Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0004859 ( Pmc/Corpus ); précédent : 0004858; suivant : 0004860 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal and spatial control of gene expression in horticultural crops</title>
<author>
<name sortKey="Dutt, Manjul" sort="Dutt, Manjul" uniqKey="Dutt M" first="Manjul" last="Dutt">Manjul Dutt</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dhekney, Sadanand A" sort="Dhekney, Sadanand A" uniqKey="Dhekney S" first="Sadanand A" last="Dhekney">Sadanand A. Dhekney</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming</institution>
, Sheridan, WY 82801,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Soriano, Leonardo" sort="Soriano, Leonardo" uniqKey="Soriano L" first="Leonardo" last="Soriano">Leonardo Soriano</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura</institution>
, Piracicaba,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kandel, Raju" sort="Kandel, Raju" uniqKey="Kandel R" first="Raju" last="Kandel">Raju Kandel</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming</institution>
, Sheridan, WY 82801,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grosser, Jude W" sort="Grosser, Jude W" uniqKey="Grosser J" first="Jude W" last="Grosser">Jude W. Grosser</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26504550</idno>
<idno type="pmc">4596326</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596326</idno>
<idno type="RBID">PMC:4596326</idno>
<idno type="doi">10.1038/hortres.2014.47</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000485</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Temporal and spatial control of gene expression in horticultural crops</title>
<author>
<name sortKey="Dutt, Manjul" sort="Dutt, Manjul" uniqKey="Dutt M" first="Manjul" last="Dutt">Manjul Dutt</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dhekney, Sadanand A" sort="Dhekney, Sadanand A" uniqKey="Dhekney S" first="Sadanand A" last="Dhekney">Sadanand A. Dhekney</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming</institution>
, Sheridan, WY 82801,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Soriano, Leonardo" sort="Soriano, Leonardo" uniqKey="Soriano L" first="Leonardo" last="Soriano">Leonardo Soriano</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura</institution>
, Piracicaba,
<country>Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kandel, Raju" sort="Kandel, Raju" uniqKey="Kandel R" first="Raju" last="Kandel">Raju Kandel</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming</institution>
, Sheridan, WY 82801,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Grosser, Jude W" sort="Grosser, Jude W" uniqKey="Grosser J" first="Jude W" last="Grosser">Jude W. Grosser</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Horticulture Research</title>
<idno type="eISSN">2052-7276</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Hortic Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Hortic Res</journal-id>
<journal-title-group>
<journal-title>Horticulture Research</journal-title>
</journal-title-group>
<issn pub-type="epub">2052-7276</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26504550</article-id>
<article-id pub-id-type="pmc">4596326</article-id>
<article-id pub-id-type="pii">hortres201447</article-id>
<article-id pub-id-type="doi">10.1038/hortres.2014.47</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Temporal and spatial control of gene expression in horticultural crops</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Dutt</surname>
<given-names>Manjul</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="caf1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dhekney</surname>
<given-names>Sadanand A</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Soriano</surname>
<given-names>Leonardo</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kandel</surname>
<given-names>Raju</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grosser</surname>
<given-names>Jude W</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<aff id="aff1">
<label>1</label>
<institution>Citrus Research and Education Center, University of Florida</institution>
, 700 Experiment Station Road, Lake Alfred, FL 33850,
<country>USA</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming</institution>
, Sheridan, WY 82801,
<country>USA</country>
</aff>
<aff id="aff3">
<label>3</label>
<institution>Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura</institution>
, Piracicaba,
<country>Brazil</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="caf1">
<label>*</label>
<email>manjul@ufl.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>24</day>
<month>09</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<volume>1</volume>
<fpage>14047</fpage>
<lpage></lpage>
<history>
<date date-type="received">
<day>25</day>
<month>06</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>07</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>06</day>
<month>08</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Nanjing Agricultural University</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Nanjing Agricultural University</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Gene expression in prokaryotes as well as in eukaryotes is regulated quantitatively and qualitatively by specific upstream DNA sequences.
<sup>
<xref ref-type="bibr" rid="bib1">1</xref>
</sup>
These DNA sequences are commonly known as gene promoters. Initiation of transcription is in turn mediated by proteins that recognize specific DNA sequences in the promoter, thereby inducing RNA polymerase activity.
<sup>
<xref ref-type="bibr" rid="bib2">2</xref>
,
<xref ref-type="bibr" rid="bib3">3</xref>
</sup>
Promoters regulate gene expression through DNA recognition sequences, which interact with basic transcription initiation complexes and numerous transcription factors.
<sup>
<xref ref-type="bibr" rid="bib4">4</xref>
</sup>
Such DNA recognition sequences usually include a core promoter with upstream enhancer sequences located close to the structural portion of the gene.
<sup>
<xref ref-type="bibr" rid="bib2">2</xref>
</sup>
Transcription can be activated by these enhancer sequences independent of their location, distance or orientation with respect to the genes promoters.
<sup>
<xref ref-type="bibr" rid="bib5">5</xref>
</sup>
</p>
<p>Promoters in general are divided into two regions: a core promoter region and upstream regulatory regions.
<sup>
<xref ref-type="bibr" rid="bib6">6</xref>
</sup>
The core promoter consists of a 50–100 bp sequence adjacent to the transcription initiation site and flanking sequences.
<sup>
<xref ref-type="bibr" rid="bib7">7</xref>
</sup>
This region interacts with the general transcription machinery
<sup>
<xref ref-type="bibr" rid="bib8">8</xref>
</sup>
and ensures the accurate initiation of transcription by RNA polymerase II.
<sup>
<xref ref-type="bibr" rid="bib9">9</xref>
</sup>
The core promoter consists of two key genetic elements: the TATA box (present in most promoters) and/or an initiator (Inr) element overlapping the transcription start site.
<sup>
<xref ref-type="bibr" rid="bib10">10</xref>
,
<xref ref-type="bibr" rid="bib11">11</xref>
</sup>
The initiator element binds trans-acting factors for the placement of the start site
<sup>
<xref ref-type="bibr" rid="bib12 bib13 bib14">12–14</xref>
</sup>
and can also mediate transcription initiation in some TATA-less promoters.
<sup>
<xref ref-type="bibr" rid="bib15">15</xref>
,
<xref ref-type="bibr" rid="bib16">16</xref>
</sup>
The upstream promoter regions of 1–2 kb or more contains several
<italic>cis-</italic>
regulatory elements that serve as the binding sites for gene-specific regulators.
<sup>
<xref ref-type="bibr" rid="bib7">7</xref>
</sup>
The regulatory sequences that play a role in the qualitative specificity of gene expression have been intensely studied.
<sup>
<xref ref-type="bibr" rid="bib17 bib18 bib19">17–19</xref>
</sup>
Several regulatory sequences present upstream of the 5′ region of plant genes include multiple
<italic>cis-</italic>
regulatory elements whose distribution and presence contribute to the expression pattern of that particular gene. This interaction between the
<italic>cis-</italic>
acting elements and the transcription factors is key in the regulation of gene expression.
<sup>
<xref ref-type="bibr" rid="bib20">20</xref>
</sup>
The presence of several
<italic>cis-</italic>
acting elements can contribute to the complex expression profile of a particular gene
<sup>
<xref ref-type="bibr" rid="bib2">2</xref>
</sup>
and their differential combinatorial interactions with the transcription factors result in expression of the adjacent gene to be either constitutive, induced by external factors, tissue-specific or some combination of these.
<sup>
<xref ref-type="bibr" rid="bib21">21</xref>
,
<xref ref-type="bibr" rid="bib22">22</xref>
</sup>
</p>
<p>The first biotech crop commercialized in the United States was a horticultural commodity: the Flavr Savr tomato, which was submitted for approval in 1992 and released for consumption in 1994.
<sup>
<xref ref-type="bibr" rid="bib23 bib24 bib25">23–25</xref>
</sup>
Numerous horticultural crops in the last 20 years have since been transformed with a wide range of genes and promoter elements. In most studies the introduced genes are controlled by constitutive promoters—the most popular being the 35S promoter obtained from the
<italic>Cauliflower mosaic virus</italic>
(CaMV).
<sup>
<xref ref-type="bibr" rid="bib26">26</xref>
,
<xref ref-type="bibr" rid="bib27">27</xref>
</sup>
In many cases, constitutive gene expression may not be required, especially when this does not serve a beneficial purpose.
<sup>
<xref ref-type="bibr" rid="bib28">28</xref>
,
<xref ref-type="bibr" rid="bib29">29</xref>
</sup>
In such cases, targeted gene expression using tissue-specific or inducible promoters can often provide advantages not seen using constitutive promoters.
<sup>
<xref ref-type="bibr" rid="bib30">30</xref>
</sup>
In recent years, there has been a boom in the availability of promoter information in many promoter databases.
<sup>
<xref ref-type="bibr" rid="bib31 bib32 bib33">31–33</xref>
</sup>
This wealth of information enables the researcher to better understand the role of promoters and their control on plant growth and development. It also allows for the development of improved cultivars containing desirable traits.
