Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000599 ( Pmc/Corpus ); précédent : 0005989; suivant : 0005A00 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast
<italic>Kloeckera apiculata</italic>
and its active compounds</title>
<author>
<name sortKey="Liu, Pu" sort="Liu, Pu" uniqKey="Liu P" first="Pu" last="Liu">Pu Liu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036 P. R. China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Kai" sort="Chen, Kai" uniqKey="Chen K" first="Kai" last="Chen">Kai Chen</name>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Guofeng" sort="Li, Guofeng" uniqKey="Li G" first="Guofeng" last="Li">Guofeng Li</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaoping" sort="Yang, Xiaoping" uniqKey="Yang X" first="Xiaoping" last="Yang">Xiaoping Yang</name>
<affiliation>
<nlm:aff id="Aff3">Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, 430064 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Chao An" sort="Long, Chao An" uniqKey="Long C" first="Chao-An" last="Long">Chao-An Long</name>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26725242</idno>
<idno type="pmc">4698812</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698812</idno>
<idno type="RBID">PMC:4698812</idno>
<idno type="doi">10.1186/s12864-015-2333-3</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000599</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast
<italic>Kloeckera apiculata</italic>
and its active compounds</title>
<author>
<name sortKey="Liu, Pu" sort="Liu, Pu" uniqKey="Liu P" first="Pu" last="Liu">Pu Liu</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036 P. R. China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Kai" sort="Chen, Kai" uniqKey="Chen K" first="Kai" last="Chen">Kai Chen</name>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Guofeng" sort="Li, Guofeng" uniqKey="Li G" first="Guofeng" last="Li">Guofeng Li</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaoping" sort="Yang, Xiaoping" uniqKey="Yang X" first="Xiaoping" last="Yang">Xiaoping Yang</name>
<affiliation>
<nlm:aff id="Aff3">Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, 430064 P. R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Chao An" sort="Long, Chao An" uniqKey="Long C" first="Chao-An" last="Long">Chao-An Long</name>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>The yeast
<italic>Kloeckera apiculata</italic>
strain 34–9 is an antagonist that shows biological control activity against the postharvest fungal pathogens of citrus. An antifungal compound, 2-phenylethanol (PEA), has been identified from the extract of
<italic>K. apiculata</italic>
. To better understand the molecular processes underlying the response of citrus fruit tissue to
<italic>K. apiculata</italic>
, the extract and PEA, microarray analyses were performed on navel oranges using an Affymetrix Citrus GeneChip.</p>
</sec>
<sec>
<title>Results</title>
<p>As many as 801, 339 and 608 differentially expressed genes (DEGs) were identified after the application of
<italic>K. apiculata,</italic>
the extract and PEA, respectively. In general,
<italic>K. apiculata</italic>
induced the expression of defence-related genes. In addition to chitinase and β-1,3-glucanase, genes involved in ethylene (ET), jasmonic acid (JA), calcium signalling, MAPK signalling and phenylalanine metabolism were induced. In contrast, monodehydroascorbate reductase, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and carotenoid biosynthesis genes were down-regulated. The expression profiles for the extract- and PEA-treated samples were similar to that found for yeast (sharing 57.4 % DEGs), with a significant increase in the transcript levels of defence-related genes.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>This study provides a global picture of the gene expression changes in navel oranges after the application of the antagonist yeast
<italic>K. apiculata</italic>
, its extract and PEA. The interpretation of the DEGs revealed new insight into the molecular processes that regulate the defence responses in orange tissue.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-015-2333-3) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Janisiewicz, Wj" uniqKey="Janisiewicz W">WJ Janisiewicz</name>
</author>
<author>
<name sortKey="Korsten, L" uniqKey="Korsten L">L Korsten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Droby, S" uniqKey="Droby S">S Droby</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M Wisniewski</name>
</author>
<author>
<name sortKey="Macarisin, D" uniqKey="Macarisin D">D Macarisin</name>
</author>
<author>
<name sortKey="Wilson, C" uniqKey="Wilson C">C Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, Rr" uniqKey="Sharma R">RR Sharma</name>
</author>
<author>
<name sortKey="Singh, D" uniqKey="Singh D">D Singh</name>
</author>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jamalizadeh, M" uniqKey="Jamalizadeh M">M Jamalizadeh</name>
</author>
<author>
<name sortKey="Etebarian, Hr" uniqKey="Etebarian H">HR Etebarian</name>
</author>
<author>
<name sortKey="Aminian, H" uniqKey="Aminian H">H Aminian</name>
</author>
<author>
<name sortKey="Alizadeh, A" uniqKey="Alizadeh A">A Alizadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, Ca" uniqKey="Long C">CA Long</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Deng, Bx" uniqKey="Deng B">BX Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez Candelas, L" uniqKey="Gonzalez Candelas L">L González-Candelas</name>
</author>
<author>
<name sortKey="Alamar, S" uniqKey="Alamar S">S Alamar</name>
</author>
<author>
<name sortKey="Sanchez Torres, P" uniqKey="Sanchez Torres P">P Sánchez-Torres</name>
</author>
<author>
<name sortKey="Zacarias, L" uniqKey="Zacarias L">L Zacarías</name>
</author>
<author>
<name sortKey="Marcos, Jf" uniqKey="Marcos J">JF Marcos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P Liu</name>
</author>
<author>
<name sortKey="Luo, L" uniqKey="Luo L">L Luo</name>
</author>
<author>
<name sortKey="Long, Ca" uniqKey="Long C">CA Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arras, G" uniqKey="Arras G">G Arras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodov, V" uniqKey="Rodov V">V Rodov</name>
</author>
<author>
<name sortKey="Ben Yehoshua, S" uniqKey="Ben Yehoshua S">S Ben-Yehoshua</name>
</author>
<author>
<name sortKey="D Allewin, S" uniqKey="D Allewin S">S D’hallewin</name>
</author>
<author>
<name sortKey="Castia, T" uniqKey="Castia T">T Castia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nantawanit, N" uniqKey="Nantawanit N">N Nantawanit</name>
</author>
<author>
<name sortKey="Chanchaichaovivat, A" uniqKey="Chanchaichaovivat A">A Chanchaichaovivat</name>
</author>
<author>
<name sortKey="Panijpan, B" uniqKey="Panijpan B">B Panijpan</name>
</author>
<author>
<name sortKey="Ruenwongsa, P" uniqKey="Ruenwongsa P">P Ruenwongsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ippolito, A" uniqKey="Ippolito A">A Ippolito</name>
</author>
<author>
<name sortKey="Ei Ghaouth, A" uniqKey="Ei Ghaouth A">A EI Ghaouth</name>
</author>
<author>
<name sortKey="Wilson, Cl" uniqKey="Wilson C">CL Wilson</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M Wisniewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Ghaouth, A" uniqKey="El Ghaouth A">A El Ghaouth</name>
</author>
<author>
<name sortKey="Wilson, Cl" uniqKey="Wilson C">CL Wilson</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M Wisniewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Lf" uniqKey="Lu L">LF Lu</name>
</author>
<author>
<name sortKey="Lu, Hp" uniqKey="Lu H">HP Lu</name>
</author>
<author>
<name sortKey="Wu, Cq" uniqKey="Wu C">CQ Wu</name>
</author>
<author>
<name sortKey="Fang, Ww" uniqKey="Fang W">WW Fang</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C Yu</name>
</author>
<author>
<name sortKey="Ye, Cz" uniqKey="Ye C">CZ Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Bt" uniqKey="Xu B">BT Xu</name>
</author>
<author>
<name sortKey="Zhang, Hy" uniqKey="Zhang H">HY Zhang</name>
</author>
<author>
<name sortKey="Chen, Kp" uniqKey="Chen K">KP Chen</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Gao, H" uniqKey="Gao H">H Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, Sp" uniqKey="Tian S">SP Tian</name>
</author>
<author>
<name sortKey="Qin, Gz" uniqKey="Qin G">GZ Qin</name>
</author>
<author>
<name sortKey="Li, Bq" uniqKey="Li B">BQ Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castoria, R" uniqKey="Castoria R">R Castoria</name>
</author>
<author>
<name sortKey="Caputo, L" uniqKey="Caputo L">L Caputo</name>
</author>
<author>
<name sortKey="De Curtis, F" uniqKey="De Curtis F">F De Curtis</name>
</author>
<author>
<name sortKey="De Cicco, V" uniqKey="De Cicco V">V De Cicco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macarisin, D" uniqKey="Macarisin D">D Macarisin</name>
</author>
<author>
<name sortKey="Droby, S" uniqKey="Droby S">S Droby</name>
</author>
<author>
<name sortKey="Bauchan, G" uniqKey="Bauchan G">G Bauchan</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M Wisniewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
<author>
<name sortKey="Zhou, Yh" uniqKey="Zhou Y">YH Zhou</name>
</author>
<author>
<name sortKey="Zeng, Kf" uniqKey="Zeng K">KF Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prusky, D" uniqKey="Prusky D">D Prusky</name>
</author>
<author>
<name sortKey="Mcevoy, Jl" uniqKey="Mcevoy J">JL McEvoy</name>
</author>
<author>
<name sortKey="Saftner, R" uniqKey="Saftner R">R Saftner</name>
</author>
<author>
<name sortKey="Conway, Ws" uniqKey="Conway W">WS Conway</name>
</author>
<author>
<name sortKey="Jones, R" uniqKey="Jones R">R Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barad, S" uniqKey="Barad S">S Barad</name>
</author>
<author>
<name sortKey="Horowitz, Sb" uniqKey="Horowitz S">SB Horowitz</name>
</author>
<author>
<name sortKey="Moscovitz, O" uniqKey="Moscovitz O">O Moscovitz</name>
</author>
<author>
<name sortKey="Lichter, A" uniqKey="Lichter A">A Lichter</name>
</author>
<author>
<name sortKey="Sherman, A" uniqKey="Sherman A">A Sherman</name>
</author>
<author>
<name sortKey="Prusky, D" uniqKey="Prusky D">D Prusky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eshel, D" uniqKey="Eshel D">D Eshel</name>
</author>
<author>
<name sortKey="Miyara, I" uniqKey="Miyara I">I Miyara</name>
</author>
<author>
<name sortKey="Ailing, T" uniqKey="Ailing T">T Ailing</name>
</author>
<author>
<name sortKey="Dinoor, A" uniqKey="Dinoor A">A Dinoor</name>
</author>
<author>
<name sortKey="Prusky, D" uniqKey="Prusky D">D Prusky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macarisin, D" uniqKey="Macarisin D">D Macarisin</name>
</author>
<author>
<name sortKey="Cohen, L" uniqKey="Cohen L">L Cohen</name>
</author>
<author>
<name sortKey="Eick, A" uniqKey="Eick A">A Eick</name>
</author>
<author>
<name sortKey="Rafael, G" uniqKey="Rafael G">G Rafael</name>
</author>
<author>
<name sortKey="Belausov, E" uniqKey="Belausov E">E Belausov</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M Wisniewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyara, I" uniqKey="Miyara I">I Miyara</name>
</author>
<author>
<name sortKey="Shafran, H" uniqKey="Shafran H">H Shafran</name>
</author>
<author>
<name sortKey="Davidzon, M" uniqKey="Davidzon M">M Davidzon</name>
