Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000621 ( Pmc/Corpus ); précédent : 0006209; suivant : 0006220 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (
<italic>C. junos</italic>
cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement</title>
<author>
<name sortKey="Tan, Feng Quan" sort="Tan, Feng Quan" uniqKey="Tan F" first="Feng-Quan" last="Tan">Feng-Quan Tan</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Hong" sort="Tu, Hong" uniqKey="Tu H" first="Hong" last="Tu">Hong Tu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Wu Jun" sort="Liang, Wu Jun" uniqKey="Liang W" first="Wu-Jun" last="Liang">Wu-Jun Liang</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Jian Mei" sort="Long, Jian Mei" uniqKey="Long J" first="Jian-Mei" last="Long">Jian-Mei Long</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiao Meng" sort="Wu, Xiao Meng" uniqKey="Wu X" first="Xiao-Meng" last="Wu">Xiao-Meng Wu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hong Yan" sort="Zhang, Hong Yan" uniqKey="Zhang H" first="Hong-Yan" last="Zhang">Hong-Yan Zhang</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Wen Wu" sort="Guo, Wen Wu" uniqKey="Guo W" first="Wen-Wu" last="Guo">Wen-Wu Guo</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25848687</idno>
<idno type="pmc">4374211</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374211</idno>
<idno type="RBID">PMC:4374211</idno>
<idno type="doi">10.1186/s12870-015-0450-4</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000621</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (
<italic>C. junos</italic>
cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement</title>
<author>
<name sortKey="Tan, Feng Quan" sort="Tan, Feng Quan" uniqKey="Tan F" first="Feng-Quan" last="Tan">Feng-Quan Tan</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tu, Hong" sort="Tu, Hong" uniqKey="Tu H" first="Hong" last="Tu">Hong Tu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liang, Wu Jun" sort="Liang, Wu Jun" uniqKey="Liang W" first="Wu-Jun" last="Liang">Wu-Jun Liang</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Jian Mei" sort="Long, Jian Mei" uniqKey="Long J" first="Jian-Mei" last="Long">Jian-Mei Long</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiao Meng" sort="Wu, Xiao Meng" uniqKey="Wu X" first="Xiao-Meng" last="Wu">Xiao-Meng Wu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hong Yan" sort="Zhang, Hong Yan" uniqKey="Zhang H" first="Hong-Yan" last="Zhang">Hong-Yan Zhang</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Wen Wu" sort="Guo, Wen Wu" uniqKey="Guo W" first="Wen-Wu" last="Guo">Wen-Wu Guo</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Plant Biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (
<italic>Citrus junos</italic>
Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock.</p>
</sec>
<sec>
<title>Results</title>
<p>Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12870-015-0450-4) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Otto, Sp" uniqKey="Otto S">SP Otto</name>
</author>
<author>
<name sortKey="Whitton, J" uniqKey="Whitton J">J Whitton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comai, L" uniqKey="Comai L">L Comai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doyle, Jj" uniqKey="Doyle J">JJ Doyle</name>
</author>
<author>
<name sortKey="Flagel, Le" uniqKey="Flagel L">LE Flagel</name>
</author>
<author>
<name sortKey="Paterson, Ah" uniqKey="Paterson A">AH Paterson</name>
</author>
<author>
<name sortKey="Rapp, Ra" uniqKey="Rapp R">RA Rapp</name>
</author>
<author>
<name sortKey="Soltis, De" uniqKey="Soltis D">DE Soltis</name>
</author>
<author>
<name sortKey="Soltis, Ps" uniqKey="Soltis P">PS Soltis</name>
</author>
<author>
<name sortKey="Wendel, Jf" uniqKey="Wendel J">JF Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wendel, Jf" uniqKey="Wendel J">JF Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, Kl" uniqKey="Adams K">KL Adams</name>
</author>
<author>
<name sortKey="Wendel, Jf" uniqKey="Wendel J">JF Wendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doyle, Jj" uniqKey="Doyle J">JJ Doyle</name>
</author>
<author>
<name sortKey="Egan, An" uniqKey="Egan A">AN Egan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abel, S" uniqKey="Abel S">S Abel</name>
</author>
<author>
<name sortKey="Becker, H" uniqKey="Becker H">H Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Yu, E" uniqKey="Yu E">E Yu</name>
</author>
<author>
<name sortKey="Fan, C" uniqKey="Fan C">C Fan</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Fu, T" uniqKey="Fu T">T Fu</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, H" uniqKey="Yao H">H Yao</name>
</author>
<author>
<name sortKey="Kato, A" uniqKey="Kato A">A Kato</name>
</author>
<author>
<name sortKey="Mooney, B" uniqKey="Mooney B">B Mooney</name>
</author>
<author>
<name sortKey="Birchler, Ja" uniqKey="Birchler J">JA Birchler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, Sl" uniqKey="Martin S">SL Martin</name>
</author>
<author>
<name sortKey="Husband, Bc" uniqKey="Husband B">BC Husband</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, H" uniqKey="Cohen H">H Cohen</name>
</author>
<author>
<name sortKey="Tel Zur, N" uniqKey="Tel Zur N">N Tel-Zur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chao, Dy" uniqKey="Chao D">DY Chao</name>
</author>
<author>
<name sortKey="Dilkes, B" uniqKey="Dilkes B">B Dilkes</name>
</author>
<author>
<name sortKey="Luo, H" uniqKey="Luo H">H Luo</name>
</author>
<author>
<name sortKey="Douglas, A" uniqKey="Douglas A">A Douglas</name>
</author>
<author>
<name sortKey="Yakubova, E" uniqKey="Yakubova E">E Yakubova</name>
</author>
<author>
<name sortKey="Lahner, B" uniqKey="Lahner B">B Lahner</name>
</author>
<author>
<name sortKey="Salt, De" uniqKey="Salt D">DE Salt</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavania, U" uniqKey="Lavania U">U Lavania</name>
</author>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jesus Gonzalez, L" uniqKey="De Jesus Gonzalez L">L De Jesus-Gonzalez</name>
</author>
<author>
<name sortKey="Weathers, P" uniqKey="Weathers P">P Weathers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavania, Uc" uniqKey="Lavania U">UC Lavania</name>
</author>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
<author>
<name sortKey="Lavania, S" uniqKey="Lavania S">S Lavania</name>
</author>
<author>
<name sortKey="Basu, S" uniqKey="Basu S">S Basu</name>
</author>
<author>
<name sortKey="Misra, Nk" uniqKey="Misra N">NK Misra</name>
</author>
<author>
<name sortKey="Mukai, Y" uniqKey="Mukai Y">Y Mukai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caruso, I" uniqKey="Caruso I">I Caruso</name>
</author>
<author>
<name sortKey="Lepore, L" uniqKey="Lepore L">L Lepore</name>
</author>
<author>
<name sortKey="De Tommasi, N" uniqKey="De Tommasi N">N De Tommasi</name>
</author>
<author>
<name sortKey="Dal Piaz, F" uniqKey="Dal Piaz F">F Dal Piaz</name>
</author>
<author>
<name sortKey="Frusciante, L" uniqKey="Frusciante L">L Frusciante</name>
</author>
<author>
<name sortKey="Aversano, R" uniqKey="Aversano R">R Aversano</name>
</author>
<author>
<name sortKey="Garramone, R" uniqKey="Garramone R">R Garramone</name>
</author>
<author>
<name sortKey="Carputo, D" uniqKey="Carputo D">D Carputo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
<author>
<name sortKey="Lee, Hs" uniqKey="Lee H">HS Lee</name>
</author>
<author>
<name sortKey="Wei, Ne" uniqKey="Wei N">NE Wei</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Watson, B" uniqKey="Watson B">B Watson</name>
</author>
<author>
<name sortKey="Madlung, A" uniqKey="Madlung A">A Madlung</name>
</author>
<author>
<name sortKey="Osborn, Tc" uniqKey="Osborn T">TC Osborn</name>
</author>
<author>
<name sortKey="Doerge, R" uniqKey="Doerge R">R Doerge</name>
</author>
<author>
<name sortKey="Comai, L" uniqKey="Comai L">L Comai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ni, Z" uniqKey="Ni Z">Z Ni</name>
</author>
<author>
<name sortKey="Kim, Ed" uniqKey="Kim E">ED Kim</name>
</author>
<author>
<name sortKey="Ha, M" uniqKey="Ha M">M Ha</name>
</author>
<author>
<name sortKey="Lackey, E" uniqKey="Lackey E">E Lackey</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bassene, J" uniqKey="Bassene J">J Bassene</name>
</author>
<author>
<name sortKey="Froelicher, Y" uniqKey="Froelicher Y">Y Froelicher</name>
</author>
<author>
<name sortKey="Dubois, C" uniqKey="Dubois C">C Dubois</name>
</author>
<author>
<name sortKey="Ferrer, R" uniqKey="Ferrer R">R Ferrer</name>
</author>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
<author>
<name sortKey="Ancillo, G" uniqKey="Ancillo G">G Ancillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riddle, Nc" uniqKey="Riddle N">NC Riddle</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="An, L" uniqKey="An L">L An</name>
</author>
<author>
<name sortKey="Doerge, R" uniqKey="Doerge R">R Doerge</name>
</author>
<author>
<name sortKey="Birchler, Ja" uniqKey="Birchler J">JA Birchler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bombarely, A" uniqKey="Bombarely A">A Bombarely</name>
</author>
<author>
<name sortKey="Edwards, Kd" uniqKey="Edwards K">KD Edwards</name>
</author>
<author>
<name sortKey="Sanchez Tamburrino, J" uniqKey="Sanchez Tamburrino J">J Sanchez-Tamburrino</name>
</author>
<author>
<name sortKey="Mueller, La" uniqKey="Mueller L">LA Mueller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stupar, Rm" uniqKey="Stupar R">RM Stupar</name>
</author>
<author>
<name sortKey="Bhaskar, Pb" uniqKey="Bhaskar P">PB Bhaskar</name>
</author>
<author>
<name sortKey="Yandell, Bs" uniqKey="Yandell B">BS Yandell</name>
</author>
<author>
<name sortKey="Rensink, Wa" uniqKey="Rensink W">WA Rensink</name>
</author>
<author>
<name sortKey="Hart, Al" uniqKey="Hart A">AL Hart</name>
</author>
<author>
<name sortKey="Ouyang, S" uniqKey="Ouyang S">S Ouyang</name>
</author>
<author>
<name sortKey="Veilleux, Re" uniqKey="Veilleux R">RE Veilleux</name>
</author>
<author>
<name sortKey="Busse, Js" uniqKey="Busse J">JS Busse</name>
</author>
<author>
<name sortKey="Erhardt, Rj" uniqKey="Erhardt R">RJ Erhardt</name>
</author>
<author>
<name sortKey="Buell, Cr" uniqKey="Buell C">CR Buell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Z" uniqKey="Yu Z">Z Yu</name>
</author>
<author>
<name sortKey="Haberer, G" uniqKey="Haberer G">G Haberer</name>
</author>
<author>
<name sortKey="Matthes, M" uniqKey="Matthes M">M Matthes</name>
</author>
<author>
<name sortKey="Rattei, T" uniqKey="Rattei T">T Rattei</name>
</author>
<author>
<name sortKey="Mayer, Kf" uniqKey="Mayer K">KF Mayer</name>
</author>
<author>
<name sortKey="Gierl, A" uniqKey="Gierl A">A Gierl</name>
</author>
<author>
<name sortKey="Torres Ruiz, Ra" uniqKey="Torres Ruiz R">RA Torres-Ruiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allario, T" uniqKey="Allario T">T Allario</name>
</author>
<author>
<name sortKey="Brumos, J" uniqKey="Brumos J">J Brumos</name>
</author>
<author>
<name sortKey="Colmenero Flores, Jm" uniqKey="Colmenero Flores J">JM Colmenero-Flores</name>
</author>
<author>
<name sortKey="Tadeo, F" uniqKey="Tadeo F">F Tadeo</name>
</author>
<author>
<name sortKey="Froelicher, Y" uniqKey="Froelicher Y">Y Froelicher</name>
</author>
<author>
<name sortKey="Talon, M" uniqKey="Talon M">M Talon</name>
</author>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
<author>
<name sortKey="Morillon, R" uniqKey="Morillon R">R Morillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, Xq" uniqKey="Gong X">XQ Gong</name>
</author>
<author>
<name sortKey="Liu, Jh" uniqKey="Liu J">JH Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jj" uniqKey="Liu J">JJ Liu</name>
</author>
<author>
<name sortKey="Chen, Kl" uniqKey="Chen K">KL Chen</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q Hu</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Zhou, Qm" uniqKey="Zhou Q">QM Zhou</name>
</author>
<author>
<name sortKey="Li, Hw" uniqKey="Li H">HW Li</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
<author>
<name sortKey="Guan, B" uniqKey="Guan B">B Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Gf" uniqKey="Zhou G">GF Zhou</name>
</author>
<author>
<name sortKey="Peng, Sa" uniqKey="Peng S">SA Peng</name>
</author>
<author>
<name sortKey="Liu, Yz" uniqKey="Liu Y">YZ Liu</name>
</author>
<author>
<name sortKey="Wei, Qj" uniqKey="Wei Q">QJ Wei</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
<author>
<name sortKey="Islam, Mz" uniqKey="Islam M">MZ Islam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aleza, P" uniqKey="Aleza P">P Aleza</name>
</author>
<author>
<name sortKey="Froelicher, Y" uniqKey="Froelicher Y">Y Froelicher</name>
</author>
<author>
<name sortKey="Schwarz, S" uniqKey="Schwarz S">S Schwarz</name>
</author>
<author>
<name sortKey="Agusti, M" uniqKey="Agusti M">M Agustí</name>
</author>
<author>
<name sortKey="Hernandez, M" uniqKey="Hernandez M">M Hernández</name>
</author>
<author>
<name sortKey="Juarez, J" uniqKey="Juarez J">J Juárez</name>
</author>
<author>
<name sortKey="Luro, F" uniqKey="Luro F">F Luro</name>
</author>
<author>
<name sortKey="Morillon, R" uniqKey="Morillon R">R Morillon</name>
</author>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, Mn" uniqKey="Rao M">MN Rao</name>
</author>
<author>
<name sortKey="Soneji, Jr" uniqKey="Soneji J">JR Soneji</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S Huang</name>
</author>
<author>
<name sortKey="Gmitter, Fg" uniqKey="Gmitter F">FG Gmitter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruiz, C" uniqKey="Ruiz C">C Ruiz</name>
</author>
<author>
<name sortKey="Breto, Mp" uniqKey="Breto M">MP Breto</name>
</author>
<author>
<name sortKey="Asins, M" uniqKey="Asins M">M Asins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saleh, B" uniqKey="Saleh B">B Saleh</name>
</author>
<author>
<name sortKey="Allario, T" uniqKey="Allario T">T Allario</name>
</author>
<author>
<name sortKey="Dambier, D" uniqKey="Dambier D">D Dambier</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
<author>
<name sortKey="Morillon, R" uniqKey="Morillon R">R Morillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mouhaya, W" uniqKey="Mouhaya W">W Mouhaya</name>
</author>
<author>
<name sortKey="Allario, T" uniqKey="Allario T">T Allario</name>
</author>
<author>
<name sortKey="Brumos, J" uniqKey="Brumos J">J Brumos</name>
</author>
<author>
<name sortKey="Andres, F" uniqKey="Andres F">F Andrés</name>
</author>
<author>
<name sortKey="Froelicher, Y" uniqKey="Froelicher Y">Y Froelicher</name>
</author>
<author>
<name sortKey="Luro, F" uniqKey="Luro F">F Luro</name>
</author>
<author>
<name sortKey="Talon, M" uniqKey="Talon M">M Talon</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
<author>
<name sortKey="Morillon, R" uniqKey="Morillon R">R Morillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Wj" uniqKey="Liang W">WJ Liang</name>
</author>
<author>
<name sortKey="Xie, Kd" uniqKey="Xie K">KD Xie</name>
</author>
<author>
<name sortKey="Guo, Dy" uniqKey="Guo D">DY Guo</name>
</author>
<author>
<name sortKey="Xie, Zz" uniqKey="Xie Z">ZZ Xie</name>
</author>
<author>
<name sortKey="Yi, Hl" uniqKey="Yi H">HL Yi</name>
</author>
<author>
<name sortKey="Guo, Ww" uniqKey="Guo W">WW Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Wj" uniqKey="Liang W">WJ Liang</name>
</author>
<author>
<name sortKey="Xie, Kd" uniqKey="Xie K">KD Xie</name>
</author>
<author>
<name sortKey="Guo, Dy" uniqKey="Guo D">DY Guo</name>
</author>
<author>
<name sortKey="Xie, Zz" uniqKey="Xie Z">ZZ Xie</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Yi, Hl" uniqKey="Yi H">HL Yi</name>
</author>
<author>
