>102</volume>
<fpage>29</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">8108497</pub-id>
</citation>
</ref>
<ref id="bib7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bilang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sturm</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cloning and characterization of a glutathione
<italic>S</italic>
-transferase that can be photolabelled with 5-azido-indole-3-acetic acid</article-title>
<source>Plant Physiology</source>
<year>1995</year>
<volume>109</volume>
<fpage>253</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">7480325</pub-id>
</citation>
</ref>
<ref id="bib8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bodeau</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Regulated transcription of the maize Bronze-2 promoter in electroporated protoplasts requires the C1 and R gene products</article-title>
<source>Molecular and General Genetics</source>
<year>1992</year>
<volume>233</volume>
<fpage>379</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="pmid">1620095</pub-id>
</citation>
</ref>
<ref id="bib9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bodeau</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Structure and regulation of the maize
<italic>Bronze2</italic>
promoter</article-title>
<source>Plant Molecular Biology</source>
<year>1996</year>
<volume>32</volume>
<fpage>599</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="pmid">8980512</pub-id>
</citation>
</ref>
<ref id="bib10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bogs</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ebadi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McDavid</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>SP</given-names>
</name>
</person-group>
<article-title>Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development</article-title>
<source>Plant Physiology</source>
<year>2006</year>
<volume>140</volume>
<fpage>279</fpage>
<lpage>291</lpage>
<pub-id pub-id-type="pmid">16377741</pub-id>
</citation>
</ref>
<ref id="bib11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buetler</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Glutathione S-transferases: amino acid sequence comparison, classification and phylogenetic relationship</article-title>
<source>Environmental Carcinogen and Ecotoxicology Reviews</source>
<year>1992</year>
<volume>C10</volume>
<fpage>181</fpage>
<lpage>203</lpage>
</citation>
</ref>
<ref id="bib12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castellarin</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Di Gaspero</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marconi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nonis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peterlunger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Paillard</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Adam-Blondon</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Testolin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Colour variation in red grapevines (
<italic>Vitis vinifera</italic>
L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin/blue delphinidin-based anthocyanins in berry skin</article-title>
<source>BMC Genomics</source>
<year>2006</year>
<volume>24</volume>
<fpage>12</fpage>
<pub-id pub-id-type="pmid">16433923</pub-id>
</citation>
</ref>
<ref id="bib13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conn</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>CMM</given-names>
</name>
</person-group>
<article-title>Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in
<italic>Vitis vinifera</italic>
L. (grapevine) suspension culture</article-title>
<source>Biotechnology Letters</source>
<year>2003</year>
<volume>25</volume>
<fpage>835</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="pmid">12889790</pub-id>
</citation>
</ref>
<ref id="bib14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conn</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>CMM</given-names>
</name>
</person-group>
<article-title>Endophytic actinobacteria induce defense pathways in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Molecular Plant-Microbe Interactions</source>
<year>2008</year>
<volume>21</volume>
<fpage>208</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="pmid">18184065</pub-id>
</citation>
</ref>
<ref id="bib15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cormier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Crevier</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Effects of sucrose concentration on the accumulation of anthocyanins in grape (
<italic>Vitis vinifera</italic>
L.) cell suspension</article-title>
<source>Canadian Journal of Botany</source>
<year>1990</year>
<volume>68</volume>
<fpage>1822</fpage>
<lpage>1825</lpage>
</citation>
</ref>
<ref id="bib16">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Cormier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>CB</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Bajaj</surname>
<given-names>YPS</given-names>
</name>
</person-group>
<article-title>XXVVII
<italic>Vitis vinifera</italic>
L (grapevine):
<italic>in vitro</italic>
production of anthocyanins</article-title>
<source>Medicinal and aromatic plants</source>
<year>1993</year>
<volume>Vol. 24</volume>
<publisher-loc>Berlin</publisher-loc>
