Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus

Identifieur interne : 000605 ( Pmc/Corpus ); précédent : 000604; suivant : 000606

Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus

Auteurs : Shimin Fu ; Jonathan Shao ; Changyong Zhou ; John S. Hartung

Source :

RBID : PMC:4865098

Abstract

Background

Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, ‘Candidatus Liberibacter asiaticus’ (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn’t induce significant symptoms or damage to plants.

Results

Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively.

Conclusions

The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-016-2663-9) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1186/s12864-016-2663-9
PubMed: 27169471
PubMed Central: 4865098

Links to Exploration step

PMC:4865098

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome analysis of sweet orange trees infected with ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ and two strains of
<italic>Citrus Tristeza Virus</italic>
</title>
<author>
<name sortKey="Fu, Shimin" sort="Fu, Shimin" uniqKey="Fu S" first="Shimin" last="Fu">Shimin Fu</name>
<affiliation>
<nlm:aff id="Aff1">College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Lingnan Normal University, Zhanjian, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shao, Jonathan" sort="Shao, Jonathan" uniqKey="Shao J" first="Jonathan" last="Shao">Jonathan Shao</name>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Changyong" sort="Zhou, Changyong" uniqKey="Zhou C" first="Changyong" last="Zhou">Changyong Zhou</name>
<affiliation>
<nlm:aff id="Aff1">College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hartung, John S" sort="Hartung, John S" uniqKey="Hartung J" first="John S." last="Hartung">John S. Hartung</name>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27169471</idno>
<idno type="pmc">4865098</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865098</idno>
<idno type="RBID">PMC:4865098</idno>
<idno type="doi">10.1186/s12864-016-2663-9</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000605</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Transcriptome analysis of sweet orange trees infected with ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ and two strains of
<italic>Citrus Tristeza Virus</italic>
</title>
<author>
<name sortKey="Fu, Shimin" sort="Fu, Shimin" uniqKey="Fu S" first="Shimin" last="Fu">Shimin Fu</name>
<affiliation>
<nlm:aff id="Aff1">College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Lingnan Normal University, Zhanjian, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shao, Jonathan" sort="Shao, Jonathan" uniqKey="Shao J" first="Jonathan" last="Shao">Jonathan Shao</name>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Changyong" sort="Zhou, Changyong" uniqKey="Zhou C" first="Changyong" last="Zhou">Changyong Zhou</name>
<affiliation>
<nlm:aff id="Aff1">College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hartung, John S" sort="Hartung, John S" uniqKey="Hartung J" first="John S." last="Hartung">John S. Hartung</name>
<affiliation>
<nlm:aff id="Aff2">Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ (CaLas), and
<italic>Citrus tristeza virus</italic>
(CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn’t induce significant symptoms or damage to plants.</p>
</sec>
<sec>
<title>Results</title>
<p>Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of
<italic>Citrus sinensis</italic>
identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-016-2663-9) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno, P" uniqKey="Moreno P">P Moreno</name>
</author>
<author>
<name sortKey="Ambros, S" uniqKey="Ambros S">S Ambros</name>
</author>
<author>
<name sortKey="Albiach Marti, Mr" uniqKey="Albiach Marti M">MR Albiach-Marti</name>
</author>
<author>
<name sortKey="Guerri, J" uniqKey="Guerri J">J Guerri</name>
</author>
<author>
<name sortKey="Pena, L" uniqKey="Pena L">L Pena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruiz Ruiz, S" uniqKey="Ruiz Ruiz S">S Ruiz-Ruiz</name>
</author>
<author>
<name sortKey="Moreno, P" uniqKey="Moreno P">P Moreno</name>
</author>
<author>
<name sortKey="Guerri, J" uniqKey="Guerri J">J Guerri</name>
</author>
<author>
<name sortKey="Ambr S, S" uniqKey="Ambr S S">S Ambrós</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bove, Jm" uniqKey="Bove J">JM Bové</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Trivedi, P" uniqKey="Trivedi P">P Trivedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rouse, B" uniqKey="Rouse B">B Rouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stansly, Pa" uniqKey="Stansly P">PA Stansly</name>
</author>
<author>
<name sortKey="Arevalo, Ha" uniqKey="Arevalo H">HA Arevalo</name>
</author>
<author>
<name sortKey="Qureshi, Ja" uniqKey="Qureshi J">JA Qureshi</name>
</author>
<author>
<name sortKey="Jones, Mm" uniqKey="Jones M">MM Jones</name>
</author>
<author>
<name sortKey="Hendricks, K" uniqKey="Hendricks K">K Hendricks</name>
</author>
<author>
<name sortKey="Roberts, Pd" uniqKey="Roberts P">PD Roberts</name>
</author>
<author>
<name sortKey="Roka, Fm" uniqKey="Roka F">FM Roka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond Kosack, Ke" uniqKey="Hammond Kosack K">KE Hammond-Kosack</name>
</author>
<author>
<name sortKey="Jones, J" uniqKey="Jones J">J Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J Fan</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q Yu</name>
</author>
<author>
<name sortKey="Brlansky, Rh" uniqKey="Brlansky R">RH Brlansky</name>
</author>
<author>
<name sortKey="Li, Zg" uniqKey="Li Z">ZG Li</name>
</author>
<author>
<name sortKey="Gmitter, Fg" uniqKey="Gmitter F">FG Gmitter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U Albrecht</name>
</author>
<author>
<name sortKey="Bowman, Kd" uniqKey="Bowman K">KD Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J S" uniqKey="Kim J">J-S Kim</name>
</author>
<author>
<name sortKey="Sagaram, Us" uniqKey="Sagaram U">US Sagaram</name>
</author>
<author>
<name sortKey="Burns, Jk" uniqKey="Burns J">JK Burns</name>
</author>
<author>
<name sortKey="Li, J L" uniqKey="Li J">J-L Li</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gandia, M" uniqKey="Gandia M">M Gandía</name>
</author>
<author>
<name sortKey="Conesa, A" uniqKey="Conesa A">A Conesa</name>
</author>
<author>
<name sortKey="Ancillo, G" uniqKey="Ancillo G">G Ancillo</name>
</author>
<author>
<name sortKey="Gadea, J" uniqKey="Gadea J">J Gadea</name>
</author>
<author>
<name sortKey="Forment, J" uniqKey="Forment J">J Forment</name>
</author>
<author>
<name sortKey="Pallas, V" uniqKey="Pallas V">V Pallás</name>
</author>
<author>
<name sortKey="Flores, R" uniqKey="Flores R">R Flores</name>
</author>
<author>
<name sortKey="Duran Vila, N" uniqKey="Duran Vila N">N Duran-Vila</name>
</author>
<author>
<name sortKey="Moreno, P" uniqKey="Moreno P">P Moreno</name>
</author>
<author>
<name sortKey="Guerri, J" uniqKey="Guerri J">J Guerri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gmitter, Fg" uniqKey="Gmitter F">FG Gmitter</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Machado, Ma" uniqKey="Machado M">MA Machado</name>
</author>
<author>
<name sortKey="De Souza, Aa" uniqKey="De Souza A">AA de Souza</name>
</author>
<author>
<name sortKey="Ollitrault, P" uniqKey="Ollitrault P">P Ollitrault</name>
</author>
<author>
<name sortKey="Froehlicher, Y" uniqKey="Froehlicher Y">Y Froehlicher</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, E" uniqKey="Johnson E">E Johnson</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Bright, D" uniqKey="Bright D">D Bright</name>
</author>
<author>
<name sortKey="Graham, J" uniqKey="Graham J">J Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Jh" uniqKey="Graham J">JH Graham</name>
</author>
<author>
<name sortKey="Johnson, Eg" uniqKey="Johnson E">EG Johnson</name>
</author>
<author>
<name sortKey="Gottwald, T" uniqKey="Gottwald T">T Gottwald</name>
</author>
<author>
<name sortKey="Irey, Ms" uniqKey="Irey M">MS Irey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lionetti, V" uniqKey="Lionetti V">V Lionetti</name>
</author>
<author>
<name sortKey="Raiola, A" uniqKey="Raiola A">A Raiola</name>
</author>
<author>
<name sortKey="Camardella, L" uniqKey="Camardella L">L Camardella</name>
</author>
<author>
<name sortKey="Giovane, A" uniqKey="Giovane A">A Giovane</name>
</author>
<author>
<name sortKey="Obel, N" uniqKey="Obel N">N Obel</name>
</author>
<author>
<name sortKey="Pauly, M" uniqKey="Pauly M">M Pauly</name>
</author>
<author>
<name sortKey="Favaron, F" uniqKey="Favaron F">F Favaron</name>
</author>
<author>
<name sortKey="Cervone, F" uniqKey="Cervone F">F Cervone</name>
</author>
<author>
<name sortKey="Bellincampi, D" uniqKey="Bellincampi D">D Bellincampi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, Sh" uniqKey="An S">SH An</name>
</author>
<author>
<name sortKey="Sohn, Kh" uniqKey="Sohn K">KH Sohn</name>
</author>
<author>
<name sortKey="Choi, Hw" uniqKey="Choi H">HW Choi</name>
</author>
<author>
<name sortKey="Hwang, Is" uniqKey="Hwang I">IS Hwang</name>
</author>
<author>
<name sortKey="Lee, Sc" uniqKey="Lee S">SC Lee</name>
</author>
<author>
<name sortKey="Hwang, Bk" uniqKey="Hwang B">BK Hwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folimonova, Sy" uniqKey="Folimonova S">SY Folimonova</name>
</author>
<author>
<name sortKey="Achor, Ds" uniqKey="Achor D">DS Achor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Golecki, B" uniqKey="Golecki B">B Golecki</name>
</author>
<author>
<name sortKey="Schulz, A" uniqKey="Schulz A">A Schulz</name>
</author>
<author>
<name sortKey="Thompson, Ga" uniqKey="Thompson G">GA Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clay, Nk" uniqKey="Clay N">NK Clay</name>
</author>
<author>
<name sortKey="Adio, Am" uniqKey="Adio A">AM Adio</name>
</author>
<author>
<name sortKey="Denoux, C" uniqKey="Denoux C">C Denoux</name>
</author>
<author>
<name sortKey="Jander, G" uniqKey="Jander G">G Jander</name>
</author>
<author>
<name sortKey="Ausubel, Fm" uniqKey="Ausubel F">FM Ausubel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Ma" uniqKey="Jones M">MA Jones</name>
</author>
<author>
<name sortKey="Covington, Mf" uniqKey="Covington M">MF Covington</name>
</author>
<author>
<name sortKey="Ditacchio, L" uniqKey="Ditacchio L">L Ditacchio</name>
</author>
<author>
<name sortKey="Vollmers, C" uniqKey="Vollmers C">C Vollmers</name>
</author>
<author>
<name sortKey="Panda, S" uniqKey="Panda S">S Panda</name>
</author>
<author>
<name sortKey="Harmer, Sl" uniqKey="Harmer S">SL Harmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, H L" uniqKey="Liao H">H-L Liao</name>
</author>
<author>
<name sortKey="Burns, Jk" uniqKey="Burns J">JK Burns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P Yang</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Fan, B" uniqKey="Fan B">B Fan</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, W" uniqKey="Chen W">W Chen</name>
</author>
<author>
<name sortKey="Provart, Nj" uniqKey="Provart N">NJ Provart</name>
</author>
<author>
<name sortKey="Glazebrook, J" uniqKey="Glazebrook J">J Glazebrook</name>
</author>
<author>
<name sortKey="Katagiri, F" uniqKey="Katagiri F">F Katagiri</name>
</author>
<author>
<name sortKey="Chang, H S" uniqKey="Chang H">H-S Chang</name>
</author>
<author>
<name sortKey="Eulgem, T" uniqKey="Eulgem T">T Eulgem</name>
</author>
<author>
<name sortKey="Mauch, F" uniqKey="Mauch F">F Mauch</name>
</author>
<author>
<name sortKey="Luan, S" uniqKey="Luan S">S Luan</name>
</author>
<author>
<name sortKey="Zou, G" uniqKey="Zou G">G Zou</name>
</author>
<author>
<name sortKey="Whitham, Sa" uniqKey="Whitham S">SA Whitham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Suzuki, H" uniqKey="Suzuki H">H Suzuki</name>
</author>
<author>
<name sortKey="Borevitz, J" uniqKey="Borevitz J">J Borevitz</name>
</author>
<author>
<name sortKey="Blount, J" uniqKey="Blount J">J Blount</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z Guo</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K Patel</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
<author>
<name sortKey="Lamb, C" uniqKey="Lamb C">C Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yazaki, K" uniqKey="Yazaki K">K Yazaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Sun, R" uniqKey="Sun R">R Sun</name>
</author>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U Albrecht</name>
</author>
<author>
<name sortKey="Padmanabhan, C" uniqKey="Padmanabhan C">C Padmanabhan</name>
</author>
<author>
<name sortKey="Wang, A" uniqKey="Wang A">A Wang</name>
</author>
<author>
<name sortKey="Coffey, Md" uniqKey="Coffey M">MD Coffey</name>
</author>
<author>
<name sortKey="Girke, T" uniqKey="Girke T">T Girke</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Close, Tj" uniqKey="Close T">TJ Close</name>
</author>
<author>
<name sortKey="Roose, M" uniqKey="Roose M">M Roose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koh, S" uniqKey="Koh S">S Koh</name>
</author>
<author>
<name sortKey="Wiles, Am" uniqKey="Wiles A">AM Wiles</name>
</author>
<author>
<name sortKey="Sharp, Js" uniqKey="Sharp J">JS Sharp</name>
</author>
<author>
<name sortKey="Naider, Fr" uniqKey="Naider F">FR Naider</name>
</author>
<author>
<name sortKey="Becker, Jm" uniqKey="Becker J">JM Becker</name>
</author>
<author>
<name sortKey="Stacey, G" uniqKey="Stacey G">G Stacey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delker, C" uniqKey="Delker C">C Delker</name>
</author>
<author>
<name sortKey="Stenzel, I" uniqKey="Stenzel I">I Stenzel</name>
</author>
<author>
<name sortKey="Hause, B" uniqKey="Hause B">B Hause</name>
</author>
<author>
<name sortKey="Miersch, O" uniqKey="Miersch O">O Miersch</name>
</author>
<author>
<name sortKey="Feussner, I" uniqKey="Feussner I">I Feussner</name>
</author>
<author>
<name sortKey="Wasternack, C" uniqKey="Wasternack C">C Wasternack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aksenov, Aa" uniqKey="Aksenov A">AA Aksenov</name>
</author>
<author>
<name sortKey="Pasamontes, A" uniqKey="Pasamontes A">A Pasamontes</name>
</author>
<author>
<name sortKey="Peirano, Dj" uniqKey="Peirano D">DJ Peirano</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Dandekar, Am" uniqKey="Dandekar A">AM Dandekar</name>
</author>
<author>
<name sortKey="Fiehn, O" uniqKey="Fiehn O">O Fiehn</name>
</author>
<author>
<name sortKey="Ehsani, R" uniqKey="Ehsani R">R Ehsani</name>
</author>
<author>
<name sortKey="Davis, Ce" uniqKey="Davis C">CE Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mafra, V" uniqKey="Mafra V">V Mafra</name>
</author>
<author>
<name sortKey="Martins, Pk" uniqKey="Martins P">PK Martins</name>
</author>
<author>
<name sortKey="Francisco, Cs" uniqKey="Francisco C">CS Francisco</name>
</author>
<author>
<name sortKey="Ribeiro Alves, M" uniqKey="Ribeiro Alves M">M Ribeiro-Alves</name>
</author>
<author>
<name sortKey="Freitas Astua, J" uniqKey="Freitas Astua J">J Freitas-Astúa</name>
</author>
<author>
<name sortKey="Machado, Ma" uniqKey="Machado M">MA Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Douglas Grubb, C" uniqKey="Douglas Grubb C">C Douglas Grubb</name>
</author>
<author>
<name sortKey="Zipp, Bj" uniqKey="Zipp B">BJ Zipp</name>
</author>
<author>
<name sortKey="Ludwig Ller, J" uniqKey="Ludwig Ller J">J Ludwig‐Müller</name>
</author>
<author>
<name sortKey="Masuno, Mn" uniqKey="Masuno M">MN Masuno</name>
</author>
<author>
<name sortKey="Molinski, Tf" uniqKey="Molinski T">TF Molinski</name>
</author>
<author>
<name sortKey="Abel, S" uniqKey="Abel S">S Abel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mchale, L" uniqKey="Mchale L">L McHale</name>
</author>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X Tan</name>
</author>
<author>
<name sortKey="Koehl, P" uniqKey="Koehl P">P Koehl</name>
</author>
<author>
<name sortKey="Michelmore, Rw" uniqKey="Michelmore R">RW Michelmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goyer, A" uniqKey="Goyer A">A Goyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinelli, F" uniqKey="Martinelli F">F Martinelli</name>
</author>
<author>
<name sortKey="Uratsu, Sl" uniqKey="Uratsu S">SL Uratsu</name>
</author>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U Albrecht</name>
</author>
<author>
<name sortKey="Reagan, Rl" uniqKey="Reagan R">RL Reagan</name>
</author>
<author>
<name sortKey="Phu, Ml" uniqKey="Phu M">ML Phu</name>
</author>
<author>
<name sortKey="Britton, M" uniqKey="Britton M">M Britton</name>
</author>
<author>
<name sortKey="Buffalo, V" uniqKey="Buffalo V">V Buffalo</name>
</author>
<author>
<name sortKey="Fass, J" uniqKey="Fass J">J Fass</name>
</author>
<author>
<name sortKey="Leicht, E" uniqKey="Leicht E">E Leicht</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U Albrecht</name>
</author>
<author>
<name sortKey="Bowman, Kd" uniqKey="Bowman K">KD Bowman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aritua, V" uniqKey="Aritua V">V Aritua</name>
</author>
<author>
<name sortKey="Achor, D" uniqKey="Achor D">D Achor</name>
</author>
<author>
<name sortKey="Gmitter, Fg" uniqKey="Gmitter F">FG Gmitter</name>
</author>
<author>
<name sortKey="Albrigo, G" uniqKey="Albrigo G">G Albrigo</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcclung, Cr" uniqKey="Mcclung C">CR McClung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcclung, Cr" uniqKey="Mcclung C">CR McClung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosa, Ba" uniqKey="Rosa B">BA Rosa</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S Oh</name>
</author>
<author>
<name sortKey="Montgomery, Bl" uniqKey="Montgomery B">BL Montgomery</name>
</author>
<author>
<name sortKey="Qin, W" uniqKey="Qin W">W Qin</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rikin, A" uniqKey="Rikin A">A Rikin</name>
</author>
<author>
<name sortKey="Dillwith, Jw" uniqKey="Dillwith J">JW Dillwith</name>
</author>
<author>
<name sortKey="Bergman, Dk" uniqKey="Bergman D">DK Bergman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaffer, R" uniqKey="Schaffer R">R Schaffer</name>
</author>
<author>
<name sortKey="Landgraf, J" uniqKey="Landgraf J">J Landgraf</name>
</author>
<author>
<name sortKey="Accerbi, M" uniqKey="Accerbi M">M Accerbi</name>
</author>
<author>
<name sortKey="Simon, V" uniqKey="Simon V">V Simon</name>
</author>
<author>
<name sortKey="Larson, M" uniqKey="Larson M">M Larson</name>
</author>
<author>
<name sortKey="Wisman, E" uniqKey="Wisman E">E Wisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gopal, K" uniqKey="Gopal K">K Gopal</name>
</author>
<author>
<name sortKey="Gopi, V" uniqKey="Gopi V">V Gopi</name>
</author>
<author>
<name sortKey="Kalyani, L" uniqKey="Kalyani L">L Kalyani</name>
</author>
<author>
<name sortKey="Sreelatha, M" uniqKey="Sreelatha M">M Sreelatha</name>
</author>
<author>
<name sortKey="Sreenivasulu, B" uniqKey="Sreenivasulu B">B Sreenivasulu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kyriakou, A" uniqKey="Kyriakou A">A Kyriakou</name>
</author>
<author>
<name sortKey="Polycarpou, D" uniqKey="Polycarpou D">D Polycarpou</name>
</author>
<author>
<name sortKey="Efstathiou, A" uniqKey="Efstathiou A">A Efstathiou</name>
</author>
<author>
<name sortKey="Hadjinicoli, A" uniqKey="Hadjinicoli A">A Hadjinicoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halbert, Se" uniqKey="Halbert S">SE Halbert</name>
</author>
<author>
<name sortKey="Manjunath, Kl" uniqKey="Manjunath K">KL Manjunath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamichi, N" uniqKey="Nakamichi N">N Nakamichi</name>
</author>
<author>
<name sortKey="Kusano, M" uniqKey="Kusano M">M Kusano</name>
</author>
<author>
<name sortKey="Fukushima, A" uniqKey="Fukushima A">A Fukushima</name>
</author>
<author>
<name sortKey="Kita, M" uniqKey="Kita M">M Kita</name>
</author>
<author>
<name sortKey="Ito, S" uniqKey="Ito S">S Ito</name>
</author>
<author>
<name sortKey="Yamashino, T" uniqKey="Yamashino T">T Yamashino</name>
</author>
<author>
<name sortKey="Saito, K" uniqKey="Saito K">K Saito</name>
</author>
<author>
<name sortKey="Sakakibara, H" uniqKey="Sakakibara H">H Sakakibara</name>
</author>
<author>
<name sortKey="Mizuno, T" uniqKey="Mizuno T">T Mizuno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alabadi, D" uniqKey="Alabadi D">D Alabadí</name>
</author>
<author>
<name sortKey="Oyama, T" uniqKey="Oyama T">T Oyama</name>
</author>
<author>
<name sortKey="Yanovsky, Mj" uniqKey="Yanovsky M">MJ Yanovsky</name>
</author>
<author>
<name sortKey="Harmon, Fg" uniqKey="Harmon F">FG Harmon</name>
</author>
<author>
<name sortKey="Mas, P" uniqKey="Mas P">P Mas</name>
</author>
<author>
<name sortKey="Kay, Sa" uniqKey="Kay S">SA Kay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alabadi, D" uniqKey="Alabadi D">D Alabadí</name>
</author>
<author>
<name sortKey="Yanovsky, Mj" uniqKey="Yanovsky M">MJ Yanovsky</name>
</author>
<author>
<name sortKey="Mas, P" uniqKey="Mas P">P Más</name>
</author>
<author>
<name sortKey="Harmer, Sl" uniqKey="Harmer S">SL Harmer</name>
</author>
<author>
<name sortKey="Kay, Sa" uniqKey="Kay S">SA Kay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onouchi, H" uniqKey="Onouchi H">H Onouchi</name>
</author>
<author>
<name sortKey="Ige O, Mi" uniqKey="Ige O M">MI Igeño</name>
</author>
<author>
<name sortKey="Perilleux, C" uniqKey="Perilleux C">C Périlleux</name>
</author>
<author>
<name sortKey="Graves, K" uniqKey="Graves K">K Graves</name>
</author>
<author>
<name sortKey="Coupland, G" uniqKey="Coupland G">G Coupland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lidder, P" uniqKey="Lidder P">P Lidder</name>
</author>
<author>
<name sortKey="Gutierrez, Ra" uniqKey="Gutierrez R">RA Gutiérrez</name>
</author>
<author>
<name sortKey="Salome, Pa" uniqKey="Salome P">PA Salomé</name>
</author>
<author>
<name sortKey="Mcclung, Cr" uniqKey="Mcclung C">CR McClung</name>
</author>
<author>
<name sortKey="Green, Pj" uniqKey="Green P">PJ Green</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, J" uniqKey="Edwards J">J Edwards</name>
</author>
<author>
<name sortKey="Martin, Ap" uniqKey="Martin A">AP Martin</name>
</author>
<author>
<name sortKey="Andriunas, F" uniqKey="Andriunas F">F Andriunas</name>
</author>
<author>
<name sortKey="Offler, Ce" uniqKey="Offler C">CE Offler</name>
</author>
<author>
<name sortKey="Patrick, Jw" uniqKey="Patrick J">JW Patrick</name>
</author>
<author>
<name sortKey="Mccurdy, Dw" uniqKey="Mccurdy D">DW McCurdy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fowler, S" uniqKey="Fowler S">S Fowler</name>
</author>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K Lee</name>
</author>
<author>
<name sortKey="Onouchi, H" uniqKey="Onouchi H">H Onouchi</name>
</author>
<author>
<name sortKey="Samach, A" uniqKey="Samach A">A Samach</name>
</author>
<author>
<name sortKey="Richardson, K" uniqKey="Richardson K">K Richardson</name>
</author>
<author>
<name sortKey="Morris, B" uniqKey="Morris B">B Morris</name>
</author>
<author>
<name sortKey="Coupland, G" uniqKey="Coupland G">G Coupland</name>
</author>
<author>
<name sortKey="Putterill, J" uniqKey="Putterill J">J Putterill</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Dh" uniqKey="Park D">DH Park</name>
</author>
<author>
<name sortKey="Somers, De" uniqKey="Somers D">DE Somers</name>
</author>
<author>
<name sortKey="Kim, Ys" uniqKey="Kim Y">YS Kim</name>
</author>
<author>
<name sortKey="Choy, Yh" uniqKey="Choy Y">YH Choy</name>
</author>
<author>
<name sortKey="Lim, Hk" uniqKey="Lim H">HK Lim</name>
</author>
<author>
<name sortKey="Soh, Ms" uniqKey="Soh M">MS Soh</name>
</author>
<author>
<name sortKey="Kim, Hj" uniqKey="Kim H">HJ Kim</name>
</author>
<author>
<name sortKey="Kay, Sa" uniqKey="Kay S">SA Kay</name>
</author>
<author>
<name sortKey="Nam, Hg" uniqKey="Nam H">HG Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caffall, Kh" uniqKey="Caffall K">KH Caffall</name>
</author>
<author>
<name sortKey="Mohnen, D" uniqKey="Mohnen D">D Mohnen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez, S" uniqKey="Perez S">S Pérez</name>
</author>
<author>
<name sortKey="Rodriguez Carvajal, M" uniqKey="Rodriguez Carvajal M">M Rodriguez-Carvajal</name>