<sup>
<xref ref-type="bibr" rid="bib34">34</xref>
,
<xref ref-type="bibr" rid="bib35">35</xref>
</sup>
In this review, we look at the different promoter elements either isolated from horticultural crops or used to genetically modify a horticultural crop for improved traits (
<xref rid="tbl1" ref-type="table">Table 1</xref>
).</p>
</sec>
<sec>
<title>Promoters used for constitutive gene expression</title>
<p>Constitutive promoters direct gene expression uniformly in most tissues and cells at all stages of plant growth and development. Constitutive promoters confer high levels of transgene expression when transferred to plant cells. They generally consist of a core DNA sequence (core promoter) along with other regulatory elements such as enhancers, silencers and other DNA sequences, which interact with DNA binding proteins (transcription factors) to drive transgene expression in various plant cells.
<sup>
<xref ref-type="bibr" rid="bib27">27</xref>
</sup>
Constitutive promoters may provide ectopic gene expression in transgenic plants, not otherwise observed under normal conditions. Significantly variable results may be observed from the use of a constitutive promoter in a monocotyledonous and dicotyledonous species, which makes it essential to identify candidate promoters for specific groups to ensure high transgene expression levels.
<sup>
<xref ref-type="bibr" rid="bib36">36</xref>
</sup>
Most constitutive promoters used for production of transgenic plants derive their origin from viral sequences. Advances in plant genome sequencing initiatives and availability of public genomic databases have led to the identification of numerous plant-derived constitutive promoters, which are increasingly being used in plant transformation.</p>
<p>The
<italic>Cauliflower mosaic virus</italic>
35S (CaMV 35S or simply 35S) promoter is by far the most widely used promoter in plant transformation.
<sup>
<xref ref-type="bibr" rid="bib37">37</xref>
</sup>
The promoter is capable of conferring high gene expression levels in most cells when transferred to plants.
<sup>
<xref ref-type="bibr" rid="bib38">38</xref>
</sup>
The 35S promoter has been extensively studied to identify key regulatory sequences that function to provide high gene expression levels.
<sup>
<xref ref-type="bibr" rid="bib27">27</xref>
</sup>
Sequences analyses of the 35S promoter reveal the presence of several regulatory elements that are dispersed among the entire promoter length. The promoter consists of two domains A and B, which are further subdivided into several subdomains.
<sup>
<xref ref-type="bibr" rid="bib27">27</xref>
</sup>
Deletion analyses studies identified specific
<italic>cis-</italic>
elements in these subdomains that confer expression in specific tissues of above and below-ground plant parts. Various combinations of
<italic>cis</italic>
-elements of the 35S promoter can produce gene expression patterns that are not observed with the sole use of such elements, which suggests an interaction between
<italic>cis</italic>
-elements for expression at various plant growth and developmental stages.
<sup>
<xref ref-type="bibr" rid="bib27">27</xref>
</sup>
Although the 35S promoter is considered to direct constitutive expression, varied expression effects result from its interaction with environmental factors
<sup>
<xref ref-type="bibr" rid="bib39">39</xref>
</sup>
and physiological state of plant development.
<sup>
<xref ref-type="bibr" rid="bib40">40</xref>
</sup>
Gene expression by the 35S promoter also appears to be species-dependent. For instance, high GUS expression levels were observed in pollen of transgenic strawberry plants when a 35S promoter was used, but no expression could be detected in transgenic tomato or petunia plants with similar construct configurations.
<sup>
<xref ref-type="bibr" rid="bib41 bib42 bib43">41–43</xref>
</sup>
In other cases, transgenic chrysanthemum expressing a GUS gene under the control of the 35S promoter exhibited weak transgene expression levels.
<sup>
<xref ref-type="bibr" rid="bib44">44</xref>
</sup>
</p>
<p>In-depth functional analyses of regulatory elements present in the 35S promoter has increased our understanding of the role of individual
<italic>cis</italic>
and enhancer elements in driving gene transcription.
<sup>
<xref ref-type="bibr" rid="bib27">27</xref>
,
<xref ref-type="bibr" rid="bib45">45</xref>
</sup>
Such information has been exploited to produce chimeric versions of the 35S promoter that contain duplicated
<italic>cis</italic>
or enhancer elements.
<sup>
<xref ref-type="bibr" rid="bib46">46</xref>
</sup>
Inclusion of additional viral- and plant-derived sequences in various combinations can provide additional synergy to the 35S promoter. Duplication of 35S enhancer elements in unique orientation along with the core promoter can greatly assist in driving high levels of several genes in a single transformation cassette.
<sup>
<xref ref-type="bibr" rid="bib47">47</xref>
</sup>
</p>
<p>Genetic constructs containing a 35S-derived core promoter and either single or duplicated enhancer elements that controlled fusion gene expression, were arranged in a unidirectional (tandem) or bidirectional (divergent) orientation. Significantly high levels of GFP and GUS expression was observed in grapevine somatic embryos and plants transformed with constructs containing a bidirectional duplex promoter complex, where core promoters and duplicated enhancer elements were arranged in a divergent orientation. This phenomenon was attributed to synergistic activity of core promoters and enhancers arranged in a unique orientation.
<sup>
<xref ref-type="bibr" rid="bib48">48</xref>
</sup>
Similar results were obtained when a grapevine
<italic>MybA1</italic>
transcription factor encoding anthocyanin expression was fused to viral promoters in various arrangements.
<sup>
<xref ref-type="bibr" rid="bib49">49</xref>
</sup>
</p>
<p>The 35S promoter has been extensively used in horticultural crops for improving abiotic and biotic stress tolerance and quality traits, and for modification of plant architecture. Transgenic papaya that expressed a viral coat protein gene driven by a 35S promoter exhibited enhanced resistance against papaya ring spot virus resistance.
<sup>
<xref ref-type="bibr" rid="bib50">50</xref>
</sup>
Following extensive field trials to confirm stability of resistance, the transgenic lines were used in breeding programs to produce virus resistant cultivars, which were deregulated and released for commercial production.
<sup>
<xref ref-type="bibr" rid="bib51">51</xref>
</sup>
Transgenic ‘Honey Sweet’ plums expressing a plum pox virus coat protein under the control of the 35S promoter exhibited enhanced resistance to plum pox virus, the causal agent of Sharka disease of plum.
<sup>
<xref ref-type="bibr" rid="bib52">52</xref>
,
<xref ref-type="bibr" rid="bib53">53</xref>
</sup>
‘Honey Sweet’ was cleared for commercial production in the United States in 2010 following extensive studies by appropriate regulatory agencies.
<sup>
<xref ref-type="bibr" rid="bib54">54</xref>
</sup>
Similar strategies have been used to incorporate virus resistance in other fruit and vegetable crops.
<sup>
<xref ref-type="bibr" rid="bib55">55</xref>
,
<xref ref-type="bibr" rid="bib56">56</xref>
</sup>
</p>
<p>The 35S promoter has also been fused to a number of genes coding for antimicrobial proteins to improve fungal and bacterial resistance. Improved scab resistance was demonstrated in transgenic apple that expressed a
<italic>mbr4</italic>
gene driven by the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib57">57</xref>
</sup>
Genetically, engineered cacao plants constitutively expressing a chitinase gene showed decreased growth of
<italic>Colletotrichum gleosporiodes</italic>
and reduced symptoms of necrosis compared to the controls.
<sup>
<xref ref-type="bibr" rid="bib58">58</xref>
</sup>
</p>
<p>Transgenic
<italic>Citrus</italic>
plants expressing an antimicrobial peptide under control of a double-enhanced 35S promoter exhibited reduced symptoms of
<italic>Citrus</italic>
scab in greenhouse trials.
<sup>
<xref ref-type="bibr" rid="bib59">59</xref>
</sup>
Similar results were observed in transgenic strawberries expressing an antimicrobial protein.
<sup>
<xref ref-type="bibr" rid="bib60">60</xref>
</sup>
Transgenic grapevines expressing either antifungal or antibacterial genes under control of the 35S promoter exhibited enhanced disease resistance and are currently in advanced stages of field testing.
<sup>
<xref ref-type="bibr" rid="bib61">61</xref>
</sup>
A number of PR proteins under the control of the 35S promoter have also been employed to engineer disease resistance in ornamentals. Delayed symptoms of fungal diseases was observed in transgenic lines compared to the controls.
<sup>
<xref ref-type="bibr" rid="bib62">62</xref>
</sup>
Transgenic roses constitutively expressing an antimicrobial peptide exhibited resistance to powdery mildew in greenhouse trials.
<sup>
<xref ref-type="bibr" rid="bib63">63</xref>
</sup>
In other studies insect resistant transgenic fruits and vegetables have been produced by expressing a wide array of genes driven by the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib64 bib65 bib66 bib67">64–67</xref>
</sup>
</p>
<p>Transgenic horticultural crops with abiotic stress tolerance have been developed by constitutively expressing drought, cold and salinity-related genes. The
<italic>Arabidopsis</italic>
CBF transcription factors and its homologues from several species have been transferred to a number of fruit and vegetable crops for improving cold/chilling and drought tolerance.