<publisher-name>Springer-Verlag</publisher-name>
<fpage>373</fpage>
<lpage>386</lpage>
</citation>
</ref>
<ref id="bib17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cormier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Nicolas</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Anthocyanin production in selected cell lines of grape (
<italic>Vitis vinifera</italic>
L.)</article-title>
<source>In Vitro Cellular and Developmental Biology of the Plant</source>
<year>1994</year>
<volume>30P</volume>
<fpage>171</fpage>
<lpage>173</lpage>
</citation>
</ref>
<ref id="bib18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dean</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Goodwin</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Hsiang</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Induction of glutathione
<italic>S</italic>
-transferase genes of
<italic>Nicotiana benthamiana</italic>
following infection by
<italic>Colletotrichum destructivum</italic>
and
<italic>C. orbiculare</italic>
and involvement of one in resistance</article-title>
<source>Journal of Experimental Botany</source>
<year>2005</year>
<volume>56</volume>
<fpage>1525</fpage>
<lpage>1533</lpage>
<pub-id pub-id-type="pmid">15837710</pub-id>
</citation>
</ref>
<ref id="bib19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deprez</surname>
<given-names>RHL</given-names>
</name>
<name>
<surname>Fijnvandraat</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Ruijter</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Moorman</surname>
<given-names>AFM</given-names>
</name>
</person-group>
<article-title>Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions</article-title>
<source>Analytical Biochemistry</source>
<year>2002</year>
<volume>307</volume>
<fpage>63</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">12137780</pub-id>
</citation>
</ref>
<ref id="bib20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Purification, regulation, and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs</article-title>
<source>Plant Molecular Biology</source>
<year>1998</year>
<volume>36</volume>
<fpage>75</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">9484464</pub-id>
</citation>
</ref>
<ref id="bib21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Lapthorn</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Plant glutathione transferases</article-title>
<source>Genome Biology</source>
<year>2002</year>
<volume>3</volume>
<fpage>3001</fpage>
<lpage>3010</lpage>
</citation>
</ref>
<ref id="bib22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Lapthorn</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Synthesis and analysis of chimeric maize glutathione transferases</article-title>
<source>Plant Science</source>
<year>2005</year>
<volume>168</volume>
<fpage>873</fpage>
<lpage>881</lpage>
</citation>
</ref>
<ref id="bib23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dooner</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Jorgensen</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Genetic and developmental control of anthocyanin biosynthesis</article-title>
<source>Annual Review of Genetics</source>
<year>1991</year>
<volume>25</volume>
<fpage>173</fpage>
<lpage>200</lpage>
</citation>
</ref>
<ref id="bib24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dornenburg</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Knorr</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Generation of colors and flavors in plant cell and tissue cultures</article-title>
<source>Critical Reviews in Plant Science</source>
<year>1996</year>
<volume>15</volume>
<fpage>141</fpage>
<lpage>168</lpage>
</citation>
</ref>
<ref id="bib25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Droog</surname>
<given-names>FNJ</given-names>
</name>
</person-group>
<article-title>Plant glutathione S-transferases, a tale of theta and tau</article-title>
<source>Journal of Plant Growth Regulation</source>
<year>1997</year>
<volume>16</volume>
<fpage>95</fpage>
<lpage>107</lpage>
</citation>
</ref>
<ref id="bib26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Droog</surname>
<given-names>FNJ</given-names>
</name>
<name>
<surname>Hooykaas</surname>
<given-names>PJJ</given-names>
</name>
<name>
<surname>Libbenga</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>van der Zaal</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Proteins encoded by an auxin-regulated gene family of tobacco share limited but functionally significant homology with glutathione S-transferases and one member indeed shows
<italic>in vitro</italic>
GST activity</article-title>
<source>Plant Molecular Biology</source>
<year>1993</year>
<volume>21</volume>
<fpage>965</fpage>
<lpage>972</lpage>
<pub-id pub-id-type="pmid">8490142</pub-id>
</citation>
</ref>
<ref id="bib27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Droog</surname>
<given-names>FNJ</given-names>
</name>
<name>
<surname>Hooykaas</surname>
<given-names>PJJ</given-names>
</name>
<name>
<surname>van der Zaal</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>2,4-Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type III tobacco glutathione S-transferases</article-title>
<source>Plant Physiology</source>
<year>1995</year>
<volume>107</volume>
<fpage>1139</fpage>
<lpage>1146</lpage>