<name sortKey="Guo, Ww" uniqKey="Guo W">WW Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, Z" uniqKey="Yun Z">Z Yun</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H Gao</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P Liu</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Luo, T" uniqKey="Luo T">T Luo</name>
</author>
<author>
<name sortKey="Jin, S" uniqKey="Jin S">S Jin</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y Cheng</name>
</author>
<author>
<name sortKey="Deng, X" uniqKey="Deng X">X Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maere, S" uniqKey="Maere S">S Maere</name>
</author>
<author>
<name sortKey="Heymans, K" uniqKey="Heymans K">K Heymans</name>
</author>
<author>
<name sortKey="Kuiper, M" uniqKey="Kuiper M">M Kuiper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Ju, Hw" uniqKey="Ju H">HW Ju</name>
</author>
<author>
<name sortKey="Chung, Ms" uniqKey="Chung M">MS Chung</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P Huang</name>
</author>
<author>
<name sortKey="Ahn, Sj" uniqKey="Ahn S">SJ Ahn</name>
</author>
<author>
<name sortKey="Kim, Cs" uniqKey="Kim C">CS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vincent, D" uniqKey="Vincent D">D Vincent</name>
</author>
<author>
<name sortKey="Lapierre, C" uniqKey="Lapierre C">C Lapierre</name>
</author>
<author>
<name sortKey="Pollet, B" uniqKey="Pollet B">B Pollet</name>
</author>
<author>
<name sortKey="Cornic, G" uniqKey="Cornic G">G Cornic</name>
</author>
<author>
<name sortKey="Negroni, L" uniqKey="Negroni L">L Negroni</name>
</author>
<author>
<name sortKey="Zivy, M" uniqKey="Zivy M">M Zivy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, R" uniqKey="Yuan R">R Yuan</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
<author>
<name sortKey="Kostenyuk, Ia" uniqKey="Kostenyuk I">IA Kostenyuk</name>
</author>
<author>
<name sortKey="Burns, Jk" uniqKey="Burns J">JK Burns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yc" uniqKey="Liu Y">YC Liu</name>
</author>
<author>
<name sortKey="Wu, Yr" uniqKey="Wu Y">YR Wu</name>
</author>
<author>
<name sortKey="Huang, Xh" uniqKey="Huang X">XH Huang</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Liu, N" uniqKey="Liu N">N Liu</name>
</author>
<author>
<name sortKey="Virlouvet, L" uniqKey="Virlouvet L">L Virlouvet</name>
</author>
<author>
<name sortKey="Riethoven, Jj" uniqKey="Riethoven J">JJ Riethoven</name>
</author>
<author>
<name sortKey="Fromm, M" uniqKey="Fromm M">M Fromm</name>
</author>
<author>
<name sortKey="Avramova, Z" uniqKey="Avramova Z">Z Avramova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizoi, J" uniqKey="Mizoi J">J Mizoi</name>
</author>
<author>
<name sortKey="Shinozaki, K" uniqKey="Shinozaki K">K Shinozaki</name>
</author>
<author>
<name sortKey="Yamaguchi Shinozaki, K" uniqKey="Yamaguchi Shinozaki K">K Yamaguchi-Shinozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neilson, Eh" uniqKey="Neilson E">EH Neilson</name>
</author>
<author>
<name sortKey="Goodger, Jq" uniqKey="Goodger J">JQ Goodger</name>
</author>
<author>
<name sortKey="Woodrow, Ie" uniqKey="Woodrow I">IE Woodrow</name>
</author>
<author>
<name sortKey="Moller, Bl" uniqKey="Moller B">BL Moller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Couee, I" uniqKey="Couee I">I Couee</name>
</author>
<author>
<name sortKey="Sulmon, C" uniqKey="Sulmon C">C Sulmon</name>
</author>
<author>
<name sortKey="Gouesbet, G" uniqKey="Gouesbet G">G Gouesbet</name>
</author>
<author>
<name sortKey="El Amrani, A" uniqKey="El Amrani A">A El Amrani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patterson, Jh" uniqKey="Patterson J">JH Patterson</name>
</author>
<author>
<name sortKey="Newbigin, E" uniqKey="Newbigin E">E Newbigin</name>
</author>
<author>
<name sortKey="Tester, M" uniqKey="Tester M">M Tester</name>
</author>
<author>
<name sortKey="Bacic, A" uniqKey="Bacic A">A Bacic</name>
</author>
<author>
<name sortKey="Roessner, U" uniqKey="Roessner U">U Roessner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinocur, B" uniqKey="Vinocur B">B Vinocur</name>
</author>
<author>
<name sortKey="Altman, A" uniqKey="Altman A">A Altman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seki, M" uniqKey="Seki M">M Seki</name>
</author>
<author>
<name sortKey="Umezawa, T" uniqKey="Umezawa T">T Umezawa</name>
</author>
<author>
<name sortKey="Urano, K" uniqKey="Urano K">K Urano</name>
</author>
<author>
<name sortKey="Shinozaki, K" uniqKey="Shinozaki K">K Shinozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghasempour, H" uniqKey="Ghasempour H">H Ghasempour</name>
</author>
<author>
<name sortKey="Gaff, D" uniqKey="Gaff D">D Gaff</name>
</author>
<author>
<name sortKey="Williams, R" uniqKey="Williams R">R Williams</name>
</author>
<author>
<name sortKey="Gianello, R" uniqKey="Gianello R">R Gianello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farrant, Jm" uniqKey="Farrant J">JM Farrant</name>
</author>
<author>
<name sortKey="Lehner, A" uniqKey="Lehner A">A Lehner</name>
</author>
<author>
<name sortKey="Cooper, K" uniqKey="Cooper K">K Cooper</name>
</author>
<author>
<name sortKey="Wiswedel, S" uniqKey="Wiswedel S">S Wiswedel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krasensky, J" uniqKey="Krasensky J">J Krasensky</name>
</author>
<author>
<name sortKey="Jonak, C" uniqKey="Jonak C">C Jonak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vendruscolo, Ecg" uniqKey="Vendruscolo E">ECG Vendruscolo</name>
</author>
<author>
<name sortKey="Schuster, I" uniqKey="Schuster I">I Schuster</name>
</author>
<author>
<name sortKey="Pileggi, M" uniqKey="Pileggi M">M Pileggi</name>
</author>
<author>
<name sortKey="Scapim, Ca" uniqKey="Scapim C">CA Scapim</name>
</author>
<author>
<name sortKey="Molinari, Hbc" uniqKey="Molinari H">HBC Molinari</name>
</author>
<author>
<name sortKey="Marur, Cj" uniqKey="Marur C">CJ Marur</name>
</author>
<author>
<name sortKey="Vieira, Lge" uniqKey="Vieira L">LGE Vieira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verbruggen, N" uniqKey="Verbruggen N">N Verbruggen</name>
</author>
<author>
<name sortKey="Hermans, C" uniqKey="Hermans C">C Hermans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yobi, A" uniqKey="Yobi A">A Yobi</name>
</author>
<author>
<name sortKey="Wone, Bw" uniqKey="Wone B">BW Wone</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W Xu</name>
</author>
<author>
<name sortKey="Alexander, Dc" uniqKey="Alexander D">DC Alexander</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Ryals, Ja" uniqKey="Ryals J">JA Ryals</name>
</author>
<author>
<name sortKey="Oliver, Mj" uniqKey="Oliver M">MJ Oliver</name>
</author>
<author>
<name sortKey="Cushman, Jc" uniqKey="Cushman J">JC Cushman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grosser, Jw" uniqKey="Grosser J">JW Grosser</name>
</author>
<author>
<name sortKey="Gmitter, Fg" uniqKey="Gmitter F">FG Gmitter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martelotto, Lg" uniqKey="Martelotto L">LG Martelotto</name>
</author>
<author>
<name sortKey="Ortiz, Jpa" uniqKey="Ortiz J">JPA Ortiz</name>
</author>
<author>
<name sortKey="Stein, J" uniqKey="Stein J">J Stein</name>
</author>
<author>
<name sortKey="Espinoza, F" uniqKey="Espinoza F">F Espinoza</name>
</author>
<author>
<name sortKey="Quarin, Cl" uniqKey="Quarin C">CL Quarin</name>
</author>
<author>
<name sortKey="Pessino, Sc" uniqKey="Pessino S">SC Pessino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B Lu</name>
</author>
<author>
<name sortKey="Pan, X" uniqKey="Pan X">X Pan</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B Huang</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B Li</name>
</author>
<author>
<name sortKey="Yi, B" uniqKey="Yi B">B Yi</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S Zheng</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X Yu</name>
</author>
<author>
<name sortKey="Ding, R" uniqKey="Ding R">R Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auger, Dl" uniqKey="Auger D">DL Auger</name>
</author>
<author>
<name sortKey="Gray, Ad" uniqKey="Gray A">AD Gray</name>
</author>
<author>
<name sortKey="Ream, Ts" uniqKey="Ream T">TS Ream</name>
</author>
<author>
<name sortKey="Kato, A" uniqKey="Kato A">A Kato</name>
</author>
<author>
<name sortKey="Coe, Eh" uniqKey="Coe E">EH Coe</name>
</author>
<author>
<name sortKey="Birchler, Ja" uniqKey="Birchler J">JA Birchler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Jk" uniqKey="Zhu J">JK Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizhsky, L" uniqKey="Rizhsky L">L Rizhsky</name>
</author>
<author>
<name sortKey="Liang, H" uniqKey="Liang H">H Liang</name>
</author>
<author>
<name sortKey="Shuman, J" uniqKey="Shuman J">J Shuman</name>
</author>
<author>
<name sortKey="Shulaev, V" uniqKey="Shulaev V">V Shulaev</name>
</author>
<author>
<name sortKey="Davletova, S" uniqKey="Davletova S">S Davletova</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schafleitner, R" uniqKey="Schafleitner R">R Schafleitner</name>
</author>
<author>
<name sortKey="Gutierrez Rosales, Ro" uniqKey="Gutierrez Rosales R">RO Gutierrez Rosales</name>
</author>
<author>
<name sortKey="Gaudin, A" uniqKey="Gaudin A">A Gaudin</name>
</author>
<author>
<name sortKey="Alvarado Aliaga, Ca" uniqKey="Alvarado Aliaga C">CA Alvarado Aliaga</name>
</author>
<author>
<name sortKey="Martinez, Gn" uniqKey="Martinez G">GN Martinez</name>
</author>
<author>
<name sortKey="Tincopa Marca, Lr" uniqKey="Tincopa Marca L">LR Tincopa Marca</name>
</author>
<author>
<name sortKey="Bolivar, La" uniqKey="Bolivar L">LA Bolivar</name>
</author>
<author>
<name sortKey="Delgado, Fm" uniqKey="Delgado F">FM Delgado</name>
</author>
<author>
<name sortKey="Simon, R" uniqKey="Simon R">R Simon</name>
</author>
<author>
<name sortKey="Bonierbale, M" uniqKey="Bonierbale M">M Bonierbale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tu, Y" uniqKey="Tu Y">Y Tu</name>
</author>
<author>
<name sortKey="Rochfort, S" uniqKey="Rochfort S">S Rochfort</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Ran, Y" uniqKey="Ran Y">Y Ran</name>
</author>
<author>
<name sortKey="Griffith, M" uniqKey="Griffith M">M Griffith</name>
</author>
<author>
<name sortKey="Badenhorst, P" uniqKey="Badenhorst P">P Badenhorst</name>
</author>
<author>
<name sortKey="Louie, Gv" uniqKey="Louie G">GV Louie</name>
</author>
<author>
<name sortKey="Bowman, Me" uniqKey="Bowman M">ME Bowman</name>
</author>
<author>
<name sortKey="Smith, Kf" uniqKey="Smith K">KF Smith</name>
</author>
<author>
<name sortKey="Noel, Jp" uniqKey="Noel J">JP Noel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barry, Cs" uniqKey="Barry C">CS Barry</name>
</author>
<author>
<name sortKey="Blume, B" uniqKey="Blume B">B Blume</name>
</author>
<author>
<name sortKey="Bouzayen, M" uniqKey="Bouzayen M">M Bouzayen</name>
</author>
<author>
<name sortKey="Cooper, W" uniqKey="Cooper W">W Cooper</name>
</author>
<author>
<name sortKey="Hamilton, Aj" uniqKey="Hamilton A">AJ Hamilton</name>
</author>
<author>
<name sortKey="Grierson, D" uniqKey="Grierson D">D Grierson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ouvrard, O" uniqKey="Ouvrard O">O Ouvrard</name>
</author>
<author>
<name sortKey="Cellier, F" uniqKey="Cellier F">F Cellier</name>
</author>
<author>
<name sortKey="Ferrare, K" uniqKey="Ferrare K">K Ferrare</name>
</author>
<author>
<name sortKey="Tousch, D" uniqKey="Tousch D">D Tousch</name>
</author>
<author>
<name sortKey="Lamaze, T" uniqKey="Lamaze T">T Lamaze</name>
</author>
<author>
<name sortKey="Dupuis, Jm" uniqKey="Dupuis J">JM Dupuis</name>
</author>
<author>
<name sortKey="Casse Delbart, F" uniqKey="Casse Delbart F">F Casse-Delbart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, Yj" uniqKey="Seo Y">YJ Seo</name>
</author>
<author>
<name sortKey="Park, Jb" uniqKey="Park J">JB Park</name>
</author>
<author>
<name sortKey="Cho, Yj" uniqKey="Cho Y">YJ Cho</name>
</author>
<author>
<name sortKey="Jung, C" uniqKey="Jung C">C Jung</name>
</author>
<author>
<name sortKey="Seo, Hs" uniqKey="Seo H">HS Seo</name>
</author>
<author>
<name sortKey="Park, Sk" uniqKey="Park S">SK Park</name>
</author>
<author>
<name sortKey="Nahm, Bh" uniqKey="Nahm B">BH Nahm</name>
</author>
<author>
<name sortKey="Song, Jt" uniqKey="Song J">JT Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G Miller</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N Suzuki</name>
</author>
<author>
<name sortKey="Ciftci Yilmaz, S" uniqKey="Ciftci Yilmaz S">S Ciftci-Yilmaz</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballester, A R" uniqKey="Ballester A">A-R Ballester</name>
</author>
<author>
<name sortKey="Teresa Lafuente, M" uniqKey="Teresa Lafuente M">M Teresa Lafuente</name>
</author>
<author>
<name sortKey="Gonzalez Candelas, L" uniqKey="Gonzalez Candelas L">L González-Candelas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontaine, J X" uniqKey="Fontaine J">J-X Fontaine</name>
</author>
<author>
<name sortKey="Terce Laforgue, T" uniqKey="Terce Laforgue T">T Tercé-Laforgue</name>
</author>
<author>
<name sortKey="Armengaud, P" uniqKey="Armengaud P">P Armengaud</name>
</author>
<author>
<name sortKey="Clement, G" uniqKey="Clement G">G Clément</name>
</author>
<author>
<name sortKey="Renou, J P" uniqKey="Renou J">J-P Renou</name>
</author>
<author>
<name sortKey="Pelletier, S" uniqKey="Pelletier S">S Pelletier</name>
</author>
<author>
<name sortKey="Catterou, M" uniqKey="Catterou M">M Catterou</name>
</author>
<author>
<name sortKey="Azzopardi, M" uniqKey="Azzopardi M">M Azzopardi</name>
</author>
<author>
<name sortKey="Gibon, Y" uniqKey="Gibon Y">Y Gibon</name>
</author>
<author>
<name sortKey="Lea, Pj" uniqKey="Lea P">PJ Lea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernie, Ar" uniqKey="Fernie A">AR Fernie</name>
</author>
<author>
<name sortKey="Stitt, M" uniqKey="Stitt M">M Stitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ha, M" uniqKey="Ha M">M Ha</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
<author>
<name sortKey="Ramachandran, V" uniqKey="Ramachandran V">V Ramachandran</name>
</author>
<author>
<name sortKey="Kasschau, Kd" uniqKey="Kasschau K">KD Kasschau</name>
</author>
<author>
<name sortKey="Chapman, Ej" uniqKey="Chapman E">EJ Chapman</name>
</author>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Wang, X J" uniqKey="Wang X">X-J Wang</name>
</author>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parisod, C" uniqKey="Parisod C">C Parisod</name>
</author>
<author>
<name sortKey="Alix, K" uniqKey="Alix K">K Alix</name>
</author>
<author>
<name sortKey="Just, J" uniqKey="Just J">J Just</name>
</author>
<author>
<name sortKey="Petit, M" uniqKey="Petit M">M Petit</name>
</author>
<author>
<name sortKey="Sarilar, V" uniqKey="Sarilar V">V Sarilar</name>
</author>
<author>
<name sortKey="Mhiri, C" uniqKey="Mhiri C">C Mhiri</name>
</author>
<author>
<name sortKey="Ainouche, M" uniqKey="Ainouche M">M Ainouche</name>
</author>
<author>
<name sortKey="Chalhoub, B" uniqKey="Chalhoub B">B Chalhoub</name>
</author>
<author>
<name sortKey="Grandbastien, Ma" uniqKey="Grandbastien M">MA Grandbastien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Dw" uniqKey="Ng D">DW Ng</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Miller, M" uniqKey="Miller M">M Miller</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
<author>
<name sortKey="Briggs, S" uniqKey="Briggs S">S Briggs</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marmagne, A" uniqKey="Marmagne A">A Marmagne</name>
</author>
<author>
<name sortKey="Brabant, P" uniqKey="Brabant P">P Brabant</name>
</author>
<author>
<name sortKey="Thiellement, H" uniqKey="Thiellement H">H Thiellement</name>
</author>
<author>
<name sortKey="Alix, K" uniqKey="Alix K">K Alix</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Froelicher, Y" uniqKey="Froelicher Y">Y Froelicher</name>
</author>
<author>
<name sortKey="Dambier, D" uniqKey="Dambier D">D Dambier</name>
</author>
<author>