</author>
<author>
<name sortKey="Sherman, A" uniqKey="Sherman A">A Sherman</name>
</author>
<author>
<name sortKey="Prusky, D" uniqKey="Prusky D">D Prusky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mauch Mani, B" uniqKey="Mauch Mani B">B Mauch-Mani</name>
</author>
<author>
<name sortKey="Mauch, F" uniqKey="Mauch F">F Mauch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Wei, T" uniqKey="Wei T">T Wei</name>
</author>
<author>
<name sortKey="Yin, Kq" uniqKey="Yin K">KQ Yin</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Gu, H" uniqKey="Gu H">H Gu</name>
</author>
<author>
<name sortKey="Qu, L" uniqKey="Qu L">L Qu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koornneef, A" uniqKey="Koornneef A">A Koornneef</name>
</author>
<author>
<name sortKey="Pieterse, Cmj" uniqKey="Pieterse C">CMJ Pieterse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Droby, S" uniqKey="Droby S">S Droby</name>
</author>
<author>
<name sortKey="Vinokur, V" uniqKey="Vinokur V">V Vinokur</name>
</author>
<author>
<name sortKey="Weiss, B" uniqKey="Weiss B">B Weiss</name>
</author>
<author>
<name sortKey="Cohen, L" uniqKey="Cohen L">L Cohen</name>
</author>
<author>
<name sortKey="Daus, A" uniqKey="Daus A">A Daus</name>
</author>
<author>
<name sortKey="Golaschmidt, Ee" uniqKey="Golaschmidt E">EE Golaschmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Hj" uniqKey="Yao H">HJ Yao</name>
</author>
<author>
<name sortKey="Tian, Sp" uniqKey="Tian S">SP Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, T" uniqKey="Yu T">T Yu</name>
</author>
<author>
<name sortKey="Chen, Js" uniqKey="Chen J">JS Chen</name>
</author>
<author>
<name sortKey="Chen, Rl" uniqKey="Chen R">RL Chen</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B Huang</name>
</author>
<author>
<name sortKey="Liu, Dh" uniqKey="Liu D">DH Liu</name>
</author>
<author>
<name sortKey="Zheng, Xd" uniqKey="Zheng X">XD Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Sf" uniqKey="Cao S">SF Cao</name>
</author>
<author>
<name sortKey="Zheng, Yh" uniqKey="Zheng Y">YH Zheng</name>
</author>
<author>
<name sortKey="Wang, Kt" uniqKey="Wang K">KT Wang</name>
</author>
<author>
<name sortKey="Tang, Ss" uniqKey="Tang S">SS Tang</name>
</author>
<author>
<name sortKey="Rui, Hj" uniqKey="Rui H">HJ Rui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gimenez Ibanez, S" uniqKey="Gimenez Ibanez S">S Gimenez-Ibanez</name>
</author>
<author>
<name sortKey="Solano, R" uniqKey="Solano R">R Solano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shoresh, M" uniqKey="Shoresh M">M Shoresh</name>
</author>
<author>
<name sortKey="Harman, Ge" uniqKey="Harman G">GE Harman</name>
</author>
<author>
<name sortKey="Mastouri, F" uniqKey="Mastouri F">F Mastouri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, A" uniqKey="Zhu A">A Zhu</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Ye, J" uniqKey="Ye J">J Ye</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, Gz" uniqKey="Qin G">GZ Qin</name>
</author>
<author>
<name sortKey="Wang, Yy" uniqKey="Wang Y">YY Wang</name>
</author>
<author>
<name sortKey="Cao, Bh" uniqKey="Cao B">BH Cao</name>
</author>
<author>
<name sortKey="Wang, Wh" uniqKey="Wang W">WH Wang</name>
</author>
<author>
<name sortKey="Tian, Sp" uniqKey="Tian S">SP Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, K" uniqKey="Yu K">K Yu</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Da, X" uniqKey="Da X">X Da</name>
</author>
<author>
<name sortKey="Guo, F" uniqKey="Guo F">F Guo</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Deng, X" uniqKey="Deng X">X Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, Z" uniqKey="Yun Z">Z Yun</name>
</author>
<author>
<name sortKey="Gao, Hj" uniqKey="Gao H">HJ Gao</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P Liu</name>
</author>
<author>
<name sortKey="Liu, Sz" uniqKey="Liu S">SZ Liu</name>
</author>
<author>
<name sortKey="Luo, T" uniqKey="Luo T">T Luo</name>
</author>
<author>
<name sortKey="Jin, S" uniqKey="Jin S">S Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, Zl" uniqKey="Zheng Z">ZL Zheng</name>
</author>
<author>
<name sortKey="Zhao, Yh" uniqKey="Zhao Y">YH Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Z" uniqKey="Chan Z">Z Chan</name>
</author>
<author>
<name sortKey="Qin, G" uniqKey="Qin G">G Qin</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B Li</name>
</author>
<author>
<name sortKey="Tian, S" uniqKey="Tian S">S Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, F" uniqKey="Jiang F">F Jiang</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X Zheng</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hershkovitz, V" uniqKey="Hershkovitz V">V Hershkovitz</name>
</author>
<author>
<name sortKey="Ben Dayan, C" uniqKey="Ben Dayan C">C Ben-Dayan</name>
</author>
<author>
<name sortKey="Raphael, G" uniqKey="Raphael G">G Raphael</name>
</author>
<author>
<name sortKey="Pasmanik Chor, M" uniqKey="Pasmanik Chor M">M Pasmanik-Chor</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Belausov, E" uniqKey="Belausov E">E Belausov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hershkovitz, V" uniqKey="Hershkovitz V">V Hershkovitz</name>
</author>
<author>
<name sortKey="Sela, N" uniqKey="Sela N">N Sela</name>
</author>
<author>
<name sortKey="Taha Salaime, L" uniqKey="Taha Salaime L">L Taha-Salaime</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Rafael, G" uniqKey="Rafael G">G Rafael</name>
</author>
<author>
<name sortKey="Kessler, C" uniqKey="Kessler C">C Kessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P Liu</name>
</author>
<author>
<name sortKey="Cheng, Yj" uniqKey="Cheng Y">YJ Cheng</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Liu, Yj" uniqKey="Liu Y">YJ Liu</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Long, Ca" uniqKey="Long C">CA Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizutani, M" uniqKey="Mizutani M">M Mizutani</name>
</author>
<author>
<name sortKey="Ohta, D" uniqKey="Ohta D">D Ohta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guttikonda, Sk" uniqKey="Guttikonda S">SK Guttikonda</name>
</author>
<author>
<name sortKey="Trupti, J" uniqKey="Trupti J">J Trupti</name>
</author>
<author>
<name sortKey="Bisht, Nc" uniqKey="Bisht N">NC Bisht</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="An, Yqc" uniqKey="An Y">YQC An</name>
</author>
<author>
<name sortKey="Pandey, S" uniqKey="Pandey S">S Pandey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kushiro, T" uniqKey="Kushiro T">T Kushiro</name>
</author>
<author>
<name sortKey="Okamoto, M" uniqKey="Okamoto M">M Okamoto</name>
</author>
<author>
<name sortKey="Nakabayashi, K" uniqKey="Nakabayashi K">K Nakabayashi</name>
</author>
<author>
<name sortKey="Yamagishi, K" uniqKey="Yamagishi K">K Yamagishi</name>
</author>
<author>
<name sortKey="Kitamura, S" uniqKey="Kitamura S">S Kitamura</name>
</author>
<author>
<name sortKey="Asami, T" uniqKey="Asami T">T Asami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Loon, Lc" uniqKey="Van Loon L">LC Van Loon</name>
</author>
<author>
<name sortKey="Rep, M" uniqKey="Rep M">M Rep</name>
</author>
<author>
<name sortKey="Pieterse, Cmj" uniqKey="Pieterse C">CMJ Pieterse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Xz" uniqKey="Fu X">XZ Fu</name>
</author>
<author>
<name sortKey="Chen, Cw" uniqKey="Chen C">CW Chen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Liu, Jh" uniqKey="Liu J">JH Liu</name>
</author>
<author>
<name sortKey="Moriguchi, T" uniqKey="Moriguchi T">T Moriguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, C" uniqKey="Feng C">C Feng</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Xu, Cj" uniqKey="Xu C">CJ Xu</name>
</author>
<author>
<name sortKey="Bai, L" uniqKey="Bai L">L Bai</name>
</author>
<author>
<name sortKey="Yin, Xr" uniqKey="Yin X">XR Yin</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Xz" uniqKey="Fu X">XZ Fu</name>
</author>
<author>
<name sortKey="Gong, Xq" uniqKey="Gong X">XQ Gong</name>
</author>
<author>
<name sortKey="Zhang, Yx" uniqKey="Zhang Y">YX Zhang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Liu, Jh" uniqKey="Liu J">JH Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zamboni, A" uniqKey="Zamboni A">A Zamboni</name>
</author>
<author>
<name sortKey="Zanin, L" uniqKey="Zanin L">L Zanin</name>
</author>
<author>
<name sortKey="Tomasi, N" uniqKey="Tomasi N">N Tomasi</name>
</author>
<author>
<name sortKey="Pezzotti, M" uniqKey="Pezzotti M">M Pezzotti</name>
</author>
<author>
<name sortKey="Pinton, R" uniqKey="Pinton R">R Pinton</name>
</author>
<author>
<name sortKey="Varanini, Z" uniqKey="Varanini Z">Z Varanini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballester, Ar" uniqKey="Ballester A">AR Ballester</name>
</author>
<author>
<name sortKey="Lafuente, Mt" uniqKey="Lafuente M">MT Lafuente</name>
</author>
<author>
<name sortKey="Forment, J" uniqKey="Forment J">J Forment</name>
</author>
<author>
<name sortKey="Gadea, J" uniqKey="Gadea J">J Gadea</name>
</author>
<author>
<name sortKey="De Vos, Rch" uniqKey="De Vos R">RCH De Vos</name>
</author>
<author>
<name sortKey="Bovy, Ag" uniqKey="Bovy A">AG Bovy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiwari, Bs" uniqKey="Tiwari B">BS Tiwari</name>
</author>
<author>
<name sortKey="Belenghi, B" uniqKey="Belenghi B">B Belenghi</name>
</author>
<author>
<name sortKey="Levine, A" uniqKey="Levine A">A Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K Yang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieterse, Cmj" uniqKey="Pieterse C">CMJ Pieterse</name>
</author>
<author>
<name sortKey="Leon Reyes, A" uniqKey="Leon Reyes A">A Leon-Reyes</name>
</author>
<author>
<name sortKey="Van Der Ent, S" uniqKey="Van Der Ent S">S Van der Ent</name>
</author>
<author>
<name sortKey="Van Wees, Scm" uniqKey="Van Wees S">SCM Van Wees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieterse, Cmj" uniqKey="Pieterse C">CMJ Pieterse</name>
</author>
<author>
<name sortKey="Van Der Does, D" uniqKey="Van Der Does D">D Van der Does</name>
</author>
<author>
<name sortKey="Zamioudis, C" uniqKey="Zamioudis C">C Zamioudis</name>
</author>
<author>
<name sortKey="Leon Reyes, A" uniqKey="Leon Reyes A">A Leon-Reyes</name>
</author>
<author>
<name sortKey="Van Wees, Scm" uniqKey="Van Wees S">SCM Van Wees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loreti, E" uniqKey="Loreti E">E Loreti</name>
</author>
<author>
<name sortKey="Povero, G" uniqKey="Povero G">G Povero</name>
</author>
<author>
<name sortKey="Novi, G" uniqKey="Novi G">G Novi</name>
</author>
<author>
<name sortKey="Solfanelli, C" uniqKey="Solfanelli C">C Solfanelli</name>
</author>
<author>
<name sortKey="Alpi, A" uniqKey="Alpi A">A Alpi</name>
</author>
<author>
<name sortKey="Perata, P" uniqKey="Perata P">P Perata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, S" uniqKey="Song S">S Song</name>
</author>
<author>
<name sortKey="Qi, T" uniqKey="Qi T">T Qi</name>
</author>
<author>
<name sortKey="Huang, H" uniqKey="Huang H">H Huang</name>
</author>
<author>
<name sortKey="Ren, Q" uniqKey="Ren Q">Q Ren</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="An, D" uniqKey="An D">D An</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serrano, M" uniqKey="Serrano M">M Serrano</name>