<pub-id pub-id-type="pmid">12228421</pub-id>
</citation>
</ref>
<ref id="bib28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durbin</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>McCaig</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Clegg</surname>
<given-names>MT</given-names>
</name>
</person-group>
<article-title>Molecular evolution of the chalcone synthase multigene family in the morning glory genome</article-title>
<source>Plant Molecular Biology</source>
<year>2000</year>
<volume>42</volume>
<fpage>79</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">10688131</pub-id>
</citation>
</ref>
<ref id="bib29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Plant glutathione transferases</article-title>
<source>Methods in Enzymology</source>
<year>2005</year>
<volume>401</volume>
<fpage>169</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">16399386</pub-id>
</citation>
</ref>
<ref id="bib30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujiwara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yonekura-Sakakibara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fukuchi-Mizutani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fukui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ashikari</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kusumi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from
<italic>Gentiana triflora</italic>
</article-title>
<source>The Plant Journal</source>
<year>1998</year>
<volume>16</volume>
<fpage>421</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">9881162</pub-id>
</citation>
</ref>
<ref id="bib31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gamborg</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Ojima</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Nutrient requirements of soybean root cells</article-title>
<source>Experimental Cellular Research</source>
<year>1968</year>
<volume>50</volume>
<fpage>151</fpage>
<lpage>158</lpage>
</citation>
</ref>
<ref id="bib32">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Gasteiger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hoogland</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gattiker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Duvaud</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wilkins</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Appel</surname>
<given-names>RDB</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Walker</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Protein identification and analysis tools on the ExPASy server</article-title>
<source>The proteomics protocols handbook</source>
<year>2005</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Humana Press</publisher-name>
<fpage>571</fpage>
<lpage>607</lpage>
</citation>
</ref>
<ref id="bib33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodman</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Casati</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>A multidrug-resistance associated protein involved in anthocyanin transport in
<italic>Zea mays</italic>
</article-title>
<source>The Plant Cell</source>
<year>2004</year>
<volume>16</volume>
<fpage>1812</fpage>
<lpage>1826</lpage>
<pub-id pub-id-type="pmid">15208386</pub-id>
</citation>
</ref>
<ref id="bib34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grotewold</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The genetics and biochemistry of floral pigments</article-title>
<source>Annual Reiews of Plant Biology</source>
<year>2006</year>
<volume>57</volume>
<fpage>761</fpage>
<lpage>780</lpage>
</citation>
</ref>
<ref id="bib35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grotewold</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Chamberlin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Snook</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Siame</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Swenson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maddock</surname>
<given-names>S</given-names>
</name>
<name>
<surname>St Clair</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Engineering secondary metabolism in maize cells by ectopic expression of transcription factors</article-title>
<source>The Plant Cell</source>
<year>1998</year>
<volume>10</volume>
<fpage>721</fpage>
<lpage>740</lpage>
<pub-id pub-id-type="pmid">9596632</pub-id>
</citation>
</ref>
<ref id="bib36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Habig</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Pabst</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Jakoby</surname>
<given-names>WB</given-names>
</name>
</person-group>
<article-title>Glutathione
<italic>S</italic>
-transferases. The first enzymatic step in mercapturic acid formation</article-title>
<source>Journal of Biological Chemistry</source>
<year>1974</year>
<volume>249</volume>
<fpage>7130</fpage>
<lpage>7139</lpage>
<pub-id pub-id-type="pmid">4436300</pub-id>
</citation>
</ref>
<ref id="bib37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirai</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fujikawa</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics</article-title>
<source>Journal of Biological Chemistry</source>
<year>2005</year>
<volume>280</volume>
<fpage>25590</fpage>
<lpage>25595</lpage>
<pub-id pub-id-type="pmid">15866872</pub-id>
</citation>