<name sortKey="Bassene, J" uniqKey="Bassene J">J Bassene</name>
</author>
<author>
<name sortKey="Costantino, G" uniqKey="Costantino G">G Costantino</name>
</author>
<author>
<name sortKey="Lotfy, S" uniqKey="Lotfy S">S Lotfy</name>
</author>
<author>
<name sortKey="Didout, C" uniqKey="Didout C">C Didout</name>
</author>
<author>
<name sortKey="Beaumont, V" uniqKey="Beaumont V">V Beaumont</name>
</author>
<author>
<name sortKey="Brottier, P" uniqKey="Brottier P">P Brottier</name>
</author>
<author>
<name sortKey="Risterucci, A" uniqKey="Risterucci A">A Risterucci</name>
</author>
<author>
<name sortKey="Luro, F" uniqKey="Luro F">F Luro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cristofani Yaly, M" uniqKey="Cristofani Yaly M">M Cristofani-Yaly</name>
</author>
<author>
<name sortKey="Novelli, Vm" uniqKey="Novelli V">VM Novelli</name>
</author>
<author>
<name sortKey="Bastianel, M" uniqKey="Bastianel M">M Bastianel</name>
</author>
<author>
<name sortKey="Machado, Ma" uniqKey="Machado M">MA Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, B" uniqKey="Yi B">B Yi</name>
</author>
<author>
<name sortKey="Zeng, F" uniqKey="Zeng F">F Zeng</name>
</author>
<author>
<name sortKey="Lei, S" uniqKey="Lei S">S Lei</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Yao, X" uniqKey="Yao X">X Yao</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Wen, J" uniqKey="Wen J">J Wen</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J Shen</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C Ma</name>
</author>
<author>
<name sortKey="Tu, J" uniqKey="Tu J">J Tu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Z" uniqKey="Hu Z">Z Hu</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M Zhang</name>
</author>
<author>
<name sortKey="Wen, Q" uniqKey="Wen Q">Q Wen</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J Wei</name>
</author>
<author>
<name sortKey="Yi, H" uniqKey="Yi H">H Yi</name>
</author>
<author>
<name sortKey="Deng, X" uniqKey="Deng X">X Deng</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, Bb" uniqKey="Zheng B">BB Zheng</name>
</author>
<author>
<name sortKey="Wu, Xm" uniqKey="Wu X">XM Wu</name>
</author>
<author>
<name sortKey="Ge, Xx" uniqKey="Ge X">XX Ge</name>
</author>
<author>
<name sortKey="Deng, Xx" uniqKey="Deng X">XX Deng</name>
</author>
<author>
<name sortKey="Grosser, Jw" uniqKey="Grosser J">JW Grosser</name>
</author>
<author>
<name sortKey="Guo, Ww" uniqKey="Guo W">WW Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Chen, Ll" uniqKey="Chen L">LL Chen</name>
</author>
<author>
<name sortKey="Ruan, X" uniqKey="Ruan X">X Ruan</name>
</author>
<author>
<name sortKey="Chen, D" uniqKey="Chen D">D Chen</name>
</author>
<author>
<name sortKey="Zhu, A" uniqKey="Zhu A">A Zhu</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Bertrand, D" uniqKey="Bertrand D">D Bertrand</name>
</author>
<author>
<name sortKey="Jiao, Wb" uniqKey="Jiao W">WB Jiao</name>
</author>
<author>
<name sortKey="Hao, Bh" uniqKey="Hao B">BH Hao</name>
</author>
<author>
<name sortKey="Lyon, Mp" uniqKey="Lyon M">MP Lyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Pertea, G" uniqKey="Pertea G">G Pertea</name>
</author>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pimentel, H" uniqKey="Pimentel H">H Pimentel</name>
</author>
<author>
<name sortKey="Kelley, R" uniqKey="Kelley R">R Kelley</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
<author>
<name sortKey="Hochberg, Y" uniqKey="Hochberg Y">Y Hochberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, C" uniqKey="Xie C">C Xie</name>
</author>
<author>
<name sortKey="Mao, X" uniqKey="Mao X">X Mao</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Dong, S" uniqKey="Dong S">S Dong</name>
</author>
<author>
<name sortKey="Kong, L" uniqKey="Kong L">L Kong</name>
</author>
<author>
<name sortKey="Gao, G" uniqKey="Gao G">G Gao</name>
</author>
<author>
<name sortKey="Li, Cy" uniqKey="Li C">CY Li</name>
</author>
<author>
<name sortKey="Wei, L" uniqKey="Wei L">L Wei</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Plant Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Plant Biol</journal-id>
<journal-title-group>
<journal-title>BMC Plant Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2229</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25848687</article-id>
<article-id pub-id-type="pmc">4374211</article-id>
<article-id pub-id-type="publisher-id">450</article-id>
<article-id pub-id-type="doi">10.1186/s12870-015-0450-4</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (
<italic>C. junos</italic>
cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tan</surname>
<given-names>Feng-Quan</given-names>
</name>
<address>
<email>tanfengquan@webmail.hzau.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tu</surname>
<given-names>Hong</given-names>
</name>
<address>
<email>545983222@qq.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liang</surname>
<given-names>Wu-Jun</given-names>
</name>
<address>
<email>1833773487@qq.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Long</surname>
<given-names>Jian-Mei</given-names>
</name>
<address>
<email>longjianmei2011@126.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Xiao-Meng</given-names>
</name>
<address>
<email>wuxm@mail.hzau.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Hong-Yan</given-names>
</name>
<address>
<email>zhanghy@mail.hzau.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Guo</surname>
<given-names>Wen-Wu</given-names>
</name>
<address>
<email>guoww@mail.hzau.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region) (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>18</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>18</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>15</volume>
<elocation-id>89</elocation-id>
<history>
<date date-type="received">
<day>24</day>
<month>9</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>2</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Tan et al.; licensee BioMed Central. 2015</copyright-statement>
<license license-type="open-access">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (
<italic>Citrus junos</italic>
Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock.</p>
</sec>
<sec>
<title>Results</title>
<p>Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12870-015-0450-4) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Citrus</kwd>
<kwd>Doubled diploid</kwd>
<kwd>Stress tolerance</kwd>
<kwd>Primary and secondary metabolism</kwd>
<kwd>Transcriptome</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>Polyploidy is a common biological phenomenon and plays an important role in evolutionary history of plants [
<xref ref-type="bibr" rid="CR1">1</xref>
-
<xref ref-type="bibr" rid="CR3">3</xref>
]. Almost all angiosperms have undergone at least one round of whole-genome duplication in the course of their evolution [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
]. Polyploids are classified into autopolyploids and allopolyploids. The first comes from doubling a diploid genome. And the latter arises from the combination of two or more sets of divergent genomes [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
]. Many major crop plants including wheat (allohexaploid), cotton (allotetraploid), oilseed rape (allotetraploid), sweet potato (autotetraplooid), rice and maize (paleopolyploid) are polyploids. Moreover, polyploidy cultivars are prevalent in fruit plants, such as banana (triploid), grape (tetraploid), kiwifruit and persimmon (hexaploid), strawberry (octaploid). Phenotypic variations caused by polyploidization possess the potential to improve agricultural productivity and efficiency, especially in increasing biomass and stress tolerance.</p>
<p>Polyploidy has a significant influence on morphology and physiology of newly formed offspring. Compared with the corresponding diploids, autopolyploids tend to have larger cells, which result in the enlargement of single organs, such as leaves, flowers and seeds [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Physiological traits such as plant height, growth rate, flowering time, and fertility also can be altered by polyploidization [
<xref ref-type="bibr" rid="CR10">10</xref>
-
<xref ref-type="bibr" rid="CR12">12</xref>
]. It has been shown that tetraploidization might significantly increase stress tolerance [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
].</p>
<p>A limited number of studies have investigated metabolic changes caused by autopolyploidization, and those studies focused on only specific metabolites [
<xref ref-type="bibr" rid="CR12">12</xref>
]. The production of alkaloids was enhanced in artificial autotetraploids
<italic>Hyoscyamus niger</italic>
[
<xref ref-type="bibr" rid="CR15">15</xref>
]. More artemisinin was produced in hairy roots of autotetraploid
<italic>Artemisia annua</italic>
[
<xref ref-type="bibr" rid="CR16">16</xref>
]. Similarly, essential oils were accumulated much more in autotetraploid aromatic grasses (
<italic>Cymbopogon</italic>
) [
<xref ref-type="bibr" rid="CR17">17</xref>
]. Moreover, the concentration of some metabolites like GAs (glycoalkaloids) were differentially influenced by autotetraploidy, increasing the content of minor GAs and decreasing the content of major GAs in autotetraploid
<italic>Solanum commersonii</italic>
[
<xref ref-type="bibr" rid="CR18">18</xref>
].</p>
<p>Gene expression variations caused by allopolyploidization have been widely reported in many species including
<italic>Arabidopsis</italic>
[
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
], citrus [
<xref ref-type="bibr" rid="CR21">21</xref>
], maize [
<xref ref-type="bibr" rid="CR22">22</xref>
], and tobacco [
<xref ref-type="bibr" rid="CR23">23</xref>
]. However, the studies on autopolyploidization aimed at identifying the alterations of genome expression patterns are relatively less than those on allopolyploidization. It is probably because autopolyploidy has long been viewed as less frequent and less important. The number of the genes differentially expressed between diploid and autotetraploid potato was about 10% [
<xref ref-type="bibr" rid="CR24">24</xref>
]. A much lower rate (less than 2%) was observed when autotetraploid
<italic>Arabidopsis</italic>
was compared with diploid progenitor [
<xref ref-type="bibr" rid="CR25">25</xref>
]. Similarly, study performed in autotetraploid and diploid Rangpur lime (
<italic>Citrus limonia</italic>
) showed about 1% variation in transcriptome [
<xref ref-type="bibr" rid="CR26">26</xref>
]. Notably, the differentially expressed genes induced by autotetraploidization were highly related to stress response [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
].</p>
<p>Citrus is one most important fruit crop in the world. However, citrus production is influenced by many environmental stresses including drought, salinity and extreme temperature [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Citrus rootstock improvement is required to cope with these abiotic stresses. Ziyang xiangcheng is a local citrus rootstock originated from southwest China. It was considered a putative hybrid of
<italic>Citrus ichangensis</italic>
and
<italic>Citrus reticulata</italic>
[
<xref ref-type="bibr" rid="CR28">28</xref>
]. Because of its excellent performance in biotic and abiotic stresses, it has been widely used as a citrus rootstock in China [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
]. Citrus rootstocks are propagated through polyembryonic seeds and genetically identical to the maternal plant [
<xref ref-type="bibr" rid="CR30">30</xref>
-
<xref ref-type="bibr" rid="CR32">32</xref>
]. The majority of citrus genotypes are apomictic, and all the apomictic embryos originate from nucellar cells [
<xref ref-type="bibr" rid="CR30">30</xref>
]. Tetraploidization events are frequent in apomictic citrus genotypes [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
]. Doubled diploid seedlings in apomictic genotypes are considered to arise from somatic chromosome doubling of maternal cells and should be genetically identical to the seed source tree [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
]. Recent studies demonstrate that genome doubling is often considered to confer plants a better adaptability to various environmental stresses [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
]. Therefore, doubled diploid citrus rootstocks were expected to have substantial advantage over diploid in stress tolerance. In our previous citrus breeding program, we obtained plenty of spontaneous doubled diploids from various citrus rootstock varieties, including Ziyang xiangcheng (
<italic>Citrus junos</italic>
Sieb. ex Tanaka) [
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
].</p>
<p>To test the effects of tetraploidization on Ziyang xiangcheng, we performed comparative metabolic and transcriptional analysis of doubled diploid and its diploid parent. Our results revealed that doubled diploid Ziyang xiangcheng had a distinct metabolic phenotype, compared with diploid. Many stress related metabolites such as sucrose, proline and GABA were enhanced in doubled diploid. However, less than 1% of genes were differentially expressed between doubled diploid and its diploid parent. Interestingly, these differentially expressed genes were highly related to stress response.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Ploidy determination and analysis of genetic constitution</title>
<p>Eight uniform 4× seedlings out of previously identified fifteen doubled diploids were selected and further verified by flow cytometry. These eight 4× seedlings together with thirteen 2× seedlings were then analyzed by the SSR markers. All the SSR makers revealed that the eight 4× and nine 2× plants possessed the same alleles (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
). This signified that the 4× seedlings derived from genome doubling of the 2× genotype. And three diploids with heterozygous loci (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
) were excluded for further study.</p>
</sec>
<sec id="Sec4">
<title>Morphological changes following tetraploidization</title>
<p>In order to investigate morphological changes caused by tetraploidization, morphological analysis on plant height, stem diameter, leaf area, leaf thickness, stomata size and density was conducted. Compared to 2×, 4× has typical tetraploid morphological features, such as shorter plant height, larger and thicker leaf, larger stomata size and lower stomata density (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
and Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
). Additionally, enlargement in leaf structure of 4x was observed by anatomical analysis (Additional files
<xref rid="MOESM3" ref-type="media">3</xref>
and
<xref rid="MOESM4" ref-type="media">4</xref>
).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>
<bold>Morphological characterization of 2× and 4× Ziyang xiangcheng. (A)</bold>
2× and 4× seedlings;
<bold>(B)</bold>
Leaves of 2× and 4×;
<bold>(C)</bold>
,
<bold>(D)</bold>
Stomata size of 2× and 4×;
<bold>(E)</bold>
,
<bold>(F)</bold>
Stomata density of 2× and 4×.</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec5">
<title>Changes of primary metabolic profiles following tetraploidization</title>
<p>In order to investigate the effect of tetraploidization on primary metabolism, leaf samples of double diploid and diploid lines were analyzed by using an established GC-MS platform [
<xref ref-type="bibr" rid="CR37">37</xref>
]. A total of 30 metabolites were identified by using an available chromatogram library. Utilizing the quantification internal standard, the content of every metabolite was calculated (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>