<sup>
<xref ref-type="bibr" rid="bib68 bib69 bib70 bib71 bib72">68–72</xref>
</sup>
A number of antiporter and vacuolar genes have been utilized for enhancing salinity tolerance in several plant species.
<sup>
<xref ref-type="bibr" rid="bib73 bib74 bib75">73–75</xref>
</sup>
</p>
<p>The 35S promoter has been frequently used to downregulate genes involved in ethylene biosynthesis or fruit ripening and subsequently enhance shelf life and fruit quality.
<sup>
<xref ref-type="bibr" rid="bib76 bib77 bib78">76–78</xref>
</sup>
Transgenic tomatoes expressing antisense versions of genes responsible for fruit softening under control of a 35S promoter exhibited enhanced shelf life due to their ability to inhibit or reduce fruit-specific enzymes responsible for softening of the fruit during the ripening process.
<sup>
<xref ref-type="bibr" rid="bib79 bib80 bib81">79–81</xref>
</sup>
Suppression of ripening-specific
<italic>N</italic>
-glycoprotein modifying enzymes in tomato resulted in an increase in fruit shelf life without adversely affecting other qualitative characteristics.
<sup>
<xref ref-type="bibr" rid="bib82">82</xref>
</sup>
</p>
<p>The 35S promoter has also been used in a number of ornamental crops to modify plant structure, flower color and engineer floral scent in flowers that normally do not produce any fragrance. Enhanced anthocyanin production was observed in transgenic tobacco and petunia plants when a maize leaf color transcription factor was constitutively expressed by a 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib83">83</xref>
,
<xref ref-type="bibr" rid="bib84">84</xref>
</sup>
Transgenic flower crops with unique colorations not generally observed in wild populations have been created by isolating genes from the pigment biosynthesis pathway and placing them under control of the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib85">85</xref>
,
<xref ref-type="bibr" rid="bib86">86</xref>
</sup>
Transgenic roses and carnations expressing unique colorations were also produced and released for commercial production. Transgenic petunia with reduced height and enhanced lateral branching were produced by constitutively expressing a zinc finger transcription factor.
<sup>
<xref ref-type="bibr" rid="bib87">87</xref>
</sup>
The enhanced branching patterns were attributed to alterations in cytokinin metabolism and increase in specific forms of cytokinins. Flowers with improved shelf life have also been produced by expressing various genes under the control of the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib88">88</xref>
</sup>
Other efforts to improve traits in ornamental plants include the production of dwarf and compact plants and enhanced leaf color.
<sup>
<xref ref-type="bibr" rid="bib89">89</xref>
</sup>
Several attempts to introduce floral scent have been made using genetic engineering; such efforts have achieved partial success, mainly in part due to the absence of key enzymes or precursors that are required for the biosynthesis of the final biochemical compound.
<sup>
<xref ref-type="bibr" rid="bib90">90</xref>
</sup>
</p>
<p>Chimeric promoters that drive constitutive gene expression are created by combining elements from viral-derived sequences other than the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib91">91</xref>
,
<xref ref-type="bibr" rid="bib92">92</xref>
</sup>
The Cassava vein mosaic virus (
<italic>CVMV</italic>
), figwort mosaic virus and Cestrum Yellow Leaf Curling Virus (
<italic>CMPS</italic>
) have been used to identify regulatory elements that would drive high levels of constitutive gene expression in plants.
<sup>
<xref ref-type="bibr" rid="bib48">48</xref>
,
<xref ref-type="bibr" rid="bib93 bib94 bib95">93–95</xref>
</sup>
Such chimeric promoters created through shuffling of regulatory elements and inclusion of plant-derived or other viral-derived sequences have shown high levels of transgene expression in several plant species. In some cases, the activity of viral-derived constitutive promoters has been less effective in monocotyledonous species compared to dicotyledonous plant species.
<sup>
<xref ref-type="bibr" rid="bib94">94</xref>
</sup>
In other instances, viral-derived promoter sequences are known to direct high levels of gene expression in a wide array of dicot and monocot species.
<sup>
<xref ref-type="bibr" rid="bib96">96</xref>
</sup>
</p>
<p>Advances in genome sequencing of major crops of commercial importance and availability of high throughput sequence analyses have led to the isolation of several constitutive promoters from plant species. Promoters of constitutively expressed genes such as ubiquitin are ideal candidates due to their ability to drive high gene expression levels in transformed cells. Several grapevine promoters have been isolated from the sequenced genome and analyzed for their ability to direct gene expression in various plant tissues.
<sup>
<xref ref-type="bibr" rid="bib97">97</xref>
</sup>
Among the various candidates tested, ubiquitin promoters exhibited the highest activity levels when tested in grape somatic embryos and tobacco callus cultures, leaves and floral tissues. Two promoters Ubi-6-1 and Ubi7-2 exhibited gene expression levels comparable to a doubly enhanced 35S promoter when fused to the
<italic>gus</italic>
and anthocyanin reporter genes. Higher levels of gene expression could be correlated with an increased number of
<italic>cis-</italic>
elements in these promoters, which underlines the significance of identifying specific sequences in promoter regions for predicting expression levels. An ubiquitin extension promoter (
<italic>uep1</italic>
) identified in oil palm exhibited constitutive expression in the native species as well as in tobacco, thereby indicating its utility in monocot and dicot groups of plants.
<sup>
<xref ref-type="bibr" rid="bib98">98</xref>
</sup>
A comparison of the activity of plant- and viral-derived promoter sequences in transgenic
<italic>Gladioulus</italic>
found no differences in expression levels of GUS during the culture stage.
<sup>
<xref ref-type="bibr" rid="bib99">99</xref>
</sup>
However greenhouse-grown transgenic lines exhibited higher gene expression levels when the
<italic>gus</italic>
gene was driven by an
<italic>Arabidopsis</italic>
-derived
<italic>rolD</italic>
promoter. Transgenic chrysanthemums exhibited higher GUS expression levels when fused to a potato
<italic>Lhca3.St.1</italic>
promoter than the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib100">100</xref>
</sup>
Such effects were attributed to potential post-transcriptional modifications leading to greater stability of the mRNA and higher expression levels.</p>
</sec>
<sec>
<title>Promoters involved in fruit-specific gene expression</title>
<p>The ability of constitutive promoters to direct high levels of transgene expression can be a limiting factor when temporal and spatial gene expression patterns are required to achieve manipulation of specific plant organs or developmental stages. Constitutive expression of transcription factors by the 35S promoter may interfere with normal plant development resulting in abnormal phenotypes.
<sup>
<xref ref-type="bibr" rid="bib70">70</xref>
,
<xref ref-type="bibr" rid="bib101">101</xref>
</sup>
In other cases, the 35S promoter may not be active in specific plant tissues thereby rendering it ineffective for directing high levels of spatial transgene expression.
<sup>
<xref ref-type="bibr" rid="bib43">43</xref>
</sup>
Tissue-specific promoters may be useful for directing transgenic expression in specific plant tissues without interfering with normal plant growth and development processes. A number of promoters involved in various stages of fruit growth, maturity and ripening have been identified and can be used as genetic engineering tools to improve fruit yield, quality and post-harvest shelf life. Fruit-specific promoters with unique positive and negative regulatory elements may function efficiently in restricting tissue-specific expression of genes and avoiding the possibility of abnormal plant growth often observed with constitutive promoters. Fruit-specific promoters from both plant species that exhibit climacteric and non-climacteric ripening patterns have been studied.</p>
<p>A number of fruit-specific promoters are regulated by ethylene, which is involved in a number of developmental processes including fruit maturity, ripening and senescence. Promoters of ethylene responsive genes such as the
<italic>E4</italic>
and
<italic>E8</italic>
genes have been well studied to identify activator and suppressor elements that ensure spatial and temporal gene expression.
<sup>
<xref ref-type="bibr" rid="bib102">102</xref>
,
<xref ref-type="bibr" rid="bib103">103</xref>
</sup>
Promoters from genes such as the
<italic>ACC</italic>
ox
<italic>idase</italic>
and
<italic>ACO synthase</italic>
isoforms that catalyze the key steps in ethylene biosynthesis have also been analyzed in a number of plant species to identify specific
<italic>cis-</italic>
elements involved in the regulatory process.
<sup>
<xref ref-type="bibr" rid="bib104 bib105 bib106">104–106</xref>
</sup>
Deletion analysis of a peach
<italic>ACC oxidase</italic>
promoter fused to the GUS gene revealed the presence of regulatory regions that controlled gene expression at specific stages of fruit ripening.
<sup>
<xref ref-type="bibr" rid="bib107">107</xref>
</sup>
Longer sequences of the promoter enhanced GUS expression in transgenic tomato, which was attributed to the presence of an enhancer element. Genes involved in tomato fruit development from the immature-green to mature-green stages have been identified using large-scale microarray analysis to identify fruit-specific promoters that direct gene expression from ovary development to ripening.