</ref>
<ref id="bib38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>X</given-names>
</name>
<name>
<surname>von Rosenvinge</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Armstrong</surname>
<given-names>RN</given-names>
</name>
<name>
<surname>Gaillard</surname>
<given-names>GL</given-names>
</name>
</person-group>
<article-title>Location of a potential transport binding site in a sigma class glutathione transferase by X-ray crystallography</article-title>
<source>Proceedings of the National Academy of Sciences, USA</source>
<year>1996</year>
<volume>93</volume>
<fpage>8208</fpage>
<lpage>8213</lpage>
</citation>
</ref>
<ref id="bib39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Auxin-binding proteins</article-title>
<source>Annual Review of Plant Physiology and Plant Molecular Biology</source>
<year>1994</year>
<volume>45</volume>
<fpage>393</fpage>
<lpage>420</lpage>
</citation>
</ref>
<ref id="bib40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonsson</surname>
<given-names>LMV</given-names>
</name>
<name>
<surname>Donker-Koopman</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Uitslager</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schram</surname>
<given-names>AW</given-names>
</name>
</person-group>
<article-title>Subcellular localization of anthocyanin methyltransferase in flowers of
<italic>Petunia hybrida</italic>
</article-title>
<source>Plant Physiology</source>
<year>1983</year>
<volume>72</volume>
<fpage>287</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="pmid">16662994</pub-id>
</citation>
</ref>
<ref id="bib41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Troup</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Pilbrow</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Hutton</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Hewitt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Ristic</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Iland</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Development of seed polyphenols in berries from
<italic>Vitis vinifera</italic>
L. cv. Shiraz</article-title>
<source>Australian Journal of Grape and Wine Research</source>
<year>2000</year>
<volume>6</volume>
<fpage>244</fpage>
<lpage>254</lpage>
</citation>
</ref>
<ref id="bib42">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitamura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shikazono</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>
<italic>TRANSPARENT TESTA 19</italic>
is involved in the accumulation of both anthocyanins and proanthocyanidins in
<italic>Arabidopsis</italic>
</article-title>
<source>The Plant Journal</source>
<year>2004</year>
<volume>37</volume>
<fpage>104</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="pmid">14675436</pub-id>
</citation>
</ref>
<ref id="bib43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Alfenito</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Briggs</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>A carnation anthocyanin mutant is complemented by the glutathione
<italic>S</italic>
-transferases encoded by maize
<italic>Bz2</italic>
and petunia
<italic>An9</italic>
</article-title>
<source>Plant Cell Reports</source>
<year>2003</year>
<volume>21</volume>
<fpage>900</fpage>
<lpage>904</lpage>
<pub-id pub-id-type="pmid">12789508</pub-id>
</citation>
</ref>
<ref id="bib44">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lederer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Böger</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A ligand function of glutathione
<italic>S</italic>
-transferase</article-title>
<source>Zeitschrift für Naturforschung</source>
<year>2005</year>
<volume>60c</volume>
<fpage>166</fpage>
<lpage>171</lpage>
</citation>
</ref>
<ref id="bib45">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo Piero</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Petrone</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Gene isolation, analysis of expression, and
<italic>in vitro</italic>
synthesis of glutathione S-transferase from orange fruit [
<italic>Citrus sinensis</italic>
L. (Osbeck)]</article-title>
<source>Journal of Agricultural Food Chemistry</source>
<year>2006</year>
<volume>54</volume>
<fpage>9227</fpage>
<lpage>9233</lpage>
</citation>
</ref>
<ref id="bib46">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo Piero</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Rapisarda</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Petrone</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage</article-title>
<source>Journal of Agricultural Food Chemistry</source>
<year>2005</year>
<volume>53</volume>
<fpage>9083</fpage>
<lpage>9088</lpage>
</citation>
</ref>
<ref id="bib47">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luehrsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>DeWet</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Use of luciferase as a reporter gene</article-title>
<source>Methods in Enzymology</source>
<year>1992</year>
<volume>216</volume>
<fpage>397</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">1479911</pub-id>
</citation>
</ref>
<ref id="bib48">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mannervik</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Danielson</surname>
<given-names>UH</given-names>