</author>
<author>
<name sortKey="Martinez Madrid, Mc" uniqKey="Martinez Madrid M">MC Martinez-Madrid</name>
</author>
<author>
<name sortKey="Romojaro, F" uniqKey="Romojaro F">F Romojaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tieman, Dm" uniqKey="Tieman D">DM Tieman</name>
</author>
<author>
<name sortKey="Loucas, Hm" uniqKey="Loucas H">HM Loucas</name>
</author>
<author>
<name sortKey="Kim, Jy" uniqKey="Kim J">JY Kim</name>
</author>
<author>
<name sortKey="Clark, Dg" uniqKey="Clark D">DG Clark</name>
</author>
<author>
<name sortKey="Klee, Hj" uniqKey="Klee H">HJ Klee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walter, S" uniqKey="Walter S">S Walter</name>
</author>
<author>
<name sortKey="Nicholson, P" uniqKey="Nicholson P">P Nicholson</name>
</author>
<author>
<name sortKey="Doohan, Fm" uniqKey="Doohan F">FM Doohan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yz" uniqKey="Liu Y">YZ Liu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Tao, Ng" uniqKey="Tao N">NG Tao</name>
</author>
<author>
<name sortKey="Deng, Xx" uniqKey="Deng X">XX Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brazma, A" uniqKey="Brazma A">A Brazma</name>
</author>
<author>
<name sortKey="Hingamp, P" uniqKey="Hingamp P">P Hingamp</name>
</author>
<author>
<name sortKey="Quackenbush, J" uniqKey="Quackenbush J">J Quackenbush</name>
</author>
<author>
<name sortKey="Sherlock, G" uniqKey="Sherlock G">G Sherlock</name>
</author>
<author>
<name sortKey="Spellman, P" uniqKey="Spellman P">P Spellman</name>
</author>
<author>
<name sortKey="Stoeckert, C" uniqKey="Stoeckert C">C Stoeckert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallego Giraldo, L" uniqKey="Gallego Giraldo L">L Gallego-Giraldo</name>
</author>
<author>
<name sortKey="Jikumaru, Y" uniqKey="Jikumaru Y">Y Jikumaru</name>
</author>
<author>
<name sortKey="Kamiya, Y" uniqKey="Kamiya Y">Y Kamiya</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
<author>
<name sortKey="Dixon, Ra" uniqKey="Dixon R">RA Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, Jw" uniqKey="Yan J">JW Yan</name>
</author>
<author>
<name sortKey="Yuan, Fr" uniqKey="Yuan F">FR Yuan</name>
</author>
<author>
<name sortKey="Long, Gy" uniqKey="Long G">GY Long</name>
</author>
<author>
<name sortKey="Qin, L" uniqKey="Qin L">L Qin</name>
</author>
<author>
<name sortKey="Deng, Zn" uniqKey="Deng Z">ZN Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syros, T" uniqKey="Syros T">T Syros</name>
</author>
<author>
<name sortKey="Yupsanis, T" uniqKey="Yupsanis T">T Yupsanis</name>
</author>
<author>
<name sortKey="Zafiriadis, H" uniqKey="Zafiriadis H">H Zafiriadis</name>
</author>
<author>
<name sortKey="Economou, A" uniqKey="Economou A">A Economou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jh" uniqKey="Liu J">JH Liu</name>
</author>
<author>
<name sortKey="Moriguchi, T" uniqKey="Moriguchi T">T Moriguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
<author>
<name sortKey="Fu, Xz" uniqKey="Fu X">XZ Fu</name>
</author>
<author>
<name sortKey="Peng, T" uniqKey="Peng T">T Peng</name>
</author>
<author>
<name sortKey="Huang, Xs" uniqKey="Huang X">XS Huang</name>
</author>
<author>
<name sortKey="Fan, Qj" uniqKey="Fan Q">QJ Fan</name>
</author>
<author>
<name sortKey="Liu, Jh" uniqKey="Liu J">JH Liu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Genomics</journal-id>
<journal-title-group>
<journal-title>BMC Genomics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26725242</article-id>
<article-id pub-id-type="pmc">4698812</article-id>
<article-id pub-id-type="publisher-id">2333</article-id>
<article-id pub-id-type="doi">10.1186/s12864-015-2333-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast
<italic>Kloeckera apiculata</italic>
and its active compounds</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Pu</given-names>
</name>
<address>
<email>puliuchina@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Kai</given-names>
</name>
<address>
<email>kadychen2015@163.com</email>
</address>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Guofeng</given-names>
</name>
<address>
<email>liguofeng0526@163.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Xiaoping</given-names>
</name>
<address>
<email>yangxiaoping1981@163.com</email>
</address>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Long</surname>
<given-names>Chao-an</given-names>
</name>
<address>
<email>calong@mail.hzau.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036 P. R. China</aff>
<aff id="Aff2">
<label></label>
Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070 P. R. China</aff>
<aff id="Aff3">
<label></label>
Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, 430064 P. R. China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>4</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>4</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>17</volume>
<elocation-id>17</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>1</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Liu et al. 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>The yeast
<italic>Kloeckera apiculata</italic>
strain 34–9 is an antagonist that shows biological control activity against the postharvest fungal pathogens of citrus. An antifungal compound, 2-phenylethanol (PEA), has been identified from the extract of
<italic>K. apiculata</italic>
. To better understand the molecular processes underlying the response of citrus fruit tissue to
<italic>K. apiculata</italic>
, the extract and PEA, microarray analyses were performed on navel oranges using an Affymetrix Citrus GeneChip.</p>
</sec>
<sec>
<title>Results</title>
<p>As many as 801, 339 and 608 differentially expressed genes (DEGs) were identified after the application of
<italic>K. apiculata,</italic>
the extract and PEA, respectively. In general,
<italic>K. apiculata</italic>
induced the expression of defence-related genes. In addition to chitinase and β-1,3-glucanase, genes involved in ethylene (ET), jasmonic acid (JA), calcium signalling, MAPK signalling and phenylalanine metabolism were induced. In contrast, monodehydroascorbate reductase, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and carotenoid biosynthesis genes were down-regulated. The expression profiles for the extract- and PEA-treated samples were similar to that found for yeast (sharing 57.4 % DEGs), with a significant increase in the transcript levels of defence-related genes.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>This study provides a global picture of the gene expression changes in navel oranges after the application of the antagonist yeast
<italic>K. apiculata</italic>
, its extract and PEA. The interpretation of the DEGs revealed new insight into the molecular processes that regulate the defence responses in orange tissue.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12864-015-2333-3) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Biological control</kwd>
<kwd>
<italic>Kloeckera apiculata</italic>
</kwd>
<kwd>Plant defence</kwd>
<kwd>Postharvest</kwd>
<kwd>Citrus</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>The biological control of postharvest pathogenic fungi using microbial antagonists has recently emerged as a promising alternative to the use of synthetic fungicides [
<xref ref-type="bibr" rid="CR1">1</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
]. Over 30 yeasts have been isolated and investigated for their biological control efficacy against postharvest fruit diseases.
<italic>Kloeckera apiculata</italic>
strain 34–9, a yeast isolated from the epiphytes of citrus roots [
<xref ref-type="bibr" rid="CR5">5</xref>
], has been shown to suppress postharvest fungal pathogens in citrus, e.g.,
<italic>Penicillium digitatum</italic>
and
<italic>Penicillium italicum</italic>
, the causal agent of green and blue mold, respectively [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
].</p>
<p>Knowledge regarding the modes of action of biological control agents is essential for developing appropriate commercial formulations and application methods to maximize the potential use of biological control. Several routes have been proposed to explain the action mechanism of biological control agents. The yeast-induced defence response of fruit has been considered a potential means to suppress infection with plant pathogens, and growing evidences have supported this point of view [
<xref ref-type="bibr" rid="CR1">1</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
].
<italic>Pichia guilliermondii</italic>
and
<italic>Candida famata</italic>
enhanced the accumulation of phytoalexins, scoparone and scopoletin in citrus wound tissues [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Nantawanit et al. [
<xref ref-type="bibr" rid="CR10">10</xref>
] reported that
<italic>P. guilliermondii</italic>
induced a defence response in chili fruit against
<italic>Colletotrichum capsici</italic>
. The yeast
<italic>Aureobasidium pullulans</italic>
can induce the accumulation of chitinase, β-1,3-glucanase and peroxidase in apple fruit [
<xref ref-type="bibr" rid="CR11">11</xref>
].
<italic>Candida saitoana</italic>
induced defence responses in apple fruit [
<xref ref-type="bibr" rid="CR12">12</xref>
].
<italic>Rhodosporidium paludigenum</italic>
induced resistance and defence-related responses against
<italic>P. digitatum</italic>
in citrus fruit [
<xref ref-type="bibr" rid="CR13">13</xref>
]. The biocontrol capability of
<italic>Pichia caribbica</italic>
was based on the activation of defence-related enzymes in peaches [
<xref ref-type="bibr" rid="CR14">14</xref>
].</p>
<p>Reactive oxygen species (ROS) and the phytohormones signalling pathway have been shown to regulate the yeast response processes [
<xref ref-type="bibr" rid="CR15">15</xref>
]. Castoria et al. [
<xref ref-type="bibr" rid="CR16">16</xref>
] indicated that the ability to tolerate high levels of ROS production in fruit tissue is an essential characteristic of effective yeast antagonists. Macarisin et al. [
<xref ref-type="bibr" rid="CR17">17</xref>
] reported that yeasts on the surfaces of fruit produced H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup></sup>
; O
<sub>2</sub>
<sup></sup>
acted as a global regulator to activate the fruit defence responses. The application of
<italic>P. membranefaciens</italic>
to citrus fruit enhanced the levels of H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup></sup>
in the host tissue [
<xref ref-type="bibr" rid="CR18">18</xref>
]. In contrast, fungal pathogens suppress the host tissue defence responses by acidifying the fruit with organic acids, such as citric and gluconic acid [
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
]. The acidification of the tissue might suppress host cells’ production of H
<sub>2</sub>
O
<sub>2</sub>
, and enhance the sensitivity to pathogen-produced pectolytic enzymes [
<xref ref-type="bibr" rid="CR21">21</xref>
<xref ref-type="bibr" rid="CR23">23</xref>
].</p>
<p>Three phytohormones, salicylic acid (SA), jasmonic acid (JA) with its derivatives (collectively called jasmonates) and ethylene (ET), have been shown to play major roles in regulating defence responses in plants [
<xref ref-type="bibr" rid="CR24">24</xref>
<xref ref-type="bibr" rid="CR26">26</xref>
].