<sup>
<xref ref-type="bibr" rid="bib108">108</xref>
</sup>
Analysis of a sour cherry expansin gene and its promoter region revealed the presence of a TATA box and several CAAT boxes that are conserved among promoter sequences.
<sup>
<xref ref-type="bibr" rid="bib109">109</xref>
</sup>
Additionally, sequences that were responsive to hormones (ethylene and gibberellins), an anaerobic responsive element, GATA boxes, pyrimidine box and other
<italic>cis-</italic>
elements that conferred tissue specificity were identified in the 5′ upstream region. Such sequences were highly conserved with previously identified
<italic>cis-</italic>
elements in other plant species. Promoter deletion analysis studies confirmed specific
<italic>cis-</italic>
elements that acted as positive regulators of gene expression in fruits at various stages of development. Similar results were obtained with the analysis of a cucumber fruit-specific expansion gene,
<italic>CsExp</italic>
.
<sup>
<xref ref-type="bibr" rid="bib110">110</xref>
</sup>
In addition to the TATA and CAAT boxes, light and hormone-responsive
<italic>cis-</italic>
elements with a high degree of homology with other similar elements in other species were identified. Genes responsible for sex expression in cucumber and expressed during fruit development were studied along with their promoter regions.
<sup>
<xref ref-type="bibr" rid="bib111">111</xref>
</sup>
Sequence analysis for two female-specific genes revealed gene duplication except for differences in the promoter regions. No differences were observed in the proximal promoter region of the
<italic>CsACS1G</italic>
and
<italic>CsACS1</italic>
genes, which has
<italic>cis-</italic>
elements that acted as repressors of gibberellins.
<italic>In silico</italic>
analysis of the distal regions indicated the presence of auxin-responsive elements in the CsACS1G promoter, which could potentially confer responsiveness of this gene to specific hormonal factors and control female sex expression.
<sup>
<xref ref-type="bibr" rid="bib111">111</xref>
</sup>
</p>
<p>The strawberry gene
<italic>Faxy1</italic>
coding for a fruit-specific β-xylosidase and potentially involved in hemicellulose degradation during fruit ripening was isolated along with its 5′ flanking region.
<sup>
<xref ref-type="bibr" rid="bib112">112</xref>
</sup>
Analysis of the promoter region revealed the presence of several hormone, light and abiotic stress-related regulatory regions in addition to the TATA box and several CAAT boxes. While abscisic acid (ABA) treatment of peduncles enhanced gene expression and protein levels, a reduction was observed with NAA, GA
<sub>3</sub>
and ethylene treatment thereby indicating the presence of
<italic>cis-</italic>
elements that were positively and negatively regulated by specific hormones. Light responsive
<italic>cis-</italic>
elements such as ACE, SP1 G-box and MRE sequences were identified. The promoter region also included a number of cold, drought and heat-responsive elements.</p>
<p>A number of promoter sequences that are involved in the expression of genes involved in biochemical changes of fruit composition during development and ripening have been studied.
<sup>
<xref ref-type="bibr" rid="bib113 bib114 bib115">113–115</xref>
</sup>
A banana sucrose phosphate synthase (
<italic>SPS</italic>
) promoter that is involved in sucrose accumulation during ripening was analyzed to identify regulatory elements and their interaction with transcription factors.
<sup>
<xref ref-type="bibr" rid="bib116">116</xref>
</sup>
The presence of
<italic>cis-</italic>
elements regulated by light and hormonal interactions in addition to the TATA box and CAAT box indicated an interaction of plant hormones and environmental factors during the process of fruit ripening. In watermelon, the ADP-glucose pryophosphorylase gene, which is involved in carbohydrate metabolism during fruit ripening, was negatively regulated in the vegetative tissues.
<sup>
<xref ref-type="bibr" rid="bib115">115</xref>
</sup>
Removal of the
<italic>cis-</italic>
elements involved in negative regulation by fine promoter deletion analysis led to constitutive expression of the gene in leaf epidermal cells. Novel fruit-specific elements were identified in a cucumisin gene that is expressed in ripe melon fruits.
<sup>
<xref ref-type="bibr" rid="bib114">114</xref>
</sup>
Deletion analysis identified a fruit-specific enhancer element, and an I-box-like sequence, which negatively regulated cucumin biosynthesis in tissues other than the fruit. Similar elements with positive and negative regulatory functions were identified in a
<italic>Citrus</italic>
C11 promoter that was specifically expressed in juice sacs of ripening lemon fruit.
<sup>
<xref ref-type="bibr" rid="bib117">117</xref>
</sup>
Heterologous expression of the promoter:
<italic>gus</italic>
chimeric fusion in tomato revealed GUS expression specifically in the anthers and ovaries but not in vegetative tissues.</p>
<p>Promoters coding for metallothionin expression have been isolated from oil palm and
<italic>Citrus</italic>
.
<sup>
<xref ref-type="bibr" rid="bib118">118</xref>
,
<xref ref-type="bibr" rid="bib119">119</xref>
</sup>
The oil palm promoter exhibited higher activity in the mesocarp tissue compared to leaf tissues. A core sequence that specified mesocarp expression while negatively regulating constitutive expression was identified in addition to specific enhancer elements that promoted expression in fruit tissues. Thus, tissue-specific expression appeared to be controlled by the combination of the positive and negative regulatory elements in the promoter region.
<sup>
<xref ref-type="bibr" rid="bib119">119</xref>
</sup>
Analysis of the
<italic>Citrus methallothionin</italic>
gene indicated the promoter to be in the TATA-less group of plant promoters such as those involved in photosynthesis. A number of fruit-specific
<italic>cis</italic>
-elements were identified in the promoter region and their function was confirmed by heterologous expression in
<italic>Arabidopsis</italic>
.</p>
<p>A number of genes for pigment production in fruits during the ripening phase have been well characterized.
<sup>
<xref ref-type="bibr" rid="bib113">113</xref>
,
<xref ref-type="bibr" rid="bib120 bib121 bib122">120–122</xref>
</sup>
The
<italic>VvMybA1</italic>
transcription factor is known to bind to specific regulatory elements of genes involved in the phenylalanine pathway, thereby promoting anthocyanin biosynthesis in grape berries post-veraison. A difference in the production of red and white colored berries in various grape cultivars is attributed to the insertion of a grape retrotransposon element GRET 1, which causes lack of pigment production resulting in white colored berries.
<sup>
<xref ref-type="bibr" rid="bib123">123</xref>
</sup>
Analysis of the grape dihydroflavonal reductase (
<italic>dfr</italic>
) gene promoter region revealed the presence of regulatory elements that conferred expression in fruits during ripening.
<sup>
<xref ref-type="bibr" rid="bib124">124</xref>
</sup>
A transcription factor
<italic>LcMybA1</italic>
that accumulated anthocyanin in litchi pericarp was found to be upregulated by light and ABA.
<sup>
<xref ref-type="bibr" rid="bib125">125</xref>
</sup>
Promoter analysis of the
<italic>LcMybA1</italic>
gene revealed the presence of light, hormone and abiotic stress-responsive
<italic>cis-</italic>
elements that were involved in positive and negative regulation of gene expression. A
<italic>Gentiana lutea</italic>
carotenoid-related zeaxanthin epoxidase (
<italic>GIZEP</italic>
) gene and promoter region was analyzed for its function in carotenoid biosynthesis.
<sup>
<xref ref-type="bibr" rid="bib126">126</xref>
</sup>
Heterologous expression of a
<italic>GIZEP</italic>
:
<italic>gus</italic>
fusion in transgenic tomato specified carotenoid expression in flowers and ripe fruit but minimal levels in vegetative tissues, roots and immature fruit containing chloroplast.
<italic>Cis-</italic>
elements that are responsive to hormones and abiotic stress factors were identified in the promoter region and may be involved in carotenoid biosynthesis at specific developmental stages. In other studies, two fruit-specific promoters in tomato, SIACS4 and SIEXP1 contained regulatory elements that conferred gene expression specifically in seed, embryo and endosperm tissues.
<sup>
<xref ref-type="bibr" rid="bib127">127</xref>
</sup>
Candidate promoter sequences have also been identified from other fruits that exhibit seed-specific expression in heterologous species, indicating the presence of conserved
<italic>cis-</italic>
elements.
<sup>
<xref ref-type="bibr" rid="bib128">128</xref>
</sup>
</p>
<p>Fruit-specific promoters have been used to either express or downregulate transgenic proteins at specific stages of development for enhancing fruit yield and quality.
<sup>
<xref ref-type="bibr" rid="bib129 bib130 bib131">129–131</xref>
</sup>
Transgenic tomatoes expressing miraculin, a taste modifying glycoprotein under control of an E8 promoter accumulated uniformly high levels of the transgenic protein in ripening fruits compared to fruits expressing the protein under a 35S promoter, where protein accumulation occurred predominantly in the exocarp.