</name>
</person-group>
<article-title>Glutathione transferases: structure and catalytic activity</article-title>
<source>CRC Critical Reviews in Biochemistry</source>
<year>1988</year>
<volume>23</volume>
<fpage>283</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">3069329</pub-id>
</citation>
</ref>
<ref id="bib49">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marrs</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>The functions and regulation of glutathione
<italic>S</italic>
-transferases in plants</article-title>
<source>Annual Reviews in Plant Physiology and Plant Molecular Biology</source>
<year>1996</year>
<volume>47</volume>
<fpage>127</fpage>
<lpage>158</lpage>
</citation>
</ref>
<ref id="bib50">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marrs</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Alfenito</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Lloyd</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>A glutathione
<italic>S</italic>
-transferase involved in vacuolar transfer encoded by the maize gene
<italic>Bronze-2</italic>
</article-title>
<source>Nature</source>
<year>1995</year>
<volume>375</volume>
<fpage>397</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="pmid">7760932</pub-id>
</citation>
</ref>
<ref id="bib51">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ohme-Takagi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor</article-title>
<source>Plant Biotechnology Journal</source>
<year>2004</year>
<volume>2</volume>
<fpage>487</fpage>
<lpage>493</lpage>
<pub-id pub-id-type="pmid">17147621</pub-id>
</citation>
</ref>
<ref id="bib52">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCarthy</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hopwood</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Oxley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Laver</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Castagna</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Righetti</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Herbert</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Carbamylation of proteins in 2-D electrophoresis—myth or reality?</article-title>
<source>Journal of Proteome Research</source>
<year>2003</year>
<volume>2</volume>
<fpage>239</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="pmid">12814262</pub-id>
</citation>
</ref>
<ref id="bib53">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGonigle</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Keeler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S-M</given-names>
</name>
<name>
<surname>Koeppe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>O'Keefe</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A genomics approach to the comprehensive analysis of the glutathione
<italic>S</italic>
-transferase gene family in soybean and maize</article-title>
<source>Plant Physiology</source>
<year>2000</year>
<volume>124</volume>
<fpage>1105</fpage>
<lpage>1120</lpage>
<pub-id pub-id-type="pmid">11080288</pub-id>
</citation>
</ref>
<ref id="bib54">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McTigue</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Trainer</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Crystal structures of a schistosomal drug and vaccine target: glutathione
<italic>S</italic>
-transferase from
<italic>Schistosoma japonica</italic>
and its complex with the leading antischistosomal drug praziquantel</article-title>
<source>Journal of Molecular Biology</source>
<year>1995</year>
<volume>246</volume>
<fpage>21</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">7853399</pub-id>
</citation>
</ref>
<ref id="bib55">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mueller</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Silady</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein</article-title>
<source>Plant Physiology</source>
<year>2000</year>
<volume>123</volume>
<fpage>1561</fpage>
<lpage>1570</lpage>
<pub-id pub-id-type="pmid">10938372</pub-id>
</citation>
</ref>
<ref id="bib56">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mueller</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Models for vacuolar sequestration of anthocyanins</article-title>
<source>Recent Advances in Phytochemistry</source>
<year>2001</year>
<volume>35</volume>
<fpage>291</fpage>
<lpage>312</lpage>
</citation>
</ref>
<ref id="bib57">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neuefeind</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dasenbrock</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Prade</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bieseler</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Crystal structure of herbicide-detoxifying maize glutathione
<italic>S</italic>
-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism</article-title>
<source>Journal of Molecular Biology</source>
<year>1997</year>
<volume>274</volume>
<fpage>446</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="pmid">9417926</pub-id>
</citation>
</ref>
<ref id="bib58">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Noguchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Satow</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Three-dimensional structure of
<italic>Escherichia coli</italic>
glutathione
<italic>S</italic>