<italic>Candida oleophila</italic>
induced disease resistance by increasing the production of phytoalexin, ET biosynthesis and phenylalanine ammonia-lyase (PAL) activity [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Preharvest treatment with SA and methyl jasmonate (MeJA) induced defence-related enzymes in sweet cherries [
<xref ref-type="bibr" rid="CR28">28</xref>
]. The integration of antagonistic yeast with SA or JA resulted in a remarkably improved biocontrol efficacy [
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
]. In general, the SA-signalling pathway is believed to mediate the resistance to biotrophic pathogens, whereas the JA/ET-signalling pathway is thought to be necessary for resistance to necrotrophic pathogens [
<xref ref-type="bibr" rid="CR26">26</xref>
]. This regulation consists of the control of a complex regulatory network that connects the different pathways to enable each to assist or antagonize the others as required and fine-tune the defence response to the individual pathogen. Other plant hormones, including abscisic acid (ABA), gibberellin and auxin, act as moderators of the plant immune signalling network and have also been implicated in plant defence [
<xref ref-type="bibr" rid="CR31">31</xref>
].</p>
<p>Many classes of compounds derived from
<italic>Trichoderma</italic>
strains, including proteins, peptaibols, oligosaccharides, low-molecular-weight compounds and small secondary metabolites, can elicit plant defence responses [
<xref ref-type="bibr" rid="CR32">32</xref>
], such as the expression of pathogenesis-related (PR) proteins, the induction of lignification and ROS-accumulation. Several studies have reported global changes in fruit gene expression in response to adverse stress [
<xref ref-type="bibr" rid="CR33">33</xref>
<xref ref-type="bibr" rid="CR37">37</xref>
] and antagonist yeasts [
<xref ref-type="bibr" rid="CR38">38</xref>
<xref ref-type="bibr" rid="CR41">41</xref>
] by using proteomic and transcriptomic analyses. Many fruit defence response genes and proteins were identified that may increase fruit resistance; however, little is known regarding the molecular basis of functional compounds from antagonist yeast underlying the induction of host responses. An antifungal compound 2-phenylethanol (PEA) was previously identified from the extract of
<italic>K. apiculata</italic>
[
<xref ref-type="bibr" rid="CR42">42</xref>
]
<italic>.</italic>
The present study was undertaken to provide a systematic view of the citrus response to the yeast
<italic>K. apiculata</italic>
and its functional compounds by using an Affymetrix Citrus GeneChip.</p>
</sec>
<sec id="Sec2">
<title>Results</title>
<sec id="Sec3">
<title>Global changes in citrus gene expression profiles</title>
<p>To obtain an overall picture of the gene regulation, biocontrol yeast, the ether extract and active compound were used to treat citrus and two independent microarray analyses were performed for each treatment. To reduce experimental variation, two sets of six fruit exocarps were harvested from each treated and untreated (water control) fruit. After the removal of low-quality and internal reference probes, a total of 20,083 transcripts were reliably detected in the microarray analysis. Microarray analysis gene changes in citrus exocarp revealed as many as 801, 339 and 608 differentially expressed genes (DEGs) that showed a significant (
<italic>P</italic>
< 0.05) change in expression (≥1.3-fold) after 24 h of incubation with
<italic>K. apiculata,</italic>
the extract and PEA (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). We further analysed these genes in subsequent experiments.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Number of differentially expressed genes (DEGs) in citrus after statistical analysis. Venn diagram shows the number of up-regulated and down-regulated genes that are expressed in common or in special between
<italic>K. apiculata</italic>
, 2-phenylethanol (PEA) and the extract treatment</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p>All DGEs were aligned against the
<italic>Arabidopsis</italic>
database by using the Citrus HarvEST software, and detailed descriptions of the sequences are shown in Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
. GO categories were assigned to the 1052 DEGs using the Blast2GO program (
<ext-link ext-link-type="uri" xlink:href="http://www.blast2go.org/">http://www.blast2go.org</ext-link>
). The DEGs were categorized into 22 groups based on their biological processes, as shown in Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
. Response to stimulus (267), metabolic process (495), cellular process (501), pigmentation (208), biological regulation (225), multicellular organismal process (142) and developmental process (135) were the major categories. Categories based on the cellular component revealed that the responsive genes were mainly related to cell (564), cell part (564), organelle (440) and organelle part (159). With regard to molecular function, the DEGs were classified as catalytic activity (385), binding (470), transcription regulator activity (56), transporter activity (53), molecular transducer activity (40), electron carrier activity (36), enzyme regulator activity (19), antioxidant activity (11), structural molecule activity (9), translation regulator activity (5) and nutrient reservoir activity (2). Of these, the plastid and intracellular organelle were the major sub-cellular organelles involved in the citrus response.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Functional categorization of global pattern of gene expression in citrus in response to different treatment based on GO annotation</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>The responsive genes were further assessed using KEGG pathway analysis (
<ext-link ext-link-type="uri" xlink:href="http://www.genome.jp/kegg/">http://www.genome.jp/kegg/</ext-link>
) (Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
). The most represented pathways are phenylpropanoid biosynthesis (26), limonene and pinene degradation (18), ABC transporters (14), proteasome (3), lysosome (5), oxidative phosphorylation (9), flavonoid biosynthesis (20), the regulation of autophagy (3), calcium signalling pathway (13), apoptosis (18), fatty acid metabolism (7), MAPK signalling pathway (25), phenylalanine, tyrosine and tryptophan biosynthesis (7), citrate cycle (TCA cycle) (5), flavone and flavonol biosynthesis (14), starch and sucrose metabolism (13), arachidonic acid metabolism (4), phenylalanine metabolism (7), ascorbate and aldarate metabolism (6) and carotenoid biosynthesis (5). Most of these pathways were consistent with biological processes that were already identified by GO analysis. Some of these pathways were related to the defence response based on previous knowledge, such as phenylpropanoid biosynthesis and the calcium signalling pathway [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
].</p>
</sec>
<sec id="Sec4">
<title>Change pattern of gene expression in citrus in response to
<italic>K. apiculata</italic>
</title>
<p>Of the 801 DEGs in orange exocarp tissue treatment with
<italic>K. apiculata</italic>
, 56 % of the annotated genes were down-regulated and 44 % were up-regulated. Furthermore, the microarray data for the probes of the significant dataset were mapped to
<italic>Arabidopsis</italic>
using the MapManBin software (
<ext-link ext-link-type="uri" xlink:href="http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx">http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx</ext-link>
). The data obtained from this analysis are presented in Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
and Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
. Major and minor CHO metabolism (10), glycolysis (3), fermentation (1), TCA (3), mitochondrial electron transport/ATP synthesis (3), lipid metabolism (17), amino acid metabolism (12), redox (6), nucleotide metabolism (9), DNA (10) and proteins (82) associated with the cell (11) showed more down-regulated than up-regulated genes, while more up-regulated genes were found in PS (5), N-metabolism (2), hormone metabolism (17) and secondary metabolism (14) associated with the cell wall (9) in response to
<italic>K. apiculata</italic>
treatment. A number of new genes that are potentially related to defence responses were identified in this study. Based on microarray and previous data [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
], hormone, reactive oxygen species (ROS), lipid, secondary metabolite, cell wall, stress, phenyalanine metabolism related genes were selected for further analysis. Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
and Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
summarize the changes in these defence-related genes.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>MapManBin analyses of the common or in special up-regulated and down-regulated genes in citrus between
<italic>K. apiculata</italic>
, PEA and the extract treatment</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Cluster analysis of the expression profiles of resistance-related differentially expressed genes in citrus by MeV (
<ext-link ext-link-type="uri" xlink:href="http://www.tm4.org/mev.html">http://www.tm4.org/mev.html</ext-link>
). Each column represents a sample, and each row represents a single gene. The diagram was generated using log
<sub>2</sub>
-transformed ratio values, and colours indicate relative signal intensities. Genes down-regulated in the treatment compared to control are depicted in green, and up-regulated genes are depicted in red</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>The first noticeable pathway is the hormone metabolism pathway. In total, 17 differentially expressed genes are involved in hormone metabolism, including the ethylene (ET)
<italic>-</italic>
signalling pathway of eight
<italic>ethylene response factor (ERF)</italic>
genes (Cit.18086.1.S1_at, Cit.22763.1.S1_s_at, Cit.2675.1.S1_s_at, Cit.2677.1.S1_at, Cit.17142.1.S1_s_at, Cit.18673.1.S1_at, Cit.20640.1.S1_at, Cit.16845.1.S1_at); jasmonic acid (JA)-signalling pathway of one
<italic>hydroperoxide lyase</italic>
(
<italic>HPL</italic>
) (Cit.10444.1.S1_at) and five
<italic>allene oxide synthase (AOS)</italic>
genes (Cit.905.1.S1_at, Cit.6011.1.S1_at, Cit.23585.1.S1_at, Cit.31140.1.S1_at, Cit.996.1.S1_s_at) and five abscisic acid (ABA)-signalling pathway genes (Cit.13424.1.S1_at, Cit.5225.1.S1_at, Cit.10675.1.S1_at, Cit.13166.1.S1_at, Cit.34429.1.S1_s_at) (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
and Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
). Most of these genes were highly expressed in yeast-treated orange tissue, such as
<italic>ERF</italic>
(Cit.2677.1.S1_at), which was up-regulated 4.0-fold according to the microarray data. In addition, two polyamine (polyamine oxidase), three auxin-responsive and five gibberellic acid (GA; gibberellin receptor, gibberellin oxidase) genes were down-regulated.</p>
<p>Reactive oxygen species (ROS) accumulation has been well studied for biocontrol yeast-induced defence responses in fruits [
<xref ref-type="bibr" rid="CR15">15</xref>
<xref ref-type="bibr" rid="CR18">18</xref>
]. The second group of metabolic pathways is involved in the redox and antioxidation pathway. In total, five genes involved in antioxidant biosynthesis were down-regulated, including monodehydroascorbate reductase (Cit.3320.1.S1_s_at, Cit.3318.1.S1_at), superoxide dismutase (SOD, Cit.5267.1.S1_at), catalase (CAT, Cit.8351.1.S1_s_at) and peroxidase (POD, Cit.8515.1.S1_s_at) (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
and Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
). For example, SOD (Cit.5267.1.S1_at) was down-regulated 5.5-fold according to the microarray data, and the qRT-PCR data were consistent with these results, demonstrating that the level of SOD was 2.2-times lower in response to
<italic>K. apiculata</italic>
-treatment than in CK. Moreover, Cytochrome P450 plays an important role in the redox pathway and has been well characterized [
<xref ref-type="bibr" rid="CR43">43</xref>
<xref ref-type="bibr" rid="CR45">45</xref>
]. Over nine different cytochrome P450 genes were detected in our microarray data, such as monooxygenase/p-coumarate 3-hydroxylase, monooxygenase 83B1 and ent-kaurenoate oxidase.</p>
<p>The third group of metabolic pathways consists of signalling pathway and pathogenesis-related (PR) proteins. The signalling pathway genes included 13 genes for calcium and 25 genes for MAPK signalling, most of which were up-regulated in response to
<italic>K. apiculata</italic>
application. The other genes encoding for chitinase (Cit.15242.1.S1_at, 1.8-fold) and β-1,3-glucanase (Cit.10558.1.S1_s_at, 1.4-fold) were stimulated by
<italic>K. apiculata</italic>
application (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
and Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
). In addition, five different disease resistance protein genes (TIR-NBS-LRR class) were also found in our study.</p>
<p>The fourth group of significant
<italic>K. apiculata</italic>
-responsive genes included secondary metabolic processes, such as the phenylpropanoid pathway, limonene and pinene degradation, flavone and flavonol biosynthesis and carotenoid biosynthesis (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). These genes were induced following
<italic>K. apiculata</italic>
application. A significant increase in the expression of the genes encoding for chalcone-flavanone isomerase (Cit.17011.1.S1_s_at), cinnamoyl-CoA reductase (Cit.13313.1.S1_s_at), violaxanthin de-epoxidase (Cit.30844.1.S1_s_at) and shikimate 5-dehydrogenase (Cit.25466.1.S1_at) was observed. These genes are mainly involved in to lignin and flavanol biosynthesis. Moreover, genes involved in the biosynthesis of the other secondary metabolites, such as carotenoid and terpenes, were down-regulated, including
<italic>p</italic>
-coumarate 3-hydroxylase (Cit.30567.1.S1_at), 3-chloroallyl aldehyde dehydrogenase (Cit.30574.1.S1_s_at), ent-kaurenoate oxidase (Cit.13587.1.S1_at) and carotenoid isomerase (Cit.29769.1.S1_s_at).</p>
<p>Several families of transcription factors, including the WRKY, R2R3-MYB, bHLH (basic helix-loop-helix) and WD40 genes, showed significant transcriptional changes in response to
<italic>K. apiculata</italic>
application, as revealed by the microarray data.</p>
</sec>
<sec id="Sec5">
<title>Comparative analysis of gene expression in citrus between different treatment</title>
<p>To further analyze the response of the orange exocarp tissue to the extract and PEA, a total of 339 and 608 genes were identified. The expression profiles in response to the extract and PEA were similar to that found for
<italic>K. apiculata</italic>
; 57.4 % of the 803 DEGs in response to
<italic>K. apiculata</italic>
were also altered in the extract/PEA treatments (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The common up-regulated and down-regulated genes in citrus between
<italic>K. apiculata</italic>
-PEA and special in
<italic>K. apiculata</italic>
were listed in Additional file
<xref rid="MOESM4" ref-type="media">4</xref>
. The distribution of the genes among the GO and KEGG functional categories indicated that a large number of defence-related genes were also included in these DEGs. Orange exocarp tissue responded similarly to
<italic>K. apiculata</italic>
, the extract and PEA (Figs. 