<sup>
<xref ref-type="bibr" rid="bib132">132</xref>
</sup>
Targeted expression of a yeast
<italic>S</italic>
-adenosylmethionine decarboxylase gene under the control of a fruit-specific E8 promoter significantly increased spermine and spermidine levels in transgenic tomato fruit, resulting in enhanced shelf life and higher lycopene content.
<sup>
<xref ref-type="bibr" rid="bib133">133</xref>
</sup>
Transgenic tomatoes expressing an
<italic>Agrobacterium rolB</italic>
gene under control of an ovary-specific promoter produced parthenocarpic fruit.
<sup>
<xref ref-type="bibr" rid="bib134">134</xref>
</sup>
No differences in fruit morphology were observed compared to the non-transformed fruit. In other studies, tomato fruits with enhanced rot resistance and shelf life were obtained by expressing a tomato anionic peroxidase under control of a fruit-specific E8 promoter.
<sup>
<xref ref-type="bibr" rid="bib135">135</xref>
</sup>
Transgenic avocado plants harboring a
<italic>S</italic>
-adenosine
<italic>L</italic>
-methionine hydrolyase gene under control of a fruit-specific cellulose promoter have been produced to study the potential for improving fruit shelf life.
<sup>
<xref ref-type="bibr" rid="bib136">136</xref>
</sup>
Targeted expression of a bacterial-derived auxin biosynthesis gene under control of a ovule-specific promoter significantly enhanced fecundity of transgenic ‘Silcora’ and ‘Thompson Seedless’ grapevines by improving berry and cluster size without compromising qualitative characteristics.
<sup>
<xref ref-type="bibr" rid="bib137">137</xref>
</sup>
Similar results of improved yield along with the production of parthenocarpic fruit were obtained in transgenic strawberry and raspberry plants.
<sup>
<xref ref-type="bibr" rid="bib138">138</xref>
</sup>
</p>
</sec>
<sec>
<title>Promoters active in the seeds</title>
<p>The expression of genes that produce seed storage proteins is highly regulated. Deletion analysis of seed-specific promoters has led to identification of proximal regions that confer seed specificity and distal regions that are responsible for modulating gene expression.
<sup>
<xref ref-type="bibr" rid="bib139 bib140 bib141">139–141</xref>
</sup>
Many seed storage protein genes have been cloned from diverse plant species, and their promoters have been analyzed in detail to identify several
<italic>cis</italic>
- and
<italic>trans</italic>
-acting elements involved in gene regulation.
<sup>
<xref ref-type="bibr" rid="bib139">139</xref>
,
<xref ref-type="bibr" rid="bib140">140</xref>
</sup>
Although such proteins exhibit wide structural variations, their promoters have a number of common properties.
<sup>
<xref ref-type="bibr" rid="bib142">142</xref>
</sup>
They allow the synthesis of proteins at high levels in specific tissues of the seed and at certain stages of plant development.
<sup>
<xref ref-type="bibr" rid="bib143">143</xref>
</sup>
The tightly regulated promoters make them ideal candidates for improving seed-specific traits such as nutritional value without potentially altering existing desirable characteristics.
<sup>
<xref ref-type="bibr" rid="bib144">144</xref>
</sup>
</p>
<p>The 2S albumin gene promoter from a number of horticultural species has been used to direct seed-specific gene expression.
<sup>
<xref ref-type="bibr" rid="bib145 bib146 bib147">145–147</xref>
</sup>
DNA sequence analysis of a seed-specific 2S albumin promoter region derived from grape (
<italic>Vitis vinifera</italic>
L.) indicated that several conserved seed-specific regulatory motifs were clustered within a 0.6 kb region upstream of the transcription start site. A high level of GFP expression was observed in the cotyledonary but not hypocotyl and vegetative tissues of grape and tobacco indicating the ability of the promoter to direct seed-specific gene expression.
<sup>
<xref ref-type="bibr" rid="bib145">145</xref>
</sup>
This promoter region contained DNA motifs with core sequences identical to that of cotyledon box (CATGCA), F1 (ACGT) motif, F2 (CACCTC) motif, F3 (CACGTC) and AGGA box that have been previously characterized in 2S albumin and related seed-specific promoters of other species
<sup>
<xref ref-type="bibr" rid="bib147 bib148 bib149">147–149</xref>
</sup>
Substitution mutation analysis of the napin promoter using promoter–reporter gene fusions in stable transgenic tobacco showed synergistic interactions between the B-box and RY/G
<italic>cis</italic>
-elements within these complexes. It was further determined that elements in the B-box constitute an ABA-responsive complex and the seed-specific activity of the
<italic>napA</italic>
gene promoter relies on the combinatorial interaction between the RY/G complex and the B-box ABA-responsive complex during ABA response in seed development.
<sup>
<xref ref-type="bibr" rid="bib150">150</xref>
</sup>
The B-box is highly conserved in all 2S promoters and displays similarity to abscisic acid response elements.
<sup>
<xref ref-type="bibr" rid="bib151">151</xref>
</sup>
</p>
<p>Legumin gene promoters have also been well studied in a number of plant species. In
<italic>Pisum sativum</italic>
, they are coded for by a multigene family.
<sup>
<xref ref-type="bibr" rid="bib152">152</xref>
</sup>
The promoter regions of
<italic>legA</italic>
,
<italic>legB</italic>
and
<italic>legC</italic>
were analyzed and were found to be identical including the TATA box and CAAT box.
<sup>
<xref ref-type="bibr" rid="bib153">153</xref>
</sup>
Deletion analysis of the pea
<italic>legA</italic>
major seed storage protein gene identified a minimal 549 bp upstream flanking sequence that was required for seed-specific expression.
<sup>
<xref ref-type="bibr" rid="bib154">154</xref>
</sup>
This fragment contained the
<italic>leg</italic>
box element, a 28 bp conserved sequence found in the legumin-type genes of
<italic>Vicia, Pisum</italic>
,
<italic>Glycine</italic>
and
<italic>Helianthus</italic>
. Larger promoter fragments significantly increased levels of seed-specific gene expression.
<sup>
<xref ref-type="bibr" rid="bib143">143</xref>
</sup>
DNA binding assays, however, indicated that the
<italic>leg</italic>
box element is not the sole promoter determinant in legumin gene expression since the −124 bp fragment which included the
<italic>leg</italic>
box did not bind to nuclear proteins.
<sup>
<xref ref-type="bibr" rid="bib155">155</xref>
</sup>
In addition, deletion of the
<italic>leg</italic>
box with its seed protein gene-specific CATGCATG motif has no obvious effects on expression levels. A 2.4 kb fragment containing the 5′-flanking region and the 5′-noncoding sequence of the
<italic>Vicia faba</italic>
legumin gene LeB4 was observed to mediate high level of seed-specific expression in transgenic tobacco plants. Deletion analysis revealed that a 1 kb of 5′-flanking sequence was sufficient for high-levels of expression.
<sup>
<xref ref-type="bibr" rid="bib156">156</xref>
</sup>
Similar to that observed with the pea legA promoter, positive regulatory, enhancer-like
<italic>cis</italic>
-elements are present within 566 bp of the upstream sequence. However, these elements are only fully functional in conjunction with the core motif CATGCATG of the legumin box present around position −95.
<sup>
<xref ref-type="bibr" rid="bib157">157</xref>
</sup>
</p>
<p>Seed specificity within the 5′-upstream region of a
<italic>Vicia faba</italic>
non-storage seed protein gene, called
<italic>usp</italic>
was mainly determined by the −68/+51 region. Deletion analysis of the promoter revealed the 0.4 kb of usp upstream sequence contain at least six distinct interspersed
<italic>cis-</italic>
elements including an AT-rich sequence, a G-box element and a CATGCATG motif.
<sup>
<xref ref-type="bibr" rid="bib158">158</xref>
</sup>
The beta-phaseolin gene (
<italic>phas</italic>
), encoding the major seed storage protein of bean (
<italic>Phaseolus vulgaris</italic>
), is confined to the cotyledons of developing embryos. Promoter analysis revealed that although
<italic>cis</italic>
-elements extending 1470 bp upstream of the transcription start site can modulate gene expression, the proximal 295 bp is sufficient to drive high levels of seed-specific GUS activity.
<sup>
<xref ref-type="bibr" rid="bib141">141</xref>
</sup>
The
<italic>cis-</italic>
regulatory CACGTG motif (G box) was identified as a major
<italic>cis-</italic>
acting regulatory element conferring spatial and temporal control of beta-phaseolin
<sup>
<xref ref-type="bibr" rid="bib159">159</xref>
</sup>
as substitution mutation of this motif reduced promoter activity by 75%.
<sup>
<xref ref-type="bibr" rid="bib160">160</xref>
</sup>
In addition, there are three CANNTG motifs and two AG-1-binding sites in the beta-phaseolin promoter that play a critical role in gene transcription.