</author>
<author>
<name sortKey="Doco, T" uniqKey="Doco T">T Doco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hadfield, Ka" uniqKey="Hadfield K">KA Hadfield</name>
</author>
<author>
<name sortKey="Bennett, Ab" uniqKey="Bennett A">AB Bennett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Redgwell, Rj" uniqKey="Redgwell R">RJ Redgwell</name>
</author>
<author>
<name sortKey="Macrae, E" uniqKey="Macrae E">E MacRae</name>
</author>
<author>
<name sortKey="Hallett, I" uniqKey="Hallett I">I Hallett</name>
</author>
<author>
<name sortKey="Fischer, M" uniqKey="Fischer M">M Fischer</name>
</author>
<author>
<name sortKey="Perry, J" uniqKey="Perry J">J Perry</name>
</author>
<author>
<name sortKey="Harker, R" uniqKey="Harker R">R Harker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baumann, Mj" uniqKey="Baumann M">MJ Baumann</name>
</author>
<author>
<name sortKey="Eklof, Jm" uniqKey="Eklof J">JM Eklöf</name>
</author>
<author>
<name sortKey="Michel, G" uniqKey="Michel G">G Michel</name>
</author>
<author>
<name sortKey="Kallas, M" uniqKey="Kallas ">ÅM Kallas</name>
</author>
<author>
<name sortKey="Teeri, Tt" uniqKey="Teeri T">TT Teeri</name>
</author>
<author>
<name sortKey="Czjzek, M" uniqKey="Czjzek M">M Czjzek</name>
</author>
<author>
<name sortKey="Brumer, H" uniqKey="Brumer H">H Brumer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Divol, F" uniqKey="Divol F">F Divol</name>
</author>
<author>
<name sortKey="Vilaine, F" uniqKey="Vilaine F">F Vilaine</name>
</author>
<author>
<name sortKey="Thibivilliers, S" uniqKey="Thibivilliers S">S Thibivilliers</name>
</author>
<author>
<name sortKey="Kusiak, C" uniqKey="Kusiak C">C Kusiak</name>
</author>
<author>
<name sortKey="Sauge, Mh" uniqKey="Sauge M">MH Sauge</name>
</author>
<author>
<name sortKey="Dinant, S" uniqKey="Dinant S">S Dinant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albert, M" uniqKey="Albert M">M Albert</name>
</author>
<author>
<name sortKey="Werner, M" uniqKey="Werner M">M Werner</name>
</author>
<author>
<name sortKey="Proksch, P" uniqKey="Proksch P">P Proksch</name>
</author>
<author>
<name sortKey="Fry, S" uniqKey="Fry S">S Fry</name>
</author>
<author>
<name sortKey="Kaldenhoff, R" uniqKey="Kaldenhoff R">R Kaldenhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maldonado Mendoza, Ie" uniqKey="Maldonado Mendoza I">IE Maldonado-Mendoza</name>
</author>
<author>
<name sortKey="Dewbre, Gr" uniqKey="Dewbre G">GR Dewbre</name>
</author>
<author>
<name sortKey="Blaylock, L" uniqKey="Blaylock L">L Blaylock</name>
</author>
<author>
<name sortKey="Harrison, Mj" uniqKey="Harrison M">MJ Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhugga, Ks" uniqKey="Dhugga K">KS Dhugga</name>
</author>
<author>
<name sortKey="Barreiro, R" uniqKey="Barreiro R">R Barreiro</name>
</author>
<author>
<name sortKey="Whitten, B" uniqKey="Whitten B">B Whitten</name>
</author>
<author>
<name sortKey="Stecca, K" uniqKey="Stecca K">K Stecca</name>
</author>
<author>
<name sortKey="Hazebroek, J" uniqKey="Hazebroek J">J Hazebroek</name>
</author>
<author>
<name sortKey="Randhawa, Gs" uniqKey="Randhawa G">GS Randhawa</name>
</author>
<author>
<name sortKey="Dolan, M" uniqKey="Dolan M">M Dolan</name>
</author>
<author>
<name sortKey="Kinney, Aj" uniqKey="Kinney A">AJ Kinney</name>
</author>
<author>
<name sortKey="Tomes, D" uniqKey="Tomes D">D Tomes</name>
</author>
<author>
<name sortKey="Nichols, S" uniqKey="Nichols S">S Nichols</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liepman, Ah" uniqKey="Liepman A">AH Liepman</name>
</author>
<author>
<name sortKey="Nairn, Cj" uniqKey="Nairn C">CJ Nairn</name>
</author>
<author>
<name sortKey="Willats, Wg" uniqKey="Willats W">WG Willats</name>
</author>
<author>
<name sortKey="S Rensen, I" uniqKey="S Rensen I">I Sørensen</name>
</author>
<author>
<name sortKey="Roberts, Aw" uniqKey="Roberts A">AW Roberts</name>
</author>
<author>
<name sortKey="Keegstra, K" uniqKey="Keegstra K">K Keegstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goubet, F" uniqKey="Goubet F">F Goubet</name>
</author>
<author>
<name sortKey="Misrahi, A" uniqKey="Misrahi A">A Misrahi</name>
</author>
<author>
<name sortKey="Park, Sk" uniqKey="Park S">SK Park</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Twell, D" uniqKey="Twell D">D Twell</name>
</author>
<author>
<name sortKey="Dupree, P" uniqKey="Dupree P">P Dupree</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doblin, Ms" uniqKey="Doblin M">MS Doblin</name>
</author>
<author>
<name sortKey="Pettolino, Fa" uniqKey="Pettolino F">FA Pettolino</name>
</author>
<author>
<name sortKey="Wilson, Sm" uniqKey="Wilson S">SM Wilson</name>
</author>
<author>
<name sortKey="Campbell, R" uniqKey="Campbell R">R Campbell</name>
</author>
<author>
<name sortKey="Burton, Ra" uniqKey="Burton R">RA Burton</name>
</author>
<author>
<name sortKey="Fincher, Gb" uniqKey="Fincher G">GB Fincher</name>
</author>
<author>
<name sortKey="Newbigin, E" uniqKey="Newbigin E">E Newbigin</name>
</author>
<author>
<name sortKey="Bacic, A" uniqKey="Bacic A">A Bacic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burton, Ra" uniqKey="Burton R">RA Burton</name>
</author>
<author>
<name sortKey="Wilson, Sm" uniqKey="Wilson S">SM Wilson</name>
</author>
<author>
<name sortKey="Hrmova, M" uniqKey="Hrmova M">M Hrmova</name>
</author>
<author>
<name sortKey="Harvey, Aj" uniqKey="Harvey A">AJ Harvey</name>
</author>
<author>
<name sortKey="Shirley, Nj" uniqKey="Shirley N">NJ Shirley</name>
</author>
<author>
<name sortKey="Medhurst, A" uniqKey="Medhurst A">A Medhurst</name>
</author>
<author>
<name sortKey="Stone, Ba" uniqKey="Stone B">BA Stone</name>
</author>
<author>
<name sortKey="Newbigin, Ej" uniqKey="Newbigin E">EJ Newbigin</name>
</author>
<author>
<name sortKey="Bacic, A" uniqKey="Bacic A">A Bacic</name>
</author>
<author>
<name sortKey="Fincher, Gb" uniqKey="Fincher G">GB Fincher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roudier, F" uniqKey="Roudier F">F Roudier</name>
</author>
<author>
<name sortKey="Schindelman, G" uniqKey="Schindelman G">G Schindelman</name>
</author>
<author>
<name sortKey="Desalle, R" uniqKey="Desalle R">R DeSalle</name>
</author>
<author>
<name sortKey="Benfey, Pn" uniqKey="Benfey P">PN Benfey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindelman, G" uniqKey="Schindelman G">G Schindelman</name>
</author>
<author>
<name sortKey="Morikami, A" uniqKey="Morikami A">A Morikami</name>
</author>
<author>
<name sortKey="Jung, J" uniqKey="Jung J">J Jung</name>
</author>
<author>
<name sortKey="Baskin, Ti" uniqKey="Baskin T">TI Baskin</name>
</author>
<author>
<name sortKey="Carpita, Nc" uniqKey="Carpita N">NC Carpita</name>
</author>
<author>
<name sortKey="Derbyshire, P" uniqKey="Derbyshire P">P Derbyshire</name>
</author>
<author>
<name sortKey="Mccann, Mc" uniqKey="Mccann M">MC McCann</name>
</author>
<author>
<name sortKey="Benfey, Pn" uniqKey="Benfey P">PN Benfey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sedbrook, Jc" uniqKey="Sedbrook J">JC Sedbrook</name>
</author>
<author>
<name sortKey="Carroll, Kl" uniqKey="Carroll K">KL Carroll</name>
</author>
<author>
<name sortKey="Hung, Kf" uniqKey="Hung K">KF Hung</name>
</author>
<author>
<name sortKey="Masson, Ph" uniqKey="Masson P">PH Masson</name>
</author>
<author>
<name sortKey="Somerville, Cr" uniqKey="Somerville C">CR Somerville</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Qian, Q" uniqKey="Qian Q">Q Qian</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Yan, M" uniqKey="Yan M">M Yan</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M Zhang</name>
</author>
<author>
<name sortKey="Fu, Z" uniqKey="Fu Z">Z Fu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B Han</name>
</author>
<author>
<name sortKey="Pang, X" uniqKey="Pang X">X Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Read, S" uniqKey="Read S">S Read</name>
</author>
<author>
<name sortKey="Northcote, D" uniqKey="Northcote D">D Northcote</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Owens, R" uniqKey="Owens R">R Owens</name>
</author>
<author>
<name sortKey="Blackburn, M" uniqKey="Blackburn M">M Blackburn</name>
</author>
<author>
<name sortKey="Ding, B" uniqKey="Ding B">B Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="G Mez, G" uniqKey="G Mez G">G Gómez</name>
</author>
<author>
<name sortKey="Pallas, V" uniqKey="Pallas V">V Pallás</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcnairn, R" uniqKey="Mcnairn R">R McNairn</name>
</author>
<author>
<name sortKey="Currier, H" uniqKey="Currier H">H Currier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Z" uniqKey="Hong Z">Z Hong</name>
</author>
<author>
<name sortKey="Delauney, Aj" uniqKey="Delauney A">AJ Delauney</name>
</author>
<author>
<name sortKey="Verma, Dps" uniqKey="Verma D">DPS Verma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iglesias, Va" uniqKey="Iglesias V">VA Iglesias</name>
</author>
<author>
<name sortKey="Meins, F" uniqKey="Meins F">F Meins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musetti, R" uniqKey="Musetti R">R Musetti</name>
</author>
<author>
<name sortKey="Paolacci, A" uniqKey="Paolacci A">A Paolacci</name>
</author>
<author>
<name sortKey="Ciaffi, M" uniqKey="Ciaffi M">M Ciaffi</name>
</author>
<author>
<name sortKey="Tanzarella, Oa" uniqKey="Tanzarella O">OA Tanzarella</name>
</author>
<author>
<name sortKey="Polizzotto, R" uniqKey="Polizzotto R">R Polizzotto</name>
</author>
<author>
<name sortKey="Tubaro, F" uniqKey="Tubaro F">F Tubaro</name>
</author>
<author>
<name sortKey="Mizzau, M" uniqKey="Mizzau M">M Mizzau</name>
</author>
<author>
<name sortKey="Ermacora, P" uniqKey="Ermacora P">P Ermacora</name>
</author>
<author>
<name sortKey="Badiani, M" uniqKey="Badiani M">M Badiani</name>
</author>
<author>
<name sortKey="Osler, R" uniqKey="Osler R">R Osler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, De" uniqKey="Evans D">DE Evans</name>
</author>
<author>
<name sortKey="Briars, S A" uniqKey="Briars S">S-A Briars</name>
</author>
<author>
<name sortKey="Williams, Le" uniqKey="Williams L">LE Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Pj" uniqKey="White P">PJ White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, R" uniqKey="Ali R">R Ali</name>
</author>
<author>
<name sortKey="Zielinski, Re" uniqKey="Zielinski R">RE Zielinski</name>
</author>
<author>
<name sortKey="Berkowitz, Ga" uniqKey="Berkowitz G">GA Berkowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W Ma</name>
</author>
<author>
<name sortKey="Yoshioka, K" uniqKey="Yoshioka K">K Yoshioka</name>
</author>
<author>
<name sortKey="Berkowitz, Ga" uniqKey="Berkowitz G">GA Berkowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balague, C" uniqKey="Balague C">C Balagué</name>
</author>
<author>
<name sortKey="Lin, B" uniqKey="Lin B">B Lin</name>
</author>
<author>
<name sortKey="Alcon, C" uniqKey="Alcon C">C Alcon</name>
</author>
<author>
<name sortKey="Flottes, G" uniqKey="Flottes G">G Flottes</name>
</author>
<author>
<name sortKey="Malmstrom, S" uniqKey="Malmstrom S">S Malmström</name>
</author>
<author>
<name sortKey="Kohler, C" uniqKey="Kohler C">C Köhler</name>
</author>
<author>
<name sortKey="Neuhaus, G" uniqKey="Neuhaus G">G Neuhaus</name>
</author>
<author>
<name sortKey="Pelletier, G" uniqKey="Pelletier G">G Pelletier</name>
</author>
<author>
<name sortKey="Gaymard, F" uniqKey="Gaymard F">F Gaymard</name>
</author>
<author>
<name sortKey="Roby, D" uniqKey="Roby D">D Roby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Dm" uniqKey="Roberts D">DM Roberts</name>
</author>
<author>
<name sortKey="Harmon, Ac" uniqKey="Harmon A">AC Harmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Do Heo, W" uniqKey="Do Heo W">W Do Heo</name>
</author>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
<author>
<name sortKey="Kim, Mc" uniqKey="Kim M">MC Kim</name>
</author>
<author>
<name sortKey="Kim, Jc" uniqKey="Kim J">JC Kim</name>
</author>
<author>
<name sortKey="Chung, Ws" uniqKey="Chung W">WS Chung</name>
</author>
<author>
<name sortKey="Chun, Hj" uniqKey="Chun H">HJ Chun</name>
</author>
<author>
<name sortKey="Lee, Kj" uniqKey="Lee K">KJ Lee</name>
</author>
<author>
<name sortKey="Park, Cy" uniqKey="Park C">CY Park</name>
</author>
<author>
<name sortKey="Park, Hc" uniqKey="Park H">HC Park</name>
</author>
<author>
<name sortKey="Choi, Jy" uniqKey="Choi J">JY Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishimaru, Y" uniqKey="Ishimaru Y">Y Ishimaru</name>
</author>
<author>
<name sortKey="Suzuki, M" uniqKey="Suzuki M">M Suzuki</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T Kobayashi</name>
</author>
<author>
<name sortKey="Takahashi, M" uniqKey="Takahashi M">M Takahashi</name>
</author>
<author>
<name sortKey="Nakanishi, H" uniqKey="Nakanishi H">H Nakanishi</name>
</author>
<author>
<name sortKey="Mori, S" uniqKey="Mori S">S Mori</name>
</author>
<author>
<name sortKey="Nishizawa, Nk" uniqKey="Nishizawa N">NK Nishizawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grotz, N" uniqKey="Grotz N">N Grotz</name>
</author>
<author>
<name sortKey="Fox, T" uniqKey="Fox T">T Fox</name>
</author>
<author>
<name sortKey="Connolly, E" uniqKey="Connolly E">E Connolly</name>
</author>
<author>
<name sortKey="Park, W" uniqKey="Park W">W Park</name>
</author>
<author>
<name sortKey="Guerinot, Ml" uniqKey="Guerinot M">ML Guerinot</name>
</author>
<author>
<name sortKey="Eide, D" uniqKey="Eide D">D Eide</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vahling Armstrong, Cm" uniqKey="Vahling Armstrong C">CM Vahling-Armstrong</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H Zhou</name>
</author>
<author>
<name sortKey="Benyon, L" uniqKey="Benyon L">L Benyon</name>
</author>
<author>
<name sortKey="Morgan, Jk" uniqKey="Morgan J">JK Morgan</name>
</author>
<author>
<name sortKey="Duan, Y" uniqKey="Duan Y">Y Duan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="H Nsch, R" uniqKey="H Nsch R">R Hänsch</name>
</author>
<author>
<name sortKey="Mendel, Rr" uniqKey="Mendel R">RR Mendel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hernick, M" uniqKey="Hernick M">M Hernick</name>
</author>
<author>
<name sortKey="Fierke, Ca" uniqKey="Fierke C">CA Fierke</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinelli, F" uniqKey="Martinelli F">F Martinelli</name>
</author>
<author>
<name sortKey="Reagan, Rl" uniqKey="Reagan R">RL Reagan</name>
</author>
<author>
<name sortKey="Uratsu, Sl" uniqKey="Uratsu S">SL Uratsu</name>
</author>
<author>
<name sortKey="Phu, Ml" uniqKey="Phu M">ML Phu</name>
</author>
<author>
<name sortKey="Albrecht, U" uniqKey="Albrecht U">U Albrecht</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Davis, Ce" uniqKey="Davis C">CE Davis</name>
</author>
<author>
<name sortKey="Bowman, Kd" uniqKey="Bowman K">KD Bowman</name>
</author>
<author>
<name sortKey="Dandekar, Am" uniqKey="Dandekar A">AM Dandekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, Hs" uniqKey="Seo H">HS Seo</name>
</author>
<author>
<name sortKey="Song, Jt" uniqKey="Song J">JT Song</name>
</author>
<author>
<name sortKey="Cheong, J J" uniqKey="Cheong J">J-J Cheong</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y-H Lee</name>
</author>
<author>
<name sortKey="Lee, Y W" uniqKey="Lee Y">Y-W Lee</name>
</author>
<author>
<name sortKey="Hwang, I" uniqKey="Hwang I">I Hwang</name>
</author>
<author>
<name sortKey="Lee, Js" uniqKey="Lee J">JS Lee</name>
</author>
<author>
<name sortKey="Do Choi, Y" uniqKey="Do Choi Y">Y Do Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodrigues, Cm" uniqKey="Rodrigues C">CM Rodrigues</name>
</author>
<author>
<name sortKey="De Souza, Aa" uniqKey="De Souza A">AA de Souza</name>
</author>
<author>
<name sortKey="Takita, Ma" uniqKey="Takita M">MA Takita</name>
</author>
<author>
<name sortKey="Kishi, Lt" uniqKey="Kishi L">LT Kishi</name>
</author>
<author>
<name sortKey="Machado, Ma" uniqKey="Machado M">MA Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, J" uniqKey="Dong J">J Dong</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Brader, G" uniqKey="Brader G">G Brader</name>
</author>
<author>
<name sortKey="Palva, Et" uniqKey="Palva E">ET Palva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, D" uniqKey="Qiu D">D Qiu</name>
</author>
<author>
<name sortKey="Xiao, J" uniqKey="Xiao J">J Xiao</name>
</author>
<author>
<name sortKey="Xie, W" uniqKey="Xie W">W Xie</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Xiong, L" uniqKey="Xiong L">L Xiong</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Rn" uniqKey="Bennett R">RN Bennett</name>
</author>
<author>
<name sortKey="Wallsgrove, Rm" uniqKey="Wallsgrove R">RM Wallsgrove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Damme, M" uniqKey="Van Damme M">M Van Damme</name>
</author>
<author>
<name sortKey="Huibers, Rp" uniqKey="Huibers R">RP Huibers</name>
</author>
<author>
<name sortKey="Elberse, J" uniqKey="Elberse J">J Elberse</name>
</author>
<author>
<name sortKey="Van Den Ackerveken, G" uniqKey="Van Den Ackerveken G">G Van den Ackerveken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Croteau, R" uniqKey="Croteau R">R Croteau</name>
</author>
<author>
<name sortKey="Kutchan, Tm" uniqKey="Kutchan T">TM Kutchan</name>
</author>
<author>
<name sortKey="Lewis, Ng" uniqKey="Lewis N">NG Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Fan, B" uniqKey="Fan B">B Fan</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lange, J" uniqKey="Lange J">J Lange</name>
</author>
<author>
<name sortKey="Xie, Z P" uniqKey="Xie Z">Z-P Xie</name>
</author>
<author>
<name sortKey="Broughton, Wj" uniqKey="Broughton W">WJ Broughton</name>
</author>
<author>
<name sortKey="Vogeli Lange, R" uniqKey="Vogeli Lange R">R Vögeli-Lange</name>
</author>
<author>
<name sortKey="Boller, T" uniqKey="Boller T">T Boller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradshaw, Hd" uniqKey="Bradshaw H">HD Bradshaw</name>
</author>
<author>
<name sortKey="Hollick, Jb" uniqKey="Hollick J">JB Hollick</name>
</author>
<author>
<name sortKey="Parsons, Tj" uniqKey="Parsons T">TJ Parsons</name>
</author>
<author>
<name sortKey="Clarke, Hr" uniqKey="Clarke H">HR Clarke</name>
</author>
<author>
<name sortKey="Gordon, Mp" uniqKey="Gordon M">MP Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wuthrich, Kl" uniqKey="Wuthrich K">KL Wüthrich</name>
</author>
<author>
<name sortKey="Bovet, L" uniqKey="Bovet L">L Bovet</name>
</author>
<author>
<name sortKey="Hunziker, Pe" uniqKey="Hunziker P">PE Hunziker</name>
</author>
<author>
<name sortKey="Donnison, Is" uniqKey="Donnison I">IS Donnison</name>
</author>
<author>
<name sortKey="Hortensteiner, S" uniqKey="Hortensteiner S">S Hörtensteiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenberg, Jt" uniqKey="Greenberg J">JT Greenberg</name>
</author>
<author>
<name sortKey="Guo, A" uniqKey="Guo A">A Guo</name>
</author>
<author>
<name sortKey="Klessig, Df" uniqKey="Klessig D">DF Klessig</name>
</author>
<author>
<name sortKey="Ausubel, Fm" uniqKey="Ausubel F">FM Ausubel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mach, Jm" uniqKey="Mach J">JM Mach</name>
</author>
<author>
<name sortKey="Castillo, Ar" uniqKey="Castillo A">AR Castillo</name>
</author>
<author>
<name sortKey="Hoogstraten, R" uniqKey="Hoogstraten R">R Hoogstraten</name>
</author>
<author>
<name sortKey="Greenberg, Jt" uniqKey="Greenberg J">JT Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartung, Js" uniqKey="Hartung J">JS Hartung</name>
</author>
<author>
<name sortKey="Paul, C" uniqKey="Paul C">C Paul</name>
</author>
<author>
<name sortKey="Achor, D" uniqKey="Achor D">D Achor</name>
</author>
<author>
<name sortKey="Brlansky, R" uniqKey="Brlansky R">R Brlansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Hartung, Js" uniqKey="Hartung J">JS Hartung</name>
</author>
<author>
<name sortKey="Levy, L" uniqKey="Levy L">L Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, A" uniqKey="Roy A">A Roy</name>
</author>
<author>
<name sortKey="Ananthakrishnan, G" uniqKey="Ananthakrishnan G">G Ananthakrishnan</name>
</author>
<author>
<name sortKey="Hartung, Js" uniqKey="Hartung J">JS Hartung</name>
</author>
<author>
<name sortKey="Brlansky, R" uniqKey="Brlansky R">R Brlansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schroeder, A" uniqKey="Schroeder A">A Schroeder</name>
</author>
<author>
<name sortKey="Mueller, O" uniqKey="Mueller O">O Mueller</name>
</author>
<author>
<name sortKey="Stocker, S" uniqKey="Stocker S">S Stocker</name>
</author>
<author>
<name sortKey="Salowsky, R" uniqKey="Salowsky R">R Salowsky</name>
</author>
<author>
<name sortKey="Leiber, M" uniqKey="Leiber M">M Leiber</name>
</author>
<author>
<name sortKey="Gassmann, M" uniqKey="Gassmann M">M Gassmann</name>
</author>
<author>
<name sortKey="Lightfoot, S" uniqKey="Lightfoot S">S Lightfoot</name>
</author>
<author>
<name sortKey="Menzel, W" uniqKey="Menzel W">W Menzel</name>
</author>
<author>
<name sortKey="Granzow, M" uniqKey="Granzow M">M Granzow</name>
</author>
<author>
<name sortKey="Ragg, T" uniqKey="Ragg T">T Ragg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J Feng</name>
</author>
<author>
<name sortKey="Meyer, Ca" uniqKey="Meyer C">CA Meyer</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Liu, Js" uniqKey="Liu J">JS Liu</name>
</author>
<author>
<name sortKey="Liu, Xs" uniqKey="Liu X">XS Liu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, X" uniqKey="Yi X">X Yi</name>
</author>
<author>
<name sortKey="Du, Z" uniqKey="Du Z">Z Du</name>
</author>
<author>
<name sortKey="Su, Z" uniqKey="Su Z">Z Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thimm, O" uniqKey="Thimm O">O Thimm</name>
</author>
<author>
<name sortKey="Bl Sing, O" uniqKey="Bl Sing O">O Bläsing</name>
</author>
<author>
<name sortKey="Gibon, Y" uniqKey="Gibon Y">Y Gibon</name>
</author>
<author>
<name sortKey="Nagel, A" uniqKey="Nagel A">A Nagel</name>
</author>
<author>
<name sortKey="Meyer, S" uniqKey="Meyer S">S Meyer</name>
</author>
<author>
<name sortKey="Kruger, P" uniqKey="Kruger P">P Krüger</name>
</author>
<author>
<name sortKey="Selbig, J" uniqKey="Selbig J">J Selbig</name>
</author>
<author>
<name sortKey="Muller, La" uniqKey="Muller L">LA Müller</name>
</author>
<author>
<name sortKey="Rhee, Sy" uniqKey="Rhee S">SY Rhee</name>
</author>
<author>
<name sortKey="Stitt, M" uniqKey="Stitt M">M Stitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Livak, Kj" uniqKey="Livak K">KJ Livak</name>
</author>
<author>
<name sortKey="Schmittgen, Td" uniqKey="Schmittgen T">TD Schmittgen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Genomics</journal-id>
<journal-title-group>
<journal-title>BMC Genomics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27169471</article-id>
<article-id pub-id-type="pmc">4865098</article-id>
<article-id pub-id-type="publisher-id">2663</article-id>
<article-id pub-id-type="doi">10.1186/s12864-016-2663-9</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Transcriptome analysis of sweet orange trees infected with ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ and two strains of
<italic>Citrus Tristeza Virus</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Fu</surname>
<given-names>Shimin</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shao</surname>
<given-names>Jonathan</given-names>
</name>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Zhou</surname>
<given-names>Changyong</given-names>
</name>
<address>
<email>zhoucy@cric.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hartung</surname>
<given-names>John S.</given-names>
</name>
<address>
<email>john.hartung@ars.usda.gov</email>
</address>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<aff id="Aff1">
<label></label>
College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China</aff>
<aff id="Aff2">
<label></label>
Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD USA</aff>
<aff id="Aff3">
<label></label>
Lingnan Normal University, Zhanjian, China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>11</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>11</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>17</volume>