<bold>24 of 30 primary metabolites were significantly accumulated in 4× Ziyang xiangcheng</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr valign="top">
<th>
<bold>Compound</bold>
</th>
<th>
<bold>2× (mean ± SE)</bold>
<sup>
<bold>a</bold>
</sup>
</th>
<th>
<bold>4× (mean ± SE)</bold>
</th>
<th>
<bold>Flod change</bold>
</th>
<th>
<bold>P-value</bold>
</th>
<th>
<bold>Trend</bold>
<sup>
<bold>b</bold>
</sup>
</th>
</tr>
</thead>
<tbody>
<tr valign="top">
<td>
<bold>Sugars</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Turanose</td>
<td>7.64 ± 0.37</td>
<td>9.65 ± 0.87</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Galactose</td>
<td>1.15 ± 0.16</td>
<td>5.97 ± 1.09</td>
<td>5.2</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Fructose</td>
<td>41.48 ± 6.07</td>
<td>100.74 ± 4.67</td>
<td>2.4</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Glucose</td>
<td>15.16 ± 1.54</td>
<td>55.49 ± 7.59</td>
<td>3.7</td>
<td>0.05</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Sucrose</td>
<td>4403.79 ± 25.33</td>
<td>9472.04 ± 785.87</td>
<td>2.2</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Glucopyranose</td>
<td>93.03 ± 6.78</td>
<td>86.91 ± 9.97</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Arabinose</td>
<td>36.55 ± 2.03</td>
<td>176.59 ± 29.03</td>
<td>4.8</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Mannose</td>
<td>50.12 ± 2.86</td>
<td>185.1 ± 25.59</td>
<td>3.7</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Myo-inositol</td>
<td>460.53 ± 12.61</td>
<td>634.93 ± 49.72</td>
<td>1.4</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>
<bold>Organic acids</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Ethanedioic acid</td>
<td>21.9 ± 1.29</td>
<td>223.95 ± 16.25</td>
<td>10.2</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Succinic acid</td>
<td>21.07 ± 2.24</td>
<td>26.3 ± 2.24</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>citric acid</td>
<td>23.06 ± 1.75</td>
<td>98.79 ± 1.42</td>
<td>4.3</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Isocitric acid</td>
<td>1132.63 ± 22.07</td>
<td>2067.81 ± 33.25</td>
<td>1.8</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>GABA</td>
<td>1.13 ± 0.04</td>
<td>35.55 ± 4.88</td>
<td>31.5</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>2-Ketoglutaric acid</td>
<td>63.8 ± 6.7</td>
<td>50.41 ± 0.79</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Malic acid</td>
<td>349.14 ± 42.51</td>
<td>1891.19 ± 90.58</td>
<td>5.4</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>2,3,4-Trihydroxybutyric acid</td>
<td>50.89 ± 2.74</td>
<td>235.16 ± 10.28</td>
<td>4.6</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>2-Keto-d-gluconic acid</td>
<td>8.45 ± 0.69</td>
<td>32.15 ± 1.17</td>
<td>3.8</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>
<bold>Amino acids</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Glycine</td>
<td>4.23 ± 0.22</td>
<td>16.29 ± 1.45</td>
<td>3.9</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Alanine</td>
<td>ND</td>
<td>11.59 ± 3.02</td>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr valign="top">
<td>Threonine</td>
<td>ND</td>
<td>4.01 ± 0.61</td>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr valign="top">
<td>Proline</td>
<td>ND</td>
<td>109.17 ± 14.01</td>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr valign="top">
<td>Serine</td>
<td>ND</td>
<td>8.07 ± 1.75</td>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr valign="top">
<td>Acetyl-lysine</td>
<td>ND</td>
<td>39.55 ± 3.48</td>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr valign="top">
<td>
<bold>Fatty acids</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Octadecanoic acid</td>
<td>77.69 ± 7.32</td>
<td>123.2 ± 6.8</td>
<td>1.6</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Octadecanoic acid,2,3-bisoxypropylester</td>
<td>167.7 ± 13.83</td>
<td>352 ± 19.42</td>
<td>2.1</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Hexadecanoic acid</td>
<td>19.53 ± 1.46</td>
<td>36.06 ± 2.05</td>
<td>1.8</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Hexadecanoic acid,2,3-bisoxypropylester</td>
<td>41.66 ± 3.67</td>
<td>55.75 ± 5.24</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>
<bold>Alcohols</bold>
</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr valign="top">
<td>Glycerol</td>
<td>204.19 ± 13.38</td>
<td>559.62 ± 63.31</td>
<td>3.3</td>
<td>0.01</td>
<td>up</td>
</tr>
<tr valign="top">
<td>Rhamnitol</td>
<td>61.76 ± 5.93</td>
<td>73.17 ± 3.98</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The quantities of metabolites were analyzed using GC-MS, and their levels were normalized to ribitol and calculated as ug per g fresh weight of leaves. The data presented represent mean ± SE of six biological repetitions of leaves collected from eight plants per line.
<sup>a</sup>
ND represents the metabolite was not detected due to low concentration.
<sup>b</sup>
Up represents the metabolite is up-regulated in 4× as compared to 2× (Student’s
<italic>t</italic>
-test).</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Principal component analysis (PCA) served as an unsupervised statistical method to study the differences of the major metabolites of 4× and 2× (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
). Parameters of the PCA model based on the primary metabolic data were: two principle components were calculated by cross validation, 58.6% of variables can be explained by first component and 17.2% of variables can be explained by the second component. A clear separation trend could be observed in the score plot (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
), implying that extensive changes in the major metabolites were induced by tetraploidization.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>
<bold>Principal component analysis of GC-MS metabolite profiling data from 4× and 2× leaves.</bold>
First two components could explain 75.8% of the metabolite variance. Component 1 explained 58.6% of the variance and component 2 explained 17.2%.</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>Among the 30 metabolites, the levels of 24 metabolites in 4× leaves were significantly higher than those in 2×. But no significant changes in the rest 4 metabolites were observed. This indicated that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves. Seven sugars were significantly accumulated in 4× (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). It should be noted that in 4×, there was a 2.2-fold increase in the content of sucrose, which was the main sugar. Seven of nine identified organic acids exhibited 1.8- and 10.2-fold higher concentrations (Table 
<xref rid="Tab1" ref-type="table">1</xref>
), including γ-aminobutyric acid (GABA). Six amino acids, namely, glycine, alanine, threonine, proline, serine, and lysine, were detected in 4×, while only one amino acid, namely, glycine was detected in 2×. In addition, the content of three fatty acids and one alcohol in 4× increased (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Changes of secondary metabolic profiles following tetraploidization</title>
<p>To test whether the alteration of the ploidy has an influence on the level of leaf secondary metabolism, we performed non-targeted metabolite analysis using LC-QTOF-MS metabolomics technologies. In total, 3254 mass signals were detected in positive mode. PCA was performed to promote the classification of the metabolic phenotypes and the identification of the differential metabolites. The PCA effectively clusters biological replicates of the metabolomes of 2× and 4× into two categories, demonstrating extensive changes in the secondary metabolism caused by tetraploidization (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
). Of these mass signals, 898 mass signals were significantly different between 4× and 2× (corrected p-value <0.05). 196 signals were up-regulated, and 702 signals were down-regulated in 4×, reflecting a decreased trend of secondary metabolite accumulation in 4×.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>
<bold>Principal component analysis of LC-QTOF-MS metabolite profiling data from 4× and 2× leaves.</bold>
First two components could explain 49.3% of metabolite variance. Component 1 explained 32.8% of the variance and component 2 explained 16.5%.</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
<p>Significantly changed metabolites were analyzed by LC-ESI/MS/MS to obtain structure information. A total of 9 metabolites, namely, narirutin, naringin, hesperidin, neohesperidin, didymin, sinensetin, limonin, nobiletin and nomilin were identified by matching their mass spectra and retention time with known standards. The other 34 metabolites were tentatively identified according to ESI-MS fragmentation patterns (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). These identified metabolites were mainly comprised of phenolic flavonoids, including 6 flavanones and 33 flavones. These flavones were mainly made up of polymethoxyflavones (PMFs), which are widely distributed in citrus. These identified metabolites also included an aromatic amine (octopamine), a cinnamic acid (coumaric acid) and two limonoids (limonin and nomilin). Notably, all the 33 identified flavones were down-regulated in 4×, while all the 6 flavanones were up-regulated.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>
<bold>Identified metabolites showing statistically significant changes between 2× and 4× Ziyang xiangcheng</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr valign="top">
<th>
<bold>Peak no.</bold>
</th>
<th>
<bold>RT (min)</bold>
</th>
<th>
<bold>Component name</bold>
</th>
<th>
<bold>[M + H]</bold>
<sup>
<bold>+</bold>
</sup>
</th>
<th>
<bold>MS/MS fragments</bold>
</th>
<th>
<bold>Family</bold>
</th>
<th>
<bold>Trend</bold>
<sup>
<bold>c</bold>
</sup>
</th>
</tr>
</thead>
<tbody>
<tr valign="top">
<td>1</td>
<td>1.0</td>
<td>Octopamine
<sup>b</sup>
</td>
<td>154</td>
<td>91</td>
<td>Alkaloid</td>
<td>up</td>
</tr>
<tr valign="top">
<td>2</td>
<td>5.2</td>
<td>Coumaric acid
<sup>b</sup>
</td>
<td>165</td>
<td>147/120/65/91</td>
<td>Cinnamic Acid</td>
<td>down</td>
</tr>
<tr valign="top">
<td>3</td>
<td>8.8</td>
<td>Narirutin
<sup>a</sup>
</td>
<td>581</td>
<td>273/434</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>4</td>
<td>8.9</td>
<td>Neodiosmin
<sup>b</sup>
</td>
<td>609</td>
<td>301/463</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>5</td>
<td>9.0</td>
<td>Naringin
<sup>a</sup>
</td>
<td>581</td>
<td>273</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>6</td>
<td>9.1</td>
<td>Hesperidin
<sup>a</sup>
</td>
<td>611</td>
<td>303</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>7</td>
<td>9.3</td>
<td>Neohesperidin
<sup>a</sup>
</td>
<td>611</td>
<td>303</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>8</td>
<td>9.9</td>
<td>Brutieridin
<sup>b</sup>
</td>
<td>755</td>
<td>303</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>9</td>
<td>10.5</td>
<td>Didymin
<sup>a</sup>
</td>
<td>595</td>
<td>287</td>
<td>Flavanone</td>
<td>up</td>
</tr>
<tr valign="top">
<td>10</td>
<td>10.6</td>
<td>PMFs-1
<sup>b</sup>
</td>
<td>359</td>
<td>344/329/298</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>11</td>
<td>11.2</td>
<td>PMFs-2
<sup>b</sup>
</td>
<td>359</td>
<td>329/344</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>12</td>
<td>11.5</td>
<td>PMFs-3
<sup>b</sup>
</td>
<td>375</td>
<td>360/345</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>13</td>
<td>11.6</td>
<td>PMFs-4
<sup>b</sup>
</td>
<td>359</td>
<td>298/326/344</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>14</td>
<td>11.8</td>
<td>PMFs-5
<sup>b</sup>
</td>
<td>359</td>
<td>326/344</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>15</td>
<td>12.4</td>
<td>PMFs-6
<sup>b</sup>
</td>
<td>389</td>
<td>359/341/374</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>16</td>
<td>12.5</td>
<td>PMFs-7
<sup>b</sup>
</td>
<td>359</td>
<td>329/344</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>17</td>
<td>12.5</td>
<td>Isosinensetin
<sup>b</sup>
</td>
<td>373</td>
<td>343</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>18</td>
<td>12.7</td>
<td>PMFs-8
<sup>b</sup>
</td>
<td>403</td>
<td>373/388</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>19</td>
<td>12.8</td>
<td>PMFs-9
<sup>b</sup>
</td>
<td>389</td>
<td>359/374</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>20</td>
<td>12.8</td>
<td>PMFs-10
<sup>b</sup>
</td>
<td>375</td>
<td>317/342</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>21</td>
<td>12.9</td>
<td>PMFs-11
<sup>b</sup>
</td>
<td>419</td>
<td>389/371/404</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>22</td>
<td>13.0</td>
<td>PMFs-12
<sup>b</sup>
</td>
<td>403</td>
<td>373/327/388</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>23</td>
<td>13.1</td>
<td>PMFs-13
<sup>b</sup>
</td>
<td>345</td>
<td>330/315</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>24</td>
<td>13.3</td>
<td>Sinensetin
<sup>a</sup>
</td>
<td>373</td>
<td>343/312/329/357</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>25</td>
<td>13.3</td>
<td>PMFs-14
<sup>b</sup>
</td>
<td>343</td>
<td>328/313</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>26</td>
<td>13.6</td>
<td>PMFs-15
<sup>b</sup>
</td>
<td>345</td>
<td>330/284/312</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>27</td>
<td>13.6</td>
<td>PMFs-16
<sup>b</sup>
</td>
<td>405</td>
<td>375/390</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>28</td>
<td>13.7</td>
<td>Limonin
<sup>a</sup>
</td>
<td>471</td>
<td>161/425</td>
<td>Limonoid</td>
<td>up</td>
</tr>
<tr valign="top">
<td>29</td>
<td>13.7</td>
<td>PMFs-17
<sup>b</sup>
</td>
<td>375</td>
<td>360/345/317</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>30</td>
<td>14.0</td>
<td>PMFs-18
<sup>b</sup>
</td>
<td>359</td>
<td>343/329</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>31</td>
<td>14.2</td>
<td>Nomilin
<sup>a</sup>
</td>
<td>515</td>
<td>161</td>
<td>Limonoid</td>
<td>down</td>
</tr>
<tr valign="top">
<td>32</td>
<td>14.2</td>
<td>Nobiletin
<sup>a</sup>
</td>
<td>403</td>
<td>373</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>33</td>
<td>14.3</td>
<td>Tetramethyl-O-scutellarein
<sup>b</sup>
</td>
<td>343</td>
<td>313/282/299</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>34</td>
<td>14.4</td>
<td>PMFs-19
<sup>b</sup>
</td>
<td>389</td>
<td>331/356/313/374</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>35</td>
<td>14.5</td>
<td>PMFs-20
<sup>b</sup>
</td>
<td>359</td>
<td>329/346</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>36</td>
<td>14.8</td>
<td>Heptamethoxyflavone
<sup>b</sup>
</td>
<td>433</td>
<td>418/403</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>37</td>
<td>15.0</td>
<td>PMFs-21
<sup>b</sup>
</td>
<td>343</td>
<td>313/328</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>38</td>
<td>15.0</td>
<td>PMFs-22
<sup>b</sup>
</td>
<td>359</td>
<td>298/326/343</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>39</td>
<td>15.2</td>
<td>PMFs-23
<sup>b</sup>
</td>
<td>419</td>
<td>389/404</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>40</td>
<td>15.8</td>
<td>PMFs-24
<sup>b</sup>
</td>
<td>405</td>
<td>375/347/357/390</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>41</td>
<td>15.9</td>
<td>PMFs-25
<sup>b</sup>
</td>
<td>389</td>
<td>359/374/341</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>42</td>
<td>16.5</td>
<td>PMFs-26
<sup>b</sup>
</td>
<td>419</td>
<td>389/404</td>
<td>Flavone</td>
<td>down</td>
</tr>
<tr valign="top">
<td>43</td>
<td>16.9</td>
<td>5-Demethyl tangeretin
<sup>b</sup>
</td>
<td>359</td>
<td>344/329/301</td>
<td>Flavone</td>
<td>down</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>[M + H]
<sup>+</sup>
, protonated molecular ion.