<sup>
<xref ref-type="bibr" rid="bib160">160</xref>
</sup>
Combinational interactions between multiple sequence motifs such as two upstream activating sequences UAS1 (−295 to −109) and UAS2 (−468 to −391) affected the spatial and temporal regulation of the promoter. While UAS1 was sufficient for seed-specific expression, UAS2 extended gene activity to the hypocotyl. Deletion of either of the two negative regulatory sequences, NRS1 (−391 to −295) and NRS2 (−518 to −418), resulted in premature onset of GUS expression, indicating their role in the temporal control of gene expression.
<sup>
<xref ref-type="bibr" rid="bib161">161</xref>
</sup>
</p>
<p>
<italic>Dc3</italic>
is a carrot
<italic>lea</italic>
class gene expressed during embryogenesis in developing seeds and in vegetative tissues subject to drought and treatment with exogenous ABA.
<sup>
<xref ref-type="bibr" rid="bib162">162</xref>
</sup>
The proximal promoter region (−117 to +26) is responsible for mediating the embryo-specific expression.
<sup>
<xref ref-type="bibr" rid="bib163">163</xref>
</sup>
The
<italic>Dc3</italic>
promoter directed ABA and mannitol-inducible GUS expression in
<italic>Arabidopsis</italic>
guard cells and the two treatments were additive.
<sup>
<xref ref-type="bibr" rid="bib164">164</xref>
</sup>
A small family of bZIP transcription factors are involved in the seed-specific and ABA-responsive expression of the
<italic>Dc3</italic>
gene.
<italic>Dc3</italic>
binds to three DNA binding proteins, DPBF-1, 2 and 3. These DPBFs are bZIP factors that have been postulated to be global regulators of seed-specific and ABA-inducible genes.
<sup>
<xref ref-type="bibr" rid="bib165">165</xref>
</sup>
Deletion analysis of the promoter region led to the delineation of a proximal promoter region and a distal promoter region. The proximal promoter region contains
<italic>cis-</italic>
acting elements responsible for the developmental regulation of
<italic>Dc3</italic>
expression in seeds. Both distal promoter region and proximal promoter region interact with common nuclear proteins that are present in embryos and inducible by ABA in vegetative tissues.
<sup>
<xref ref-type="bibr" rid="bib162">162</xref>
</sup>
Following a 3-day water stress cycle, leaf GUS expression increased about 200-fold while there was a 16-fold increase in free ABA. These effects were reversed by re-watering indicating the drought inducibility of this promoter. In addition, 10 µM ABA resulted in more than 10-fold induction within 8 h.
<sup>
<xref ref-type="bibr" rid="bib166">166</xref>
</sup>
</p>
<p>Other
<italic>cis</italic>
-elements involved in seed-specific promoter expression such as a number of A/T-rich sequences and a CATGCAT/A sequence are present in the 5′-upstream regions of genes encoding concanavalin A (
<italic>ConA</italic>
) and canavalin, two major seed storage proteins of
<italic>Canavalia gladiata</italic>
, the sword bean. Deletion analysis of the promoter regions of both genes revealed positive regulatory elements located in the −894/−602 and −602/−74 regions of the
<italic>ConA</italic>
gene, and in the −428/−376, −281/−155 and −155/−50 regions of the canavalin gene.
<sup>
<xref ref-type="bibr" rid="bib167">167</xref>
</sup>
</p>
<p>Progressive 5′ deletions of the pea lectin (
<italic>Psl</italic>
) gene promoter identified a 22 bp element (W1), important for seed-specific expression when coupled as a trimer to a heterologous TATA box.
<sup>
<xref ref-type="bibr" rid="bib168">168</xref>
</sup>
Within the 469 bp upstream region of the seed-specific pea lectin gene, a trimer of the 22 bp fragment conferred high gene expression in seeds. This 22 bp fragment contains the binding site for the cloned basic domain/leucine zipper (bZIP) proteins TGA1a and Opaque-2 (O2), which in turn binds to the C-box
<italic>cis</italic>
-element (ATGAGTCAT).
<sup>
<xref ref-type="bibr" rid="bib169">169</xref>
</sup>
In a majority of the promoters, most of the
<italic>cis</italic>
-elements are located within 1 kb upstream of the ATG sequence. However, in the HaG3-A sunflower promoter that directs helianthinin gene expression,
<italic>cis-</italic>
regulatory elements located in a 2.4 kb upstream region were responsible for expression in a heterologous system.
<sup>
<xref ref-type="bibr" rid="bib170">170</xref>
</sup>
Similarly, the 2.4 kb in the 5′ upstream region of the
<italic>CuMFT1</italic>
(citrus FT/TFL1 homolog from Satsuma mandarin (
<italic>Citrus unshiu</italic>
Marc.)) contained RY (CATGCAT), E-box (CANNTG) and distant B-box (GCCACTTGTC)
<italic>cis-</italic>
elements, all of which have been reported to promote seed-specific gene expression in plants. Seed-specific expression was confirmed by expressing the
<italic>gus</italic>
gene in
<italic>Arabidopsis</italic>
.
<sup>
<xref ref-type="bibr" rid="bib171">171</xref>
</sup>
A 0.8 kb fragment from the 5′-flanking region of a French bean
<italic>beta-phaseolin</italic>
gene yielded strong, temporally regulated and embryo-specific GUS expression in transgenic tobacco plants.
<sup>
<xref ref-type="bibr" rid="bib140">140</xref>
</sup>
Expression levels were observed to be similar as that obtained using the phaseolin seed protein promoter.
<sup>
<xref ref-type="bibr" rid="bib172">172</xref>
</sup>
</p>
<p>Several promoters expressed in the seeds can also be expressed in other plant organs. The
<italic>strictosidine synthase</italic>
(
<italic>Str</italic>
) gene promoter from
<italic>Catharanthus roseus</italic>
contains a G-box sequence which helps to direct seed-specific expression independently of other regulatory sequences. G-box-directed expression in leaves, however, required the presence of an enhancer region from the 35S promoter.
<sup>
<xref ref-type="bibr" rid="bib173">173</xref>
</sup>
The fruit and seed-specific expression of two tomato fruit-specific promoters
<italic>SIACS4</italic>
and
<italic>SIEXP1</italic>
was analyzed in transgenic tomato lines expressing the promoter:
<italic>gus</italic>
fusion constructs. The
<italic>SIACS4</italic>
promoter (−1 to −373) showed GUS activity restricted specifically to flower buds and seeds in fruits. On the contrary, the
<italic>SIEXP1</italic>
promoter (−1 to −769) showed high level of expression in seeds as compared to fruit tissues at different stages of fruit ripening.
<sup>
<xref ref-type="bibr" rid="bib127">127</xref>
</sup>
The seed-specific expression shown by these promoters might be due to the presence of Prolamin box and E-boxes, which are conserved sequences found in the promoters of many seed storage proteins.
<sup>
<xref ref-type="bibr" rid="bib150">150</xref>
</sup>
</p>
</sec>
<sec>
<title>Promoters active in the floral tissues</title>
<p>In contrast to other plant organs, flowers are composite structures composed of several organs that form an ordered pattern.
<sup>
<xref ref-type="bibr" rid="bib174">174</xref>
</sup>
The typical flower consists of four organs arranged in whorls. The sepals consist of the outermost whorl followed by the petals in the next whorl and stamens (male reproductive organs) in the third whorl and carpels (female reproductive organs) in the innermost whorl.
<sup>
<xref ref-type="bibr" rid="bib175">175</xref>
</sup>
Each of these whorls consist of unique genes targeted to the specific organ and several homeotic genes that affect the fate of organ primordia.
<sup>
<xref ref-type="bibr" rid="bib176">176</xref>
</sup>
Targeted genetic engineering, by utilizing promoters obtained from genes specifically expressed in a specific whorl is highly desirable for targeted gene expression and can be exploited by using specific promoters.
<sup>
<xref ref-type="bibr" rid="bib177">177</xref>
</sup>
Some of the traits that can be engineered in the floral tissues include increased vase life,
<sup>
<xref ref-type="bibr" rid="bib178 bib179 bib180 bib181 bib182">178–182</xref>
</sup>
flower color modification,
<sup>
<xref ref-type="bibr" rid="bib181">181</xref>
,
<xref ref-type="bibr" rid="bib183 bib184 bib185">183–185</xref>
</sup>
fragrance
<sup>
<xref ref-type="bibr" rid="bib185 bib186 bib187">185–187</xref>
</sup>
and male and female sterility
<sup>
<xref ref-type="bibr" rid="bib188 bib189 bib190 bib191 bib192">188–192</xref>
</sup>
among others.</p>
<p>Chalcone synthase (
<italic>CHS</italic>
) is synthesized in the flower corolla, tube and anthers
<sup>
<xref ref-type="bibr" rid="bib193">193</xref>
</sup>
and is important for the biosynthesis of flavonoid antimicrobial phytoalexins and anthocyanin pigments in plants.
<sup>
<xref ref-type="bibr" rid="bib194">194</xref>
</sup>
Various CHS promoters has been studied extensively in many plants, especially in
<italic>Phaseolus vulgaris</italic>
, antirrhinum, petunia and parsley.