<elocation-id>349</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>4</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© Fu et al. 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ (CaLas), and
<italic>Citrus tristeza virus</italic>
(CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn’t induce significant symptoms or damage to plants.</p>
</sec>
<sec>
<title>Results</title>
<p>Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of
<italic>Citrus sinensis</italic>
identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-016-2663-9) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Huanglongbing</kwd>
<kwd>Gfold</kwd>
<kwd>Host-pathogen interactions</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution>Academic Exchange Foundation of Southwest University and China Scholarship Council </institution>
</funding-source>
<award-id>2012699016</award-id>
<principal-award-recipient>
<name>
<surname>Fu</surname>
<given-names>Shimin</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group>
<funding-source>
<institution>USDA ARS</institution>
</funding-source>
<award-id>1245-141-218-00D</award-id>
<principal-award-recipient>
<name>
<surname>Hartung</surname>
<given-names>John S.</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>Citrus is grown in more than one hundred countries and is one of the most important commercial fruit crops in the world. Citrus is affected by different diseases and different geographic areas have distinct disease problems. Tristeza and huanglongbing (HLB) are two of the most destructive and widely distributed diseases [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Tristeza is caused by
<italic>Citrus tristeza virus</italic>
(CTV), a member of the
<italic>Closteroviridae</italic>
that is aphid-transmitted and phloem-restricted, with a single-stranded and positive sense RNA genome. CTV can be classified into mild and severe types based on the severity of symptoms produced on citrus indicators. Mild CTV strains cause only mild or no symptoms on indicators and usually bring about no economic loss. Severe CTV strains induce different disease syndromes, including decline and death of sweet orange on sour orange rootstocks, stem pitting (SP) of sweet orange and grapefruit scions, seedling yellows (SY) in sour orange, and vein clearing in ‘Mexican’ lime seedlings [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
]. HLB is associated with a member of the α-subdivision of the proteobacteria: ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ (CaLas), which grows only in the phloem of infected plants and the hemocoel and salivary glands of infected insect vectors. Because CaLas has not been grown in pure culture and Koch’s postulates have not been completed, it has ‘
<italic>Candidatus</italic>
’ status in the accepted nomenclature [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
]. HLB affected trees may produce new shoots that are uniformly yellow but mature to present blotchy mottle symptoms, usually with symptoms of zinc deficiency. Fruit are misshaped with reduced quality and quantity, abnormal coloration and aborted seeds. HLB is considered to be one of the most serious plant diseases in the world and there are no resistant varieties. Growers attempt to maintain yield in the presence of the disease with nutritional supplementation [
<xref ref-type="bibr" rid="CR6">6</xref>
], and rigorous control of the citrus psyllid vector even after trees in a grove have already been infected by CaLas [
<xref ref-type="bibr" rid="CR7">7</xref>
]. Benefits in terms of yield of these treatments have been reported [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
].</p>
<p>An understanding of host responses to pathogen infection is essential to clarify the mechanisms of plant-microbe interactions and to develop novel strategies for therapy and detection. Pathogens may activate plant defense responses, such as fortification of cell walls, the production of reactive oxygen species, phytoalexins and signaling molecules and the synthesis of pathogenesis-related proteins [
<xref ref-type="bibr" rid="CR8">8</xref>
]. Transcriptome studies of the host can provide valuable information on such defense responses and may lead to new plant protection strategies. Transcriptome analyses of citrus plants in response to CTV and CaLas have been reported in separate studies [
<xref ref-type="bibr" rid="CR9">9</xref>
<xref ref-type="bibr" rid="CR12">12</xref>
]. Many host genes and related metabolic pathways and processes were affected by CaLas [
<xref ref-type="bibr" rid="CR10">10</xref>
] and severe strain CTV-T305 compared to mild strain CTV-T385 [
<xref ref-type="bibr" rid="CR12">12</xref>
].</p>
<p>Both CTV and CaLas are phloem-restricted pathogens and can occur separately or in combination on an individual tree. Mild CTV strains don’t cause damage to citrus hosts, while severe CTV strains and CaLas have overlapping symptom patterns. Therefore, we present a comparison of transcriptome profiles of citrus plants infected with a mild CTV strain, severe CTV strain and CaLas. We hypothesized that many host genes would be regulated in a similar manner by a severe strain of CTV and CaLas, even in asymptomatic host tissues.</p>
</sec>
<sec id="Sec2">
<title>Results</title>
<p>Thirty-eight to 44 million clean reads were obtained from infected and control plants and mapped to the
<italic>Citrus sinensis</italic>
‘Valencia’ reference genome [
<xref ref-type="bibr" rid="CR13">13</xref>
], with approximately 73 % for CTV-B2, 76 % for the healthy, CTV-B6 and CaLa-B232 libraries (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1). Dramatic differences in the transcriptome profiles of sweet orange trees were observed in response to the three pathogens. Many more transcripts identified in the citrus gene database were up-regulated than down-regulated in response to the three pathogens (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S2). More transcripts were differentially expressed in response to CaLas-B232, followed by CTV-B6 and CTV-B2 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S2). Among these differentially expressed transcripts (DETs), 50 transcripts were up-regulated, while only two transcripts were down-regulated in response to all three pathogens (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The number of transcripts regulated in response to CTV-B6 and CaLas-B232 (105 up and two down) was approximately four times the number of transcripts regulated in response to the two strains of CTV (27 up and 0 down) or CTV-B2 and CaLas-B232 (22 up and 3 down) (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The number of DETs responding to CaLas-B232 only (412 up and 15 down) was much larger than the number responding only to CTV-B2 (143 up and 37 down) or CTV-B6 (146 up and 72 down) (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). A similar pattern was also found when the DETs were identified using the Arabidopsis Information Resource (TAIR) (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). DETs with unknown functions were also identified (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S1).
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Transcripts in response to infection of
<italic>C. sinensis</italic>
with CTV-B2, CTV-B6 and CaLas-B232. Transcripts were mapped to the
<italic>C. sinensis</italic>
reference genome.
<bold>a</bold>
Number of up-regulated transcripts (
<bold>b</bold>
) Number of down-regulated transcripts</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig1_HTML" id="MO1"></graphic>
</fig>
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Differentially expressed genes (DEGs) in
<italic>C. sinensis</italic>
in response to infection by CTV-B2, CTV-B6 and CaLas-B232. DEGs were identified as
<italic>Arabidopsis thaliana</italic>
orthologs</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>Plant Gene Sequence Enrichment Analysis (PlantGSEA) was performed with excellent
<italic>p</italic>
-values and low false discovery rates to reveal perturbed pathways. The functions of DETs observed in response to all three pathogens were mainly associated with the maintenance of circadian rhythms, such as flowering and photoperiodism, response to stimulus and response to other organism and signaling (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S2). DETs observed in response to CTV-B2 and CTV-B6 were disproportionally involved in hormone related responses, signaling pathways, and water stress (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S3). DETs observed in response to CTV-B2 and CaLas-B232 disproportionally encoded binding activities, including to iron, tetrapyrrole and heme molecules, which could affect chloroplast function, in addition to genes that respond to biotic stimulus or stress (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S4). A much larger set of DETs observed in response to both CTV-B6 and CaLas-B232 disproportionally encoded biological process (BP) functions in signaling, defense, immune and stress responses and other BPs (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S5). DETs observed to respond only to CTV-B2 were mainly associated with molecular functions (MF) and cellular components (CC) (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
) and disproportionately functioned in active transport of molecules across membranes and cell junctions (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S6). In contrast, the DETs observed to respond only to CTV-B6 or CaLas-B232 were primarily involved in BPs (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). The long lists of DETs observed in response to CTV-B6 and CaLas-B232 are the reflection of the BPs disrupted by the severe disease symptoms caused by these pathogens, although symptoms had not yet developed in the tissues at the time they were sampled. Genes whose products functioned in transcription and inositol metabolism, as well as membrane bound intracellular organelles were up-regulated but signaling pathways were down regulated in response to CTV-B6 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S7). The effects on inositol metabolism and membrane bound organelles could represent either the cause or an effect of chloroplast dysfunction seen in citrus infected by this pathogen, and negative regulation of signaling pathways likely impedes the defense response of the host. The long list of DETs that were observed in response only to CaLas-B232 included a large group associated with response to fungal pathogens, programmed cell death, hypersensitive responses and other host defense responses, and the production of jasmonic acid (JA) catalytic activity (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S8). The substantial number of genes annotated as ‘response to fungus’ may be correlated with the root decline and rot caused by CaLas and a potential interaction with
<italic>Phytophthora spp</italic>
. [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
]. Similar defense responses could also be triggered by effectors secreted by CaLas and delivered by fungus. DETs were also assigned to several specific function groups by Mapman (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
), including cell wall, hormone metabolism, secondary metabolism, transcription factors and signaling
<italic>etc</italic>
. Many pathways related to biotic stress were affected by CTV-B2, CTV-B6 and CaLas-B232 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). For more complete information about DETs, please refer to the supplemental information (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S9).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Summary of Gene Ontology categories for differentially expressed genes (DEGs). BP, biological process; MF, molecular function; CC, cellular component. The DEGs were observed in response to infection with one or more of the pathogens CTV-B2, CTV-B6 or CaLas-B232 as shown in the figure. Y-axis, number of DEGs involved in BP, MF and CC</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Functional categories of DEGs in response to infection by CTV-B2, CTVB6 and CaLas-B232 through Mapman. X-axis, number of differentially expressed genes involved functional categories. Y-axis, functional categories of DEGs</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig4_HTML" id="MO4"></graphic>
</fig>
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Summary of differentially expressed genes related to biotic stress in response to infection by CTV-B2, CTV-B6 and CaLas-B232</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
<sec id="Sec3">
<title>RT-qPCR validation of RNA-seq results</title>
<p>Thirty-eight genes were tested by replicated RT-qPCR. Expression levels ranged from −7 to 8 (log
<sub>2</sub>
FC) (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S10). Spearman’s rho values, 0.821 for CTV-B2, 0.687 for CTV-B6 and 0.813 for CaLas-B232, indicated excellent correlations between Gfold analysis of the RNA Seq libraries and RT-qPCR (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
). All primers showed amplification efficiencies between 90–110 % (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S11) and melting curves showed single peaks for the evaluated genes (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S3).
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Correlation of differentially expressed genes was estimated by RT-qPCR and Gfold (log2FC). FC: Fold Change</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Genes involved in cell wall and cell organization</title>
<p>Many transcripts related to cell wall modification and cell organization were differentially regulated, especially in response to CaLas-B232 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S4A). Transcripts encoding xyloglucan endotransglycosylase 6 (XTR6) were up-regulated by infection with all three pathogens (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). A gene annotated as encoding a plant invertase/pectin methylesterase inhibitor (PMEI), was strongly up-regulated in response to CaLas-B232 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Inhibition of pectin methyl esterase would strengthen the cell wall and is a common defense response [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]. Another set of genes encoding expansin were up-regulated in response to CaLas-B232, in accordance with another study [
<xref ref-type="bibr" rid="CR10">10</xref>
]. Expansin functions to loosen the structure of cell walls. Taken together this set of genes could contribute to the thickening and stiffening of leaves that occurs as a primary symptom of HLB and distortions of phloem cell walls as CaLas multiplies [
<xref ref-type="bibr" rid="CR18">18</xref>
]. Transcripts encoding cellulose synthesis, including cellulose synthase-like B3 (CSLB3) and A2 (CSLA2), were sharply up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). A transcript encoding COBRA-like protein 7 precursor (COBL7), likely involved in the deposition of cellulose, were also remarkably up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
), all consistent with a stronger cell wall in response to CTV-B2. A pectin lyase-like superfamily protein and beta-D-xylosidase 4 (XYL4) protein related to cell wall degradation were down-regulated by infection with CTV-B6 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Transcripts encoding phloem protein (PP2-B13 and PP2-B15) were strongly down-regulated in response to CTV-B2 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
), but up-regulated by infection with CaLas-B232. The expression of PP2-B10 gene was up-regulated by CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Because these phloem proteins move with assimilate from source to sink tissues [
<xref ref-type="bibr" rid="CR19">19</xref>
], they may be markers for altered source sink flow of assimilates. Transcripts encoding NPR3 and NPR4, participating in cell organization, were also up-regulated responding to CaLas-B232 (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Transcripts encoding CYP83B1, an enzyme involved in the biosynthesis of glucosinolates and defense response by callose deposition, were up-regulated by both CTV-B6 and CaLas-B232 [
<xref ref-type="bibr" rid="CR20">20</xref>
] (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>DETs involved in cell wall modification and callose deposition in
<italic>Citrus sinensis</italic>
responding to CTV-B2, CTV-B6 and CaLas-B232</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Gene symbol</th>
<th colspan="3">Log2 fold change (Gfold 0.01)</th>
<th rowspan="2">
<italic>Citrus sinensis</italic>
_ID</th>
<th rowspan="2">
<italic>Arabidopsis thaliana</italic>
_ID</th>
<th rowspan="2">E-value</th>
</tr>
<tr>
<th>CTV-B2</th>
<th>CTV-B6</th>
<th>CaLas-B232</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR6/XTH23</td>
<td>2.1</td>
<td>2.8</td>
<td>2.2</td>
<td>orange1.1g023204m</td>
<td>AT4G25810</td>
<td>4e-123</td>
</tr>
<tr>
<td>PMEI</td>
<td>0.0</td>
<td>0.0</td>
<td>3.3</td>
<td>orange1.1g011611m</td>
<td>AT5G20860</td>
<td>2e-110</td>
</tr>
<tr>
<td>CSLB3</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g006357m</td>
<td>AT2G32530</td>
<td>0</td>
</tr>
<tr>
<td>CSLA2</td>
<td>4.2</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g037406m</td>
<td>AT5G22740</td>
<td>8e-36</td>
</tr>
<tr>
<td>COBL7</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g038710m</td>
<td>AT4G16120</td>
<td>0</td>
</tr>
<tr>
<td>XYL4</td>
<td>−0.8</td>
<td>−1.2</td>
<td>−0.7</td>
<td>orange1.1g047621m</td>
<td>AT5G64570</td>
<td>0</td>
</tr>
<tr>
<td>PP2-B13</td>
<td>−4.2</td>
<td>0.0</td>
<td>1.4</td>
<td>orange1.1g042543m</td>
<td>AT1G56240</td>
<td>2e-39</td>
</tr>
<tr>
<td>PP2-B15</td>
<td>−6.6</td>
<td>0.0</td>
<td>1.2</td>
<td>orange1.1g045590m</td>
<td>AT1G09155</td>
<td>4e-57</td>
</tr>
<tr>
<td>PP2-B10</td>
<td>0.1</td>
<td>2.1</td>
<td>2.2</td>
<td>orange1.1g041394m</td>
<td>AT2G02360</td>
<td>5e-51</td>
</tr>
<tr>
<td>NPR3</td>
<td>0.0</td>
<td>0.6</td>
<td>1.5</td>
<td>orange1.1g007849m</td>
<td>AT5G45110</td>
<td>4e-175</td>
</tr>
<tr>
<td>NPR4</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>orange1.1g038955m</td>
<td>AT4G19660</td>
<td>2e-89</td>
</tr>
<tr>
<td>CYP83B1</td>
<td>0.6</td>
<td>2.0</td>
<td>1.2</td>
<td>orange1.1g048189m</td>
<td>AT4G31500</td>
<td>7e-79</td>
</tr>
<tr>
<td>UGT74B1</td>
<td>1.6</td>
<td>0.7</td>
<td>2.6</td>
<td>orange1.1g042896m</td>
<td>AT1G24100</td>
<td>4e-51</td>
</tr>
<tr>
<td>UGT74B1</td>
<td>0.0</td>
<td>0.9</td>
<td>2.9</td>
<td>orange1.1g036105m</td>
<td>AT1G24100</td>
<td>7e-43</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>DETs</italic>
Differentially expressed transcripts</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec5">
<title>Transcription factors (TFs)</title>
<p>The expression of transcription factors, including WRKYs, B-box, MYB, bHTH, heat shock transcription factors (HSF), CDR1, pseudo-response regulator (PRR), ABR1, and jumonji domain-containing protein (JMJD5), were differentially modulated in response to the three pathogens. This was especially the case in trees infected by CTV-B6 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S4B). Transcripts encoding PRR5 and PRR7 were up-regulated responding to all three pathogens (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). A transcript encoding PRR3 was up-regulated by infection with CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding JMJD5, a histone demethylase, and CCT motif family protein were up-regulated in response to both CTV strains (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). JMJD5 participates in circadian systems in both plants and animals [
<xref ref-type="bibr" rid="CR21">21</xref>
]. The expression level of the late elongated hypocotyl (LHY) gene was down-regulated in response to the three pathogens, especially CTV-B6 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
), consistent with down-regulation in flavedo (FF) and vascular tissue (VT) of both symptomatic ‘Hamlin’ and ‘Valencia’ sweet orange infected with CaLas [
<xref ref-type="bibr" rid="CR22">22</xref>
].
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>DETs involved in transcription factors and transportation in
<italic>Citrus sinensis</italic>
infected with CTV-B2, CTV-B6 and CaLas-B232</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Gene symbol</th>
<th colspan="3">Log2 fold change (Gfold 0.01)</th>
<th rowspan="2">
<italic>Citrus sinensis</italic>
_ID</th>
<th rowspan="2">
<italic>Arabidopsis thaliana</italic>
_ID</th>
<th rowspan="2">E-value</th>
</tr>
<tr>
<th>CTV-B2</th>
<th>CTV-B6</th>
<th>CaLas-B232</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3">Transcriptional factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRR5</td>
<td>3.3</td>
<td>4.1</td>
<td>3.0</td>
<td>orange1.1g007462m</td>
<td>AT5G24470</td>
<td>1e-107</td>
</tr>
<tr>
<td>PPR7</td>
<td>1.3</td>
<td>1.8</td>
<td>1.8</td>
<td>orange1.1g038567m</td>
<td>AT5G02810</td>
<td>3e-29</td>
</tr>
<tr>
<td>PRR3</td>
<td>0.9</td>
<td>1.6</td>
<td>1.3</td>
<td>orange1.1g039733m</td>
<td>AT5G60100</td>
<td>8e-28</td>
</tr>
<tr>
<td>JMJD5</td>
<td>1.2</td>
<td>2.4</td>
<td>0.8</td>
<td>orange1.1g015736m</td>
<td>AT3G20810</td>
<td>4e-152</td>
</tr>
<tr>
<td>LHY1</td>
<td>−0.6</td>
<td>−1.7</td>
<td>−0.6</td>
<td>orange1.1g004250m</td>
<td>AT1G01060</td>
<td>3e-119</td>
</tr>
<tr>
<td>WRKY13</td>
<td>0.4</td>
<td>3.9</td>
<td>3.9</td>
<td>orange1.1g033112m</td>
<td>AT4G39410</td>
<td>8e-11</td>
</tr>
<tr>
<td>WRKY27</td>
<td>0.0</td>
<td>1.2</td>
<td>1.2</td>
<td>orange1.1g015616m</td>
<td>AT5G52830</td>
<td>3e-46</td>
</tr>
<tr>
<td>WRKY33</td>
<td>0.3</td>
<td>0.4</td>
<td>1.1</td>
<td>orange1.1g017783m</td>
<td>AT2G38470</td>
<td>3e-89</td>
</tr>
<tr>
<td>WRKY40</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>orange1.1g025097m</td>
<td>AT1G80840</td>
<td>2e-33</td>
</tr>
<tr>
<td>WRKY50</td>
<td>0.0</td>
<td>1.5</td>
<td>2.2</td>
<td>orange1.1g031482m</td>
<td>AT5G26170</td>
<td>4e-44</td>
</tr>
<tr>
<td>WRKY51</td>
<td>2.1</td>
<td>0.0</td>
<td>1.7</td>
<td>orange1.1g029257m</td>
<td>AT5G64810</td>
<td>1e-33</td>
</tr>
<tr>
<td>WRKY70</td>
<td>1.8</td>
<td>3.9</td>
<td>4.9</td>
<td>orange1.1g020291m</td>
<td>AT3G56400</td>
<td>8e-36</td>
</tr>
<tr>
<td>CDR1</td>
<td>0.8</td>
<td>3.9</td>
<td>5.1</td>
<td>orange1.1g014537m</td>
<td>AT5G33340</td>
<td>2e-119</td>
</tr>
<tr>
<td>Myb-like HTH</td>
<td>−5.4</td>
<td>0.0</td>
<td>1.4</td>
<td>orange1.1g044722m</td>
<td>AT5G06800</td>
<td>4e-31</td>
</tr>
<tr>
<td>ABR1</td>
<td>3.2</td>
<td>0.2</td>
<td>0.0</td>
<td>orange1.1g020801m</td>
<td>AT5G64750</td>
<td>3e-30</td>
</tr>
<tr>
<td>Transporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIP1</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>orange1.1g018182m</td>
<td>AT3G12750</td>
<td>1e-97</td>
</tr>
<tr>
<td>ZIP4</td>
<td>−2.2</td>
<td>0.0</td>
<td>1.2</td>
<td>orange1.1g014759m</td>
<td>AT1G10970</td>
<td>5e-129</td>
</tr>
<tr>
<td>ZIP5</td>
<td>−2.5</td>
<td>0.5</td>
<td>5.3</td>
<td>orange1.1g018051m</td>
<td>AT1G05300</td>
<td>1e-70</td>
</tr>
<tr>
<td>ZIP11</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td>orange1.1g044590m</td>
<td>AT1G55910</td>
<td>4e-103</td>
</tr>
<tr>
<td>CNGC1</td>
<td>0.0</td>
<td>2.9</td>
<td>3.6</td>
<td>orange1.1g008614m</td>
<td>AT5G53130</td>
<td>3e-86</td>
</tr>
<tr>
<td>CNGC1</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g036610m</td>
<td>AT5G53130</td>
<td>1e-71</td>
</tr>
<tr>
<td>COPT1</td>
<td>1.2</td>
<td>1.1</td>
<td>0.3</td>
<td>orange1.1g042215m</td>
<td>AT5G59030</td>
<td>8e-44</td>
</tr>
<tr>
<td>COPT1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>orange1.1g033054m</td>
<td>AT5G59030</td>
<td>2e-35</td>
</tr>
<tr>
<td>ABC-2</td>
<td>5.4</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g013741m</td>
<td>AT3G21090</td>
<td>2e-139</td>
</tr>
<tr>
<td>PHT1;7</td>
<td>0.1</td>
<td>0.3</td>
<td>1.8</td>
<td>orange1.1g010112m</td>
<td>AT3G54700</td>
<td>0</td>
</tr>
<tr>
<td>PHT1;4</td>
<td>1.0</td>
<td>1.2</td>
<td>0.6</td>
<td>orange1.1g046667m</td>
<td>AT2G38940</td>
<td>0</td>
</tr>
<tr>
<td>OPT7</td>