<sup>a</sup>
Identified by matching their retention time and mass spectra with known standard.
<sup>b</sup>
Putatively identified using ESI-MS fragmentation patterns.
<sup>c</sup>
Relative increased (up) or decreased (down) concentration in 4× as compared to 2×. Student’s
<italic>t</italic>
-test was used and a p-value of less than 0.05 was considered significant. PMFs, polymethoxyflavones.</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec7">
<title>Global transcriptome analysis</title>
<p>To investigate global transcriptome changes caused by tetraploidization, four cDNA libraries of 2× and 4× mature leaves were constructed. These libraries were sequenced by Illumina Hiseq 2500 platform. And 50 bp single-end reads were then generated. In total, 25,860,712 raw reads were generated from 2× and a total of 24,428,874 raw reads came from 4× (Additional file
<xref rid="MOESM5" ref-type="media">5</xref>
). After we removed reads containing adapter, reads containing poly-N, and low quality reads from raw data, 25,830,902 and 24,402,540 clean reads remained in 2× and 4×, respectively. The GC-contents were 43.30% in 2× and 43.16% in 4× respectively. To assess the sequencing quality, the reads were mapped to the
<italic>Citrus sinensis</italic>
reference genome. Of the two groups of duplicate data, 11,115,785 (86.06%) and 11,383,064 (88.14%) reads successfully mapped were generated from 2×-1-2×-2 and 11,250,774 (88.87%) and 10,531,271(89.69%) reads from 4×-1-4×-2 (Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
).</p>
<p>More than 50% of the genes were expressed at a low level (<3 RPKM) and less than 8% of genes were expressed at a high level (>15 RPKM) in all samples (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
). Notably, there were no obvious differences between 2× and 4× in the percentage of genes at low, medium and high expression levels. This suggested tetraploidization didn’t have an effect on the inhibition or activation of gene expression.</p>
<p>Genes with an adjusted p-value <0.05 found by DESeq (R package, version 1.10.1) were assigned as differentially expressed. Totally 24073 genes were detected in all samples, while only 212 genes (0.8% of detected genes) were significantly differentially expressed between 2× and 4× seedling leaves. Of 212 DEGs, 96 genes were up-regulated and 116 genes were down-regulated in 4×, relative to 2×. For up-regulated genes, differences ranged from1.4-fold to 12.5- fold; for down-regulated genes, differences ranged from 1.4-fold and 13.4- fold. These results indicated that the range of gene expression changes between 2× and 4× was very limited.</p>
<p>The functional gene ontology annotation of these DEGs was further performed by using Blast2Go software. 163 out of the 212 DEGs were assigned to at least one term in GO biological process, cellular component, and molecular function categories. Then the DEGs were classified into 38 subcategories in terms of function, almost covering all important categories of biological processes and molecular functions (Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
). In the biological process category, metabolic process and cellular process were the two largest groups, suggesting that extensive metabolic activities were taking place in 4× leaves. In the cellular component category, cell and cell part represented two major sub-categories, while catalytic and binding were dominant in molecular function category.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>
<bold>GO categories of the DEGs between 2× and 4× Ziyang xiangcheng.</bold>
163 out of the 212 DEGs were assigned to 957 GO annotations, which were divided into three categories: biological processes, cellular components, and molecular functions.</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>GO enrichment analysis was performed by using BiNGO [
<xref ref-type="bibr" rid="CR38">38</xref>
]. In biological process category, DEGs were found to be highly related to stress-response functions, such as response to salt stress, to water, and to abscisic acid (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
). This indicated that some processes related to stress were induced in response to tetraploidization. The other two functions, namely anion transport and polyamine catabolic process, were also significantly enriched (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
). In molecular function category, only two terms were overrepresented, namely, inorganic anion transmembrane transporter activity, inorganic phosphate transmembrane transporter activity (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
). In cellular component category, no terms were overrepresented.
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>
<bold>Significantly enriched GO categories in DEGs between 2× and 4× Ziyang xiangcheng.</bold>
The colored nodes represent the significantly over-represented GO terms. The colored bar shows the significance.</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
<p>To identify the biological pathways in which the DEGs were involved, we mapped DEGs to the reference canonical pathways in KEGG. In total, 40 out of 212 DEGs were assigned to 46 KEGG pathways. The two largest clusters were metabolic pathways with 19 members and biosynthesis of secondary metabolites with 13 members (Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
). It indicated that many DEGs involved in metabolic process in 4×. However, no KEGG terms was over-represented in DEGs.</p>
<p>To validate the RNA-seq data, the following top 10 up-regulated functionally characterized genes were selected for qPCR assays: Fe(II)/ascorbate oxidase (SRG1, Cs9g09290), UDP-glucoronosyl/UDP-glucosyltransferase family protein (UGT, Cs5g11620), myb family transcription factor (RL6, Cs3g24870), caffeic acid O-methyltransferase (COMT, orange1.1 t02085), aminocyclopropane 1-carboxylic acid oxidase (ACO, Cs9g08990), u-box armadillo repeat protein (PUB19, Cs7g08470), ethylene response factor (ERF4, Cs1g07950), tracheary element vacuolar protein (XCP1, Cs2g27860), glycosyltransferase (GATL9, Cs7g07900), ethylene response factor (ERF9, Cs2g05620) (Additional file
<xref rid="MOESM9" ref-type="media">9</xref>
). As shown in Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
, all the 10 genes were verified to be up-regulated by qPCR analysis, although their fold changes differed from the result of RNA-seq. Notably, six of these genes, namely, SRG1 [
<xref ref-type="bibr" rid="CR39">39</xref>
], COMT [
<xref ref-type="bibr" rid="CR40">40</xref>
], ACO [
<xref ref-type="bibr" rid="CR41">41</xref>
], PUB19 [
<xref ref-type="bibr" rid="CR42">42</xref>
], ERF4 [
<xref ref-type="bibr" rid="CR43">43</xref>
] and ERF9 [
<xref ref-type="bibr" rid="CR44">44</xref>
] were involved in abiotic stress response.
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<p>
<bold>Expression analysis of top 10 up-regulated functionally characterized DEGs in 4× Ziyang xiangcheng by qPCR.</bold>
</p>
</caption>
<graphic xlink:href="12870_2015_450_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec8" sec-type="discussion">
<title>Discussion</title>
<sec id="Sec9">
<title>Stress related metabolites were significantly up-regulated in doubled diploid Ziyang xiangcheng</title>
<p>Metabolic alterations induced by tetraploidization might confer plant a better adaptation to environmental stresses. Primary metabolites are required for growth, development and interactions of plants with their environment [
<xref ref-type="bibr" rid="CR45">45</xref>
]. In this study, most of the detected primary metabolites were up-regulated in 4× Ziyang xiangcheng (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). It indicated that tetraploidization had an activation effect on primary metabolism. These up-regulated metabolites include sugars, amino acids, organic acids, and fatty acids. Notably, these metabolites play an important role during plant adaptations to environmental stresses.</p>
<p>Sugars are involved in various abiotic stresses. They have several functions in plants suffering abiotic stresses: acting as osmoprotectants to maintain osmotic balance and stabilize macromolecules or as metabolite signaling molecules to activate specific signal transduction pathway, and providing energy source to recover from water deficit [
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
]. Accumulation of sugars is strongly correlated with improved plant stress tolerance to drought stress [
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
]. For example, sucrose accumulates in almost all desiccation-tolerant flowering plants [
<xref ref-type="bibr" rid="CR50">50</xref>
] and fern [
<xref ref-type="bibr" rid="CR51">51</xref>
]. In this study, seven out of nine detected sugars including sucrose, glucose and fructose were up-regulated in 4×, which implied 4× might have advantages over 2× under drought stress.</p>
<p>A case in point is that increased levels of proline correlate with enhanced stress tolerance [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
]. Proline was considered to have several functions under stress conditions, including osmotic adjusting, reactive oxygen species (ROS) scavenger and protection of proteins from denaturation [
<xref ref-type="bibr" rid="CR52">52</xref>
-
<xref ref-type="bibr" rid="CR54">54</xref>
]. Therefore, higher concentration of proline might promote abiotic stress tolerance in 4×. Additionally, Yobi et al. [
<xref ref-type="bibr" rid="CR55">55</xref>
] found that desiccation-tolerant species
<italic>Selaginella lepidophylla</italic>
had significantly higher concentration of sugars, sugar alcohols and amino acids than desiccation-sensitive species
<italic>Selaginella moellendorffii</italic>
. Compared to 2×, higher concentration of stress metabolites in 4× might be also beneficial for the cultivar grafted on it. A study performed on Rangpur lime (
<italic>Citrus limonia</italic>
) rootstock demonstrated that tetraploids increase drought tolerance via enhanced constitutive root abscisic acid production [
<xref ref-type="bibr" rid="CR26">26</xref>
]. In that study, diploid and tetraploid clones of Rangpur lime rootstocks were grafted with 2× Valencia Delta sweet orange (
<italic>Citrus sinensis</italic>
) scions, named V/2×RL and V/4×RL, respectively; V/4×RL leaves had greater abscisic acid (ABA) content under normal condition, compared to V/2×RL [
<xref ref-type="bibr" rid="CR26">26</xref>
]. Studies of
<italic>Arabidopsis</italic>
polyploids revealed that the content of leaf potassium and rubidium was evaluated in in diploid leaves on shoots grafted to tetraploid roots, whereas leaves from tetraploid shoots grafted to diploid roots showed the same leaf K as diploid [
<xref ref-type="bibr" rid="CR13">13</xref>
]. So we may presume that a distinct metabolic phenotype would be observed between the scion cultivars grafted on 4× and 2× Ziyang xiangcheng respectively. Higher content of stress-related metabolites in 4× might be beneficial for the cultivar grafted on it. In addition, tetraploid rootstock may also have a dwarfing effect on scion cultivar being grafted on it, compared with the diploid rootstock [
<xref ref-type="bibr" rid="CR56">56</xref>
].</p>
</sec>
<sec id="Sec10">
<title>Gene expression divergence caused by tetraploidization is involved with stress response</title>
<p>A small genome expression change was observed between diploid and autotetraploid according to studies performed on several species. In
<italic>Paspalum notatum</italic>
and
<italic>Isatis indigotica</italic>
, about 0.6% and 4% variations in transcript abundance were detected between diploid and autotetraploid by using the
<italic>Arabidopsis thaliana</italic>
whole genome gene chip [
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. In
<italic>Arabidopsis thaliana</italic>
Col-0 ecotype and Ler-0 ecotype, Yu et al. [
<xref ref-type="bibr" rid="CR25">25</xref>
] found about 1% and 0.1% variations between diploid and autotetraploid, respectively. We found less than 1% genes were differentially expressed between diploid and doubled diploid Ziyang xiangcheng. A similar number of genes were also detected between diploid and tetraploid
<italic>Citrus limonia</italic>
[
<xref ref-type="bibr" rid="CR26">26</xref>
]. These studies altogether with our study suggested that the effect of genome doubling on gene expression is relatively limited. Here, we should point out that the 4× Ziyang xiangcheng came from doubling a hybrid (
<italic>C. ichangensis</italic>
×
<italic>C. reticulata</italic>
). Theoretically, the doubled diploid should be an allotetraploid rather than an autotetraploid (doubling a homozygous diploid) [
<xref ref-type="bibr" rid="CR6">6</xref>
]. Therefore, the expression pattern of doubled diploid Ziyang xiangcheng should consist with the one of an allotetraploid rather than the one of an autotetraploid
<bold>.</bold>
Genome expression changes in allotetraploids are considered to be more strongly affected by genome hybridization than by changes in ploidy levels [
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR59">59</xref>
]. So we presume that a relatively large change in genome expression could be detected between doubled diploid Ziyang xiangcheng and its putative parents (
<italic>C. ichangensis</italic>
and
<italic>C. reticulata</italic>
). Herein, we only focused on the effect of genome doubling on gene expression.</p>
<p>Genes involved in the response to abscisic acid and abiotic stimulus, were differentially expressed following genome doubling according to GO enrichment analysis (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
). This indicates that 4× Ziyang xiangcheng might be able to respond to abiotic stresses in a flexible and fast way, to some extent [
<xref ref-type="bibr" rid="CR14">14</xref>
]. Interestingly, the phenomenon that tetraploidization influences the expression of genes involved in hormone and abiotic stress responses was also reported in autotetraploid
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
]. We also found that the expression of genes involved in ion transport was also affected by genome doubling. It is known that ion transport is highly related to salt tolerance [
<xref ref-type="bibr" rid="CR60">60</xref>
].</p>
<p>Higher potassium accumulation and salinity tolerance has been found in
<italic>Arabidopsis</italic>
polyploids [
<xref ref-type="bibr" rid="CR13">13</xref>
]. The higher potassium accumulation might be partly due to altered expression of genes involved in ion transport.</p>
<p>Moreover, six out of ten top up-regulated genes were involved in ABA- and stress-related process (Additional file
<xref rid="MOESM9" ref-type="media">9</xref>
). The first gene, namely SRG1, was associated with senescence-related processes, encoding a member of the Fe(ll)/ascorbate oxidase superfamily protein, and its expression was induced under drought and heat stress [
<xref ref-type="bibr" rid="CR61">61</xref>
,
<xref ref-type="bibr" rid="CR62">62</xref>
]. Caffeic acid O-methyltransferases encoded by COMT genes are key enzymes of lignin biosynthesis [
<xref ref-type="bibr" rid="CR63">63</xref>
], affecting cell wall structure, and COMT was up-regulated by drought stress in maize [
<xref ref-type="bibr" rid="CR40">40</xref>
]. ACO genes encode 1-aminocyclopropane-1-carboxylate (ACC) oxidases which catalyze the reaction from ACC to ethylene [
<xref ref-type="bibr" rid="CR64">64</xref>
], and water stress induced ACO gene expression in sunflower leaves was previously reported [
<xref ref-type="bibr" rid="CR65">65</xref>
]. PUB19 encodes a U-Box E3 ubiquitin ligase and it was up-regulated by drought, salt, and cold stress and ABA [
<xref ref-type="bibr" rid="CR42">42</xref>
]. The last two genes, namely ERF4 and ERF9, which are the members of the ERF/AP2 transcription factor family, are involved in various reactions to abiotic stresses [
<xref ref-type="bibr" rid="CR66">66</xref>
]; these two genes bind to the GCC box, DRE/CRT, CE1 elements, and they acted as repressors of gene transcription, enhancing plant tolerance to multiple stresses [
<xref ref-type="bibr" rid="CR67">67</xref>
]. Overexpression of ERF4 gene increased tolerance to salt and drought stress in
<italic>Arabidopsis</italic>
[
<xref ref-type="bibr" rid="CR66">66</xref>
]. These reports, together with our results suggest 4× Ziyang xiangcheng may be pre-adapted to abiotic stresses, compared to 2×.</p>
</sec>
<sec id="Sec11">
<title>The transcriptome divergence cannot explain the metabolic changes</title>
<p>In order to integrate leaf transcriptome data with the metabolic profiling, attention was focused on the DEGs involved in metabolic pathway. Among these DEGs, 40 were assigned to 46 pathways and no significantly enriched KEEG pathways were found. It implies that the limited DEGs involve in a wide range of pathways, but their functions are dispersive.</p>
<p>To a great extent, the accumulation pattern of the DEGs encoding proteins or enzymes involved in metabolic processes was not consistent with the differences observed in the metabolite profiling (Additional file
<xref rid="MOESM10" ref-type="media">10</xref>
). Most of the detected sugars, amino acids and fatty acids were significantly accumulated in 4×. However, most of the genes involved in these metabolic processes were down-regulated in 4×. For example, the sucrose content of 4x leaves was 2-fold than that of 2×. But the gene encoding sucrose synthase was significantly down-regulated in 4×. In another example, in flavone and flavonol biosynthesis, only one gene, namely, COMT was differentially expressed between 4× and 2×. The gene encoding a caffeic acid O-methyltransferase, positively regulates flavonoid biosynthetic process and may be involved in PMFs (polymethoxyflavones) synthesis [
<xref ref-type="bibr" rid="CR68">68</xref>
]. Theoretically, the up-regulation of COMT should promote the accumulation of PMFs in 4×. However, all detected PMFs were down-regulated in 4×. The discordance between transcriptomic and metabolomic data is probably related to several factors. First, it is not easy to find a strict correlation between metabolite accumulation and gene expression because of the complexity in metabolic networks [
<xref ref-type="bibr" rid="CR69">69</xref>
,
<xref ref-type="bibr" rid="CR70">70</xref>
]. Second, small RNAs, including microRNAs and small interfering RNAs might play an important role in some gene regulation [
<xref ref-type="bibr" rid="CR71">71</xref>
]. Third, reactivation of transposable elements (TEs) following polyploidization in synthetic hexaploid wheats (
<italic>Triticum</italic>
) was considered to participate in regulation of the transcription of neighbouring genes [
<xref ref-type="bibr" rid="CR72">72</xref>
]. At last, post-translational modifications may contribute to the discordance between transcriptomic and metabolomic data. The transcriptome divergence might not reflect the protein divergence between 4× and 2× Ziyang xiangcheng, leading to the discordance. In support of this hypothesis, percentage of differentially accumulated proteins between autotetraploid and diploid