<sup>
<xref ref-type="bibr" rid="bib195 bib196 bib197">195–197</xref>
</sup>
A 1.4 kb promoter fragment of the bean
<italic>CHS8</italic>
gene was highly active in the root apical meristem and in petals and weakly expressed in other floral organs, mature leaves, and stems.
<sup>
<xref ref-type="bibr" rid="bib198">198</xref>
</sup>
Gene expression strongly depended on the G-box and H-box,
<sup>
<xref ref-type="bibr" rid="bib199">199</xref>
</sup>
as a synthetic 39 bp DNA fragment containing the two elements and linked to the minimal cauliflower mosaic virus 35S promoter conferred a high level of tissue-specific expression. Mutations in either the G-box or H-box motifs abolished tissue-specific gene expression.
<sup>
<xref ref-type="bibr" rid="bib195">195</xref>
</sup>
A mutation in the G-box did not exhibit impaired promoter response to wounding, but demonstrated a 19% reduction in the response to HgCl
<sub>2</sub>
and TMV. A mutation at the H-box resulted in a 30% increase in promoter response to wounding and reductions of 36% and 54% in the response to HgCl
<sub>2</sub>
and TMV, respectively, demonstrating the differential utilization of regulatory
<italic>cis-</italic>
elements.
<sup>
<xref ref-type="bibr" rid="bib200">200</xref>
</sup>
A silencer element present between positions −140 and −326 contained three binding sites for a bean nuclear factor (SBF-1).
<sup>
<xref ref-type="bibr" rid="bib201">201</xref>
</sup>
The region between −326 and −130 contained both activator and silencer elements.
<sup>
<xref ref-type="bibr" rid="bib202">202</xref>
</sup>
The petunia genome contains eight chalcone synthase genes, of which four are differentially expressed in floral tissues and UV light-induced seedlings.
<sup>
<xref ref-type="bibr" rid="bib197">197</xref>
</sup>
The
<italic>chs</italic>
A promoter contains a 220 bp
<italic>cis-</italic>
acting element region conferring flower-specific and UV-inducible expression
<sup>
<xref ref-type="bibr" rid="bib203">203</xref>
</sup>
and its expression was enhanced when plant tissues were exposed to high carbohydrate levels.
<sup>
<xref ref-type="bibr" rid="bib204">204</xref>
</sup>
A promoter fragment from −67 to +1, was able to direct low level flower-specific gene expression, but could not drive UV-inducible expression in transgenic
<italic>Petunia</italic>
seedlings.
<sup>
<xref ref-type="bibr" rid="bib205">205</xref>
</sup>
Histochemical analyses of GUS expression demonstrated that
<italic>CHS</italic>
promoters are not only active in pigmented cell types (epidermal cells of the flower corolla and tube and subepidermal cells of the flower stem), but also in a number of non-pigmented cell types (mesophylic cells of the corolla, several cell types in the ovary and the seed coat).
<sup>
<xref ref-type="bibr" rid="bib197">197</xref>
</sup>
The highest level of expression directed by the 1.1 kb snapdragon chalcone synthase promoter was observed in immature seeds. Deletions analysis identified regions of the promoter required for expression in roots, stems, leaves, seeds and flower petals of transgenic plants. A promoter fragment truncated to −39 activates transcription in roots of 4-week-old seedlings, whereas a fragment extending to −197 bp directed expression in petals and seeds.
<sup>
<xref ref-type="bibr" rid="bib206">206</xref>
,
<xref ref-type="bibr" rid="bib207">207</xref>
</sup>
The positive regulatory element in the promoter consists of a 47 bp direct repeat between positions −564 and −670.
<sup>
<xref ref-type="bibr" rid="bib208">208</xref>
</sup>
150 bp of the 5′ flanking region contained
<italic>cis-</italic>
acting signals for UV light-induced expression.
<sup>
<xref ref-type="bibr" rid="bib209">209</xref>
</sup>
The
<italic>GTCHS1</italic>
promoter from
<italic>Gentiana triflora</italic>
contains a sequence of the MYB protein-binding site, five consensus sequences of the MYC protein-binding site, one core sequence of a G-box and three P-box-like sequences. Gene expression is strongly directed flower limbs and the inner epidermis
<sup>
<xref ref-type="bibr" rid="bib210">210</xref>
</sup>
and is dependent on the G-box.
<sup>
<xref ref-type="bibr" rid="bib211">211</xref>
</sup>
</p>
<p>In efforts to produce high transgene expression in petal tissue of ray florets of chrysanthemum, expression levels were compared with four petal-specific promoters: ubiquitin extension protein (
<italic>UEP</italic>
1) promoter from chrysanthemum chalcone synthase (
<italic>chs-A</italic>
) a zinc finger transcription factor (
<italic>EPF</italic>
2-5) from petunia, eceriferum (
<italic>CER</italic>
6) from
<italic>Arabidopsis</italic>
and multicystatin (
<italic>PMC</italic>
) from potato. The highest expression in petal tissue of ray and disc florets was conferred by the
<italic>UEP</italic>
1 promoter, followed by
<italic>CER</italic>
6 and
<italic>EPF</italic>
2-5. The
<italic>UEP</italic>
1 promoter in ray florets was reported to confer over 50-fold enhancement in expression as compared to CaMV 35S-based promoters.
<sup>
<xref ref-type="bibr" rid="bib212">212</xref>
</sup>
</p>
<p>Promoters targeting other parts of the flower have also been evaluated. When a 2.4 kb fragment of the pistil-specific thaumatin/PR5-like protein (
<italic>PsTL1</italic>
) promoter from Japanese pear (
<italic>Pyrus serotina</italic>
) was evaluated,
<sup>
<xref ref-type="bibr" rid="bib213">213</xref>
</sup>
it was observed that
<italic>PsTL1</italic>
accumulated in pistils but not in other floral and vegetative organs which constitute a novel pistil-specific class of thaumatin/PR5-like protein.
<sup>
<xref ref-type="bibr" rid="bib214">214</xref>
,
<xref ref-type="bibr" rid="bib215">215</xref>
</sup>
Other parts of the flower targeted include the flower receptacle. Promoters targeting other parts of the flower have been evaluated. When a 2.4 kb fragment of the pistil-specific thaumatin/PR5-like protein (
<italic>PsTL1</italic>
) promoter from Japanese pear (
<italic>Pyrus serotina</italic>
) was evaluated,
<sup>
<xref ref-type="bibr" rid="bib213">213</xref>
</sup>
it was observed that PsTL1 accumulated in pistils, but not in other floral and vegetative organs which constitute a novel pistil-specific class of thaumatin/PR5-like protein.
<sup>
<xref ref-type="bibr" rid="bib214">214</xref>
,
<xref ref-type="bibr" rid="bib215">215</xref>
</sup>
Several reports exist on the isolation, characterization and use of promoters targeted to the flower receptacles,
<sup>
<xref ref-type="bibr" rid="bib216">216</xref>
,
<xref ref-type="bibr" rid="bib217">217</xref>
</sup>
stamen,
<sup>
<xref ref-type="bibr" rid="bib218 bib219 bib220">218–220</xref>
</sup>
anthers
<sup>
<xref ref-type="bibr" rid="bib221 bib222 bib223">221–223</xref>
</sup>
and ovaries.
<sup>
<xref ref-type="bibr" rid="bib134">134</xref>
</sup>
The potato
<italic>SK2</italic>
gene promoter directed pistil-specific gene expression. It was observed that the regulatory elements responsible for pistil-specific expression were located within a 230 bp fragment.
<sup>
<xref ref-type="bibr" rid="bib224">224</xref>
</sup>
</p>
<p>Numerous genes and their promoters that are expressed at the various stages during male gametogenesis have been cloned.
<sup>
<xref ref-type="bibr" rid="bib225">225</xref>
</sup>
Most of these have been isolated from agronomic crops such as maize,
<sup>
<xref ref-type="bibr" rid="bib226">226</xref>
,
<xref ref-type="bibr" rid="bib227">227</xref>
</sup>
rice,
<sup>
<xref ref-type="bibr" rid="bib228">228</xref>
,
<xref ref-type="bibr" rid="bib229">229</xref>
</sup>
tobacco
<sup>
<xref ref-type="bibr" rid="bib230">230</xref>
,
<xref ref-type="bibr" rid="bib231">231</xref>
</sup>
and wheat
<sup>
<xref ref-type="bibr" rid="bib232">232</xref>
</sup>
as well as the model plant
<italic>Arabidopsis</italic>
.
<sup>
<xref ref-type="bibr" rid="bib233 bib234 bib235 bib236">233–236</xref>
</sup>
A few have also been isolated from horticultural crops.
<sup>
<xref ref-type="bibr" rid="bib237">237</xref>
</sup>
These promoters fused to a cytotoxic gene have been used to induce male sterility.
<sup>
<xref ref-type="bibr" rid="bib226">226</xref>
,
<xref ref-type="bibr" rid="bib238">238</xref>
</sup>
The
<italic>LAT52</italic>
and
<italic>LAT59</italic>
anther-specific gene promoters from tomato have been evaluated in various crops for their anther-specific activity.