<xref rid="Fig3" ref-type="fig">3</xref>
and
<xref rid="Fig4" ref-type="fig">4</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Verification of microarray data by qRT-PCR analyses</title>
<p>To confirm that the DEGs identified by the microarray gene expression were indeed differentially expressed, 20 genes were selected based on their biological significance for confirmation in a biologically independent experiment using qRT-PCR, including SOD-, ET-, JA- and ABA-related genes, which were detected in the microarray data and bioinformatic analyses. The relative transcript abundance patterns for the stress application were compared using the transcriptome data. The results of the qRT-PCR experiments revealed that most of the genes showed the same expression pattern as the microarray data (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
), such as Cit.2677.1.S1_at, which was 3.2-times higher in response to
<italic>K. apiculata</italic>
-treatment than in CK in qRT-PCR data, and 4.0-times higher for the microarray data.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Verification of the microarray results by qRT-PCR. Black bar: qRT-PCR results for the genes. Grey bar: microarray data for the genes. Each qRT-PCR reaction was carried out in triplicate for three repeats. Columns and bars represent the means and standard error (
<italic>n</italic>
= 3) respectively</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
</sec>
<sec id="Sec7">
<title>Pathogenesis-related (PR) proteins activity</title>
<p>Of the PR proteins, chitinase and β-1,3-glucanase are two of the most fully characterized enzymes that are capable of hydrolyzing the polymers of fungal cell walls [
<xref ref-type="bibr" rid="CR27">27</xref>
] Furthermore, the accumulation of chitinase and β-1,3-glucanase is important in retarding fungal growth and decreasing the spoilage of fruits caused by fungal pathogens. The level of chitinase and β-1,3-glucanase was observed to be significantly higher after inoculation of fruit with yeast, the extract and PEA compared with the control (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
ab), which is consistent with the microarray data. In addition, some PR-proteins could act in cell wall reinforcement by catalyzing lignification, such as PR-9 [
<xref ref-type="bibr" rid="CR46">46</xref>
]. As illustrated in Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
, the application of
<italic>K. apiculata</italic>
and the extract to discs of orange peel increased the lignin content in fruit peel relative to the water control peel discs 60 h after application.
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>PR protein activity and polyamine and H
<sub>2</sub>
O
<sub>2</sub>
content between
<italic>K. apiculata</italic>
, PEA and the extract treatment.
<bold>a</bold>
Chitinase activity; (
<bold>b</bold>
): β-1,3-glucanase activity; (
<bold>c</bold>
): H
<sub>2</sub>
O
<sub>2</sub>
content; (
<bold>d</bold>
-
<bold>f</bold>
): polyamines content. The results in all the histograms are expressed as means ± standard errors. Mean values for different treatments at each time point are labelled with different letters to indicate significant differences at the level
<italic>P</italic>
< 0.05 according to Duncan’s multiple range test</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig6_HTML" id="MO6"></graphic>
</fig>
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Lignin content between
<italic>K. apiculata</italic>
, PEA and the extract treatment. The results in all the histograms are expressed as means ± standard errors. Mean values for different treatments at each time point are labelled with different letters to indicate significant differences at the level
<italic>P</italic>
< 0.05 according to Duncan’s multiple range test</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
</sec>
<sec id="Sec8">
<title>Hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
) level in orange tissue</title>
<p>Reactive oxygen species (ROS) burst has been shown to regulate the yeast response processes [
<xref ref-type="bibr" rid="CR15">15</xref>
]. Our study showed that
<italic>K. apiculata</italic>
treatment resulted in a high level of intracellular H
<sub>2</sub>
O
<sub>2</sub>
when applied to oranges (Fig. 
<xref rid="Fig6" ref-type="fig">6c</xref>
); this level decreased dramatically 12 h after the application of yeast to citrus fruit, although the statistic analysis showed that there were significant differences (
<italic>P</italic>
< 0.05) between
<italic>K. apiculata</italic>
-treatment and control at the point of 24 h, 36 h and 48 h. The extract and PEA did not enhance the level of H
<sub>2</sub>
O
<sub>2</sub>
.</p>
</sec>
<sec id="Sec9">
<title>Polyamine level in orange tissue</title>
<p>Polyamines, mainly diamine putrescine (Put), triamine spermidine (Spd) and tetraamine spermine (Spm), act as an important source of H
<sub>2</sub>
O
<sub>2</sub>
production and have been suggested to be involved in the response to pathogen attack or responsible for enhanced disease resistance in higher plants [
<xref ref-type="bibr" rid="CR47">47</xref>
]. In yeast-treated citrus, the level of Put, Spd and Spm were observed to be lower than normal control, especially at 24 h (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
). In the extract and PEA-treated citrus, there was not a rule can be followed for Spm, Put and Spd (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
d, e, f).</p>
</sec>
</sec>
<sec id="Sec10">
<title>Discussion</title>
<p>Interactions between postharvest yeast biological control agents and host tissue have recently been widely studied in various fruits, including citrus, apples, pears; however, the molecular mechanisms are poorly understood. Gene expression profiling via the use of microarrays has been recognized as a powerful approach to obtain an overall view of gene expression and the physiological processes involved in the response to a particular stimulus [
<xref ref-type="bibr" rid="CR48">48</xref>
<xref ref-type="bibr" rid="CR50">50</xref>
]. In this study, we used a microarray to identify global changes in gene expression that occur in orange fruit exocarp tissues following the application of the yeast biological control agent
<italic>K. apiculata</italic>
, its extract and PEA. A large number of newly discovered and interesting genes encoding transcription and post-transcription factors were included in these DEGs, indicating that these genes may be key regulators that control the defence response by activating or repressing numerous genes. Additionally, a number of putative homologs of genes for host resistance were also found.</p>
<p>A variety of genes involved in the response to biotic and abiotic stresses, signalling, defence, hormones and secondary metabolism were identified in
<italic>K. apiculata</italic>
-treated orange exocarp tissue (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). These findings imply that complex biochemical and molecular processes are involved in the reaction of fruit host tissue to the introduction of yeast cells, which have the potential to influence the efficacy of the biocontrol agent.</p>
<p>Plant ROS-signalling pathways have been shown to play essential roles in the regulation of host defence response processes [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
]. Previous data showed that the production of ROS by yeast antagonists may serve as a signal to trigger an oxidative burst in host tissue, leading to the activation of host defence mechanisms [
<xref ref-type="bibr" rid="CR17">17</xref>
]. In contrast, fungal pathogens, such as
<italic>Penicillium expansum</italic>
and
<italic>P. digitatum</italic>
, suppress host cell defence responses by inhibiting the production of H
<sub>2</sub>
O
<sub>2</sub>
in host cells [
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
]. In the current study, a significant accumulation of H
<sub>2</sub>
O
<sub>2</sub>
was observed in the host tissue after the application of
<italic>K. apiculata</italic>
to cells at 12 h (Fig. 
<xref rid="Fig6" ref-type="fig">6c</xref>
). These finding were consistent with previous reports [
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. The intensity of ROS production peaked shortly after the application of yeast cells to intact fruit, with a concomitant accumulation of H
<sub>2</sub>
O
<sub>2</sub>
in the host fruit tissue itself [
<xref ref-type="bibr" rid="CR40">40</xref>
]. Overall, these results support the notion that the intense production of ROS in fruit tissue induced by yeast cells plays a major role in the early stages of the application of
<italic>K. apiculata</italic>
.</p>
<p>Plant mitochondria have been reported as a source of the oxidative burst [
<xref ref-type="bibr" rid="CR52">52</xref>
]. In our microarray data, 39 genes were finally categorized as mitochondrial by GO categories, including respiratory chain complex and electron transport. In addition, MapManBin identified three and six genes as being involved in mitochondrial electron transport/ATP synthesis and redox ((reduction-oxidation) reactions, respectively. The oxidative burst in fruit host tissue is likely responsible for the disordered of energy metabolism in mitochondria. ROS accumulation in yeast-treated tissue is also accompanied by a decrease in the expression levels of genes encoding for ROS-detoxifying enzymes, including monodehydroascorbate reductase, SOD, CAT and POD (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Changes in antioxidant gene expression, which lead to an increase in the ROS levels, and the activation of defence mechanisms have been supported by several reports [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
]. ROS contribute to the activation of plant defence by inducing changes in gene expression, including the redox regulation of transcription factors, production of PR proteins, ET synthesis and cell death [
<xref ref-type="bibr" rid="CR53">53</xref>
].</p>
<p>Plant hormones play pivotal roles in the regulation of the defence signalling network [
<xref ref-type="bibr" rid="CR30">30</xref>
]. The signalling pathways crosstalk in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response [
<xref ref-type="bibr" rid="CR54">54</xref>
]. SA, Jas and ET are recognized as major defence hormones [
<xref ref-type="bibr" rid="CR55">55</xref>
]. Other hormones, including ABA, auxin and gibberellins, affect the SA-JA-ET backbone of the plants immune signalling network, resulting in positive or negative effects on biotrophic and necrotrophic pathogens [
<xref ref-type="bibr" rid="CR56">56</xref>
<xref ref-type="bibr" rid="CR58">58</xref>
]. In our microarray data, we detected a significant increase in JA-signalling (8 genes) and ET-signalling (6 genes) gene expression in yeast-treated orange exocarp tissue. This finding was further supported by qRT-PCR data (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
), and the decreased Spd and Put levels (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
df) also supported these results. ET and polyamines have a common precursor, and they appear to have opposing physiological roles [
<xref ref-type="bibr" rid="CR59">59</xref>
]. In addition, our results identified a difference in the expression of 27 genes related to other hormones (polyamine, gibberellins, auxins and ABA). Their signalling pathways may have indirect effects on plant immunity by antagonistically or synergistically interacting with the SA-JA-ET backbone of the plant immune signalling network [
<xref ref-type="bibr" rid="CR55">55</xref>
]. The data supported the
<italic>K. apiculata</italic>
-induced citrus defence response via the JA/ET-signalling pathway.</p>
<p>Following
<italic>K. apiculata</italic>
treatment, 57.4 % of DEGs showed the same pattern of change as was found following the extract/PEA treatments (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
and Additional file
<xref rid="MOESM4" ref-type="media">4</xref>
). This result indicated that the extract and PEA have the potential to influence the efficacy of the biocontrol agent of
<italic>K. apiculata</italic>
by inducing defence response genes. Furthermore, the ability of
<italic>K. apiculata</italic>
to induce the defence response of citrus is partly related to the extract and PEA. The global expression profiles were similar in response to treatment with
<italic>K. apiculata</italic>
, the expression of defence-associated genes being greatly enhanced under the extract- and PEA-treatment (Figs. 
<xref rid="Fig3" ref-type="fig">3</xref>
and
<xref rid="Fig4" ref-type="fig">4</xref>
). Meanwhile, we noticed that application of the yeast strain enhanced larger effects than application of the extract or PEA, which may be interpreted the effects of
<italic>K. apiculata</italic>
involved in both biotic and abiotic stress. Only abiotic stress of
<italic>K. apiculata</italic>
was partly achieved via secretion secondary metabolite, such as PEA.</p>
<p>As a metabolite of L-Phe, PEA may negatively regulate the biosynthetic pathway and indirectly influence the production of a fruit’s L-Phe-derived metabolites [
<xref ref-type="bibr" rid="CR60">60</xref>
]. These metabolites have protective and regulatory functions in plants and can be categorized into three broad groups: phytoalexins (flavonoids, isoflavanones), phytoanticipins and signalling molecules (e.g., SA). Flavonoid glycosides serve as potential modulators of cell division, while flavonoids serve as regulators of auxin transport and SA acts as a regulator of both local and systemic pathogen-induced defence gene activation, the oxidative burst and pathogen-induced cell death [
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR61">61</xref>
]. All L-Phe-related genes in the
<italic>K. apiculata</italic>
and PEA treatments (Cit.16303.1.S1_at, Cit.1280.1.S1_s_at, Cit.29769.1.S1_s_at, Cit.6742.1.S1_s_at, Cit.9171.1.S1_at, Cit.9944.1.S1_at, Cit.9944.1.S1_x_at, Cit.17011.1.S1_s_at, Cit.12979.1.S1_at) shared the same up- and down-regulated pattern as the control, except for Cit.15355.1.S1_at.</p>
</sec>
<sec id="Sec11">
<title>Conclusion</title>
<p>Our study provides a global picture of the gene expression changes that result from the application of the yeast biological control agent
<italic>K. apiculata</italic>
, its extract and PEA on citrus fruit (Fig. 
<xref rid="Fig8" ref-type="fig">8</xref>
). The microarray data revealed a large number of genes that were reported to be involved in the defence response. The functional categorization of the DEGs revealed the involvement of a number of important pathways, including oxidative phosphorylation, phenylpropanoid biosynthesis, mitochondrial electron transport/ATP synthesis, MAPK signalling, calcium signalling and hormone cross communication, in regulating of the defence process. In addition, similar global expression profiles were acquired with the expression of defence-associated genes between
<italic>K. apiculata</italic>
, the extract and PEA treatments.