<italic>Arabidopsis thaliana</italic>
that matched the differentially expressed genes was relatively low, due to post-transcriptional regulation and translational modifications of proteins during polyploidization [
<xref ref-type="bibr" rid="CR73">73</xref>
]. Similarly, transcriptional changes do not explain differential protein regulation in resynthesized
<italic>Brassica napus</italic>
allotetraploids [
<xref ref-type="bibr" rid="CR74">74</xref>
].</p>
</sec>
</sec>
<sec id="Sec12" sec-type="conclusions">
<title>Conclusions</title>
<p>Our results suggest that tetraploidization has multi-level effects on Ziyang xiangcheng. Morphological and anatomical traits like leaf thickness, stoma number, stomatal density and vessel size were altered as a consequence of tetraploidization. The metabolic phenotype was also significantly altered following tetraploidization and many stress-related metabolites, such as sucrose, proline and GABA were significantly up-regulated in 4×. However, relatively small transcriptome alterations were induced by tetraploidization. Notably, the transcriptome alterations were highly related to hormone and stress responses, and many top up-regulated genes in 4× were associated with stress response. Interestingly, the transcriptional divergence could not adequately explain the metabolic changes, probably due to post-transcriptional regulation. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance. Our data will help better understanding the consequences caused by polyploidization and be valuable for citrus rootstock breeding in the future.</p>
</sec>
<sec id="Sec13" sec-type="methods">
<title>Methods</title>
<sec id="Sec14">
<title>Plant materials</title>
<p>Seeds of diploid (2n = 2× = 18) Ziyang xiangcheng (
<italic>Citrus junos</italic>
Sieb. ex Tanaka) were collected and provided by Professor Keling Chen, Institute of Horticulture Research, Sichuan Provincial Academy of Agricultural Science, China. Seeds were grown in pots filled with commercial soil in the greenhouse. Doubled diploid and diploid Ziyang xiangcheng were prepared by Liang et al. [
<xref ref-type="bibr" rid="CR30">30</xref>
]. Thirteen uniform 1-year-old 2× and eight uniform 1-year-old 4× seedlings were respectively selected and transplanted in commercial soil. Seedlings were grown in the greenhouse under natural photoperiod conditions and they were irrigated twice a week. The ploidy levels of these seedlings were determined by flow cytometry (CyFlow Space, Partec, Germany). The genetic constitution of these seedlings was further analyzed by the published SSR markers [
<xref ref-type="bibr" rid="CR75">75</xref>
,
<xref ref-type="bibr" rid="CR76">76</xref>
], namely, Ci01C09, Ci06A05b, Ci07C07, Ci07E06, mCrCIR08A03, CCSM40, CCSM46, CCSM69.</p>
</sec>
<sec id="Sec15">
<title>Sampling</title>
<p>Fully expended leaves (from fourth or fifth leaf from the top, 3–5 month old, from the spring flush of the current season) were collected in the morning. The leaves being used for metabolic and transcriptional profiling were immediately frozen in liquid nitrogen and stored at −80°C.</p>
</sec>
<sec id="Sec16">
<title>Morphological and anatomic analysis</title>
<p>Leaf thickness and area was determined using a micrometer and a portable area meter (Yaxin-1241, Beijing), respectively. Three leaves of each individual seedling were measured. SEM analysis was performed using one leaf of each individual plant according to the method described by Yi et al. [
<xref ref-type="bibr" rid="CR77">77</xref>
]. Photographs were taken to measure stomatal size and density. About 60 stomata were measured for each genotype.</p>
<p>Samples were fixed, dehydrated and embedded according to Hu et al. [
<xref ref-type="bibr" rid="CR78">78</xref>
]. Transverse sections about 1–5 μm thick were cut using a Leica Ultracut R ultramicrotome (Leica, Bensheim, Germany). The sections were stained with Toluidine Blue O (Aldrich, Milwaukee) and photographed with a BX61 fluorescence microscope (Olympus, Tokyo). The morphometrical analysis was performed using Image-Pro Plus 6.0 software (Media Cybernetics, USA).</p>
</sec>
<sec id="Sec17">
<title>The primary metabolic profiling</title>
<p>Six independent plants were used as biological replicates, and about five leaves were sampled from each plant in primary metabolic profiling. Non-targeted metabolite profiling was carried out by GC-MS using a modified method described by Yun et al. [
<xref ref-type="bibr" rid="CR37">37</xref>
]. A total of 200 mg ground leaf samples were extracted in 2,700 μl methanol and ribitol solution (300 μl, 0.2 mg ml
<sup>−1</sup>
) was added as an internal standard. The samples were centrifuged, dried and derivatized. GC-MS analysis was performed by using a Thermo Trace GC Ultra, coupled with Thermo Fisher a DSQ II mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Metabolites were identified by using an available chromatogram library and PCA analysis was performed by using the software Simca-P (Ver 11, Umetrics, Umea, Sweden).</p>
</sec>
<sec id="Sec18">
<title>The secondary metabolic profiling</title>
<p>Six independent plants were used as biological replicates, and about five leaves were sampled from each plant in secondary metabolic profiling. The secondary metabolic profiling was performed by LC-QTOF-MS using a modified method according to Yun et al. [
<xref ref-type="bibr" rid="CR37">37</xref>
]. 100 mg freeze-dried powder was extracted with 80% methanol over night at 4°C. The mixture was centrifuged and filtered. Then, the metabolic profiling were performed using a QTOF 6520 mass spectrometer (Agilent Technologies, Palo Alto, CA, USA) coupled to a 1200 series Rapid Resolution HPLC system.</p>
<p>The raw data was processed by Agilent Mass Hunter Qualitative Analysis (version B. 04.00, Aglient Technologies) and Mass Profiler Software (version B.02.02, Aglient Technologies). Then PCA analysis was performed using the filtered and normalized data. Metabolite identification was carried out by comparing mass spectra and retention time with those of authentic standards. Nine authentic standards, namely, narirutin, naringin, hesperidin, neohesperidin, didymin, sinensetin, limonin, nomilin, and nobiletin were obtained from Sigma Chemical Co. (St. Louis, MO).</p>
</sec>
<sec id="Sec19">
<title>RNA sequencing and data analysis</title>
<p>Leaves from four plants were pooled as an independent biological replicate and leaves from other four trees were pooled as the other independent biological replicate in transcriptomic analysis. Total RNA extraction and a quality assessment were performed according to the protocol described by Zheng et al. [
<xref ref-type="bibr" rid="CR79">79</xref>
]. RNA Samples were sent to Novogene Bioinformatics Technology Co. Ltd (Beijing), where the libraries were constructed. Sequencing libraries were generated from 3 μg total RNA using NEBNext Ultra RNA Library Prep Kit (NEB, USA) and sequenced on an IlluminaHiseq 2500 platform and 50 bp single-end reads were generated.</p>
<p>Clean reads were obtained by removing reads containing adapter, reads containing ploy-N and low quality reads from raw data and were aligned to the
<italic>Citrus sinensis</italic>
genome [
<xref ref-type="bibr" rid="CR80">80</xref>
] (
<ext-link ext-link-type="uri" xlink:href="http://211.69.128.148/orange/index.php">http://211.69.128.148/orange/index.php</ext-link>
) using TopHat (2.0.9) software [
<xref ref-type="bibr" rid="CR81">81</xref>
]. To estimate gene expression level, RPKM of each gene was calculated based on the length of the gene and reads count mapped to this gene. Genes RPKM values were calculated based on all the uniquely mapped reads. The genes with RPKMs ranging from 0 to 3 were considered at a low expression level; the genes with RPKMs ranging from 3 to 15 at a medium expression level; and the genes with RPKMs above15 at high expression level.</p>
<p>Differential expression analysis was implemented using the DESeq R package (1.10.1) [
<xref ref-type="bibr" rid="CR82">82</xref>
]. Genes with an adjusted P-value <0.05 found by DESeq were assigned as differentially expressed. GO (Gene Ontology) annotation was performed by using Blast2GO software (GO association done by a BLASTX against the NCBI NR database). Then GO enrichment analysis of differentially expressed genes was performed by the BiNGO plugin for Cytoscape [
<xref ref-type="bibr" rid="CR38">38</xref>
]. Over-presented GO terms were identified by using a hypergeometric test with a significance threshold of 0.05 after a Benjamini and Hochberg FDR correction [
<xref ref-type="bibr" rid="CR83">83</xref>
]. KEGG enrichment analysis of differentially expressed genes was performed by KOBAS (2.0) software [
<xref ref-type="bibr" rid="CR84">84</xref>
].</p>
</sec>
<sec id="Sec20">
<title>Verification of RNA-seq by q-PCR</title>
<p>To test the reliability of RNA-seq, a set of top ten up-regulated genes in 4× were selected for qRT-PCR. Specific primers were designed with the Primer Express software (Applied Biosystems) and synthesized by Sangon (Shanghai, China). The cDNA was synthesized from 1 μg of total RNA using PrimeScript RT reagent Kit (Takara, Dalian, China). Real-time RT–PCR was performed on the ABI 7500 Real-Time PCR System (Applied Biosystems) using the 2× SYBR green PCRmaster mix (Applied Biosystems). Three independent biological replicates were analyzed for each sample and data were indicated as mean ± SE (n = 3).</p>
</sec>
<sec id="Sec21">
<title>Availability of supporting data</title>
<p>Raw sequencing data is available through the Gene Expression Omnibus (GEO) under accession NO. GSE65416 at website:
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65416">http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65416</ext-link>
.</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec22">
<title>Additional files</title>
<p>
<media position="anchor" xlink:href="12870_2015_450_MOESM1_ESM.tiff" id="MOESM1">
<label>Additional file 1:</label>
<caption>
<p>
<bold>SSR analysis of eight 4× and thirteen 2× Ziyang xiangcheng seedlings.</bold>
Black arrows represent seedlings possessed heterozygous loci.</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM2_ESM.xlsx" id="MOESM2">
<label>Additional file 2:</label>
<caption>
<p>
<bold>Comparison between 2× and 4× Ziyang xiangcheng seedlings with respect to height, stem diameter, leaf area, stoma size and density.</bold>
<sup>a</sup>
An asterisk (*) indicates significant differences (Student’s
<italic>t</italic>
-test; P < 0.01).</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM3_ESM.tiff" id="MOESM3">
<label>Additional file 3:</label>
<caption>
<p>
<bold>Transversal sections of mature leaves (fourth or fifth leaf from the top) in 2× (A and C) and 4× (B and D) Ziyang xiangcheng.</bold>
Anatomy of leaf blades (A and B) and leaf central vein (C and D) were shown. Abe, abaxial epidermis; Ade, adaxial epidermis; Cut, cuticle; Is, intercellular space; Pa, parenchyma; Pi, pith; Ph, phloem; Pp, palisade parenchyma; Sc, sclerenchyma; Sp, spongy parenchyma; X, xylem.</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM4_ESM.xlsx" id="MOESM4">
<label>Additional file 4:</label>
<caption>
<p>
<bold>Anatomical characteristics of leaves from 2× and 4× Ziyang xiangcheng seedlings.</bold>
<sup>a</sup>
An asterisk (*) indicates significant differences (Student’s
<italic>t</italic>
-test; P < 0.01).</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM5_ESM.xlsx" id="MOESM5">
<label>Additional file 5:</label>
<caption>
<p>
<bold>Quality of illumina sequencing.</bold>
</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM6_ESM.xlsx" id="MOESM6">
<label>Additional file 6:</label>
<caption>
<p>
<bold>Summary of read mapping statistics.</bold>
</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM7_ESM.xlsx" id="MOESM7">
<label>Additional file 7:</label>
<caption>
<p>
<bold>Statistics of genes in different expression-level intervals.</bold>
</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM8_ESM.png" id="MOESM8">
<label>Additional file 8:</label>
<caption>
<p>
<bold>KEGG classification of the DEGs between 2× and 4× Ziyang xiangcheng.</bold>
44 out of the 212 DEGs were assigned to 46 KEGG pathways. The top 10 most abundant KEGG pathways are shown.</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM9_ESM.xlsx" id="MOESM9">
<label>Additional file 9:</label>
<caption>
<p>
<bold>Primer sequences for Real-time PCR analysis.</bold>
</p>
</caption>
</media>
<media position="anchor" xlink:href="12870_2015_450_MOESM10_ESM.xlsx" id="MOESM10">
<label>Additional file 10:</label>
<caption>
<p>
<bold>DEGs involved in major metabolic pathways.</bold>
</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-list>
<def-item>
<term></term>
<def>
<p>Diploid Ziyang xiangcheng</p>
</def>
</def-item>
<def-item>
<term></term>
<def>
<p>Doubled diploid Ziyang xiangcheng</p>
</def>
</def-item>
<def-item>
<term>GAs</term>
<def>
<p>Glycoalkaloids</p>
</def>
</def-item>
<def-item>
<term>GC-MS</term>
<def>
<p>Gas chromatography coupled to mass spectrometry</p>
</def>
</def-item>
<def-item>
<term>LC- QTOF- MS</term>
<def>
<p>Liquid chromatography quadrupole time-of-flight mass spectrometry</p>
</def>
</def-item>
<def-item>
<term>PCA</term>
<def>
<p>Principal component analysis</p>
</def>
</def-item>
<def-item>
<term>GABA</term>
<def>
<p>γ-aminobutyric acid</p>
</def>
</def-item>
<def-item>
<term>PMFs</term>
<def>
<p>Polymethoxyflavones</p>
</def>
</def-item>
<def-item>
<term>DEGs</term>
<def>
<p>Differentially expressed genes</p>
</def>
</def-item>
<def-item>
<term>ROS</term>
<def>
<p>Reactive oxygen species</p>
</def>
</def-item>
</def-list>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>WWG conceived the study. FQT designed the experiments, performed RNA-seq analysis and wrote the manuscript. HT and HYZ carried out primary and secondary metabolite detection and statistical analysis. WJL and JML performed morphological and anatomical analysis. WWG and XMW interpreted the experimental data and revised the manuscript. All the authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<p>This research was financially supported by the National NSF of China (nos. 31125024, 31221062), the Ministry of Education of China (no. IRT13065), and the Ministry of Agriculture of China (no. 201203075). The authors thank Prof. Ping Liu in Foreign Language College (HZAU) for her effort to polish the language.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otto</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Whitton</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Polyploid incidence and evolution</article-title>
<source>Annu Rev Genet</source>
<year>2000</year>
<volume>34</volume>
<fpage>401</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.genet.34.1.401</pub-id>
<pub-id pub-id-type="pmid">11092833</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comai</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>The advantages and disadvantages of being polyploid</article-title>
<source>Nat Rev Genet</source>
<year>2005</year>
<volume>6</volume>
<fpage>836</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1038/nrg1711</pub-id>
<pub-id pub-id-type="pmid">16304599</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doyle</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Flagel</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Paterson</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Rapp</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Soltis</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Soltis</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Evolutionary genetics of genome merger and doubling in plants</article-title>
<source>Annu Rev Genet</source>
<year>2008</year>
<volume>42</volume>
<fpage>443</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.genet.42.110807.091524</pub-id>
<pub-id pub-id-type="pmid">18983261</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wendel</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Genome evolution in polyploids</article-title>
<source>Plant Molecular Evolution</source>
<year>2000</year>
<volume>42</volume>
<fpage>225</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1007/978-94-011-4221-2_12</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Wendel</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Polyploidy and genome evolution in plants</article-title>
<source>Curr Opin Plant Biol</source>
<year>2005</year>
<volume>8</volume>
<fpage>135</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1016/j.pbi.2005.01.001</pub-id>
<pub-id pub-id-type="pmid">15752992</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<article-title>Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids</article-title>
<source>Annu Rev Plant Biol</source>
<year>2007</year>
<volume>58</volume>
<fpage>377</fpage>
<pub-id pub-id-type="doi">10.1146/annurev.arplant.58.032806.103835</pub-id>
<pub-id pub-id-type="pmid">17280525</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doyle</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>AN</given-names>
</name>
</person-group>
<article-title>Dating the origins of polyploidy events</article-title>
<source>New Phytol</source>
<year>2010</year>
<volume>186</volume>
<fpage>73</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.03118.x</pub-id>
<pub-id pub-id-type="pmid">20028472</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The effect of autopolyploidy on biomass production in homozygous lines of
<italic>Brassica rapa</italic>
and
<italic>Brassica oleracea</italic>
</article-title>
<source>Plant Breed</source>
<year>2007</year>
<volume>126</volume>
<fpage>642</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="doi">10.1111/j.1439-0523.2007.01405.x</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Developmental, cytological and transcriptional analysis of autotetraploid
<italic>Arabidopsis</italic>
</article-title>
<source>Planta</source>
<year>2012</year>
<volume>236</volume>
<fpage>579</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1007/s00425-012-1629-7</pub-id>
<pub-id pub-id-type="pmid">22476290</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mooney</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Birchler</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43</article-title>
<source>Plant Mol Biol</source>
<year>2011</year>
<volume>75</volume>
<fpage>237</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1007/s11103-010-9722-4</pub-id>
<pub-id pub-id-type="pmid">21188620</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Husband</surname>
<given-names>BC</given-names>
</name>
</person-group>
<article-title>Whole genome duplication affects evolvability of flowering time in an autotetraploid plant</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e44784</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0044784</pub-id>