-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106</article-title>
<source>Journal of Molecular Biology</source>
<year>1998</year>
<volume>281</volume>
<fpage>135</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">9680481</pub-id>
</citation>
</ref>
<ref id="bib59">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oakley</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Bello</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Nuccetelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mazzetti</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site)</article-title>
<source>Journal of Molecular Biology</source>
<year>1999</year>
<volume>291</volume>
<fpage>913</fpage>
<lpage>926</lpage>
<pub-id pub-id-type="pmid">10452896</pub-id>
</citation>
</ref>
<ref id="bib60">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ozeki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sakuta</surname>
<given-names>M-a</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kano-Murakami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Differential regulation of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot cell suspension cultures</article-title>
<source>Physiologia Plantarum</source>
<year>1990</year>
<volume>80</volume>
<fpage>379</fpage>
<lpage>387</lpage>
</citation>
</ref>
<ref id="bib61">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pairoba</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Post-transcriptional regulation of expression of the Bronze-2 gene of
<italic>Zea mays</italic>
L</article-title>
<source>Plant Molecular Biology</source>
<year>2003</year>
<volume>53</volume>
<fpage>75</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="pmid">14756308</pub-id>
</citation>
</ref>
<ref id="bib62">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pecket</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Occurrence, location and development of anthocyanoplasts</article-title>
<source>Phytochemistry</source>
<year>1980</year>
<volume>19</volume>
<fpage>2571</fpage>
<lpage>2576</lpage>
</citation>
</ref>
<ref id="bib63">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pemble</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>An evolutionary perspective on glutathione transferases inferred from class-Theta glutathione transferase cDNA sequences</article-title>
<source>Biochemistry Journal</source>
<year>1992</year>
<volume>287</volume>
<fpage>957</fpage>
<lpage>963</lpage>
</citation>
</ref>
<ref id="bib64">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfaffl</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>A new mathematical model for relative quantification in real-time RT-PCR</article-title>
<source>Nucleic Acids Research</source>
<year>2001</year>
<volume>29</volume>
<fpage>2002</fpage>
<lpage>2007</lpage>
</citation>
</ref>
<ref id="bib65">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reif</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Niesbach</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Deumling</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Saedler</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Cloning and analysis of two genes for chalcone synthase from
<italic>Petunia hybrida</italic>
</article-title>
<source>Molecular and General Genetics</source>
<year>1985</year>
<volume>199</volume>
<fpage>208</fpage>
<lpage>215</lpage>
</citation>
</ref>
<ref id="bib66">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Sambrook</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Maniatis</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Molecular cloning: a laboratory manual</source>
<year>1989</year>
<edition>2nd edn</edition>
<publisher-loc>Cold Spring Harbor, NY</publisher-loc>
<publisher-name>Cold Spring Harbor Laboratory Press</publisher-name>
</citation>
</ref>
<ref id="bib67">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Nourizadeh</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Peer</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Goldsbrough</surname>
<given-names>PB</given-names>
</name>
</person-group>
<article-title>
<italic>Arabidopsis</italic>
AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione
<italic>S</italic>
-transferase that interacts with flavonoids</article-title>
<source>The Plant Journal</source>
<year>2003</year>
<volume>36</volume>
<fpage>433</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">14617075</pub-id>
</citation>
</ref>
<ref id="bib68">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Solfanelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Poggi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Loreti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Alpi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perata</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Sucrose-specific induction of anthocyanin biosynthetic pathway in
<italic>Arabidopsis</italic>
</article-title>
<source>Plant Physiology</source>
<year>2006</year>
<volume>140</volume>
<fpage>637</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="pmid">16384906</pub-id>
</citation>
</ref>
<ref id="bib69">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sparvoli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Scienza</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gavazzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tonelli</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (
<italic>Vitis vinifera</italic>
L.)</article-title>
<source>Plant Molecular Biology</source>
<year>1994</year>
<volume>24</volume>
<fpage>743</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">8193299</pub-id>
</citation>
</ref>
<ref id="bib70">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagata</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Auxin-regulated genes</article-title>
<source>Plant and Cell Physiology</source>
<year>1995</year>
<volume>36</volume>
<fpage>383</fpage>
<lpage>390</lpage>
</citation>
</ref>
<ref id="bib71">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terrier</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Glissant</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Grimplet</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (
<italic>Vitis vinifera</italic>
L.) development</article-title>
<source>Planta</source>
<year>2005</year>
<volume>222</volume>
<fpage>832</fpage>
<lpage>847</lpage>
<pub-id pub-id-type="pmid">16151847</pub-id>
</citation>
</ref>
<ref id="bib72">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice</article-title>
<source>Nucleic Acids Research</source>
<year>1994</year>
<volume>22</volume>
<fpage>4673</fpage>
<lpage>4680</lpage>
<pub-id pub-id-type="pmid">7984417</pub-id>
</citation>
</ref>
<ref id="bib73">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ulmasov</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hagen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guilfoyle</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues</article-title>
<source>Plant Molecular Biology</source>
<year>1994</year>
<volume>26</volume>
<fpage>1055</fpage>
<lpage>1064</lpage>
<pub-id pub-id-type="pmid">7811965</pub-id>
</citation>
</ref>
<ref id="bib74">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ulmasov</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohmiya</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hagen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guilfoyle</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The soybean GH214 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents</article-title>
<source>Plant Physiology</source>
<year>1995</year>
<volume>108</volume>
<fpage>919</fpage>
<lpage>927</lpage>
<pub-id pub-id-type="pmid">7630972</pub-id>
</citation>
</ref>
<ref id="bib75">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Tunen</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Koes</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Spelt</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>van der Krol</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Stuitje</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Mol</surname>
<given-names>JN</given-names>
</name>
</person-group>
<article-title>Cloning of the two chalcone flavanone isomerase genes from
<italic>Petunia hybrida</italic>
: coordinate, light-regulated and differential expression of flavonoid genes</article-title>
<source>EMBO Journal</source>
<year>1988</year>
<volume>7</volume>
<fpage>1257</fpage>
<lpage>1263</lpage>
<pub-id pub-id-type="pmid">3409864</pub-id>
</citation>
</ref>
<ref id="bib76">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verpoorte</surname>
<given-names>R</given-names>
</name>
<name>
<surname>van der Heijden</surname>
<given-names>R</given-names>
</name>
<name>
<surname>ten Hoopen</surname>
<given-names>HJG</given-names>
</name>
<name>
<surname>Memelink</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals</article-title>
<source>Biotechnology Letters</source>
<year>1999</year>
<volume>21</volume>
<fpage>467</fpage>
<lpage>479</lpage>
</citation>
</ref>
<ref id="bib77">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wagner</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Mauch</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Probing the diversity of the Arabidopsis glutathione
<italic>S</italic>
-transferase gene family</article-title>
<source>Plant Molecular Biology</source>
<year>2002</year>
<volume>49</volume>
<fpage>515</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">12090627</pub-id>
</citation>
</ref>
<ref id="bib78">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walbot</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Benito</surname>
<given-names>M-I</given-names>
</name>
<name>
<surname>Bodeau</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nash</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Abscisic acid induces pink pigmentation in maize aleurone tissue in the absence of
<italic>Bronze-2</italic>
</article-title>
<source>Maydica</source>
<year>1994</year>
<volume>39</volume>
<fpage>19</fpage>
<lpage>28</lpage>
</citation>
</ref>
<ref id="bib79">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilkins</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Lindskog</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Gasteiger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bairoch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>J-C</given-names>
</name>
<name>
<surname>Hochstrasser</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Appel</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Detailed peptide characterisation using PEPTIDEMASS—a World-Wide Web accessible tool</article-title>