<td>0.9</td>
<td>2.6</td>
<td>1.3</td>
<td>orange1.1g010747m</td>
<td>AT4G10770</td>
<td>0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>DETs</italic>
Differentially expressed transcripts</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Plant-specific WRKY transcription factors with a DNA-binding domain are involved in plant senescence, plant defense and response to various environmental stresses [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
]. Expression of WRKY13 and WRKY 70 were especially up-regulated by infection with CTV-B6 and CaLas-B232. WRKY27 and WRKY50 were also up-regulated in response to both CTV-B6 and CaLas-B232 and WRKY28, WRKY33 and WRKY40 also were up-regulated in response to CaLas-B232 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). The expression of
<italic>constitutive disease resistance</italic>
(
<italic>CDR1</italic>
) gene, encoding an aspartic protease, was very strongly induced in response to both CTV-B6 and CaLas-B232, but not at all to CTV-B2 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
).
<italic>CDR1</italic>
is involved in salicylic-acid-dependent inducible resistance responses and over-expression of
<italic>CDR1</italic>
enhances resistance to bacterial pathogens in Arabidopsis [
<xref ref-type="bibr" rid="CR25">25</xref>
]. A Myb-like HTH (helix-turn-helix) transcription factor was very highly down-regulated by infection with CTV-B2, but up-regulated with CaLas-B232 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding an integrase-type DNA-binding protein (ABR1), responsive to ethylene stimulus, were up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Transporters</title>
<p>Many transporter genes were differentially regulated in response to the three pathogens, especially CTV-B2 and CaLas-B232 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S4C). Transcripts encoding 4 zinc transporters (ZIP1, 4, 5 and 11), especially ZIP4 and ZIP5, were up-regulated in association with CaLas infection, but down regulated responding to CTV-B2, consistent with symptoms of zinc deficiency in HLB-diseased plants (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding cyclic nucleotide gated channel 1 (CNGC1), involved in cyclic nucleotide or calcium transport, were differentially up-regulated in response to the three pathogens (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding copper transporter 1 (COPT1) were up-regulated in response to all three pathogens (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding ABC-2 type transporters were highly up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). These ATP-binding cassette transporters typically function to export substrates from eukaryotic cells [
<xref ref-type="bibr" rid="CR26">26</xref>
]. The expression of phosphate transporter 1;7 (PHT1;7) was induced by infection with CaLas-B232 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
), consistent with a prominent role of phosphate deficiency in the HLB disease syndrome [
<xref ref-type="bibr" rid="CR27">27</xref>
]. The expression of another phosphate transporter PHT1;4 was slightly up-regulated in response to both strains of CTV (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Transcripts encoding an oligopeptide transporter 7 (OPT7), involved in transport of small peptides [
<xref ref-type="bibr" rid="CR28">28</xref>
], were up-regulated by infection with CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
</sec>
<sec id="Sec7">
<title>Hormone metabolism</title>
<p>Transcripts encoding jasmonic acid carboxyl methyl transferase (JMT) were highly up-regulated responding to the three pathogens (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Transcripts encoding lipoxygenase 2 (LOX2), a key enzyme in the synthesis of JA [
<xref ref-type="bibr" rid="CR29">29</xref>
], and involved in the JA signaling pathway, were highly up-regulated in response to CaLas-B232, but not to the other pathogens (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Different transcripts of the senescence-related gene (SRG1), involved in ethylene metabolism, were induced in response to the three pathogens (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). The expression of ethylene responsive element binding factors (ERF1 and ERF104), involved in ethylene signal transduction, was also up-regulated by infection with CaLas-B232 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). A transcript encoding a gibberellin-regulated protein was down-regulated only by infection with CTV-B6 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
).
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>DETs involved in hormone and secondary metabolism pathways in
<italic>Citrus sinensis</italic>
plants infected with CTV-B2, CTV-B6 and CaLas-B232</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Gene symbol</th>
<th colspan="3">Log2 fold change (Gfold 0.01)</th>
<th rowspan="2">
<italic>Citrus sinensis</italic>
_ID</th>
<th rowspan="2">
<italic>Arabidopsis thaliana</italic>
_ID</th>
<th rowspan="2">E-value</th>
</tr>
<tr>
<th>CTV-B2</th>
<th>CTV-B6</th>
<th>CaLas-B232</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3">Hormone metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMT</td>
<td>2.3</td>
<td>3.4</td>
<td>4.4</td>
<td>orange1.1g017514m</td>
<td>AT1G19640</td>
<td>4e-91</td>
</tr>
<tr>
<td>LOX2</td>
<td>0.6</td>
<td>0.7</td>
<td>4.0</td>
<td>orange1.1g002670m</td>
<td>AT3G45140</td>
<td>0</td>
</tr>
<tr>
<td>SRG1</td>
<td>1.6</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g040640m</td>
<td>AT1G17020</td>
<td>8e-60</td>
</tr>
<tr>
<td>SRG1</td>
<td>0.6</td>
<td>1.2</td>
<td>0.8</td>
<td>orange1.1g035879m</td>
<td>AT1G17020</td>
<td>9e-113</td>
</tr>
<tr>
<td>SRG1</td>
<td>0.6</td>
<td>0.3</td>
<td>1.1</td>
<td>orange1.1g045260m</td>
<td>AT1G17020</td>
<td>1e-119</td>
</tr>
<tr>
<td>ERF-1</td>
<td>0.0</td>
<td>1.6</td>
<td>2.1</td>
<td>orange1.1g028566m</td>
<td>AT4G17500</td>
<td>7e-36</td>
</tr>
<tr>
<td>ERF104</td>
<td>0.0</td>
<td>0.3</td>
<td>1.9</td>
<td>orange1.1g023209m</td>
<td>AT5G61600</td>
<td>4e-41</td>
</tr>
<tr>
<td>
<sup>a</sup>
(Gibberellin)</td>
<td>0.0</td>
<td>−1.6</td>
<td>−0.6</td>
<td>orange1.1g035431m</td>
<td>AT5G14920</td>
<td>3e-22</td>
</tr>
<tr>
<td colspan="3">Secondary metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2OG-Fe(II)</td>
<td>4.2</td>
<td>4.1</td>
<td>7.0</td>
<td>orange1.1g019027m</td>
<td>AT4G10490</td>
<td>4e-141</td>
</tr>
<tr>
<td>DMR6</td>
<td>1.9</td>
<td>2.8</td>
<td>3.5</td>
<td>orange1.1g019665m</td>
<td>AT5G24530</td>
<td>3e-139</td>
</tr>
<tr>
<td>2OG-Fe(II)</td>
<td>8.9</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g039524m</td>
<td>AT3G13610</td>
<td>1e-126</td>
</tr>
<tr>
<td>TPS21</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g041926m</td>
<td>AT5G23960</td>
<td>8e-111</td>
</tr>
<tr>
<td>TPS21</td>
<td>0.0</td>
<td>−1.1</td>
<td>0.0</td>
<td>orange1.1g010399m</td>
<td>AT5G23960</td>
<td>7e-75</td>
</tr>
<tr>
<td>TPS21</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>orange1.1g043754m</td>
<td>AT5G23960</td>
<td>2e-68</td>
</tr>
<tr>
<td>OMT1</td>
<td>2.1</td>
<td>0.0</td>
<td>0.1</td>
<td>orange1.1g017595m</td>
<td>AT5G54160</td>
<td>7e-93</td>
</tr>
<tr>
<td>OMT1</td>
<td>0.1</td>
<td>1.3</td>
<td>0.4</td>
<td>orange1.1g044458m</td>
<td>AT5G54160</td>
<td>6e-99</td>
</tr>
<tr>
<td>GGPS1</td>
<td>3.9</td>
<td>0.0</td>
<td>1.0</td>
<td>orange1.1g020845m</td>
<td>AT4G36810</td>
<td>5e-19</td>
</tr>
<tr>
<td>VTE2</td>
<td>2.7</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g029089m</td>
<td>AT2G18950</td>
<td>2e-41</td>
</tr>
<tr>
<td>VTE2</td>
<td>0.0</td>
<td>−1.5</td>
<td>−0.5</td>
<td>orange1.1g013845m</td>
<td>AT2G18950</td>
<td>2e-66</td>
</tr>
<tr>
<td>
<sup>a</sup>
(Terpenoidcycl)</td>
<td>7.2</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g044462m</td>
<td>AT3G25810</td>
<td>1e-97</td>
</tr>
<tr>
<td>LAC4</td>
<td>0.0</td>
<td>0.5</td>
<td>3.1</td>
<td>orange1.1g008799m</td>
<td>AT2G38080</td>
<td>0</td>
</tr>
<tr>
<td>LAC5</td>
<td>0.0</td>
<td>0.7</td>
<td>2.7</td>
<td>orange1.1g008066m</td>
<td>AT2G40370</td>
<td>0</td>
</tr>
<tr>
<td>LAC7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>orange1.1g008366m</td>
<td>AT3G09220</td>
<td>0</td>
</tr>
<tr>
<td>UGT74B1</td>
<td>1.6</td>
<td>0.7</td>
<td>2.6</td>
<td>orange1.1g042896m</td>
<td>AT1G24100</td>
<td>4e-51</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Genes without abbreviations</p>
<p>
<italic>DETs</italic>
Differentially expressed transcripts</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec8">
<title>Secondary metabolism</title>
<p>Many different transcripts encoding 2-oxoglutarate and Fe (II)-dependent (2OG-Fe (II)) oxygenases were highly up-regulated in response to all three pathogens (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Transcripts encoding terpene synthase (TPS21), involved in isoprenoid and terpenoid metabolism, were induced up to eight fold by infection with CTV-B2, and to a lesser extent infection by CaLas-B232, but were repressed by CTV-B6 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). These perturbations of the terpenoid pathways likely contribute to the different volatile components detected following infection by CTV or CaLas [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
]. The expression of O-methyltransferase (OMT), participating in flavonoid and phenylpropanoid metabolism, was up-regulated in response to both strains of CTV (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). A transcript encoding geranylgeranyl pyrophosphatesynthase1 (GGPS1), also involved in isoprenoid biosynthetic process, was strongly up-regulated in response to CTV-B2 and less so to CaLas-B232 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Transcripts encoding homogentisate phytyltransferase (VTE2) were up-regulated by infection with CTV-B2, but were down-regulated by infection with CTV-B6 and did not respond to CaLas-B232 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). VTE2 catalyzes the synthesis of tocopherol, which plays an important role in protecting chloroplast membranes. The expression of VTE2 was induced in symptomatic and repressed in asymptomatic leaves of sweet orange in response to CaLam [
<xref ref-type="bibr" rid="CR32">32</xref>
]. Transcripts encoding terpenoidcyclases/proteinprenyl transferase were also significantly up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Laccase genes
<italic>LAC4</italic>
,
<italic>LAC5</italic>
and
<italic>LAC7</italic>
participating in simple phenol metabolism, were over-expressed in response to CaLas-B232 (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Transcripts encoding UDP-glucosyl transferase 74B1 (UGT74B1) involved in plant secondary metabolism and playing a potential role in stress or defense responses were up-regulated by both CTV-B2 and CaLas-B232 [
<xref ref-type="bibr" rid="CR33">33</xref>
] (Table 
<xref rid="Tab3" ref-type="table">3</xref>
).</p>
</sec>
<sec id="Sec9">
<title>Signaling</title>
<p>Plant receptor-like proteins/kinases (RLPs/RLKs) regulate developmental processes and respond to pathogens and abiotic stresses [
<xref ref-type="bibr" rid="CR34">34</xref>
]. A large number of transcripts encoding RLRs/RLKs, including leucine rich repeat (LRR) kinases, wall-associated kinases (WAKs) and Domain of Unknown Function 26 (DUF26) kinases, were differentially expressed in response to all three pathogens, and very notably to CaLas-B232 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S4F). The expression of LRR kinases were up-regulated responding to CTV-B6 and CaLas-B232 but not to CTV-B2, consistent with their role in defense response [
<xref ref-type="bibr" rid="CR34">34</xref>
]. These included RLP6, RLP9, RLP13, RLP14, RLP15 and RLP45, which were consistently up-regulated by infection with CaLas-B232 and CTV-B6 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Transcripts related to wall associated kinases were differentially expressed in response to CTV-B2 and CaLas-B232, including WAK2 and WAK7 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Notably, the expression of two members of DUF26 RLKs, cysteine-rich RLK2 (CRK2) and receptor-like kinase1 (RLK1), was significantly induced by infection with CTV-B2 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). The expression of E1-E2 ATPase was up-regulated in response to all three pathogens. The expression of EF-hand binding protein and calmodulin (CaM) was induced responding to CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Transcripts encoding cold-circadian rhythm RNA binding-like protein (CCR-like, CCL) were up-regulated in response to all three pathogens, especially CTV-B6, approximately five fold (Table 
<xref rid="Tab4" ref-type="table">4</xref>
).
<table-wrap id="Tab4">
<label>Table 4</label>
<caption>
<p>DETs involved in signaling, stress response and miscellaneous pathways in
<italic>Citrus sinensis</italic>
plants infected with CTV-B2, CTV-B6 and CaLas-B232</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2">Gene symbol</th>
<th colspan="3">Log2 fold change (Gfold 0.01)</th>
<th rowspan="2">
<italic>Citrus sinensis</italic>
_ID</th>
<th rowspan="2">
<italic>Arabidopsis thaliana</italic>
_ID</th>
<th rowspan="2">E-value</th>
</tr>
<tr>
<th>CTV-B2</th>
<th>CTV-B6</th>
<th>CaLas-B232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLP6</td>
<td>0.0</td>
<td>1.3</td>
<td>1.8</td>
<td>orange1.1g046844m</td>
<td>AT1G45616</td>
<td>1e-115</td>
</tr>
<tr>
<td>RLP9</td>
<td>0.0</td>
<td>1.4</td>
<td>2.7</td>
<td>orange1.1g021196m</td>
<td>AT1G58190</td>
<td>8e-23</td>
</tr>
<tr>
<td>RLP13</td>
<td>0.0</td>
<td>3.1</td>
<td>3.6</td>
<td>orange1.1g044924m</td>
<td>AT1G74170</td>
<td>2e-92</td>
</tr>
<tr>
<td>RLP14</td>
<td>0.0</td>
<td>2.2</td>
<td>3.0</td>
<td>orange1.1g028394m</td>
<td>AT1G74180</td>
<td>5e-16</td>
</tr>
<tr>
<td>RLP15</td>
<td>0.0</td>
<td>2.4</td>
<td>3.4</td>
<td>orange1.1g040699m</td>
<td>AT1G74190</td>
<td>1e-73</td>
</tr>
<tr>
<td>RLP45</td>
<td>0.3</td>
<td>2.2</td>
<td>2.5</td>
<td>orange1.1g040468m</td>
<td>AT3G53240</td>
<td>2e-85</td>
</tr>
<tr>
<td>WAK2</td>
<td>−1.4</td>
<td>−0.5</td>
<td>−1.1</td>
<td>orange1.1g004702m</td>
<td>AT1G21270</td>
<td>7e-167</td>
</tr>
<tr>
<td>WAK2</td>
<td>0.0</td>
<td>0.2</td>
<td>1.0</td>
<td>orange1.1g036131m</td>
<td>AT1G21270</td>
<td>7e-102</td>
</tr>
<tr>
<td>WAKL7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>orange1.1g023486m</td>
<td>AT1G16090</td>
<td>1e-17</td>
</tr>
<tr>
<td>CRK2</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g006168m</td>
<td>AT1G70520</td>
<td>5e-102</td>
</tr>
<tr>
<td>RLK1</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g047157m</td>
<td>AT5G60900</td>
<td>4e-106</td>
</tr>
<tr>
<td>ATPase E1-E2</td>
<td>1.6</td>
<td>2.5</td>
<td>2.8</td>
<td>orange1.1g047874m</td>
<td>AT3G63380</td>
<td>0</td>
</tr>
<tr>
<td>Ca EF-hand</td>
<td>0.0</td>
<td>2.2</td>
<td>4.1</td>
<td>orange1.1g027442m</td>
<td>AT4G13440</td>
<td>1e-21</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>0.0</td>
<td>1.8</td>
<td>3.1</td>
<td>orange1.1g011961m</td>
<td>AT1G73805</td>
<td>1e-125</td>
</tr>
<tr>
<td>CCL</td>
<td>2.2</td>
<td>5.0</td>
<td>1.0</td>
<td>orange1.1g033578m</td>
<td>AT3G26740</td>
<td>6e-20</td>
</tr>
<tr>
<td>Stress response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP70</td>
<td>0.2</td>
<td>2.1</td>
<td>2.3</td>
<td>orange1.1g005824m</td>
<td>AT5G02500</td>
<td>1e-175</td>
</tr>
<tr>
<td>HSP81-1</td>
<td>-0.9</td>
<td>−1.2</td>
<td>−1.1</td>
<td>orange1.1g005370m</td>
<td>AT5G52640</td>
<td>0</td>
</tr>
<tr>
<td>Kunitz</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>orange1.1g028238m</td>
<td>AT1G17860</td>
<td>4e-28</td>
</tr>
<tr>
<td>ACD2</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g029930m</td>
<td>AT4G37000</td>
<td>3e-39</td>
</tr>
<tr>
<td>PA2</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g018873m</td>
<td>AT5G06720</td>
<td>5e-95</td>
</tr>
<tr>
<td>WCRKC1</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>orange1.1g030114m</td>
<td>AT5G06690</td>
<td>2e-49</td>
</tr>
<tr>
<td>
<sup>a</sup>
(Oxidoreductase)</td>
<td>0.0</td>
<td>2.0</td>
<td>1.5</td>
<td>orange1.1g025278m</td>
<td>AT1G23740</td>
<td>3e-84</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI,FB</td>
<td>3.7</td>
<td>5.6</td>
<td>3.5</td>
<td>orange1.1g001216m</td>
<td>AT1G22770</td>
<td>0</td>
</tr>
<tr>
<td>NAC2</td>
<td>2.0</td>
<td>3.9</td>
<td>4.5</td>
<td>orange1.1g013077m</td>
<td>AT5G04410</td>
<td>4e-36</td>
</tr>
<tr>
<td>UDP-Glycosyl</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>orange1.1g043304m</td>
<td>AT5G12890</td>
<td>2e-109</td>
</tr>
<tr>
<td>UDP-Glycosyl</td>
<td>0.4</td>
<td>0.0</td>
<td>1.7</td>
<td>orange1.1g012474m</td>
<td>AT3G11340</td>
<td>2e-133</td>
</tr>
<tr>
<td>CYP706A4</td>
<td>2.5</td>
<td>3.5</td>
<td>2.9</td>
<td>orange1.1g009495m</td>
<td>AT4G12300</td>
<td>5e-114</td>
</tr>
<tr>
<td>ConA</td>
<td>5.9</td>
<td>0.0</td>
<td>0.6</td>
<td>orange1.1g024824m</td>
<td>AT4G04960</td>
<td>1e-57</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Genes without abbreviations</p>
<p>
<italic>DETs</italic>
Differentially expressed transcripts</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec10">
<title>Stress response</title>
<p>Many disease resistance (R) genes were differentially regulated in response to CTV-B2 and CaLas-B232, and fewer to CTV-B6 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S4G), including CC (TIR)-NB-LRR (coiled-coil/Toll-interleukin1 receptor-nucleotide binding-Leucine rich repeat) and NB-ARC (nucleotide binding-adaptor shared by APAF-1, certain
<italic>R</italic>
gene products and CED4) domain-containing disease resistance proteins, the largest and well-characterized group of R genes. Transcripts encoding heat shock proteins (HSPs) were especially regulated in response to CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). The expression of Kunitz-type protease inhibitor (PI), located in the cell wall and responsive to peroxidase, was significantly up-regulated only in response to CaLase-B232 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Remarkably, a transcript encoding accelerated cell death 2 (ACD2) was highly up-regulated only responding to CTV-B2 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
).</p>
</sec>
<sec id="Sec11">
<title>Oxidation/reduction processes</title>
<p>Transcripts related to the peroxidase super family were also differentially regulated in response to the three pathogens (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S9). Peroxidase 2 (PA2) mRNA accumulated in response to CTV-B2 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Transcripts encoding WCRKC thioredoxin1 (WCRKC1), likely involved with redox homeostasis in the chloroplast, were greatly up-regulated only responding to CTV-B6 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Transcripts encoding oxidoreductase, a zinc-binding dehydrogenase family protein, were up-regulated in response to CTV-B6 and CaLas-B232 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
).</p>
</sec>
<sec id="Sec12">
<title>Development, protein degradation and miscellaneous functions</title>
<p>Transcripts encoding thiazole biosynthetic enzyme (THI1, TZ, THI4) were up-regulated responding to all three pathogens, especially CTV-B6 (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S9). Thiamine biosynthetic genes respond to bacteria, and also act in starch and maltose metabolism [
<xref ref-type="bibr" rid="CR35">35</xref>
]. These enzymes may contribute to the accumulation of starch in leaves of diseased trees. Transcripts encoding gigantea (GI) and NAC domain containing protein 2 involved in the development and strengthening of secondary cell walls were strongly up-regulated in response to all three pathogens (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). A set of transcripts involved in protein degradation were also differentially regulated in response to the three pathogens (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S9), consistent with a previous result that protein degradation and misfolding processes were activated in citrus fruits infected with CaLas [
<xref ref-type="bibr" rid="CR36">36</xref>
]. A larger set of transcripts encoding UDP-glycoyl transferase and cytochrome P450 were differentially regulated in response to all three pathogens (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S9). Both UDP-glycoyl transferase and cytochrome P450 are involved in secondary metabolism, responses to biotic and abiotic stress and oxidation/reduction process. A transcript encoding a concanavalin A-like (ConA-like) protein with a jacalin-like lectin domain was very highly up-regulated by infection with CTV-B2 (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). Jacalin-related proteins were demonstrated as components in plant defense system [
<xref ref-type="bibr" rid="CR37">37</xref>
].</p>
</sec>
</sec>
<sec id="Sec13">
<title>Discussion</title>
<p>Recently, global analysis of gene expression has been applied widely to study plant-pathogen interactions. Though studies have been carried out to identify DETs in citrus infected with CaLas and CTV by microarray or RNA-seq, these studies have been conducted with each pathogen separately or in the context of susceptible
<italic>vs</italic>
. tolerant plant genotypes [
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. In the present study, RNA-seq was used to identify DETs in susceptible ‘Valencia’ sweet orange after CaLas and CTV infection, with all plants grown and inoculated together in the same greenhouse. We found many biological processes and pathways affected by the three pathogens. The number of DETs reflected the complexity of symptoms in response to the three pathogens. The transcriptome profiles were more similar between CTV-B6 (VT genotype) and CaLas-B232 than between the two CTV genotypes CTV-B2 (T30 genotype) and CTV-B6 or between CTV-B2 and CaLas-B232. This is consistent with similar symptoms. CTV-B6 causes severe stem pitting [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
], which is a major disturbance in the phloem system and CaLas-B232 induces typical symptoms of HLB which include degeneration of phloem cells. Both disease syndromes also include yellowing and cupping of leaves caused by the failure of phloem transport and starch accumulation in the leaves. These symptoms are not induced by CTV-B2, although the pathogen is fully systemic in the host.</p>
<sec id="Sec14">
<title>Circadian system affected by all three pathogens</title>
<p>The circadian system, an endogenous mechanism vital to organisms, allows them to coordinate physiological changes to predictable day/night cycles and plays extremely important roles in reproductive development, germination, growth and carbohydrate metabolism processes throughout the life cycle of the plant [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. The circadian rhythm regulates the expression of 31 % of the
<italic>Arabidopsis</italic>
genome and have been found to be significantly disrupted by abiotic and biotic stress [
<xref ref-type="bibr" rid="CR42">42</xref>
]. The circadian clock controls the cotton plant’s (
<italic>Gossypium hirsutum</italic>
) sensitivity to cold [
<xref ref-type="bibr" rid="CR43">43</xref>
] and also regulates the transcription levels of some pathogen response related genes in Arabidopsis [
<xref ref-type="bibr" rid="CR44">44</xref>
]. Disruption of the circadian rhythms by CTV or CaLas has not been reported previously, but off season flowering is observed in citrus groves in response to CTV and HLB [
<xref ref-type="bibr" rid="CR45">45</xref>
<xref ref-type="bibr" rid="CR47">47</xref>
]. In our study, the circadian system was heavily affected by the three pathogens (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
), especially CTV-B6. Circadian clock-associated components PRR5 and PRR7 have been proven to play important roles in the circadian rhythm by repressing the expression of
<italic>CCA1</italic>
(circadian clock-associated 1) and
<italic>LHY</italic>
(late elongated hypocoty) [