<pub-id pub-id-type="pmid">23028620</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tel-Zur</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Morphological changes and self-incompatibility breakdown associated with autopolyploidization in
<italic>Hylocereus</italic>
species (Cactaceae)</article-title>
<source>Euphytica</source>
<year>2012</year>
<volume>184</volume>
<fpage>345</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1007/s10681-011-0536-5</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chao</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Dilkes</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yakubova</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lahner</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Salt</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Polyploids exhibit higher potassium uptake and salinity tolerance in
<italic>Arabidopsis</italic>
</article-title>
<source>Science</source>
<year>2013</year>
<volume>341</volume>
<fpage>658</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1126/science.1240561</pub-id>
<pub-id pub-id-type="pmid">23887874</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<mixed-citation publication-type="other">del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ. 2014. doi:10.1111/pce.12344.</mixed-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lavania</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Enhanced productivity of tropane alkaloids and fertility in artificial autotetraploids of
<italic>Hyoscyamus niger</italic>
L</article-title>
<source>Euphytica</source>
<year>1991</year>
<volume>52</volume>
<fpage>73</fpage>
<lpage>7</lpage>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Jesus-Gonzalez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Weathers</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Tetraploid
<italic>Artemisia annua</italic>
hairy roots produce more artemisinin than diploids</article-title>
<source>Plant Cell Rep</source>
<year>2003</year>
<volume>21</volume>
<fpage>809</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">12789527</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lavania</surname>
<given-names>UC</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lavania</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Misra</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Mukai</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation</article-title>
<source>Plant J</source>
<year>2012</year>
<volume>71</volume>
<fpage>539</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2012.05006.x</pub-id>
<pub-id pub-id-type="pmid">22449082</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caruso</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lepore</surname>
<given-names>L</given-names>
</name>
<name>
<surname>De Tommasi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dal Piaz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Frusciante</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Aversano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Garramone</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Carputo</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Secondary metabolite profile in induced tetraploids of wild
<italic>Solanum commersonii</italic>
Dun</article-title>
<source>Chem Biodivers</source>
<year>2011</year>
<volume>8</volume>
<fpage>2226</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1002/cbdv.201100038</pub-id>
<pub-id pub-id-type="pmid">22162160</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Madlung</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Osborn</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Doerge</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Comai</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Genomewide nonadditive gene regulation in
<italic>Arabidopsis</italic>
allotetraploids</article-title>
<source>Genetics</source>
<year>2006</year>
<volume>172</volume>
<fpage>507</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.105.047894</pub-id>
<pub-id pub-id-type="pmid">16172500</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ni</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lackey</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<article-title>Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids</article-title>
<source>Nature</source>
<year>2008</year>
<volume>457</volume>
<fpage>327</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1038/nature07523</pub-id>
<pub-id pub-id-type="pmid">19029881</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bassene</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Froelicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dubois</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ancillo</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Non-additive gene regulation in a citrus allotetraploid somatic hybrid between
<italic>C. reticulata</italic>
Blanco and
<italic>C. limon</italic>
(L.) Burm</article-title>
<source>Heredity</source>
<year>2009</year>
<volume>105</volume>
<fpage>299</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1038/hdy.2009.162</pub-id>
<pub-id pub-id-type="pmid">19953121</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riddle</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>An</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Doerge</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Birchler</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Gene expression analysis at the intersection of ploidy and hybridity in maize</article-title>
<source>Theor Appl Genet</source>
<year>2010</year>
<volume>120</volume>
<fpage>341</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1007/s00122-009-1113-3</pub-id>
<pub-id pub-id-type="pmid">19657617</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bombarely</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Sanchez-Tamburrino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Deciphering the complex leaf transcriptome of the allotetraploid species
<italic>Nicotiana tabacum</italic>
: a phylogenomic perspective</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>406</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-406</pub-id>
<pub-id pub-id-type="pmid">22900718</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stupar</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Bhaskar</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Yandell</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Rensink</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Veilleux</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Busse</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Erhardt</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Buell</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Phenotypic and transcriptomic changes associated with potato autopolyploidization</article-title>
<source>Genetics</source>
<year>2007</year>
<volume>176</volume>
<fpage>2055</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.107.074286</pub-id>
<pub-id pub-id-type="pmid">17565939</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Haberer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Matthes</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rattei</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Gierl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Torres-Ruiz</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Impact of natural genetic variation on the transcriptome of autotetraploid
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2010</year>
<volume>107</volume>
<fpage>17809</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1000852107</pub-id>
<pub-id pub-id-type="pmid">20876110</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allario</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Brumos</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Colmenero-Flores</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Tadeo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Froelicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Talon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Morillon</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Large changes in anatomy and physiology between diploid Rangpur lime (
<italic>Citrus limonia</italic>
) and its autotetraploid are not associated with large changes in leaf gene expression</article-title>
<source>J Exp Bot</source>
<year>2011</year>
<volume>62</volume>
<fpage>2507</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erq467</pub-id>
<pub-id pub-id-type="pmid">21273338</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera</article-title>
<source>Plant Cell Tissue Organ Cult</source>
<year>2013</year>
<volume>113</volume>
<fpage>137</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1007/s11240-012-0267-x</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>QM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Preliminary study on Ziyang xiangcheng (
<italic>Citrus junos</italic>
Sieb ex Tanaka), a special local citrus germplasm</article-title>
<source>Southwest China J Agric Sci</source>
<year>2008</year>
<volume>21</volume>
<fpage>1658</fpage>
<lpage>60</lpage>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>QJ</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>MZ</given-names>
</name>
</person-group>
<article-title>The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency</article-title>
<source>Trees</source>
<year>2014</year>
<volume>28</volume>
<fpage>295</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="doi">10.1007/s00468-013-0949-y</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aleza</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Froelicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Agustí</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hernández</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Juárez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luro</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Morillon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment</article-title>
<source>Ann Bot</source>
<year>2011</year>
<volume>108</volume>
<fpage>37</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1093/aob/mcr099</pub-id>
<pub-id pub-id-type="pmid">21586529</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Soneji</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gmitter</surname>
<given-names>FG</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Characterization of zygotic and nucellar seedlings from sour orange-like citrus rootstock candidates using RAPD and EST-SSR markers</article-title>
<source>Tree Genet Genom</source>
<year>2008</year>
<volume>4</volume>
<fpage>113</fpage>
<lpage>24</lpage>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruiz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Breto</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Asins</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers</article-title>
<source>Euphytica</source>
<year>2000</year>
<volume>112</volume>
<fpage>89</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1023/A:1003992719598</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saleh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Allario</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dambier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Morillon</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Tetraploid citrus rootstocks are more tolerant to salt stress than diploid</article-title>
<source>C R Biol</source>
<year>2008</year>
<volume>331</volume>
<fpage>703</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.crvi.2008.06.007</pub-id>
<pub-id pub-id-type="pmid">18722990</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mouhaya</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Allario</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Brumos</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Andrés</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Froelicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Luro</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Talon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Morillon</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes</article-title>
<source>Funct Plant Biol</source>
<year>2010</year>
<volume>37</volume>
<fpage>674</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1071/FP10035</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>ZZ</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>WW</given-names>
</name>
</person-group>
<article-title>Spontaneous generation and SSR molecular characterization of autotetraploids in ten citrus rootstocks</article-title>
<source>J Fruit Sci</source>
<year>2014</year>
<volume>31</volume>
<fpage>1</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>ZZ</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>WW</given-names>
</name>
</person-group>
<article-title>Spontaneous generation and SSR characterization of polyploids from ten citrus cultivars</article-title>
<source>Acta Hort Sin</source>
<year>2014</year>
<volume>41</volume>
<fpage>409</fpage>
<lpage>16</lpage>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment</article-title>
<source>BMC Plant Biol</source>
<year>2013</year>
<volume>13</volume>
<fpage>44</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-13-44</pub-id>
<pub-id pub-id-type="pmid">23497220</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maere</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Heymans</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuiper</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks</article-title>
<source>Bioinformatics</source>
<year>2005</year>
<volume>21</volume>
<fpage>3448</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bti551</pub-id>
<pub-id pub-id-type="pmid">15972284</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>The RR-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in
<italic>Arabidopsis</italic>
</article-title>
<source>Plant Cell Physiol</source>
<year>2011</year>
<volume>52</volume>
<fpage>138</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1093/pcp/pcq180</pub-id>
<pub-id pub-id-type="pmid">21097474</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vincent</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lapierre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cornic</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Negroni</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zivy</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation</article-title>
<source>Plant Physiol</source>
<year>2005</year>
<volume>137</volume>
<fpage>949</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1104/pp.104.050815</pub-id>
<pub-id pub-id-type="pmid">15728345</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Kostenyuk</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>G-protein-coupled α
<sub>2A</sub>
-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase</article-title>
<source>J Exp Bot</source>
<year>2005</year>
<volume>56</volume>
<fpage>1867</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/eri176</pub-id>
<pub-id pub-id-type="pmid">15928018</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YR</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana</article-title>
<source>Mol Plant</source>
<year>2011</year>
<volume>4</volume>
<fpage>938</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1093/mp/ssr030</pub-id>
<pub-id pub-id-type="pmid">21502661</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Virlouvet</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Riethoven</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Fromm</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Avramova</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Four distinct types of dehydration stress memory genes in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>BMC Plant Biol</source>
<year>2013</year>
<volume>13</volume>
<fpage>229</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-13-229</pub-id>
<pub-id pub-id-type="pmid">24377444</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizoi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shinozaki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamaguchi-Shinozaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>AP2/ERF family transcription factors in plant abiotic stress responses</article-title>
<source>Biochim Biophys Acta</source>
<year>1819</year>
<volume>2012</volume>
<fpage>86</fpage>
<lpage>96</lpage>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neilson</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Goodger</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Woodrow</surname>
<given-names>IE</given-names>
</name>
<name>
<surname>Moller</surname>
<given-names>BL</given-names>
</name>
</person-group>
<article-title>Plant chemical defense: at what cost?</article-title>
<source>Trends Plant Sci</source>
<year>2013</year>
<volume>18</volume>
<fpage>250</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.tplants.2013.01.001</pub-id>
<pub-id pub-id-type="pmid">23415056</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Couee</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sulmon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gouesbet</surname>
<given-names>G</given-names>
</name>
<name>
<surname>El Amrani</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants</article-title>
<source>J Exp Bot</source>
<year>2006</year>
<volume>57</volume>
<fpage>449</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erj027</pub-id>
<pub-id pub-id-type="pmid">16397003</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patterson</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Newbigin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tester</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bacic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Roessner</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Metabolic responses to salt stress of barley (
<italic>Hordeum vulgare</italic>
L.) cultivars, Sahara and Clipper, which differ in salinity tolerance</article-title>
<source>J Exp Bot</source>
<year>2009</year>
<volume>60</volume>
<fpage>4089</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erp243</pub-id>
<pub-id pub-id-type="pmid">19666960</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinocur</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Altman</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations</article-title>
<source>Curr Opin Biotechnol</source>
<year>2005</year>
<volume>16</volume>
<fpage>123</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1016/j.copbio.2005.02.001</pub-id>
<pub-id pub-id-type="pmid">15831376</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Umezawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Urano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shinozaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Regulatory metabolic networks in drought stress responses</article-title>