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<p>Overview of the major metabolic pathways involved in the defence response, as suggested by the interpretation of the GO and KEGG. The genes are designated as ID number from Citrus GeneChip, and the detailed gene information can be viewed in Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table S1. JA: jasmonic acid, ABA: abscisic acid, ET: ethylene, ROS: reactive oxygen species, LOX: lipoxygenase, HPL: hydroperoxide lyase, L-AA: L-ascorbic acid</p>
</caption>
<graphic xlink:href="12864_2015_2333_Fig8_HTML" id="MO8"></graphic>
</fig>
</p>
</sec>
<sec id="Sec12" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec13">
<title>Fruit material and biocontrol agent</title>
<p>Olinda Valencia oranges (
<italic>Citrus sinensis</italic>
L. Osbeck) were harvested at commercial maturity (28 April) from adult trees grown in Yichang City, Hubei Province, China. Fruits without physical injuries and infections were selected based on uniformity in size. Prior to use, the fruits were disinfected with 2 % (
<italic>v/v</italic>
) NaOCl solution for 2 min, rinsed with tap water and air-dried. A strain of
<italic>K. apiculata</italic>
34–9 was isolated from the epiphytes of citrus roots [
<xref ref-type="bibr" rid="CR5">5</xref>
]. The strain was grown in YPD medium (1 % yeast extract, 2 % peptone, 2 % dextrose and 2 % agar).</p>
</sec>
<sec id="Sec14">
<title>Citrus RNA extraction and microarray analysis</title>
<p>The extract was obtained from the cell-free culture of
<italic>K. apiculata</italic>
as described previously [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Citrus fruits soaked for 5 min in 1.0 × 10
<sup>8</sup>
cells/mL
<italic>K. apiculata</italic>
(KA), 1530 μg/mL PEA, the extract (1000 × dilute) and water control (CK), then air dried and the samples were then placed on plastic cases for 24 h. The fresh exocarp of citrus was separated with a knife after washing the fruit with water, after which it was directly frozen in liquid nitrogen and stored at −80 °C. Each sample consisted of the pooled exocarp of six fruits. Two biological replicates were used for each line.</p>
<p>The total RNA was extracted as described previously [
<xref ref-type="bibr" rid="CR62">62</xref>
]. The Affymetrix GeneChip One-cycle Target Labeling Kit (Affymetrix, Santa Clara, CA;
<ext-link ext-link-type="uri" xlink:href="http://www.affymetrix.com/">http://www.affymetrix.com/</ext-link>
) was used for expression analysis. The GeneChip Citrus Genome Array (platform: GPL5731) contains 30,171 probe sets representing up to 33,879 citrus transcripts based on EST sequences obtained from several citrus species and citrus hybrids. The arrays were performed according to the manufacturer’s recommended protocols. Microarray experiments were designed to comply with MIAME guidelines [
<xref ref-type="bibr" rid="CR63">63</xref>
]. The differentially expressed genes (DEGs) were selected and functionally annotated as described in Gallego-Giraldo et al. [
<xref ref-type="bibr" rid="CR64">64</xref>
]. We used the classical ttest to identify DEGs and defined
<italic>p</italic>
-value < 0.05 to be statistically significant. The details of the citrus cDNA microarray data were submitted to NCBI under GEO accession numbers GSE45680.</p>
</sec>
<sec id="Sec15">
<title>Quantitative real-time RT-PCR (qRT-PCR)</title>
<p>The total RNA was reverse transcribed into first-strand cDNA using the M-MLV first strand kit (Invitrogen, USA) according to the manufacturer’s instructions. Twenty genes were chosen for confirmation by qRT-PCR with SYBR®GREEN Master Mix (Toyobo, Osaka, Japan). Primers for the chosen genes were designed with the primer express software (Applied Biosystems, USA) and are presented in Table 
<xref rid="Tab1" ref-type="table">1</xref>
. A qRT-PCR assay for gene expression analysis was performed on a Roche 480 Real-time PCR System (Roche Molecular Systems, Belleville, USA) using the beta-actin (ACTB) gene as an endogenous control according to Yan et al. [
<xref ref-type="bibr" rid="CR65">65</xref>
]. Briefly, the primers for the target gene and ACTB were diluted in the SYBR Mix, and 10 μL of the reaction mix were added to each well. The reactions were performed with an initial incubation at 50 °C for 2 min and at 95 °C for 1 min followed by 40 cycles of 95 °C for 15 s, 60 °C for 20 s and 72 °C 10 s. The levels of gene expression were analysed with a LightCycler®480. Zero template controls were included for each primer pair. Each PCR reaction was carried out in triplicate for three repeats, and the data were presented as the means ± SD.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Sequences of primers used in real-time PCR</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Gene name</th>
<th>Accession number</th>
<th>Primers(5′-3′)
<break></break>
Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAZ10</td>
<td>Cit.34184.1.S1_s_at</td>
<td>TTAAATCTGTGATTGCTTCTGGTTCT</td>
<td>GGGAAAAGTAATCGGCTCTTCTT</td>
</tr>
<tr>
<td>CYP707A3</td>
<td>Cit.13424.1.S1_at</td>
<td>GGGCACAAATACTGGAATCCA</td>
<td>TCTGATGGGCAATCCATTCA</td>
</tr>
<tr>
<td>JAZ10</td>
<td>Cit.11026.1.S1_at</td>
<td>GTAGTTTTGTAGAAATTCTGTTTCCATCTT</td>
<td>CAAACGAGGCAGGCTATTAAGG</td>
</tr>
<tr>
<td>ATEXKA2</td>
<td>Cit.39752.1.S1_at</td>
<td>TGTGTGCACCAAACCAAGGT</td>
<td>CACATGCCCCGGATGAAA</td>
</tr>
<tr>
<td>USP</td>
<td>Cit.5117.1.S1_at</td>
<td>CATCAAGGCCGTCGAGAAAT</td>
<td>ACAGCCTCAGCTCGATTCATC</td>
</tr>
<tr>
<td>ATCM2</td>
<td>Cit.17342.1.S1_at</td>
<td>TGCCCTTTACCAAGCTCGTT</td>
<td>AGCTAGCACAGGTTTCAACTTCAA</td>
</tr>
<tr>
<td>AP2-EREBP</td>
<td>Cit.2677.1.S1_at</td>
<td>CCCTTTGACGCCGTCAAG</td>
<td>GCGGCACACTAAATATCCCATT</td>
</tr>
<tr>
<td>SOD</td>
<td>Cit.5267.1.S1_at</td>
<td>CTGTTGATGTTGACGGTACTGCTA</td>
<td>CCAATAACAGAATCTGGTCCAGAA</td>
</tr>
<tr>
<td>Unknown</td>
<td>Cit.17750.1.S1_x_at</td>
<td>CTCCAGAAGCTAACAGAGATCGTTT</td>
<td>CCCTCTGACCATTCTTTGTTACCT</td>
</tr>
<tr>
<td>Unknown</td>
<td>Cit.9620.1.S1_s_at</td>
<td>TGCTTGCAGCCAGATAAGTGTAC</td>
<td>CAACAAAGGCATTAACCCACAA</td>
</tr>
<tr>
<td>MYB</td>
<td>Cit.30618.1.S1_s_at</td>
<td>CCTCCTCGACCAAAACGAAA</td>
<td>AACAGGTGGATGGGCCAAT</td>
</tr>
<tr>
<td>ERF12</td>
<td>Cit.16845.1.S1_at</td>
<td>CGTCCTTCTTTGGGATTGTGA</td>
<td>GCGGTGGCGGCTCAT</td>
</tr>
<tr>
<td>CCL</td>
<td>Cit. 10672.1.S1_s_at</td>
<td>TGCTCGGCAGAGATGTATCCT</td>
<td>AGGCAGTTGTTGATGTGTCGTT</td>
</tr>
<tr>
<td>LEA14</td>
<td>Cit. 23585.1.S1_ at</td>
<td>AAGAGGGCGGATTTAGTTTTTAGAT</td>
<td>AATGTTGCTTTCTTTACGTGCATAA</td>
</tr>
<tr>
<td>EXPA5</td>
<td>Cit.2093.1.S1_s_at</td>
<td>CTGTATCCATCAAAGGTTC</td>
<td>GGTATAAGTCTGCCCAAA</td>
</tr>
<tr>
<td>WRKY40</td>
<td>Cit.13519.1.S1_at</td>
<td>CCCGTAAAGAAGAAGGTG</td>
<td>GCCGCAGAAACATGAATA</td>
</tr>
<tr>
<td>LOX2</td>
<td>Cit.9904.1.S1_s_at</td>
<td>GTTTGGGTAACATCTGGT</td>
<td>CTTGAATCTGGGAAGGGA</td>
</tr>
<tr>
<td>Chitinase</td>
<td>Cit.15242.1.S1_at</td>
<td>CTGCCTTGTGGTTTTGGA</td>
<td>AACTTTATCGGGCTGCTT</td>
</tr>
<tr>
<td>PR protein</td>
<td>Cit.31825.1.S1_at</td>
<td>GACTTGTAACTATGACCCTG</td>
<td>ACTTGCTACTGTCGCTAA</td>
</tr>
<tr>
<td>Esterase</td>
<td>Cit.11649.1.S1_at</td>
<td>TTTCCCTGGACTTTTCTAC</td>
<td>ATCAAATTCCCATGTGCC</td>
</tr>
<tr>
<td>ACTB</td>
<td>Reference</td>
<td>CCAATTCTCTCTTGAACCTGTCCTT</td>
<td>GAAGACCGTCAAGAGTAGTCAGT</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="Sec16">
<title>Plant endogenous H
<sub>2</sub>
O
<sub>2</sub>
, lignin and enzyme activity analyses</title>
<p>The disinfected fruits were inoculated on their circumference using an inoculating needle (5.0 mm). For inoculations, a 10 μL aliquot of the yeast suspension at a concentration of 1.0 × 10
<sup>8</sup>
cells/mL was dropped onto each prick. After air drying, the fruits were stored in enclosed plastic trays to maintain a high humidity (approximately 95 %). The plastic cases were maintained at 28 °C for the indicated periods. To measure the elicitation effect, the tissue surrounding each wound of fruit was collected at hour 0, 12, 24, 36, 48, 60 after treatment, and immediately immersed in liquid nitrogen and stored at −80 °C until use. A 10-g sample (fresh weight; FW) of the exocarp was ground into a powder in liquid nitrogen.</p>
<p>The concentration of H
<sub>2</sub>
O
<sub>2</sub>
was assayed using H
<sub>2</sub>
O
<sub>2</sub>
assay kits (Nanjing Jiancheng Bioengineering Institute, China) according to the manufacturer’s instructions. The enzyme activities were determined by a Shimadzu UV-1800 spectrophotometer (Shimadzu, Japan). The activities of chitinase and β-1,3-glucanase were measured as described previously [
<xref ref-type="bibr" rid="CR11">11</xref>
]. The lignin content was quantified using the method described by Syros et al. [
<xref ref-type="bibr" rid="CR66">66</xref>
].</p>
</sec>
<sec id="Sec17">
<title>Quantification of free polyamines by high-performance liquid chromatography (HPLC)</title>
<p>The free polyamines were quantified using a method previously described in Liu and Moriguchi [
<xref ref-type="bibr" rid="CR67">67</xref>
] and Fu et al. [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Samples were prepared and collected as described above. A sample of peel tissues (0.5 g) was homogenized in 5 mL of 5 % cold perchloric acid (PCA) for 30 min on ice. The supernatant was transferred to a new tube after centrifugation at 12000 rpm (4 °C) for 15 min; the resulting pellet was reconstituted with 5 mL of 5 % PCA and maintained on ice for 30 min before centrifugation at the same conditions. The supernatant was mixed, and 500 μL of it was benzoylated. The supernatant was mixed with 10 mL of benzoyl chloride and 1 mL of 2 mol NaOH. The resultant solution was vortexed for 30 s and then incubated for 25 min in a water bath at 37 °C. The benzoylated polyamines were then leached with 2 mL of ethyl ether, vacuum dried in a concentrator (Eppendorf 5301, Germany) and re-dissolved with 100 μL of methanol (HPLC grade). The benzoyl-polyamines (20 μL) were analysed using an Agilent 1200 HPLC systems (Santa Clara, CA, USA) equipped with a C
<sub>18</sub>
reversed phase column (4.6 mm × 150 mm, particle size 5 μm) and a UV-detector according to Shi et al. [
<xref ref-type="bibr" rid="CR68">68</xref>
] with minor modification. The column was eluted at 1 mL/min, with a programmed gradient of solvents (methanol/water), changing from 60 to 95 % in 23 min. Chromatograms were scanned at 230 nm. The polyamines were quantified in triplicate.</p>
</sec>
<sec id="Sec18">
<title>Statistical analysis</title>
<p>All the statistical analyses in this study were conducted using the Statistical Program SPSS 13.0 for windows (SPSS Inc, Chicago, IL). Analysis of variance (ANOVA) was performed and Duncan’s multiple range test was used for means separation. The statistical significance in this experiment is all applied at the level
<italic>P</italic>
< 0.05.</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec19">
<title>Additional files</title>
<p>
<media position="anchor" xlink:href="12864_2015_2333_MOESM1_ESM.xls" id="MOESM1">
<label>Additional file 1: Table S1.</label>
<caption>
<p>List of differentially expressed genes and GO and KEGG analyses between
<italic>K. apiculata</italic>
, the extract and phenylethanol treatment. The table contained information of the differential expressed genes with expression difference, and genes differential expressed at 0.05 significance level. (XLS 1869 kb)</p>
</caption>
</media>
<media position="anchor" xlink:href="12864_2015_2333_MOESM2_ESM.xls" id="MOESM2">
<label>Additional file 2: Table S2.</label>
<caption>
<p>List and MapMan analysis of differentially expressed genes in citrus in response to
<italic>K. apiculata</italic>
, the extract and phenylethanol, respectively. (XLS 264 kb)</p>
</caption>
</media>
<media position="anchor" xlink:href="12864_2015_2333_MOESM3_ESM.xls" id="MOESM3">
<label>Additional file 3: Table S3.</label>
<caption>
<p>List of defence-related differentially expressed genes in citrus under
<italic>K. apiculata</italic>
treatment. (XLS 115 kb)</p>
</caption>
</media>
<media position="anchor" xlink:href="12864_2015_2333_MOESM4_ESM.xls" id="MOESM4">
<label>Additional file 4: Table S4.</label>
<caption>
<p>The common or in special up-regulated or down-regulated expressed genes in citrus between
<italic>K. apiculata</italic>
, PEA and the extract treatment. (XLS 301 kb)</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>CL and PL designed the research; PL, CK, GL and XY performed research and analysed the data; PL and XY wrote the paper. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<p>The research was financially supported by the National Basic Research Program of China (973 program; no: 2013CB127100), the National Natural Science Foundation of China (grant nos. 31171773, 30972062 and 31401831) and the Modern Agriculture (Citrus) Technology System (CARS-27).</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janisiewicz</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Korsten</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Biological control of postharvest diseases of fruits</article-title>
<source>Annu Rev Phytopathol</source>
<year>2002</year>
<volume>40</volume>
<fpage>411</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.phyto.40.120401.130158</pub-id>
<pub-id pub-id-type="pmid">12147766</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Droby</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Macarisin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Twenty years of postharvest biocontrol research: is it time for a new paradigm?</article-title>
<source>Postharvest Biol Technol</source>
<year>2009</year>
<volume>52</volume>
<fpage>137</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1016/j.postharvbio.2008.11.009</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review</article-title>
<source>Biol Control</source>
<year>2009</year>
<volume>50</volume>
<fpage>205</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocontrol.2009.05.001</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jamalizadeh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Etebarian</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Aminian</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Alizadeh</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage</article-title>
<source>EPPO Bulletin</source>
<year>2011</year>
<volume>41</volume>
<fpage>65</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2338.2011.02438.x</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>BX</given-names>
</name>
</person-group>
<article-title>Biological control of
<italic>Penicillium italicu</italic>
m of citrus and
<italic>Botrytis cinerea</italic>
of grape by strain 34–9 of
<italic>Kloeckera apiculata</italic>
</article-title>
<source>Eur Food Res Technol</source>
<year>2005</year>
<volume>221</volume>
<fpage>197</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="doi">10.1007/s00217-005-1199-z</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>González-Candelas</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Alamar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sánchez-Torres</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zacarías</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Marcos</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to
<italic>Penicillium digitatum</italic>