<xref ref-type="bibr" rid="CR48">48</xref>
], consistent with the up-regulation of
<italic>PRR</italic>
and down-regulation of
<italic>LHY</italic>
genes in our study. CCA1 and LHY are homologous to Myb-related DNA-binding proteins and the circadian clock components form an auto-regulatory feedback loop at the transcription levels [
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
] (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). Accumulation of PRR1/TOC1 (timing of cab expression 1) in late day and early night promotes the rise of CCA1 and LHY proteins during the early and mid day, which in turn represses transcription of
<italic>PRR1/TOC1</italic>
. TOC1 also acts in concert with JMJD5 to regulate the circadian clock [
<xref ref-type="bibr" rid="CR21">21</xref>
]. PRR family proteins and C-terminal (CCT) motif proteins are homologous and contribute to the control of the circadian rhythm that controls photoperiodic flowering [
<xref ref-type="bibr" rid="CR51">51</xref>
]. The circadian clock controls the stability of the CCL mRNA at different times of day [
<xref ref-type="bibr" rid="CR52">52</xref>
] as well as the expression of the GIGANTEA (
<italic>GI</italic>
) gene. The CCL gene was up-regulated in juice vesicles (JV) of ‘Hamlin’ and ‘Valencia’ by infection with CaLas [
<xref ref-type="bibr" rid="CR22">22</xref>
], consistent with our study. The
<italic>GI</italic>
gene encodes a protein with six putative membrane-spanning domains that regulates both photoperiodic flowering and the deposition of wall ingrowths in phloem parenchyma transfer cells in
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
]. The formation of wall ingrowths in transfer cells plays an important role in phloem biology by producing physical barriers to limit pathogen invasion [
<xref ref-type="bibr" rid="CR55">55</xref>
]. GI is also necessary to maintain the appropriate period of
<italic>CCA1</italic>
and
<italic>LHY</italic>
gene expression and the circadian amplitude in the outer feedback loop in
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR56">56</xref>
]. Therefore, the change of gene expression induced by all three pathogens, but especially by CTV-B6, indicated the alteration of the circadian cycle in the affected plants. Because of the large number of genes coordinated by the circadian clock [
<xref ref-type="bibr" rid="CR42">42</xref>
], plants infected with these pathogens may have other abnormal gene expression patterns.
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Circadian rhythm pathway regulated by CTV-B2, CTV-B6 and CaLas-B232. The green boxes represent genes that were differentially expressed in response to all of the three pathogens</p>
</caption>
<graphic xlink:href="12864_2016_2663_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
</sec>
<sec id="Sec15">
<title>Cell wall modification defense response</title>
<p>Plant cell walls are composed of cellulose, hemicelluose and pectins and play a vital defensive role in plants against pathogens. Pectin is found in primary cell walls and the middle lamella, where it contributes to cell wall structure and binds cells together [
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. Extensive disassembly of pectin is associated with tissue deterioration, leaf abscission [
<xref ref-type="bibr" rid="CR59">59</xref>
], as well as swelling of the middle lamella [
<xref ref-type="bibr" rid="CR60">60</xref>
], which was observed in cell walls surrounding sieve elements (SEs) at early stages of infection with CaLas [
<xref ref-type="bibr" rid="CR18">18</xref>
]. Pectin hydrolysis often occurs in response to soft rot bacteria and fungi and pectin methylesterase inhibitors (PMEI) play a role in defense by regulation of cell wall susceptibility to microbial endopolygalacturonases. The expression of PMEI was also up-regulated in ‘Valencia’ leaves in association with CaLas [
<xref ref-type="bibr" rid="CR10">10</xref>
], as well as in present study. The over expression of PMEI may also be associated with the interaction with
<italic>Phytophthora spp</italic>
. [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
] or opportunistic fungi.</p>
<p>Xyloglucan endotransglycosylase (XET) is an enzyme involved in the synthesis of xyloglucan, the predominant hemicellulose in the cell walls. Transcripts encoding XET were up-regulated in
<italic>C. sinensis</italic>
leaves [
<xref ref-type="bibr" rid="CR10">10</xref>
] but down-regulated in
<italic>C. sinensis</italic>
stems infected with CaLas [
<xref ref-type="bibr" rid="CR39">39</xref>
]. XET plays a profound role during the process of fruit ripening [
<xref ref-type="bibr" rid="CR61">61</xref>
], which is impaired by CaLas.
<italic>A. thaliana XTH33</italic>
, encoding a xyloglucan endotransglycosylase/hydrolase (XTH), protects plants against aphids by modifying the cell wall [
<xref ref-type="bibr" rid="CR62">62</xref>
]. Tomato
<italic>leXTH1</italic>
mRNA accumulated in response to dodder,
<italic>Cuscuta reflexa</italic>
[
<xref ref-type="bibr" rid="CR63">63</xref>
], and the expression of
<italic>Medicago truncatula MtXTH1</italic>
gene was induced in association with
<italic>Glomus</italic>
and
<italic>Gigaspora</italic>
in roots [
<xref ref-type="bibr" rid="CR64">64</xref>
]. Genes related to cellulose synthesis,
<italic>CSLC7</italic>
and
<italic>CSLD4</italic>
, were down-regulated in stems in association with CaLas [
<xref ref-type="bibr" rid="CR39">39</xref>
]. In the current study, the expression of cellulose synthase-like genes
<italic>CSLB3</italic>
,
<italic>CSLA2</italic>
and
<italic>COBL7,</italic>
was strongly up-regulated by infection with CTV-B2, but not by infection with CaLas and CTV-B6. CSLA proteins have mannan/glucomannan synthase activity and mannans have vital roles in metabolic networks that regulate cell wall structure, carbohydrate storage and other cellular processes in plants [
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
].
<italic>AtCSLA7</italic>
is essential for synthesis of a cell wall β-linked polysaccharide throughout the plant [
<xref ref-type="bibr" rid="CR67">67</xref>
]. Both
<italic>CSLH</italic>
from barley and
<italic>CSLF</italic>
from rice mediate the synthesis of cell wall (1,3 and 1,4)-β-D-glucans in transgenic
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR68">68</xref>
,
<xref ref-type="bibr" rid="CR69">69</xref>
]. COBRA-like (COBL) genes, predicted to encode a putative glycosylphophatidylinositol (GPI)-anchored protein in
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR70">70</xref>
], play an important role in cell wall maintenance and biosynthesis, controlling the orientation of cell expansion and modulation of cellulose deposition in the cell walls of roots [
<xref ref-type="bibr" rid="CR71">71</xref>
,
<xref ref-type="bibr" rid="CR72">72</xref>
]. Another COBRA-like protein, Brittle culm1 (BC1), provides mechanical strength for rice by regulating the biosynthesis of secondary cell walls [
<xref ref-type="bibr" rid="CR73">73</xref>
]. Therefore, the plant responded to CTV-B2, but not to CTV-B6 and CaLas by activating enzymes that would work together to strengthen the cell wall, which may contribute to the reinforcement of physical barriers to restrict the invasion of CTV-B2.</p>
</sec>
<sec id="Sec16">
<title>Phloem damage and defense response</title>
<p>PP2, one of the well-known sieve element (SE) proteins, was found in plugged sieve pores and was described in cucurbit phloem sap [
<xref ref-type="bibr" rid="CR74">74</xref>
]. Both CTV-B6 and CaLas-B232 damage phloem tissue and similar sets of genes may be altered by both pathogens. Several studies have reported that transcripts encoding phloem proteins (PP2-B10, PP2-B14 and PP2-B15) were up-regulated in symptomatic leaves in response to CaLas [
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
]. PP2 accumulated at the sieve plate linked to symptom development in response to CaLas [
<xref ref-type="bibr" rid="CR11">11</xref>
]. Cucumber csPP2 interacts with the
<italic>Hop stunt viroid</italic>
(HSVd) RNA and may facilitate its long-distance movement [
<xref ref-type="bibr" rid="CR75">75</xref>
,
<xref ref-type="bibr" rid="CR76">76</xref>
]. PP2 also can interact with polyadenylated mRNAs [
<xref ref-type="bibr" rid="CR75">75</xref>
]. The altered expression of PP2 genes was tested and confirmed by RT-qPCR (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S10). The closure of sieve pores by PP2 is normally accompanied by the accumulation of callose on sieve plates under abiotic or biotic stress [
<xref ref-type="bibr" rid="CR77">77</xref>
].</p>
<p>Callose is widely distributed in higher plants and is deposited at cell plates during cytokinesis [
<xref ref-type="bibr" rid="CR78">78</xref>
] and in plasmodesmata, and contributes to the regulation of movement of molecules from cell-to-cell [
<xref ref-type="bibr" rid="CR79">79</xref>
]. PP2 and callose were deposited at the sieve plates in apple trees infected with the phloem-limited pathogen ‘
<italic>Ca.</italic>
Phytoplasma mali’ [
<xref ref-type="bibr" rid="CR80">80</xref>
]. Accumulation of PP2 and callose proteins may provide a physical barrier against further invasion of CTV-B6 and CaLas-B232, and contribute to long-distance signaling [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR75">75</xref>
]. The over expression of callose and PP2 genes is consistent with the phloem damage and defense mechanisms activated by CTV-B6 and CaLas-B232. The clear down regulation of PP2 by infection with CTV-B2 suggests that CTV-B2 was not perceived by the host plant in a way that triggered the defense response.</p>
</sec>
<sec id="Sec17">
<title>Ions and nutrient deficiency</title>
<p>The expression of both EF-hand calcium-binding and calmodulin-binding proteins was down-regulated in stems of
<italic>C. sinensis</italic>
inoculated with CaLas [
<xref ref-type="bibr" rid="CR39">39</xref>
], while the expression of EF-hand calcium-binding protein was up-regulated about 5 fold in
<italic>C. sinensis</italic>
13–17 weeks after inoculation with CaLas [
<xref ref-type="bibr" rid="CR10">10</xref>
]. In the current study, the expression of both genes was also up-regulated (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). The differences among these studies might be attributed to the different stages of infection or tissues used. CNGC (cyclic nucleotide gated channel) mRNA accumulated in flavedo (FF), vascular tissue (VT) and juice vesicles (JV) of symptomatic ‘Hamlin’ and ‘Valencia’ sweet orange infected with CaLas [
<xref ref-type="bibr" rid="CR22">22</xref>
]. Our transcriptome profiles showed up-regulation of EF-hand calcium-binding protein, calmodulin-binding protein, CNGCs and ATPase E1-E2 proteins in young leaves in response to CaLas. ATPase E1-E2 accumulated in response to CTV-B2 and EF-hand calcium-binding proteins accumulated in response to CTV-B6. ATPase E1-E2 is involved in Ca
<sup>2+</sup>
-translocation and CNGCs are involved in Ca
<sup>2+</sup>
-signaling processes and both maintain [Ca
<sup>2+</sup>
] homeostasis in the plant [
<xref ref-type="bibr" rid="CR81">81</xref>
,
<xref ref-type="bibr" rid="CR82">82</xref>
]. In Arabidopsis, CNGC1 conducts Ca
<sup>2+</sup>
into cells [
<xref ref-type="bibr" rid="CR83">83</xref>
] and AtCNGC2 responds to pathogen recognition by increasing [Ca
<sup>2+</sup>
]
<sub>cyt</sub>
levels [
<xref ref-type="bibr" rid="CR84">84</xref>
]. AtCNGC4 is also an essential component of the signaling pathway leading to the hypersensitive response [
<xref ref-type="bibr" rid="CR85">85</xref>
]. Calmodulin (CaM) is a major Ca
<sup>2+</sup>
signal transducer in both animals and plants [
<xref ref-type="bibr" rid="CR86">86</xref>
] and is involved in Ca
<sup>2+</sup>
-mediated plant disease resistance responses [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Soybean CaM genes
<italic>SCaM4</italic>
and
<italic>ScaM5</italic>
were induced within 30 min by pathogens [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Evidence of altered calcium metabolism is also demonstrated by the formation of crystal idioblasts in CaLas infected plant tissues [
<xref ref-type="bibr" rid="CR18">18</xref>
]. These idioblasts are believed to contain calcium oxalate (CaOX), which can serve dual functions in the regulation of calcium concentration and plant defense. An influx of Ca
<sup>2+</sup>
can also activate Ca
<sup>2+</sup>
-dependent defense responses such as PP2 aggregation and callose deposition [
<xref ref-type="bibr" rid="CR80">80</xref>
]. The accumulation of EF-hand calcium-binding protein, CaM, ATPase E1-E2 and CNGC and the formation of CaOX crystals suggest imbalances in calcium metabolism after infection by the three pathogens. Ca
<sup>2+</sup>
-dependent defense mechanisms were activated by the three pathogens and play more significant roles in defense response to CaLas-B232.</p>
<p>Zinc transporters such as ZIP1, ZIP2, ZIP3, ZIP4, ZIP5 and ZIP11, are induced in plants in response to zinc deficiency. ZIP4 and ZIP5 mediate zinc uptake from the rhizosphere and are responsible for translocation of zinc within the plant [
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]. Citrus plants affected by CaLas present nutritional deficiency symptoms typically associated with zinc deficiency [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
]. Up-regulation of ZIP1 was observed in transcriptome profiles of ‘Madame Vinous’ and ‘Navel’ sweet oranges inoculated with CaLas [
<xref ref-type="bibr" rid="CR9">9</xref>
], and over expression of ZIP5 was also found in the susceptible genotype ‘Cleopatra mandarin’ but not in the tolerant genotype ‘US-897’ inoculated with CaLas [
<xref ref-type="bibr" rid="CR38">38</xref>
]. In another study, transcripts encoding ZIP1, ZIP4 and ZIP5 were up-regulated in ‘Pera’ sweet orange inoculated with CaLam [
<xref ref-type="bibr" rid="CR32">32</xref>
], all of which is consistent with the over expression of four zinc transporters (ZIP1, ZIP4, ZIP5 and ZIP11) in our study. The up-regulation of zinc transporters in susceptible citrus genotypes infected with CaLas or CaLam in the late stages is consistent with the zinc deficiency symptoms seen on leaves, but is also observed in young leaves without symptoms. If CaLas-infected plants experience dramatic fibrous root decline before foliar symptoms appear [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
], this would limit the uptake of sufficient microelements such as Zn and Cu from the rhizosphere. CaLas also assimilates zinc from the plant phloem sap with assistance of zinc uptake ABC transporters [
<xref ref-type="bibr" rid="CR90">90</xref>
], further contributing to the zinc deficit in the host.</p>
<p>Zinc deficiency leads to a wide range of ultrastructural problems with chloroplasts, mitochondria, cytoplasm and aberrant regulation of DNA-transcription and RNA-processing in plants [
<xref ref-type="bibr" rid="CR91">91</xref>
], followed by foliar symptoms on leaves and delayed maturation of fruits. Transcription of Zn and Cu transporters would then be up-regulated in response to CaLas to meet the deficits of Zn, Cu and other micronutrients. This also may explain why HLB disease severity was reduced by the application of various nutritional products including micronutrients on the foliage extended the vigor and productivity of CaLas infected trees [
<xref ref-type="bibr" rid="CR6">6</xref>
]. CaLas encodes a zinc-dependent metalloprotease (Accession Number: ACT57246; GI: 204040450) similar to RseP-like site-2 proteases (S2P), which need zinc to enhance stability [
<xref ref-type="bibr" rid="CR92">92</xref>
]. The introduction of zinc-dependent metalloproteases into organisms can cause impairment of physiological functions that lead to disease or death [
<xref ref-type="bibr" rid="CR93">93</xref>
]. The zinc-dependent metalloprotease in CaLas may explain the up-regulation level of zinc transporters to a greater degree than transporters of other microelements in response to CaLas, and also the higher expression level of zinc transporters than in plants infected with CTV-B6. In contrast, ZIP4 and ZIP5 were notably down-regulated in asymptomatic sweet orange trees infected by CTV-B2 in this study. Taken together, the differential expression of Zn, Cu and Ca transporters is evidence of impaired homeostasis in plants caused by the three pathogens. The greater expression level of zinc transporters in response to CaLas than CTV-B6 may be attributed to root decline and usage of zinc by CaLas.</p>
</sec>
<sec id="Sec18">
<title>Hormone-mediated defense response</title>
<p>The JMT gene was induced in young leaves and in mature fruits infected with CaLas [
<xref ref-type="bibr" rid="CR94">94</xref>
], consistent with up-regulation in our study (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). JMT catalyzes the synthesis of methyl jasmonate (MeJA), which plays an important role in JA-regulated plant defense responses [
<xref ref-type="bibr" rid="CR95">95</xref>
]. In our study, the up-regulation of
<italic>LOX2</italic>
encoding a lipoxygenase involved in the JA pathway responding to CaLas is in accordance with previous study [
<xref ref-type="bibr" rid="CR10">10</xref>
]. The transcription level of
<italic>LOX</italic>
was also increased in
<italic>Citrus reticulata</italic>
inoculated with
<italic>Xylella fastidiosa</italic>
at the early stage [
<xref ref-type="bibr" rid="CR96">96</xref>
]. Many WRKY transcription factors are involved in hormone-mediated signaling pathways under biotic and abiotic stress [
<xref ref-type="bibr" rid="CR97">97</xref>
]. WRKY70 coordinates the cross talk of SA-and JA-mediated signals in plant defense, and over expression of WRKY70 increased resistance to pathogens and influenced expression of SA induced pathogenesis-related genes [
<xref ref-type="bibr" rid="CR98">98</xref>
]. WRKY6, WRKY40 and WRKY70 were up-regulated about five fold in symptomatic leaves of sweet orange [
<xref ref-type="bibr" rid="CR32">32</xref>
] and WRKY70 was expressed at a higher level in fruits than in leaves in response to CaLas [
<xref ref-type="bibr" rid="CR94">94</xref>
]. The accumulation of WRKY13 transcripts affected transcription of more than 500 genes, some that functioned in disease resistance [
<xref ref-type="bibr" rid="CR99">99</xref>
]. The expression of WRKYs may also link to extensive transcriptional repression and activation by its own WRKY members [
<xref ref-type="bibr" rid="CR97">97</xref>
]. Hormone-mediated defense responses were activated by all three pathogens. However, hormone-mediated defense responses were stronger in response to CTV-B6 and CaLas-B232 than the mild strain CTV-B2 which did not trigger these defense responses to nearly the same degree.</p>
</sec>
<sec id="Sec19">
<title>Secondary metabolism related defense</title>
<p>Plant secondary metabolites play an important role in defense responses to herbivores, pests and pathogens [
<xref ref-type="bibr" rid="CR100">100</xref>
]. 2OG-Fe (II) oxygenases, involved in the production of plant secondary metabolites such as flavonoids, were induced by the three pathogens. DMR6, encoding a 2OG-Fe (II) oxygenase, plays a role in plant defense in
<italic>A. thaliana</italic>
[
<xref ref-type="bibr" rid="CR101">101</xref>
]. The expression of 2OG-Fe (II) oxygenase was up-regulated in the susceptible genotypes (
<italic>C. sinensis</italic>
and
<italic>C. reticulata</italic>
), and also extremely up-regulated in the tolerant genotype (US-879,
<italic>C. reticulata x P. trifoliata</italic>
) infected with CaLas [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
]. Terpene synthases and terpenoid cyclases were highly induced in response to CTV-B2 and both are involved in the production of terpenes, the largest class of secondary metabolites [
<xref ref-type="bibr" rid="CR102">102</xref>
], which are important factors in resistance to several pathogens and pests [
<xref ref-type="bibr" rid="CR103">103</xref>
]. Hence, the expression of secondary metabolites was triggered by all three pathogens, but to a much greater degree in response to CTV-B2.</p>
</sec>
<sec id="Sec20">
<title>Pathogenesis related defense responses</title>
<p>Receptor-like proteins/kinases (RLPs/RLKs) are important factors in hormone signaling in response to abiotic and biotic stress in plants. More RLPs/RLKs were induced in response to CTV-B6 and CaLas-B232 than to CTV-B2. However some RLPs/RLKs, such as CRK2 and RLK1, were only induced in response to CTV-B2. These are cysteine-rich RLKs (CRKs) of the DUF26 group. Three CRKs (CRK4, CRK19 and CRK20), closely related to CRK5, were also induced by SA treatment and infection with
<italic>Pseudomonas syringae</italic>
and all activate rapid cell death in transgenic Arabidopsis [
<xref ref-type="bibr" rid="CR104">104</xref>
]. CRK genes,
<italic>PRK1</italic>
to
<italic>PRK4</italic>
from Potato and
<italic>PK20-1</italic>
from common bean were differentially regulated in response to symbionts, elicitor molecules and pathogens [
<xref ref-type="bibr" rid="CR105">105</xref>
]. More pathogenesis-related (PR) genes were up-regulated in sweet orange inoculated with CaLas-B232 than with CTV-B2 and CTV-B6.</p>
<p>Transcripts encoding Kunitz-type trypsin inhibitors were up-regulated in response to CaLas. The Kunitz trypsin inhibitors are responsive to wounding [
<xref ref-type="bibr" rid="CR106">106</xref>
] and protease inhibitors from plants may also inhibit the growth of a variety of pathogenic bacteria and fungi. An important gene to note is
<italic>ACD2,</italic>
up-regulated only in response to CTV-B2. The product of
<italic>ACD2</italic>
has extensive similarities to red chlorophyll catabolite reductase, which is involved in the degradation of the porphyrin component of chlorophyll (Chl) [
<xref ref-type="bibr" rid="CR107">107</xref>
]. Over expression of
<italic>ACD2</italic>
in plants induced many characteristics of the hypersensitive response (HR), including cell wall modification, accumulation of mRNA of PR genes and resistance to bacteria [
<xref ref-type="bibr" rid="CR108">108</xref>
]. The up-regulation of
<italic>ACD2</italic>
did not restrict the growth of
<italic>Pseudomonas syringae</italic>
but reduced disease symptoms [
<xref ref-type="bibr" rid="CR108">108</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
], which may explain symptom suppression in response to CTV-B2. Pathogenesis-related defense responses were induced by all three pathogens, and plants used more kinase signaling and stress response pathways in response to CaLas-B232 than to either strain of CTV.</p>
</sec>
</sec>
<sec id="Sec21">
<title>Conclusions</title>
<p>More genes and pathways were regulated in response to CaLas-B232, and to a lesser extent CTV-B6, than to CTV-B2, consistent with the symptoms caused by corresponding pathogens. Gene expression patterns of trees infected with CTV-B6 and CaLasB232 were more similar than those of infected with CTV-B2 and CTV-B6. These gene expression patterns in the asymptomatic leaves sampled lead to similar physiological changes, such as phloem damage, root decline, yellowing and cupping of leaves caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of sweet orange plants was heavily perturbed by all three pathogens, most notably by CTV-B6, and ion balances were also disrupted by all three pathogens, but especially by CaLas-B232. Many defense responses were triggered by all three pathogens but with different preferences: Defense responses based on cell wall modification and secondary metabolism were activated by all three pathogens, but were more prominent in response to CTV-B2. Defense responses modulated by transcription factors responded most significantly to CTV-B6. Ca
<sup>2+</sup>
-dependent, kinase signaling and pathogenesis-related defense responses functioned more actively in response to CaLas-B232 than to either strain of CTV. DETs regulated by CTV-B2, but not by CTV-B6 or CaLas, are likely to be important to protect the plant from CTV-B2, based on perception of the pathogen by the host and efficient triggering of systemic defense responses.</p>
</sec>
<sec id="Sec22">
<title>Methods</title>
<sec id="Sec23">