<source>Curr Opin Plant Biol</source>
<year>2007</year>
<volume>10</volume>
<fpage>296</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1016/j.pbi.2007.04.014</pub-id>
<pub-id pub-id-type="pmid">17468040</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghasempour</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gaff</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gianello</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses</article-title>
<source>Plant Growth Regul</source>
<year>1998</year>
<volume>24</volume>
<fpage>185</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1023/A:1005927629018</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farrant</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lehner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wiswedel</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated</article-title>
<source>Plant J</source>
<year>2009</year>
<volume>57</volume>
<fpage>65</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2008.03673.x</pub-id>
<pub-id pub-id-type="pmid">18786003</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krasensky</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jonak</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks</article-title>
<source>J Exp Bot</source>
<year>2012</year>
<volume>63</volume>
<fpage>1593</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/err460</pub-id>
<pub-id pub-id-type="pmid">22291134</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vendruscolo</surname>
<given-names>ECG</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Pileggi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scapim</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Molinari</surname>
<given-names>HBC</given-names>
</name>
<name>
<surname>Marur</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>LGE</given-names>
</name>
</person-group>
<article-title>Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat</article-title>
<source>J Plant Physiol</source>
<year>2007</year>
<volume>164</volume>
<fpage>1367</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1016/j.jplph.2007.05.001</pub-id>
<pub-id pub-id-type="pmid">17604875</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verbruggen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hermans</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Proline accumulation in plants: a review</article-title>
<source>Amino Acids</source>
<year>2008</year>
<volume>35</volume>
<fpage>753</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1007/s00726-008-0061-6</pub-id>
<pub-id pub-id-type="pmid">18379856</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yobi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wone</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ryals</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Cushman</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of
<italic>Selaginella</italic>
reveals insights into the resurrection trait</article-title>
<source>Plant J</source>
<year>2012</year>
<volume>72</volume>
<fpage>983</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">23061970</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grosser</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Gmitter</surname>
<given-names>FG</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus</article-title>
<source>Plant Cell Tiss Org Cult</source>
<year>2011</year>
<volume>104</volume>
<fpage>343</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1007/s11240-010-9823-4</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martelotto</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Ortiz</surname>
<given-names>JPA</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Espinoza</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Quarin</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Pessino</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>A comprehensive analysis of gene expression alterations in a newly synthesized
<italic>Paspalum notatum</italic>
autotetraploid</article-title>
<source>Plant Sci</source>
<year>2005</year>
<volume>169</volume>
<fpage>211</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1016/j.plantsci.2005.03.015</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A genome-wide comparison of genes responsive to autopolyploidy in
<italic>Isatis indigotica</italic>
using
<italic>Arabidopsis</italic>
thaliana Affymetrix genechips</article-title>
<source>Plant Mol Biol Rep</source>
<year>2006</year>
<volume>24</volume>
<fpage>197</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="doi">10.1007/BF02914058</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Auger</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Ream</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coe</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Birchler</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Nonadditive gene expression in diploid and triploid hybrids of maize</article-title>
<source>Genetics</source>
<year>2005</year>
<volume>169</volume>
<fpage>389</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.104.032987</pub-id>
<pub-id pub-id-type="pmid">15489529</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Regulation of ion homeostasis under salt stress</article-title>
<source>Curr Opin Plant Biol</source>
<year>2003</year>
<volume>6</volume>
<fpage>441</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1016/S1369-5266(03)00085-2</pub-id>
<pub-id pub-id-type="pmid">12972044</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizhsky</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shuman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shulaev</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Davletova</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>When defense pathways collide. The response of
<italic>Arabidopsis</italic>
to a combination of drought and heat stress</article-title>
<source>Plant Physiol</source>
<year>2004</year>
<volume>134</volume>
<fpage>1683</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1104/pp.103.033431</pub-id>
<pub-id pub-id-type="pmid">15047901</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schafleitner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gutierrez Rosales</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Gaudin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alvarado Aliaga</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>GN</given-names>
</name>
<name>
<surname>Tincopa Marca</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Bolivar</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Delgado</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bonierbale</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress</article-title>
<source>Plant Physiol Biochem</source>
<year>2007</year>
<volume>45</volume>
<fpage>673</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1016/j.plaphy.2007.06.003</pub-id>
<pub-id pub-id-type="pmid">17764965</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rochfort</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ran</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Griffith</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Badenhorst</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Louie</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Noel</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (
<italic>Lolium perenne</italic>
)</article-title>
<source>Plant Cell</source>
<year>2010</year>
<volume>22</volume>
<fpage>3357</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.109.072827</pub-id>
<pub-id pub-id-type="pmid">20952635</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barry</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Blume</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bouzayen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Grierson</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato</article-title>
<source>Plant J</source>
<year>1996</year>
<volume>9</volume>
<fpage>525</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313X.1996.09040525.x</pub-id>
<pub-id pub-id-type="pmid">8624515</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ouvrard</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Cellier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ferrare</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tousch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lamaze</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dupuis</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Casse-Delbart</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype</article-title>
<source>Plant Mol Biol</source>
<year>1996</year>
<volume>31</volume>
<fpage>819</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1007/BF00019469</pub-id>
<pub-id pub-id-type="pmid">8806412</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seo</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Nahm</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Overexpression of the ethylene-responsive factor gene BrERF4 from
<italic>Brassica rapa</italic>
increases tolerance to salt and drought in
<italic>Arabidopsis</italic>
plants</article-title>
<source>Mol Cells</source>
<year>2010</year>
<volume>30</volume>
<fpage>271</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1007/s10059-010-0114-z</pub-id>
<pub-id pub-id-type="pmid">20803085</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ciftci-Yilmaz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species homeostasis and signalling during drought and salinity stresses</article-title>
<source>Plant Cell Environ</source>
<year>2010</year>
<volume>33</volume>
<fpage>453</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2009.02041.x</pub-id>
<pub-id pub-id-type="pmid">19712065</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballester</surname>
<given-names>A-R</given-names>
</name>
<name>
<surname>Teresa Lafuente</surname>
<given-names>M</given-names>
</name>
<name>
<surname>González-Candelas</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Citrus phenylpropanoids and defence against pathogens. Part II: Gene expression and metabolite accumulation in the response of fruits to
<italic>Penicillium digitatum</italic>
infection</article-title>
<source>Food Chem</source>
<year>2013</year>
<volume>136</volume>
<fpage>285</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodchem.2012.08.006</pub-id>
<pub-id pub-id-type="pmid">23017425</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fontaine</surname>
<given-names>J-X</given-names>
</name>
<name>
<surname>Tercé-Laforgue</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Armengaud</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Clément</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Renou</surname>
<given-names>J-P</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Catterou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Azzopardi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gibon</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Characterization of a NADH-dependent glutamate dehydrogenase mutant of
<italic>Arabidopsis</italic>
demonstrates the key role of this enzyme in root carbon and nitrogen metabolism</article-title>
<source>Plant Cell</source>
<year>2012</year>
<volume>24</volume>
<fpage>4044</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.112.103689</pub-id>
<pub-id pub-id-type="pmid">23054470</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernie</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Stitt</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence</article-title>
<source>Plant Physiol</source>
<year>2012</year>
<volume>158</volume>
<fpage>1139</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1104/pp.112.193235</pub-id>
<pub-id pub-id-type="pmid">22253257</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ramachandran</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kasschau</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X-J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<article-title>Small RNAs serve as a genetic buffer against genomic shock in
<italic>Arabidopsis</italic>
interspecific hybrids and allopolyploids</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2009</year>
<volume>106</volume>
<fpage>17835</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0907003106</pub-id>
<pub-id pub-id-type="pmid">19805056</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parisod</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Alix</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Just</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sarilar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Mhiri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ainouche</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chalhoub</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Grandbastien</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Impact of transposable elements on the organization and function of allopolyploid genomes</article-title>
<source>New Phytol</source>
<year>2010</year>
<volume>186</volume>
<fpage>37</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.03096.x</pub-id>
<pub-id pub-id-type="pmid">20002321</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Briggs</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Proteomic divergence in
<italic>Arabidopsis</italic>
autopolyploids and allopolyploids and their progenitors</article-title>
<source>Heredity</source>
<year>2011</year>
<volume>108</volume>
<fpage>419</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1038/hdy.2011.92</pub-id>
<pub-id pub-id-type="pmid">22009271</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marmagne</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brabant</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Thiellement</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Alix</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Analysis of gene expression in resynthesized
<italic>Brassica napus</italic>
allotetraploids: transcriptional changes do not explain differential protein regulation</article-title>
<source>New Phytol</source>
<year>2010</year>
<volume>186</volume>
<fpage>216</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.03139.x</pub-id>
<pub-id pub-id-type="pmid">20100210</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Froelicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dambier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bassene</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Costantino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lotfy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Didout</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Beaumont</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Brottier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Risterucci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luro</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Characterization of microsatellite markers in mandarin orange (
<italic>Citrus reticulata</italic>
Blanco)</article-title>
<source>Mol Ecol Resour</source>
<year>2008</year>
<volume>8</volume>
<fpage>119</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-8286.2007.01893.x</pub-id>
<pub-id pub-id-type="pmid">21585732</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cristofani-Yaly</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Novelli</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Bastianel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Transferability and level of heterozygosity of microsatellite markers in Citrus species</article-title>
<source>Plant Mol Biol Rep</source>
<year>2011</year>
<volume>29</volume>
<fpage>418</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1007/s11105-010-0241-x</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lei</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in
<italic>Brassica napus</italic>
</article-title>
<source>Plant J</source>
<year>2010</year>
<volume>63</volume>
<fpage>925</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2010.04289.x</pub-id>
<pub-id pub-id-type="pmid">20598092</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Abnormal microspore development leads to pollen abortion in a seedless mutant of ‘Ougan’mandarin (
<italic>Citrus suavissima</italic>
Hort. ex Tanaka)</article-title>
<source>J Am Soc Hortic Sci</source>
<year>2007</year>
<volume>132</volume>
<fpage>777</fpage>
<lpage>82</lpage>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>XX</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>XX</given-names>
</name>
<name>
<surname>Grosser</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>WW</given-names>
</name>
</person-group>
<article-title>Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e43758</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0043758</pub-id>
<pub-id pub-id-type="pmid">22952758</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bertrand</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Lyon</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>The draft genome of sweet orange (
<italic>Citrus sinensis</italic>
)</article-title>
<source>Nat Genet</source>
<year>2013</year>
<volume>45</volume>
<fpage>59</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1038/ng.2472</pub-id>
<pub-id pub-id-type="pmid">23179022</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pertea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pimentel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions</article-title>
<source>Genome Biol</source>
<year>2013</year>
<volume>14</volume>
<fpage>R36</fpage>
<pub-id pub-id-type="doi">10.1186/gb-2013-14-4-r36</pub-id>
<pub-id pub-id-type="pmid">23618408</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anders</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Differential expression analysis for sequence count data</article-title>
<source>Genome Biol</source>
<year>2010</year>
<volume>11</volume>
<fpage>R106</fpage>
<pub-id pub-id-type="doi">10.1186/gb-2010-11-10-r106</pub-id>
<pub-id pub-id-type="pmid">20979621</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hochberg</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Controlling the false discovery rate: a practical and powerful approach to multiple testing</article-title>
<source>J R Stat Soc Series B Stat Methodol</source>
<year>1995</year>
<volume>57</volume>
<fpage>289</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases</article-title>
<source>Nucleic Acids Res</source>
<year>2011</year>
<volume>39</volume>
<issue>Suppl 2</issue>
<fpage>316</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr483</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000621  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000621  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024