infection</article-title>
<source>BMC Plant Biol</source>
<year>2010</year>
<volume>10</volume>
<fpage>194</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-10-194</pub-id>
<pub-id pub-id-type="pmid">20807411</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Characterization of competition for nutrients in the biocontrol of
<italic>Penicillium italicum</italic>
by
<italic>Kloeckera apiculata</italic>
</article-title>
<source>Biol Control</source>
<year>2013</year>
<volume>67</volume>
<fpage>157</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocontrol.2013.07.011</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arras</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Mode of action of an isolate of
<italic>Candida famata</italic>
in biological control of
<italic>Penicillium digitatum</italic>
in orange fruits</article-title>
<source>Postharvest Biol Technol</source>
<year>1999</year>
<volume>8</volume>
<fpage>191</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/0925-5214(95)00071-2</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ben-Yehoshua</surname>
<given-names>S</given-names>
</name>
<name>
<surname>D’hallewin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Castia</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Accumulation of phytoalexins scoparone and scolopetin in citrus fruits subjected to various postharvest treatments</article-title>
<source>Acta Hortic</source>
<year>1994</year>
<volume>381</volume>
<fpage>517</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.17660/ActaHortic.1994.381.69</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nantawanit</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chanchaichaovivat</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Panijpan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ruenwongsa</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Induction of defense response against
<italic>Colletotrichum capsici</italic>
in chili fruit by the yeast
<italic>Pichia guilliermondii</italic>
strain R13</article-title>
<source>Biol Control</source>
<year>2010</year>
<volume>52</volume>
<fpage>145</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocontrol.2009.10.011</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ippolito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>EI Ghaouth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Control of postharvest decay of apple fruit by
<italic>Aureobasidium pullulans</italic>
and induction of defense responses</article-title>
<source>Postharvest Biol Techol</source>
<year>2000</year>
<volume>19</volume>
<fpage>265</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1016/S0925-5214(00)00104-6</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El Ghaouth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Control of postharvest decay of apple fruit with
<italic>Candida saitoana</italic>
and induction of defense responses</article-title>
<source>Phytopathology</source>
<year>2003</year>
<volume>93</volume>
<fpage>344</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2003.93.3.344</pub-id>
<pub-id pub-id-type="pmid">18944345</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CQ</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>WW</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>CZ</given-names>
</name>
</person-group>
<article-title>
<italic>Rhodosporidium paludigenum</italic>
induces resistance and defense-related responses against
<italic>Penicillium digitatum</italic>
in citrus fruit</article-title>
<source>Postharvest Biol Techol</source>
<year>2013</year>
<volume>85</volume>
<fpage>196</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/j.postharvbio.2013.06.014</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Biocontrol of postharvest
<italic>Rhizopus</italic>
decay of peaches with
<italic>Pichia caribbica</italic>
</article-title>
<source>Curr Microbiol</source>
<year>2013</year>
<volume>67</volume>
<fpage>255</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1007/s00284-013-0359-9</pub-id>
<pub-id pub-id-type="pmid">23536217</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>BQ</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity</article-title>
<source>Plant Mol Biol</source>
<year>2013</year>
<volume>82</volume>
<fpage>593</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1007/s11103-013-0035-2</pub-id>
<pub-id pub-id-type="pmid">23515879</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castoria</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Caputo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>De Curtis</surname>
<given-names>F</given-names>
</name>
<name>
<surname>De Cicco</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action</article-title>
<source>Phytopathology</source>
<year>2003</year>
<volume>93</volume>
<fpage>564</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2003.93.5.564</pub-id>
<pub-id pub-id-type="pmid">18942978</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macarisin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Droby</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bauchan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol?</article-title>
<source>Postharvest Biol Technol</source>
<year>2010</year>
<volume>58</volume>
<fpage>194</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/j.postharvbio.2010.07.008</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>Effect of
<italic>Pichia membranaefaciens</italic>
on ROS metabolism and postharvest disease control in citrus fruit</article-title>
<source>Crop Prot</source>
<year>2013</year>
<volume>53</volume>
<fpage>96</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1016/j.cropro.2013.06.015</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prusky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>McEvoy</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Saftner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Conway</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The relationship between host acidification and virulence of
<italic>Penicillium</italic>
spp. on apple and citrus fruit</article-title>
<source>Phytopathology</source>
<year>2004</year>
<volume>94</volume>
<fpage>44</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2004.94.1.44</pub-id>
<pub-id pub-id-type="pmid">18943818</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barad</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Horowitz</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Moscovitz</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lichter</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prusky</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A
<italic>Penicillium expansum</italic>
glucoseoxidase–encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit</article-title>
<source>Mol Plant-Microbe Interact</source>
<year>2012</year>
<volume>25</volume>
<fpage>779</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-01-12-0002</pub-id>
<pub-id pub-id-type="pmid">22352719</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eshel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Miyara</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ailing</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dinoor</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prusky</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>pH regulates endoglucanase expression and virulence of
<italic>Alternaria alternata</italic>
in persimmon fruit</article-title>
<source>Mol Plant-Microbe Interact</source>
<year>2002</year>
<volume>15</volume>
<fpage>774</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI.2002.15.8.774</pub-id>
<pub-id pub-id-type="pmid">12182334</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macarisin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Eick</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rafael</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Belausov</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Penicillium digitatum</italic>
suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit</article-title>
<source>Phytopathology</source>
<year>2007</year>
<volume>97</volume>
<fpage>1491</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-97-11-1491</pub-id>
<pub-id pub-id-type="pmid">18943520</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyara</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Shafran</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Davidzon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prusky</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>pH regulation of ammonia secretion by
<italic>Colletotrichum gloeosporioides</italic>
and its effect on appressorium formation and pathogenicity</article-title>
<source>Mol Plant-Microbe Interact</source>
<year>2010</year>
<volume>23</volume>
<fpage>304</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1094/MPMI-23-3-0304</pub-id>
<pub-id pub-id-type="pmid">20121452</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mauch-Mani</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mauch</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The role of abscisic acid in plant–pathogen interactions</article-title>
<source>Curr Opin Plant Biol</source>
<year>2005</year>
<volume>8</volume>
<fpage>409</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/j.pbi.2005.05.015</pub-id>
<pub-id pub-id-type="pmid">15939661</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>KQ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Arabidopsis</italic>
RAP2.2 plays an important role in plant resistance to
<italic>Botrytis cinerea</italic>
and ethylene responses</article-title>
<source>New Phytol</source>
<year>2012</year>
<volume>195</volume>
<fpage>450</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2012.04160.x</pub-id>
<pub-id pub-id-type="pmid">22530619</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koornneef</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pieterse</surname>
<given-names>CMJ</given-names>
</name>
</person-group>
<article-title>Cross talk in defense signaling</article-title>
<source>Plant Physiol</source>
<year>2008</year>
<volume>146</volume>
<fpage>839</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1104/pp.107.112029</pub-id>
<pub-id pub-id-type="pmid">18316638</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Droby</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vinokur</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Daus</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Golaschmidt</surname>
<given-names>EE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of resistance to
<italic>Penicillium digitatum</italic>
in grapefruit by the yeast biocontrol agent
<italic>Candida oleophila</italic>
</article-title>
<source>Phytopathology</source>
<year>2002</year>
<volume>92</volume>
<fpage>393</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2002.92.4.393</pub-id>
<pub-id pub-id-type="pmid">18942952</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>SP</given-names>
</name>
</person-group>
<article-title>Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage</article-title>
<source>Postharvest Biol Tech</source>
<year>2005</year>
<volume>35</volume>
<fpage>253</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/j.postharvbio.2004.09.001</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>XD</given-names>
</name>
</person-group>
<article-title>Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid</article-title>
<source>Int J Food Microbiol</source>
<year>2007</year>
<volume>116</volume>
<fpage>339</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijfoodmicro.2007.02.005</pub-id>
<pub-id pub-id-type="pmid">17428566</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>KT</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Rui</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Effect of yeast antagonist in combination with methyl jasmonate treatment on postharvest anthracnose rot of loquat fruit</article-title>
<source>Biol Control</source>
<year>2009</year>
<volume>50</volume>
<fpage>73</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1016/j.biocontrol.2009.02.003</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gimenez-Ibanez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Solano</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens</article-title>
<source>Front Plant Sci</source>
<year>2013</year>
<volume>4</volume>
<fpage>72</fpage>
<pub-id pub-id-type="doi">10.3389/fpls.2013.00072</pub-id>
<pub-id pub-id-type="pmid">23577014</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shoresh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harman</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Mastouri</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Induced systemic resistance and plant responses to fungal biocontrol agents</article-title>
<source>Annu Rev Phytopathol</source>
<year>2010</year>
<volume>48</volume>
<fpage>21</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-phyto-073009-114450</pub-id>
<pub-id pub-id-type="pmid">20192757</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microarray expression profiling of postharvest
<italic>Ponkan mandarin</italic>
(
<italic>Citrus reticulata</italic>
) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism</article-title>
<source>J Integr Plant Biol</source>
<year>2011</year>
<volume>53</volume>
<fpage>358</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1111/j.1744-7909.2011.01035.x</pub-id>
<pub-id pub-id-type="pmid">21348940</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>SP</given-names>
</name>
</person-group>
<article-title>Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening</article-title>
<source>Plant J</source>
<year>2012</year>
<volume>70</volume>
<fpage>243</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2011.04861.x</pub-id>
<pub-id pub-id-type="pmid">22098335</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Da</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Transcriptome changes during fruit development and ripening of sweet orange (
<italic>Citrus sinensis</italic>
)</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>10</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-10</pub-id>
<pub-id pub-id-type="pmid">22230690</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment</article-title>
<source>BMC Plant Biol</source>
<year>2013</year>
<volume>13</volume>
<fpage>44</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-13-44</pub-id>
<pub-id pub-id-type="pmid">23497220</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>ZL</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>YH</given-names>
</name>
</person-group>
<article-title>Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘
<italic>Candidatus Liberibacter</italic>
asiaticus’ infection</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>27</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-27</pub-id>
<pub-id pub-id-type="pmid">23324561</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Proteome approach to characterize proteins induces by antagonist yeast and salicylic acid in peach fruit</article-title>
<source>J Proteome Res</source>
<year>2007</year>
<volume>6</volume>
<fpage>1677</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1021/pr060483r</pub-id>