<title>Inoculation of experimental trees with CTV and CaLas</title>
<p>CTV mild strain B2 (T30 genotype, Florida), severe strain B6 (VT genotype, =SY568, California) and CaLas strain B232 (Thailand) are maintained
<italic>in planta</italic>
as part of the Exotic Pathogens of Citrus Collection (EPCC) at the USDA-ARS Beltsville Agricultural Research Center (BARC) in Beltsville, MD. Experimental seedling trees were ‘Valencia’ sweet orange. Each pathogen was inoculated into three replicate trees by inverted T-bud grafting when the trees were actively growing. Three trees were also mock-inoculated with healthy buds as the control. The trees were maintained in a greenhouse with supplemental fertilization provided with the irrigation water as described previously [
<xref ref-type="bibr" rid="CR110">110</xref>
].</p>
</sec>
<sec id="Sec24">
<title>Detection of CTV and CaLas with PCR</title>
<p>In order to confirm that the plants were successfully inoculated and infected with the phloem-limited pathogens, RNA and DNA were extracted from leaf midribs. DNA was extracted from 0.1 g of leaf midrib using the Plant DNeasy® Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. qPCR assays were performed as described [
<xref ref-type="bibr" rid="CR111">111</xref>
] with a SmartCycler (Cepheid, Sunnyvale, CA). Total RNA was extracted with Trizol (Invitrogen, Carlsbad, CA) and treated with TURBO™ DNase (AM2239, Ambion) according to the manufacturer’s instructions. cDNA synthesis was done with the Thermoscript RT-PCR System for First-Strand cDNA Synthesis (Invitrogen). CTV cDNA (2 μl as template) was amplified in a 25 μl reaction volume containing 10 X reaction buffer, 10 mM dNTP, 25 mM MgCl
<sub>2</sub>
, 10 μM of each primer [
<xref ref-type="bibr" rid="CR112">112</xref>
] and 0.3 U of
<italic>Taq</italic>
polymerase. Amplification was carried out with a PTC-200 thermal cycler (MJ Research) as follows: 94 °C for 3 min, then 94 °C for 30 s, 57 °C for 40 s, and 72 °C for 40 s. After 30 cycles the reactions were incubated an additional 10 min at 72 °C prior to storage at 4 °C. Products were analyzed by electrophoresis on 1.5 % agarose gels and stained with Gel Red (Biotium, Hayward, CA). Plants with confirmed infections were used for transcription analysis.</p>
</sec>
<sec id="Sec25">
<title>Isolation and quantification of total RNA</title>
<p>After infection by the pathogens had been confirmed by PCR and qPCR, but before symptoms became evident, RNA samples were collected in the morning (8–10 AM) from young, soft, not fully expanded leaves of uniform size at 32 weeks after inoculation (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S5). Total RNA was extracted and treated as described above. A portion of the RNA samples from three PCR-positive independent biological trees of each pathogen and from mock-inoculated trees were pooled. The quantity and quality of total RNA was determined with the Qubit 2.0 Fluorometer (Invitrogen) and the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA), respectively. A total of 30 μg of RNA (RIN ≥ 7.5) [
<xref ref-type="bibr" rid="CR113">113</xref>
] from healthy ‘Valencia’ sweet orange and ‘Valencia’ sweet orange infected with CTV-B2, CTV-B6 and CaLas-B232 were sent to SeqWright, Inc. (Houston, TX, USA) for paired-end sequencing of polyA selected mRNA with the Illumina HiSeq 2500 platform. The remainder of the RNA extracts was retained as replicates for RT-qPCR assays of selected mRNA targets.</p>
</sec>
<sec id="Sec26">
<title>Statistical analyses</title>
<p>Paired-end reads (2 X 100 nucleotides) for the four citrus cDNA libraries were generated with the Illumina HiSeq 2500 and mapped to
<italic>Citrus sinensis</italic>
‘Valencia’ reference genome [
<xref ref-type="bibr" rid="CR13">13</xref>
] with Bowtie (
<ext-link ext-link-type="uri" xlink:href="http://bowtie-bio.sourceforge.net/index.shtml">http://bowtie-bio.sourceforge.net/index.shtml</ext-link>
). Differentially expressed transcripts (DETs) were identified for CTV-B2, CTV-B6 and CaLas-B232 infected citrus libraries against the mock-inoculated library with the Gfold program [
<xref ref-type="bibr" rid="CR114">114</xref>
]. Gfold is especially useful when replicate data is not available. Gfold normalizes the expression level of genes on reads per kilobase per million reads (RPKM) and tests for significance with the Poisson distribution.
<italic>P</italic>
 < 0.01 and log
<sub>2</sub>
fold change (log
<sub>2</sub>
FC) ≥ │1│were set as cut-off values. DETs were assigned into GO (Gene Ontology) categories, including biological processes (BPs), molecular functions (MFs) and cellular components (CCs) based on
<italic>A. thaliana</italic>
orthologs by PlantGSEA [
<xref ref-type="bibr" rid="CR115">115</xref>
] (Gene Set Enrichment Analysis) [
<xref ref-type="bibr" rid="CR115">115</xref>
] with a hypergeometric test (
<italic>p</italic>
-values < 0.05). Functional annotation of DETs was also performed with Mapman [
<xref ref-type="bibr" rid="CR116">116</xref>
] based on
<italic>Citrus sinensis</italic>
orthologs. The raw RNA-Seq data has been deposited at the sequence read archive of NCBI under the project number SRP067360.</p>
</sec>
<sec id="Sec27">
<title>RT-qPCR analysis</title>
<p>A total of 38 genes were assayed by RT-qPCR with RNA preparations from true biological replicates to validate the Gfold results. Genes were selected based on their predicted function in disease symptom development and fold changes (log
<sub>2</sub>
FC) estimated by Gfold. Gene-specific primers were designed with calculated melting temperatures of 60 °C ± 5 °C by primer (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S11; Integrated DNA Technologies, Coralville, IA). Melting curve analysis was performed to ensure that a single product was amplified. The 2
<sup>-△△Ct</sup>
method was applied for relative quantification of gene expression [
<xref ref-type="bibr" rid="CR117">117</xref>
]. The correlation between Gfold and RT-qPCR was performed with SPSS 16.0.</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec28">
<title>Additional file</title>
<p>
<media position="anchor" xlink:href="12864_2016_2663_MOESM1_ESM.zip" id="MOESM1">
<label>Additional file 1: Figure S1.</label>
<caption>
<p>Summary of reads from
<italic>Citrus sinensis</italic>
infected with CTV-B2, CTV-B6 and CaLas-B232 and the mock-inoculated control (H). Reads were obtained through paired-end RNA sequencing and mapped to the
<italic>C. sinensis</italic>
genome.
<bold>Figure S2</bold>
. Differentially expressed transcripts in diseased compared to healthy
<italic>C. sinensis</italic>
. Transcripts were up- or down-regulated in response to infection by CTV-B2, CTV-B6 and CaLas-B232.
<bold>Figure S3.</bold>
Melt curves of gene products assayed by RT-qPCR demonstrate specificity and reproducibility of the qPCR reactions. Gene targets are described in Table S11.
<bold>Figure S4</bold>
. Summary of differentially expressed transcripts based on functional categorization by Mapman.
<bold>A</bold>
. cell wall modification and cell organization;
<bold>B</bold>
. transcription factors;
<bold>C</bold>
. transporters;
<bold>D</bold>
. hormone metabolism;
<bold>E</bold>
. secondary metabolism;
<bold>F</bold>
. signaling;
<bold>G</bold>
. disease resistance proteins;
<bold>H</bold>
. proteolysis;
<bold>I</bold>
. development.
<bold>Figure S5</bold>
. Leaves that were sampled for RNA-seq.
<bold>A</bold>
, healthy;
<bold>B</bold>
, CTV-B2 positive;
<bold>C</bold>
, CTV-B6 positive;
<bold>D</bold>
, CaLas-B232 positive.
<bold>Table S1</bold>
. Differentially expressed transcripts of genes with unknown functions in response to CTV-B2, CTV-B6 and CaLas-B232.
<bold>Table S2</bold>
. GO categorization of genes that were differentially expressed in response to CTV-B2, CTV-B6 and CaLas-B232.
<bold>Table S3</bold>
. GO categorization of genes that were differentially expressed in response to CTV-B2, CTV-B6 but not CaLas-B232.
<bold>Table S4</bold>
. GO categorization of genes that responded to CTV-B2 and CaLas-B232 but not CTV-B6.
<bold>Table S5</bold>
. GO categorization of genes that responded to CTV-B6 and CaLas-B232 but not CTV-B2.
<bold>Table S6</bold>
. GO categorization of genes that responded only to CTV-B2.
<bold>Table S</bold>
7. GO categorization of genes that responded only to CTV-B6.
<bold>Table S8</bold>
. GO categorization of genes that responded only to CaLas-B232.
<bold>Table S9</bold>
. Complete set of differentially expressed transcripts in response to the three pathogens.
<bold>Table S10</bold>
. Estimates of changes in gene expression (fold change) by RT-qPCR and Gfold.
<bold>Table S11</bold>
. Primers used for qRT-PCR validation of differentially expressed transcripts identified by Gfold. (ZIP 1765 kb)</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>BP</term>
<def>
<p>biological process</p>
</def>
</def-item>
<def-item>
<term>CaLas</term>
<def>
<p>
<italic>Candidatus</italic>
Liberibacter asiaticus’</p>
</def>
</def-item>
<def-item>
<term>CC</term>
<def>
<p>cellular component</p>
</def>
</def-item>
<def-item>
<term>CTV</term>
<def>
<p>
<italic>Citrus tristeza virus</italic>
</p>
</def>
</def-item>
<def-item>
<term>DET</term>
<def>
<p>differentially expressed transcript</p>
</def>
</def-item>
<def-item>
<term>FC</term>
<def>
<p>fold change</p>
</def>
</def-item>
<def-item>
<term>GO</term>
<def>
<p>Gene Ontology</p>
</def>
</def-item>
<def-item>
<term>GSEA</term>
<def>
<p>Gene Set Enrichment Analysis</p>
</def>
</def-item>
<def-item>
<term>HLB</term>
<def>
<p>huanglongbing</p>
</def>
</def-item>
<def-item>
<term>MF</term>
<def>
<p>molecular function</p>
</def>
</def-item>
<def-item>
<term>RPKM</term>
<def>
<p>Reads per KB per million</p>
</def>
</def-item>
<def-item>
<term>TF</term>
<def>
<p>transcription factor</p>
</def>
</def-item>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>SMF participated in the design of the experiments prepared RNA for sequencing, analyzed the data and drafted the manuscript; JS participated in the design of the study and carried out all statistical analyses; JSH conceived of the study and participated in its design and coordination and helped to analyze the data and draft the manuscript; JSH and CYZ revised the manuscript. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgement</title>
<p>The research was supported by China Scholarship Council, Southwest University and United States Department of Agriculture-Agricultural Research Service. The authors thank Cristina Paul for excellent plant care without which the study would not have been possible.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moreno</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ambros</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Albiach-Marti</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Guerri</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pena</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>
<italic>Citrus tristeza virus</italic>
: A pathogen that changed the course of the citrus industry</article-title>
<source>Mol Plant Pathol</source>
<year>2008</year>
<volume>9</volume>
<issue>2</issue>
<fpage>251</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2007.00455.x</pub-id>
<pub-id pub-id-type="pmid">18705856</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruiz-Ruiz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Moreno</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Guerri</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ambrós</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes</article-title>
<source>Phytopathology</source>
<year>2009</year>
<volume>99</volume>
<issue>3</issue>
<fpage>307</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-99-3-0307</pub-id>
<pub-id pub-id-type="pmid">19203284</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S.
<italic>Citrus tristeza virus</italic>
-host interactions. Front Microbiol. 2013;4.</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bové</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Huanglongbing: a destructive, newly-emerging, century-old disease of citrus</article-title>
<source>J Plant Pathol</source>
<year>2006</year>
<volume>88</volume>
<issue>1</issue>
<fpage>7</fpage>
<lpage>37</lpage>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Trivedi</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Citrus huanglongbing: a newly relevant disease presents unprecedented challenges</article-title>
<source>Phytopathology</source>
<year>2013</year>
<volume>103</volume>
<issue>7</issue>
<fpage>652</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-12-12-0331-RVW</pub-id>
<pub-id pub-id-type="pmid">23441969</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rouse</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Rehabilitation of HLB infected citrus trees using severe pruning and nutritional sprays</article-title>
<source>Proceedings of the Florida State Horticultural Society</source>
<year>2013</year>
<fpage>51</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stansly</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Arevalo</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Qureshi</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Hendricks</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Roka</surname>
<given-names>FM</given-names>
</name>
</person-group>
<article-title>Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by huanglongbing</article-title>
<source>Pest Manag Sci</source>
<year>2014</year>
<volume>70</volume>
<issue>3</issue>
<fpage>415</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1002/ps.3577</pub-id>
<pub-id pub-id-type="pmid">23666807</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hammond-Kosack</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Resistance gene-dependent plant defense responses</article-title>
<source>Plant Cell</source>
<year>1996</year>
<volume>8</volume>
<issue>10</issue>
<fpage>1773</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.8.10.1773</pub-id>
<pub-id pub-id-type="pmid">8914325</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Brlansky</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>ZG</given-names>
</name>
<name>
<surname>Gmitter</surname>
<given-names>FG</given-names>
</name>
</person-group>
<article-title>Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’</article-title>
<source>Physiol Plant</source>
<year>2011</year>
<volume>143</volume>
<issue>3</issue>
<fpage>235</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2011.01502.x</pub-id>
<pub-id pub-id-type="pmid">21838733</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrecht</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>Gene expression in
<italic>Citrus sinensis</italic>
(L.) Osbeck following infection with the bacterial pathogen ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ causing Huanglongbing in Florida</article-title>
<source>Plant Sci</source>
<year>2008</year>
<volume>175</volume>
<issue>3</issue>
<fpage>291</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1016/j.plantsci.2008.05.001</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J-S</given-names>
</name>
<name>
<surname>Sagaram</surname>
<given-names>US</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J-L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Response of sweet orange (
<italic>Citrus sinensis</italic>
) to ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ infection: microscopy and microarray analyses</article-title>
<source>Phytopathology</source>
<year>2009</year>
<volume>99</volume>
<issue>1</issue>
<fpage>50</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-99-1-0050</pub-id>
<pub-id pub-id-type="pmid">19055434</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gandía</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conesa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ancillo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gadea</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Forment</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pallás</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Flores</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Duran-Vila</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Moreno</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Guerri</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Transcriptional response of
<italic>Citrus aurantifolia</italic>
to infection by
<italic>Citrus tristeza virus</italic>
</article-title>
<source>Virology</source>
<year>2007</year>
<volume>367</volume>
<issue>2</issue>
<fpage>298</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2007.05.025</pub-id>
<pub-id pub-id-type="pmid">17617431</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gmitter</surname>
<given-names>FG</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>de Souza</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Ollitrault</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Froehlicher</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Citrus genomics</article-title>
<source>Tree Genet Genomes</source>
<year>2012</year>
<volume>8</volume>
<issue>3</issue>
<fpage>611</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1007/s11295-012-0499-2</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bright</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Association of ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on Huanglongbing-affected trees prior to appearance of foliar symptoms</article-title>
<source>Plant Pathol</source>
<year>2013</year>
<volume>63</volume>
<fpage>290</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1111/ppa.12109</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Gottwald</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Irey</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Pre-symptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with
<italic>Phytophthora spp</italic>
</article-title>
<source>Plant Dis</source>
<year>2013</year>
<volume>97</volume>
<issue>9</issue>
<fpage>1195</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/PDIS-01-13-0024-RE</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lionetti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Raiola</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Camardella</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Giovane</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Obel</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pauly</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Favaron</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cervone</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bellincampi</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by
<italic>Botrytis cinerea</italic>
</article-title>
<source>Plant Physiol</source>
<year>2007</year>
<volume>143</volume>
<issue>4</issue>
<fpage>1871</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1104/pp.106.090803</pub-id>
<pub-id pub-id-type="pmid">17277091</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Sohn</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>BK</given-names>
</name>
</person-group>
<article-title>Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance</article-title>
<source>Planta</source>
<year>2008</year>
<volume>228</volume>
<issue>1</issue>
<fpage>61</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1007/s00425-008-0719-z</pub-id>
<pub-id pub-id-type="pmid">18327607</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folimonova</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Achor</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Early events of Citrus Greening (Huanglongbing) disease development at the ultrastructural level</article-title>
<source>Phytopathology</source>
<year>2010</year>
<volume>100</volume>
<issue>9</issue>
<fpage>949</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-100-9-0949</pub-id>
<pub-id pub-id-type="pmid">20701493</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golecki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schulz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Translocation of structural P proteins in the phloem</article-title>
<source>Plant Cell Online</source>
<year>1999</year>
<volume>11</volume>
<issue>1</issue>
<fpage>127</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.11.1.127</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clay</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Adio</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Denoux</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jander</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ausubel</surname>
<given-names>FM</given-names>
</name>
</person-group>
<article-title>Glucosinolate metabolites required for an Arabidopsis innate immune response</article-title>
<source>Science</source>
<year>2009</year>
<volume>323</volume>
<issue>5910</issue>
<fpage>95</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1126/science.1164627</pub-id>
<pub-id pub-id-type="pmid">19095898</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Covington</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Ditacchio</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vollmers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Panda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Harmer</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Jumonji domain protein JMJD5 functions in both the plant and human circadian systems</article-title>
<source>Proc Natl Acad Sci</source>
<year>2010</year>
<volume>107</volume>
<issue>50</issue>
<fpage>21623</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1014204108</pub-id>
<pub-id pub-id-type="pmid">21115819</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>H-L</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Gene expression in
<italic>Citrus sinensis</italic>
fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit</article-title>
<source>J Exp Bot</source>
<year>2012</year>
<volume>63</volume>
<issue>8</issue>
<fpage>3307</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/ers070</pub-id>
<pub-id pub-id-type="pmid">22407645</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter</article-title>
<source>Plant J</source>
<year>1999</year>
<volume>18</volume>
<issue>2</issue>
<fpage>141</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313X.1999.00437.x</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Provart</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Glazebrook</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Katagiri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>H-S</given-names>
</name>
<name>
<surname>Eulgem</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mauch</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Luan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Whitham</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses</article-title>
<source>Plant Cell Online</source>
<year>2002</year>
<volume>14</volume>
<issue>3</issue>
<fpage>559</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.010410</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Borevitz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Blount</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>An extracellular aspartic protease functions in Arabidopsis disease resistance signaling</article-title>
<source>EMBO J</source>
<year>2004</year>
<volume>23</volume>
<issue>4</issue>
<fpage>980</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1038/sj.emboj.7600086</pub-id>
<pub-id pub-id-type="pmid">14765119</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yazaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>ABC transporters involved in the transport of plant secondary metabolites</article-title>
<source>FEBS Lett</source>
<year>2006</year>
<volume>580</volume>
<issue>4</issue>
<fpage>1183</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2005.12.009</pub-id>
<pub-id pub-id-type="pmid">16364309</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Padmanabhan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coffey</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Girke</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Close</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Roose</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for Citrus Huanglongbing disease</article-title>