<source>Electrophoresis</source>
<year>1997</year>
<volume>18</volume>
<fpage>403</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="pmid">9150918</pub-id>
</citation>
</ref>
<ref id="bib80">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Winefield</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cartwright</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Trought</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Characterisation of the biochemical pathway responsible for the formation of glutathione–aroma compound conjugates from Sauvignon blanc grapes</article-title>
<source>Proceedings of the 8th International Congress of Plant Molecular Biology</source>
<year>2006</year>
<publisher-loc>Adelaide, Australia</publisher-loc>
</citation>
</ref>
<ref id="bib81">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winkel</surname>
<given-names>BSJ</given-names>
</name>
</person-group>
<article-title>Metabolic channeling in plants</article-title>
<source>Annual Review of Plant Physiology Plant Molecular Biology</source>
<year>2004</year>
<volume>55</volume>
<fpage>85</fpage>
<lpage>107</lpage>
</citation>
</ref>
<ref id="bib82">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeoman</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Yeoman</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Manipulating secondary metabolism in cultured plant cells</article-title>
<source>New Phytologist</source>
<year>1996</year>
<volume>134</volume>
<fpage>553</fpage>
<lpage>569</lpage>
</citation>
</ref>
<ref id="bib83">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yonekura-Sakakibara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fukuchi-Mizutani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fukui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ashikari</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kusumi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA:anthocyanin 3-
<italic>O</italic>
-glucoside-6′′-
<italic>O</italic>
-acyltransferase from
<italic>Perilla frutescens</italic>
</article-title>
<source>Plant and Cell Physiology</source>
<year>2000</year>
<volume>41</volume>
<fpage>495</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">10845463</pub-id>
</citation>
</ref>
<ref id="bib84">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Facchini</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Molecular cloning and characterization of a type III glutathione
<italic>S</italic>
-transferase from cell suspension cultures of opium poppy treated with a fungal elicitor</article-title>
<source>Physiologia Plantarum</source>
<year>2000</year>
<volume>108</volume>
<fpage>101</fpage>
<lpage>109</lpage>
</citation>
</ref>
<ref id="bib85">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zachariah</surname>
<given-names>VT</given-names>
</name>
<name>
<surname>Walsh-Sayles</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Isolation, purification, and characterization of glutathione
<italic>S</italic>
-transferase from oat (
<italic>Avena sativa</italic>
) seedlings</article-title>
<source>Journal of Protein Chemistry</source>
<year>2000</year>
<volume>19</volume>
<fpage>425</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="pmid">11195966</pub-id>
</citation>
</ref>
<ref id="bib86">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Curtin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Towards manipulation of post-biosynthetic events in secondary metabolism of plant cell cultures</article-title>
<source>Enzyme and Microbial Technology</source>
<year>2002a</year>
<volume>30</volume>
<fpage>688</fpage>
<lpage>696</lpage>
</citation>
</ref>
<ref id="bib87">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Curtin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Integration of jasmonic acid and light irradiation for enhancement of anthocyanin biosynthesis in
<italic>Vitis vinifera</italic>
suspension cultures</article-title>
<source>Plant Science</source>
<year>2002b</year>
<volume>162</volume>
<fpage>459</fpage>
<lpage>468</lpage>
</citation>
</ref>
<ref id="bib88">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Curtin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Conn</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>To stretch the boundary of secondary metabolite production in plant cell-based bioprocessing: anthocyanin as a case study</article-title>
<source>Journal of Biomedicine and Biotechnology</source>
<year>2004</year>
<volume>5</volume>
<fpage>264</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="pmid">15577188</pub-id>
</citation>
</ref>
<ref id="bib89">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Raftery</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Daja</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Application of in-gel protease assay in a biological sample: characterization and identifacation of urokinase-type plasminogen activator (uPA) in secreted proteins from a prostate cancer cell line PC-3</article-title>
<source>Electrophoresis</source>
<year>2004</year>
<volume>25</volume>
<fpage>1142</fpage>
<lpage>1148</lpage>
<pub-id pub-id-type="pmid">15095458</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A77  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A77  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024