<pub-id pub-id-type="pmid">17381148</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Microarray analysis of gene expression profile induced by the biocontrol yeast
<italic>Cryptococcus laurentii</italic>
in cherry tomato fruit</article-title>
<source>Gene</source>
<year>2009</year>
<volume>430</volume>
<fpage>12</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.gene.2008.09.036</pub-id>
<pub-id pub-id-type="pmid">18976698</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hershkovitz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ben-Dayan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Raphael</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pasmanik-Chor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Belausov</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent
<italic>Metschnikowia fructicola</italic>
</article-title>
<source>Mol Plant Pathol</source>
<year>2012</year>
<volume>13</volume>
<fpage>338</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2011.00750.x</pub-id>
<pub-id pub-id-type="pmid">22017757</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hershkovitz</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sela</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Taha-Salaime</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rafael</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kessler</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>De-novo</italic>
assembly and characterization of the transcriptome of
<italic>Metschnikowia fructicola</italic>
reveals differences in gene expression following interaction with
<italic>Penicillium digitatum</italic>
and grapefruit peel</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>168</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-168</pub-id>
<pub-id pub-id-type="pmid">23496978</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanisms of action for 2-phenylethanol isolated from
<italic>Kloeckera apiculata</italic>
in control of
<italic>Penicillium</italic>
molds of citrus fruits</article-title>
<source>BMC Microbiol</source>
<year>2014</year>
<volume>14</volume>
<fpage>242</fpage>
<pub-id pub-id-type="doi">10.1186/s12866-014-0242-2</pub-id>
<pub-id pub-id-type="pmid">25230758</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizutani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Diversification of P450 genes during land plant evolution</article-title>
<source>Annu Rev Plant Biol</source>
<year>2010</year>
<volume>61</volume>
<fpage>291</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-arplant-042809-112305</pub-id>
<pub-id pub-id-type="pmid">20192745</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guttikonda</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Trupti</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bisht</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>An</surname>
<given-names>YQC</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulationspecific P450 monooxygenases</article-title>
<source>BMC Plant Biol</source>
<year>2010</year>
<volume>10</volume>
<fpage>243</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-10-243</pub-id>
<pub-id pub-id-type="pmid">21062474</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kushiro</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Okamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakabayashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamagishi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kitamura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Asami</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Arabidopsis</italic>
cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism</article-title>
<source>EMBO J</source>
<year>2004</year>
<volume>23</volume>
<fpage>1647</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1038/sj.emboj.7600121</pub-id>
<pub-id pub-id-type="pmid">15044947</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Loon</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Rep</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pieterse</surname>
<given-names>CMJ</given-names>
</name>
</person-group>
<article-title>Significance of inducible defense-related proteins in infected plants</article-title>
<source>Annu Rev Phytopathol</source>
<year>2006</year>
<volume>44</volume>
<fpage>135</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.phyto.44.070505.143425</pub-id>
<pub-id pub-id-type="pmid">16602946</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>XZ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Moriguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Ectopic expression of MdSPDS1 in sweet orange (
<italic>Citrus sinensis</italic>
Osbeck) reduces canker susceptibility: involvement of H
<sub>2</sub>
O
<sub>2</sub>
production and transcriptional alteration</article-title>
<source>BMC Plant Biol</source>
<year>2011</year>
<volume>11</volume>
<fpage>55</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2229-11-55</pub-id>
<pub-id pub-id-type="pmid">21439092</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>XR</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcriptomic analysis of Chinese bayberry (
<italic>Myrica rubra</italic>
) fruit development and ripening using RNA-Seq</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>19</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-19</pub-id>
<pub-id pub-id-type="pmid">22244270</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>XZ</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Different transcriptional response to
<italic>Xanthomonas citri</italic>
subsp. citri between kumquat and sweet orange with contrasting canker tolerance</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e41790</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0041790</pub-id>
<pub-id pub-id-type="pmid">22848606</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zamboni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zanin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tomasi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pezzotti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pinton</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Varanini</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>101</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-101</pub-id>
<pub-id pub-id-type="pmid">22433273</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballester</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Lafuente</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Forment</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gadea</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Vos</surname>
<given-names>RCH</given-names>
</name>
<name>
<surname>Bovy</surname>
<given-names>AG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance</article-title>
<source>Mol Plant Pathol</source>
<year>2011</year>
<volume>12</volume>
<fpage>879</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2011.00721.x</pub-id>
<pub-id pub-id-type="pmid">21726388</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tiwari</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Belenghi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Oxidative stress increased respiration and generation of reative oxygen species, resulting in ATP depletion, opening of mitochondiral permeability transition, and programmed cell death</article-title>
<source>Plant Physiol</source>
<year>2002</year>
<volume>128</volume>
<fpage>1271</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1104/pp.010999</pub-id>
<pub-id pub-id-type="pmid">11950976</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2001</year>
<volume>98</volume>
<fpage>741</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.98.2.741</pub-id>
<pub-id pub-id-type="pmid">11209069</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pieterse</surname>
<given-names>CMJ</given-names>
</name>
<name>
<surname>Leon-Reyes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Van der Ent</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Van Wees</surname>
<given-names>SCM</given-names>
</name>
</person-group>
<article-title>Networking by small-molecule hormones in plant immunity</article-title>
<source>Nat Chem Biol</source>
<year>2009</year>
<volume>5</volume>
<fpage>308</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1038/nchembio.164</pub-id>
<pub-id pub-id-type="pmid">19377457</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pieterse</surname>
<given-names>CMJ</given-names>
</name>
<name>
<surname>Van der Does</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zamioudis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Leon-Reyes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Van Wees</surname>
<given-names>SCM</given-names>
</name>
</person-group>
<article-title>Hormonal modulation of plant immunity</article-title>
<source>Ann Rev Cell Dev Biol</source>
<year>2012</year>
<volume>28</volume>
<fpage>489</fpage>
<lpage>521</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-cellbio-092910-154055</pub-id>
<pub-id pub-id-type="pmid">22559264</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loreti</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Povero</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Novi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Solfanelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Alpi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perata</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in
<italic>Arabidopsi</italic>
s</article-title>
<source>New Phytol</source>
<year>2008</year>
<volume>179</volume>
<fpage>1004</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2008.02511.x</pub-id>
<pub-id pub-id-type="pmid">18537890</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in
<italic>Arabidopsis</italic>
</article-title>
<source>Plant Cell</source>
<year>2011</year>
<volume>23</volume>
<fpage>1000</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.111.083089</pub-id>
<pub-id pub-id-type="pmid">21447791</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>An</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>64</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-64</pub-id>
<pub-id pub-id-type="pmid">22321773</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serrano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Martinez-Madrid</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Romojaro</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Ethylene biosynthesis and polyamine and ABA levels in cut carnations treated with aminotriazole</article-title>
<source>J Am Soc Hort Sci</source>
<year>1999</year>
<volume>124</volume>
<fpage>81</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tieman</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Loucas</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Klee</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol</article-title>
<source>Phytochemistry</source>
<year>2007</year>
<volume>68</volume>
<fpage>2660</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.phytochem.2007.06.005</pub-id>
<pub-id pub-id-type="pmid">17644147</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walter</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Doohan</surname>
<given-names>FM</given-names>
</name>
</person-group>
<article-title>Action and reaction of host and pathogen during
<italic>Fusarium</italic>
head blight disease</article-title>
<source>New Phytol</source>
<year>2010</year>
<volume>185</volume>
<fpage>54</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.03041.x</pub-id>
<pub-id pub-id-type="pmid">19807873</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>XX</given-names>
</name>
</person-group>
<article-title>Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (
<italic>Citrus sinensis</italic>
Osbeck)</article-title>
<source>J Huazhong Agr Univ</source>
<year>2006</year>
<volume>25</volume>
<fpage>300</fpage>
<lpage>4</lpage>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brazma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hingamp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Quackenbush</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sherlock</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Spellman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stoeckert</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Minimum information about a microarray experiment (MIAME)–toward standards for microarray data</article-title>
<source>Nat Genet</source>
<year>2001</year>
<volume>29</volume>
<fpage>365</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1038/ng1201-365</pub-id>
<pub-id pub-id-type="pmid">11726920</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallego-Giraldo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jikumaru</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kamiya</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Selective lignin downregulation leads to constitutive defense response expression in alfalfa (
<italic>Medicago sativa</italic>
L.)</article-title>
<source>New Phytol</source>
<year>2011</year>
<volume>190</volume>
<fpage>627</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2010.03621.x</pub-id>
<pub-id pub-id-type="pmid">21251001</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>GY</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>ZN</given-names>
</name>
</person-group>
<article-title>Selection of reference genes for quantitative real-time RT-PCR analysis in citrus</article-title>
<source>Mol Biol Rep</source>
<year>2012</year>
<volume>39</volume>
<fpage>1831</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1007/s11033-011-0925-9</pub-id>
<pub-id pub-id-type="pmid">21633888</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Syros</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yupsanis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zafiriadis</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Economou</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of
<italic>Ebenus cretica</italic>
L</article-title>
<source>J Plant Physiol</source>
<year>2004</year>
<volume>161</volume>
<fpage>69</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1078/0176-1617-00938</pub-id>
<pub-id pub-id-type="pmid">15002666</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Moriguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach
<italic>in vitro</italic>
callus</article-title>
<source>Plant Cell Rep</source>
<year>2007</year>
<volume>26</volume>
<fpage>125</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1007/s00299-006-0223-5</pub-id>
<pub-id pub-id-type="pmid">16912865</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>XZ</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>XS</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>QJ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response</article-title>
<source>Tree Physiol</source>
<year>2010</year>
<volume>30</volume>
<fpage>914</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1093/treephys/tpq030</pub-id>
<pub-id pub-id-type="pmid">20462936</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000599  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000599  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024