<source>Mol Plant</source>
<year>2013</year>
<volume>6</volume>
<issue>2</issue>
<fpage>301</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1093/mp/sst002</pub-id>
<pub-id pub-id-type="pmid">23292880</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wiles</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Naider</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Stacey</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>An oligopeptide transporter gene family in Arabidopsis</article-title>
<source>Plant Physiol</source>
<year>2002</year>
<volume>128</volume>
<issue>1</issue>
<fpage>21</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1104/pp.010332</pub-id>
<pub-id pub-id-type="pmid">11788749</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delker</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stenzel</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hause</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Miersch</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Feussner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Wasternack</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Jasmonate biosynthesis in
<italic>Arabidopsis thaliana-e</italic>
nzymes, products, regulation</article-title>
<source>Plant Biol</source>
<year>2006</year>
<volume>8</volume>
<issue>3</issue>
<fpage>297</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="doi">10.1055/s-2006-923935</pub-id>
<pub-id pub-id-type="pmid">16807821</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aksenov</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Pasamontes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peirano</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dandekar</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Fiehn</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ehsani</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Detection of huanglongbing disease using differential mobility spectrometry</article-title>
<source>Anal Chem</source>
<year>2014</year>
<volume>86</volume>
<issue>5</issue>
<fpage>2481</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1021/ac403469y</pub-id>
<pub-id pub-id-type="pmid">24484549</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<mixed-citation publication-type="other">Cheung WH, Pasamontes A, Peirano DJ, Zhao W, Grafton-Cardwell EE, Kapaun T, Yokomi RK, Simmons J, Doll M, Fiehn O. Volatile organic compound (VOC) profiling of
<italic>Citrus tristeza virus</italic>
infection in sweet orange citrus varietals using thermal desorption gas chromatography time of flight mass spectrometry (TD-GC/TOF-MS). Metabolomics. 2015;11(6):1514–25.</mixed-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mafra</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Martins</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Francisco</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Ribeiro-Alves</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Freitas-Astúa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>
<italic>Candidatus</italic>
Liberibacter americanus’ induces significant reprogramming of the transcriptome of the susceptible citrus genotype</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<issue>1</issue>
<fpage>247</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-247</pub-id>
<pub-id pub-id-type="pmid">23586643</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Douglas Grubb</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zipp</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Ludwig‐Müller</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Masuno</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Molinski</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Abel</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis</article-title>
<source>Plant J</source>
<year>2004</year>
<volume>40</volume>
<issue>6</issue>
<fpage>893</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2004.02261.x</pub-id>
<pub-id pub-id-type="pmid">15584955</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McHale</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Koehl</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Michelmore</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Plant NBS-LRR proteins: adaptable guards</article-title>
<source>Genome Biol</source>
<year>2006</year>
<volume>7</volume>
<issue>4</issue>
<fpage>212</fpage>
<pub-id pub-id-type="doi">10.1186/gb-2006-7-4-212</pub-id>
<pub-id pub-id-type="pmid">16677430</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goyer</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Thiamine in plants: aspects of its metabolism and functions</article-title>
<source>Phytochemistry</source>
<year>2010</year>
<volume>71</volume>
<issue>14</issue>
<fpage>1615</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/j.phytochem.2010.06.022</pub-id>
<pub-id pub-id-type="pmid">20655074</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinelli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Uratsu</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Reagan</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Phu</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Britton</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Buffalo</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fass</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leicht</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Transcriptome profiling of citrus fruit response to Huanglongbing disease</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>5</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0038039</pub-id>
<pub-id pub-id-type="pmid">22675433</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<mixed-citation publication-type="other">Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system wheat is a component of the plant defence system. J Exp Bot. 2011;62(15):5471-83.</mixed-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrecht</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>Transcriptional response of susceptible and tolerant citrus to infection with ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’</article-title>
<source>Plant Sci</source>
<year>2012</year>
<volume>185</volume>
<fpage>118</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.plantsci.2011.09.008</pub-id>
<pub-id pub-id-type="pmid">22325873</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aritua</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Achor</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gmitter</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Albrigo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Transcriptional and microscopic analyses of citrus stem and root responses to ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ infection</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<issue>9</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0073742</pub-id>
<pub-id pub-id-type="pmid">24058486</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McClung</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Circadian rhythms in plants</article-title>
<source>Annu Rev Plant Biol</source>
<year>2001</year>
<volume>52</volume>
<issue>1</issue>
<fpage>139</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.arplant.52.1.139</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McClung</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Plant circadian rhythms</article-title>
<source>Plant Cell</source>
<year>2006</year>
<volume>18</volume>
<issue>4</issue>
<fpage>792</fpage>
<lpage>803</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.106.040980</pub-id>
<pub-id pub-id-type="pmid">16595397</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosa</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Montgomery</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Frequency-based time-series gene expression recomposition using PRIISM</article-title>
<source>BMC Syst Biol</source>
<year>2012</year>
<volume>6</volume>
<issue>1</issue>
<fpage>69</fpage>
<pub-id pub-id-type="doi">10.1186/1752-0509-6-69</pub-id>
<pub-id pub-id-type="pmid">22703599</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rikin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dillwith</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Bergman</surname>
<given-names>DK</given-names>
</name>
</person-group>
<article-title>Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings</article-title>
<source>Plant Physiol</source>
<year>1993</year>
<volume>101</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">12231662</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaffer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Landgraf</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Accerbi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wisman</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis</article-title>
<source>Plant Cell Online</source>
<year>2001</year>
<volume>13</volume>
<issue>1</issue>
<fpage>113</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.13.1.113</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gopal</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gopi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kalyani</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sreelatha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sreenivasulu</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Symptom-based diagnosis of Huanglongbing (citrus greening) disease by PCR in sweet orange (
<italic>Citrus sinensis</italic>
Osbeck) and acid lime (
<italic>Citrus aurantifolia</italic>
Swingle)</article-title>
<source>Arch Phytopathol Plant Protect</source>
<year>2010</year>
<volume>43</volume>
<issue>9</issue>
<fpage>863</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1080/03235400802021116</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kyriakou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Polycarpou</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Efstathiou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hadjinicoli</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>
<italic>Citrus tristeza virus</italic>
in Cyprus</article-title>
<source>Proc 12th Conf IOCV IOCV, Riverside: 1993</source>
<year>1993</year>
<fpage>69</fpage>
<lpage>72</lpage>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halbert</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Manjunath</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida</article-title>
<source>Fla Entomol</source>
<year>2004</year>
<volume>87</volume>
<issue>3</issue>
<fpage>330</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamichi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kusano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamashino</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sakakibara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response</article-title>
<source>Plant Cell Physiol</source>
<year>2009</year>
<volume>50</volume>
<issue>3</issue>
<fpage>447</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1093/pcp/pcp004</pub-id>
<pub-id pub-id-type="pmid">19131357</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alabadí</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Oyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yanovsky</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Harmon</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Mas</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Reciprocal regulation between TOC1 and LHY/CCA1 within the
<italic>Arabidopsis</italic>
circadian clock</article-title>
<source>Science</source>
<year>2001</year>
<volume>293</volume>
<issue>5531</issue>
<fpage>880</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="doi">10.1126/science.1061320</pub-id>
<pub-id pub-id-type="pmid">11486091</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alabadí</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yanovsky</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Más</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Harmer</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in
<italic>Arabidopsis</italic>
</article-title>
<source>Curr Biol</source>
<year>2002</year>
<volume>12</volume>
<issue>9</issue>
<fpage>757</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-9822(02)00815-1</pub-id>
<pub-id pub-id-type="pmid">12007421</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onouchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Igeño</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Périlleux</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Graves</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Coupland</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes</article-title>
<source>Plant Cell Online</source>
<year>2000</year>
<volume>12</volume>
<issue>6</issue>
<fpage>885</fpage>
<lpage>900</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.12.6.885</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lidder</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gutiérrez</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Salomé</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>McClung</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway</article-title>
<source>Plant Physiol</source>
<year>2005</year>
<volume>138</volume>
<issue>4</issue>
<fpage>2374</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1104/pp.105.060368</pub-id>
<pub-id pub-id-type="pmid">16055688</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Andriunas</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Offler</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Patrick</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>McCurdy</surname>
<given-names>DW</given-names>
</name>
</person-group>
<article-title>GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Plant J</source>
<year>2010</year>
<volume>63</volume>
<issue>4</issue>
<fpage>651</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2010.04269.x</pub-id>
<pub-id pub-id-type="pmid">20545890</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fowler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Onouchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Samach</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Coupland</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Putterill</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains</article-title>
<source>EMBO J</source>
<year>1999</year>
<volume>18</volume>
<issue>17</issue>
<fpage>4679</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/18.17.4679</pub-id>
<pub-id pub-id-type="pmid">10469647</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<mixed-citation publication-type="other">Chinnappa KSA, Nguyen TTS, Hou J, Wu Y, McCurdy DW. Phloem parenchyma transfer cells in Arabidopsis-an experimental system to identify transcriptional regulators of wall ingrowth formation. Front Plant Sci. 2013;4.</mixed-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Somers</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Choy</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Soh</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>HG</given-names>
</name>
</person-group>
<article-title>Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene</article-title>
<source>Science</source>
<year>1999</year>
<volume>285</volume>
<issue>5433</issue>
<fpage>1579</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1126/science.285.5433.1579</pub-id>
<pub-id pub-id-type="pmid">10477524</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caffall</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Mohnen</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The structure, function, and biosynthesis of plant cell wall pectic polysaccharides</article-title>
<source>Carbohydr Res</source>
<year>2009</year>
<volume>344</volume>
<issue>14</issue>
<fpage>1879</fpage>
<lpage>900</lpage>
<pub-id pub-id-type="doi">10.1016/j.carres.2009.05.021</pub-id>
<pub-id pub-id-type="pmid">19616198</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pérez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rodriguez-Carvajal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Doco</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function</article-title>
<source>Biochimie</source>
<year>2003</year>
<volume>85</volume>
<issue>1</issue>
<fpage>109</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/S0300-9084(03)00053-1</pub-id>
<pub-id pub-id-type="pmid">12765781</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hadfield</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>Polygalacturonases: many genes in search of a function</article-title>
<source>Plant Physiol</source>
<year>1998</year>
<volume>117</volume>
<issue>2</issue>
<fpage>337</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1104/pp.117.2.337</pub-id>
<pub-id pub-id-type="pmid">9625687</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Redgwell</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>MacRae</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Harker</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>In vivo and in vitro swelling of cell walls during fruit ripening</article-title>
<source>Planta</source>
<year>1997</year>
<volume>203</volume>
<issue>2</issue>
<fpage>162</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1007/s004250050178</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baumann</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Eklöf</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kallas</surname>
<given-names>ÅM</given-names>
</name>
<name>
<surname>Teeri</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Czjzek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brumer</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism</article-title>
<source>Plant Cell Online</source>
<year>2007</year>
<volume>19</volume>
<issue>6</issue>
<fpage>1947</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.107.051391</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Divol</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vilaine</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thibivilliers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kusiak</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sauge</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Dinant</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery
<italic>XTH1</italic>
and Arabidopsis
<italic>XTH33</italic>
in the phloem response to aphids</article-title>
<source>Plant Cell Environ</source>
<year>2007</year>
<volume>30</volume>
<issue>2</issue>
<fpage>187</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2006.01618.x</pub-id>
<pub-id pub-id-type="pmid">17238910</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Proksch</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fry</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaldenhoff</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The cell wall-modifying xyloglucan endotransglycosylase/hydrolase
<italic>LeXTH1</italic>
is expressed during the defence reaction of tomato against the plant parasite
<italic>Cuscuta reflexa</italic>
</article-title>
<source>Plant Biol</source>
<year>2004</year>
<volume>6</volume>
<issue>4</issue>
<fpage>402</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1055/s-2004-817959</pub-id>
<pub-id pub-id-type="pmid">15248122</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maldonado-Mendoza</surname>
<given-names>IE</given-names>
</name>
<name>
<surname>Dewbre</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Blaylock</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Expression of a xyloglucan endotransglucosylase/hydrolase gene
<italic>Mt-XTH1</italic>
from
<italic>Medicago truncatula</italic>
is induced systemically in mycorrhizal roots</article-title>
<source>Gene</source>
<year>2005</year>
<volume>345</volume>
<issue>2</issue>
<fpage>191</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.gene.2004.10.028</pub-id>
<pub-id pub-id-type="pmid">15716119</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dhugga</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Barreiro</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Whitten</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stecca</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hazebroek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Randhawa</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Dolan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kinney</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Tomes</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nichols</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<issue>5656</issue>
<fpage>363</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1126/science.1090908</pub-id>
<pub-id pub-id-type="pmid">14726589</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liepman</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Nairn</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Willats</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Sørensen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Keegstra</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants</article-title>
<source>Plant Physiol</source>
<year>2007</year>
<volume>143</volume>
<issue>4</issue>
<fpage>1881</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1104/pp.106.093989</pub-id>
<pub-id pub-id-type="pmid">17307900</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goubet</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Misrahi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Twell</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dupree</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis</article-title>
<source>Plant Physiol</source>
<year>2003</year>
<volume>131</volume>
<issue>2</issue>
<fpage>547</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1104/pp.014555</pub-id>
<pub-id pub-id-type="pmid">12586879</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doblin</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Pettolino</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Fincher</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Newbigin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bacic</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>A barley cellulose synthase-like
<italic>CSLH</italic>
gene mediates (1, 3; 1, 4)-β-D-glucan synthesis in transgenic Arabidopsis</article-title>
<source>Proc Natl Acad Sci</source>
<year>2009</year>
<volume>106</volume>
<issue>14</issue>
<fpage>5996</fpage>
<lpage>6001</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0902019106</pub-id>
<pub-id pub-id-type="pmid">19321749</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burton</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Hrmova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Shirley</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Medhurst</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Newbigin</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Bacic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fincher</surname>
<given-names>GB</given-names>
</name>
</person-group>
<article-title>Cellulose synthase-like
<italic>CslF</italic>
genes mediate the synthesis of cell wall (1, 3; 1, 4)-ß-D-glucans</article-title>
<source>Science</source>
<year>2006</year>
<volume>311</volume>
<issue>5769</issue>
<fpage>1940</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="doi">10.1126/science.1122975</pub-id>
<pub-id pub-id-type="pmid">16574868</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roudier</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Schindelman</surname>
<given-names>G</given-names>
</name>
<name>
<surname>DeSalle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Benfey</surname>
<given-names>PN</given-names>
</name>
</person-group>
<article-title>The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion</article-title>
<source>Plant Physiol</source>
<year>2002</year>
<volume>130</volume>
<issue>2</issue>
<fpage>538</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1104/pp.007468</pub-id>
<pub-id pub-id-type="pmid">12376623</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schindelman</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Morikami</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baskin</surname>
<given-names>TI</given-names>
</name>
<name>
<surname>Carpita</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Derbyshire</surname>
<given-names>P</given-names>
</name>
<name>
<surname>McCann</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Benfey</surname>
<given-names>PN</given-names>
</name>
</person-group>
<article-title>
<italic>COBRA</italic>
encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis</article-title>
<source>Genes Dev</source>
<year>2001</year>
<volume>15</volume>
<issue>9</issue>
<fpage>1115</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1101/gad.879101</pub-id>
<pub-id pub-id-type="pmid">11331607</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sedbrook</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Masson</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Somerville</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>The Arabidopsis
<italic>SKU5</italic>
gene encodes an extracellular glycosyl phosphatidylinositol–anchored glycoprotein involved in directional root growth</article-title>
<source>Plant Cell Online</source>
<year>2002</year>
<volume>14</volume>
<issue>7</issue>
<fpage>1635</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.002360</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants</article-title>
<source>Plant Cell Online</source>
<year>2003</year>
<volume>15</volume>
<issue>9</issue>
<fpage>2020</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.011775</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Read</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Northcote</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae</article-title>
<source>Planta</source>
<year>1983</year>
<volume>158</volume>
<issue>2</issue>
<fpage>119</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1007/BF00397704</pub-id>
<pub-id pub-id-type="pmid">24264540</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Owens</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Blackburn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Possible involvement of the phloem lectin in long-distance viroid movement</article-title>
<source>Mol Plant-Microbe Interact</source>
<year>2001</year>
<volume>14</volume>
<issue>7</issue>
<fpage>905</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI.2001.14.7.905</pub-id>
<pub-id pub-id-type="pmid">11437264</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gómez</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pallás</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA</article-title>
<source>J Virol</source>
<year>2004</year>
<volume>78</volume>
<issue>18</issue>
<fpage>10104</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.78.18.10104-10110.2004</pub-id>
<pub-id pub-id-type="pmid">15331743</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McNairn</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Currier</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Translocation blockage by sieve plate callose</article-title>
<source>Planta</source>
<year>1968</year>
<volume>82</volume>
<issue>4</issue>
<fpage>369</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1007/BF00386439</pub-id>
<pub-id pub-id-type="pmid">24518998</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Delauney</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Verma</surname>
<given-names>DPS</given-names>
</name>
</person-group>
<article-title>A cell plate–specific callose synthase and its interaction with phragmoplastin</article-title>
<source>Plant Cell Online</source>
<year>2001</year>
<volume>13</volume>
<issue>4</issue>
<fpage>755</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.13.4.755</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iglesias</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Meins</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Movement of plant viruses is delayed in a β-1, 3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition</article-title>
<source>Plant J</source>
<year>2000</year>
<volume>21</volume>
<issue>2</issue>
<fpage>157</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313x.2000.00658.x</pub-id>
<pub-id pub-id-type="pmid">10743656</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Musetti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Paolacci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ciaffi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tanzarella</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Polizzotto</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tubaro</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mizzau</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ermacora</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Badiani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Osler</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease</article-title>
<source>Phytopathology</source>
<year>2010</year>
<volume>100</volume>
<issue>4</issue>
<fpage>390</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-100-4-0390</pub-id>
<pub-id pub-id-type="pmid">20205543</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evans</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Briars</surname>
<given-names>S-A</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>LE</given-names>
</name>
</person-group>
<article-title>Active calcium transport by plant cell membranes</article-title>
<source>J Exp Bot</source>
<year>1991</year>
<volume>42</volume>
<issue>3</issue>
<fpage>285</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/42.3.285</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Calcium signals in root cells: the roles of plasma membrane calcium channels</article-title>
<source>Biologia</source>
<year>2004</year>
<volume>59</volume>
<issue>S13</issue>
<fpage>77</fpage>
<lpage>83</lpage>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ali</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zielinski</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Berkowitz</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Expression of plant cyclic nucleotide-gated cation channels in yeast</article-title>
<source>J Exp Bot</source>
<year>2006</year>
<volume>57</volume>
<issue>1</issue>
<fpage>125</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erj012</pub-id>
<pub-id pub-id-type="pmid">16317039</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yoshioka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Berkowitz</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Cyclic nucleotide gated channels and Ca
<sup>2+</sup>
-mediated signal transduction during plant innate immune response to pathogens</article-title>
<source>Plant Signal Behav</source>
<year>2007</year>
<volume>2</volume>
<fpage>548</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.4161/psb.2.6.4803</pub-id>
<pub-id pub-id-type="pmid">19704555</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balagué</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Alcon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Flottes</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Malmström</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Köhler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Neuhaus</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gaymard</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Roby</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide–gated channel ion channel family</article-title>
<source>Plant Cell Online</source>
<year>2003</year>
<volume>15</volume>
<issue>2</issue>
<fpage>365</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.006999</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Harmon</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Calcium-modulated proteins: targets of intracellular calcium signals in higher plants</article-title>
<source>Annu Rev Plant Biol</source>
<year>1992</year>
<volume>43</volume>
<issue>1</issue>
<fpage>375</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.pp.43.060192.002111</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Do Heo</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Chun</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>JY</given-names>
</name>
</person-group>
<article-title>Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses</article-title>
<source>Proc Natl Acad Sci</source>
<year>1999</year>
<volume>96</volume>
<issue>2</issue>
<fpage>766</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.2.766</pub-id>
<pub-id pub-id-type="pmid">9892708</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishimaru</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakanishi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nishizawa</surname>
<given-names>NK</given-names>
</name>
</person-group>
<article-title>OsZIP4, a novel zinc-regulated zinc transporter in rice</article-title>
<source>J Exp Bot</source>
<year>2005</year>
<volume>56</volume>
<issue>422</issue>
<fpage>3207</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/eri317</pub-id>
<pub-id pub-id-type="pmid">16263903</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grotz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Connolly</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Guerinot</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Eide</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency</article-title>
<source>Proc Natl Acad Sci</source>
<year>1998</year>
<volume>95</volume>
<issue>12</issue>
<fpage>7220</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.95.12.7220</pub-id>
<pub-id pub-id-type="pmid">9618566</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vahling-Armstrong</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Benyon</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Two plant bacteria,
<italic>S. meliloti</italic>
and
<italic>Ca</italic>
. Liberibacter asiaticus, share functional znuABC homologues that encode for a high affinity zinc uptake system</article-title>
<source>PLoS ONE</source>
<year>2012</year>
<volume>7</volume>
<issue>5</issue>
<fpage>e37340</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0037340</pub-id>
<pub-id pub-id-type="pmid">22655039</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hänsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mendel</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl)</article-title>
<source>Curr Opin Plant Biol</source>
<year>2009</year>
<volume>12</volume>
<issue>3</issue>
<fpage>259</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1016/j.pbi.2009.05.006</pub-id>
<pub-id pub-id-type="pmid">19524482</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hernick</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fierke</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Zinc hydrolases: the mechanisms of zinc-dependent deacetylases</article-title>
<source>Arch Biochem Biophys</source>
<year>2005</year>
<volume>433</volume>
<issue>1</issue>
<fpage>71</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/j.abb.2004.08.006</pub-id>
<pub-id pub-id-type="pmid">15581567</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<mixed-citation publication-type="other">Merhej V, Georgiades K, Raoult D. Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics. 2013;12:291–304.</mixed-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinelli</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Reagan</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Uratsu</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Phu</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Dandekar</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Gene regulatory networks elucidating huanglongbing disease mechanisms</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<issue>9</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0074256</pub-id>
<pub-id pub-id-type="pmid">24086326</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seo</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>J-J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y-H</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y-W</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Do Choi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses</article-title>
<source>Proc Natl Acad Sci</source>
<year>2001</year>
<volume>98</volume>
<issue>8</issue>
<fpage>4788</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.081557298</pub-id>
<pub-id pub-id-type="pmid">11287667</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodrigues</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>de Souza</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Takita</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Kishi</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>RNA-Seq analysis of
<italic>Citrus reticulata</italic>
in the early stages of
<italic>Xylella fastidiosa</italic>
infection reveals auxin-related genes as a defense response</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<issue>1</issue>
<fpage>676</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-676</pub-id>
<pub-id pub-id-type="pmid">24090429</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Expression profiles of the
<italic>Arabidopsis</italic>
WRKY gene superfamily during plant defense response</article-title>
<source>Plant Mol Biol</source>
<year>2003</year>
<volume>51</volume>
<issue>1</issue>
<fpage>21</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1023/A:1020780022549</pub-id>
<pub-id pub-id-type="pmid">12602888</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brader</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Palva</surname>
<given-names>ET</given-names>
</name>
</person-group>
<article-title>The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense</article-title>
<source>Plant Cell Online</source>
<year>2004</year>
<volume>16</volume>
<issue>2</issue>
<fpage>319</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.016980</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance</article-title>
<source>Mol Plant</source>
<year>2008</year>
<volume>1</volume>
<issue>3</issue>
<fpage>538</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">19825559</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>RN</given-names>
</name>
<name>
<surname>Wallsgrove</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Secondary metabolites in plant defence mechanisms</article-title>
<source>New Phytol</source>
<year>1994</year>
<volume>127</volume>
<issue>4</issue>
<fpage>617</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.1994.tb02968.x</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Damme</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huibers</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Elberse</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Van den Ackerveken</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Arabidopsis
<italic>DMR6</italic>
encodes a putative 2OG-Fe (II) oxygenase that is defense-associated but required for susceptibility to downy mildew</article-title>
<source>Plant J</source>
<year>2008</year>
<volume>54</volume>
<issue>5</issue>
<fpage>785</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2008.03427.x</pub-id>
<pub-id pub-id-type="pmid">18248595</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Croteau</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kutchan</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>Natural products (secondary metabolites)</article-title>
<source>Biochem Mol Biol Plants</source>
<year>2000</year>
<volume>24</volume>
<fpage>1250</fpage>
<lpage>319</lpage>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<mixed-citation publication-type="other">Harborne JB. Introduction to ecological biochemistry 4th edition. Academic Press; 1994. ISBN 9780080918594.</mixed-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis</article-title>
<source>Plant Mol Biol</source>
<year>2004</year>
<volume>56</volume>
<issue>2</issue>
<fpage>271</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1007/s11103-004-3381-2</pub-id>
<pub-id pub-id-type="pmid">15604743</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lange</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Z-P</given-names>
</name>
<name>
<surname>Broughton</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Vögeli-Lange</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Boller</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors</article-title>
<source>Plant Sci</source>
<year>1999</year>
<volume>142</volume>
<issue>2</issue>
<fpage>133</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1016/S0168-9452(99)00006-0</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bradshaw</surname>
<given-names>HD</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Hollick</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
<volume>14</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1007/BF00015654</pub-id>
<pub-id pub-id-type="pmid">2101311</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wüthrich</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Bovet</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hunziker</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Donnison</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Hörtensteiner</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism</article-title>
<source>Plant J</source>
<year>2000</year>
<volume>21</volume>
<issue>2</issue>
<fpage>189</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-313x.2000.00667.x</pub-id>
<pub-id pub-id-type="pmid">10743659</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenberg</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Klessig</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Ausubel</surname>
<given-names>FM</given-names>
</name>
</person-group>
<article-title>Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions</article-title>
<source>Cell</source>
<year>1994</year>
<volume>77</volume>
<issue>4</issue>
<fpage>551</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90217-8</pub-id>
<pub-id pub-id-type="pmid">8187175</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mach</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Castillo</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Hoogstraten</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>The Arabidopsis-accelerated cell death gene
<italic>ACD2</italic>
encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms</article-title>
<source>Proc Natl Acad Sci</source>
<year>2001</year>
<volume>98</volume>
<issue>2</issue>
<fpage>771</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.98.2.771</pub-id>
<pub-id pub-id-type="pmid">11149948</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hartung</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Achor</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brlansky</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Colonization of Dodder,
<italic>Cuscuta indecora</italic>
, by ‘
<italic>Candidatus</italic>
Liberibacter asiaticus’ and ‘
<italic>Ca.</italic>
L americanus’</article-title>
<source>Phytopathology</source>
<year>2010</year>
<volume>100</volume>
<issue>8</issue>
<fpage>756</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-100-8-0756</pub-id>
<pub-id pub-id-type="pmid">20626279</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Hartung</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Quantitative real-time PCR for detection and identification of ‘
<italic>Candidatus Liberibacter</italic>
’ species associated with citrus huanglongbing</article-title>
<source>J Microbiol Methods</source>
<year>2006</year>
<volume>66</volume>
<issue>1</issue>
<fpage>104</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1016/j.mimet.2005.10.018</pub-id>
<pub-id pub-id-type="pmid">16414133</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ananthakrishnan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hartung</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Brlansky</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Development and application of a multiplex reverse-transcription polymerase chain reaction assay for screening a global collection of
<italic>Citrus tristeza virus</italic>
isolates</article-title>
<source>Phytopathology</source>
<year>2010</year>
<volume>100</volume>
<issue>10</issue>
<fpage>1077</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-04-10-0102</pub-id>
<pub-id pub-id-type="pmid">20839943</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schroeder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Stocker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Salowsky</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Leiber</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gassmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lightfoot</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menzel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Granzow</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ragg</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The RIN: an RNA integrity number for assigning integrity values to RNA measurements</article-title>
<source>BMC Mol Biol</source>
<year>2006</year>
<volume>7</volume>
<issue>1</issue>
<fpage>3</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2199-7-3</pub-id>
<pub-id pub-id-type="pmid">16448564</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>XS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data</article-title>
<source>Bioinformatics</source>
<year>2012</year>
<volume>28</volume>
<issue>21</issue>
<fpage>2782</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/bts515</pub-id>
<pub-id pub-id-type="pmid">22923299</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>PlantGSEA: a gene set enrichment analysis toolkit for plant community</article-title>
<source>Nucleic Acids Res</source>
<year>2013</year>
<volume>41</volume>
<issue>W1</issue>
<fpage>W98</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt281</pub-id>
<pub-id pub-id-type="pmid">23632162</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thimm</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Bläsing</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Gibon</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nagel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krüger</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Selbig</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Rhee</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Stitt</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>mapman: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes</article-title>
<source>Plant J</source>
<year>2004</year>
<volume>37</volume>
<issue>6</issue>
<fpage>914</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2004.02016.x</pub-id>
<pub-id pub-id-type="pmid">14996223</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Livak</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Schmittgen</surname>
<given-names>TD</given-names>
</name>
</person-group>
<article-title>Analysis of relative gene expression data using real-time quantitative PCR and the 2
<sup>−ΔΔCT</sup>
method</article-title>
<source>Methods</source>
<year>2001</year>
<volume>25</volume>
<issue>4</issue>
<fpage>402</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1006/meth.2001.1262</pub-id>
<pub-id pub-id-type="pmid">11846609</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000605 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000605 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4865098
   |texte=   Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27169471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024