<sup>
<xref ref-type="bibr" rid="bib237">237</xref>
,
<xref ref-type="bibr" rid="bib239">239</xref>
,
<xref ref-type="bibr" rid="bib240">240</xref>
</sup>
These genes are very critical during tomato pollen development. In their absence, pollen germinates abnormally and is sterile.
<sup>
<xref ref-type="bibr" rid="bib241">241</xref>
</sup>
All major
<italic>cis-</italic>
regulatory elements required for pollen-specific transcription in the LAT52 promoter were located within −492 to −52.
<sup>
<xref ref-type="bibr" rid="bib242">242</xref>
</sup>
Both promoters became active with the onset of microspore mitosis and increased progressively until anthesis,
<sup>
<xref ref-type="bibr" rid="bib223">223</xref>
</sup>
although the LAT52 promoter demonstrated a minor temporal difference in activity when tested in different plant species.
<sup>
<xref ref-type="bibr" rid="bib243 bib244 bib245">243–245</xref>
</sup>
The LAT52 promoter was highly active in electroporated pollen protoplasts isolated from
<italic>Lilium longiflorum</italic>
.
<sup>
<xref ref-type="bibr" rid="bib246">246</xref>
</sup>
The antisense
<italic>Bcp1</italic>
gene under the control of the LAT52 promoter induced sterility in cauliflower pollen.
<sup>
<xref ref-type="bibr" rid="bib247">247</xref>
</sup>
Similarly, a 0.44 kb chiA PA2 promoter fragment from petunia drove pollen-specific gene expression and a 1.75 kb chiB PB promoter fragment conferred anther-specific (pollen and tapetum cells) expression to the
<italic>gus</italic>
gene.
<sup>
<xref ref-type="bibr" rid="bib222">222</xref>
</sup>
The
<italic>TomA108</italic>
gene promoter from tomato was also highly active from early-meiosis to free microspores production in the tapetum.
<sup>
<xref ref-type="bibr" rid="bib248">248</xref>
</sup>
Deletion analysis of the
<italic>BAN215</italic>
-6 gene promoter isolated from the Chinese cabbage identified a 383 bp (−274–+109) region that was observed to be sufficient for the anther-specific expression of the
<italic>gus</italic>
gene. GUS expression was first detected in uninucleate microspores, increased during anther development and reached its highest level in mature pollens.
<sup>
<xref ref-type="bibr" rid="bib249">249</xref>
</sup>
Similar observation were made with the 2.7 kb promoter fragment of a pea
<italic>END1</italic>
gene. This promoter was evaluated in several species and observed to be fully functional in the anthers.
<sup>
<xref ref-type="bibr" rid="bib250">250</xref>
</sup>
</p>
</sec>
<sec>
<title>Promoters active in the root system</title>
<p>Plant roots have been essential for the evolution of vascular plants enabling them to meet the requirements for anchorage and the acquisition of water and nutrients.
<sup>
<xref ref-type="bibr" rid="bib251">251</xref>
</sup>
Roots are multifunctional and involved in the acquisition of water and nutrients, anchorage of the plant and storage functions.
<sup>
<xref ref-type="bibr" rid="bib252">252</xref>
,
<xref ref-type="bibr" rid="bib253">253</xref>
</sup>
In fact, plant productivity is dependent on a heathy root system
<sup>
<xref ref-type="bibr" rid="bib254">254</xref>
</sup>
as problem with root health directly affects the above ground part.
<sup>
<xref ref-type="bibr" rid="bib255">255</xref>
,
<xref ref-type="bibr" rid="bib256">256</xref>
</sup>
Roots interact with its surrounding environment
<sup>
<xref ref-type="bibr" rid="bib257">257</xref>
</sup>
and can be susceptible to a multitude of problems stemming from the environment in which it lives.
<sup>
<xref ref-type="bibr" rid="bib252">252</xref>
,
<xref ref-type="bibr" rid="bib258 bib259 bib260">258–260</xref>
</sup>
Targeted gene expression by using root-specific promoters can allow for the development of horticultural plants better suited for growth in a range of soil types, soil pH and under microbial stress.
<sup>
<xref ref-type="bibr" rid="bib261">261</xref>
,
<xref ref-type="bibr" rid="bib262">262</xref>
</sup>
Several root-specific promoters have been evaluated in horticultural plants. The
<italic>SLREO</italic>
gene isolated from tomato is highly expressed in roots, but had a very low level of expression in aerial plant organs.
<sup>
<xref ref-type="bibr" rid="bib263">263</xref>
</sup>
The RB7 protein from tobacco,
<sup>
<xref ref-type="bibr" rid="bib262">262</xref>
</sup>
is a membrane channel aquaporin, allowing the diffusion of amino acids and/or peptides from the vacuolar compartment to the cytoplasm.
<sup>
<xref ref-type="bibr" rid="bib264">264</xref>
,
<xref ref-type="bibr" rid="bib265">265</xref>
</sup>
This promoter is root-specific and has been used to drive the
<italic>Arabidopsis</italic>
thionin (
<italic>Thi2.1</italic>
) gene in tomato.
<sup>
<xref ref-type="bibr" rid="bib266">266</xref>
</sup>
A strawberry homolog (
<italic>FaRB7</italic>
) behaves in the same way as the tobacco RB7 promoter.
<sup>
<xref ref-type="bibr" rid="bib267">267</xref>
</sup>
Other promoters identified include a 2 kb promoter fragment of the
<italic>MipB</italic>
gene from
<italic>Mesembryanthemum crystallinum</italic>
that was observed to be expressed strongly in the tobacco root. However, gene expression was also observed in other rapidly expanding cells and cells with high water flux capacity.
<sup>
<xref ref-type="bibr" rid="bib268">268</xref>
</sup>
</p>
<p>Several root nodule-specific promoters have been identified from leguminous plants.
<sup>
<xref ref-type="bibr" rid="bib269">269</xref>
</sup>
A 1.3 kb fragment of the French bean
<italic>gln-gamma</italic>
gene promoter is strongly induced during nodule development.
<sup>
<xref ref-type="bibr" rid="bib270">270</xref>
</sup>
The
<italic>Vicia faba VfLb29</italic>
gene promoter was found to be specifically active not only in the infected cells of the nitrogen-fixing zone of root nodules but also in arbuscule-containing cells of transgenic
<italic>V. faba</italic>
roots colonized by the endomycorrhizal fungus
<italic>Glomus intraradices</italic>
.
<sup>
<xref ref-type="bibr" rid="bib271">271</xref>
</sup>
A promoter fragment (−692/41) encoding the
<italic>Vicia faba</italic>
early nodulin
<italic>VfEnod12</italic>
and containing a putative binding site for the transcription factor ENBP1, mediated reporter gene expression in root cortical cells, nodule primordia and the prefixing zone II of transgenic
<italic>Vicia hirsute</italic>
root nodules.
<sup>
<xref ref-type="bibr" rid="bib272">272</xref>
</sup>
A 1.9 kb fragment of the
<italic>Sesbania rostrata</italic>
leghemoglobin
<italic>glb3</italic>
5′-upstream region was found to direct a high level of nodule-specific GUS activity in lotus. Replacement of the −161 to −48 region, containing the
<italic>glb3</italic>
CAAT and TATA boxes, with the heterologous truncated promoters delta-p35S and delta-pnos, resulted in a loss of nodule specificity and reduction of GUS activity restricted to the
<italic>Rhizobium</italic>
-infected cells of the nodules.
<sup>
<xref ref-type="bibr" rid="bib273">273</xref>
</sup>
Promoter analyses of pea
<italic>PsENOD12A</italic>
and
<italic>PsENOD12B</italic>
, nodulin gene promoters showed that the 200 bp immediately upstream of the transcription start are sufficient to direct nodule-specific and Nod factor-induced gene expression.
<sup>
<xref ref-type="bibr" rid="bib274">274</xref>
</sup>
GUS activity was only detected in the infected cells of the nodules of lotus transgenic plants when a Npv30 promoter isolated from
<italic>Phaseolus vulgaris</italic>
fused to the
<italic>gus</italic>
reporter gene was used.
<sup>
<xref ref-type="bibr" rid="bib275">275</xref>
</sup>
</p>
<p>Several genes are highly upregulated in tubers.
<sup>
<xref ref-type="bibr" rid="bib276 bib277 bib278">276–278</xref>
</sup>
Many of these storage gene promoters have been exploited for horticultural crop improvement. Patatin is a major tuber protein and is very tissue-specific.
<sup>
<xref ref-type="bibr" rid="bib279">279</xref>
</sup>
The 1.5 kb 5′-upstream region of the class I patatin gene
<italic>B33</italic>
directed strong expression of the GUS reporter gene in potato tubers which was on average 100- to 1000-fold higher in tubers as compared to leaf, stem and roots.
<sup>
<xref ref-type="bibr" rid="bib280">280</xref>
</sup>
Gene expression was also induced by sucrose application.
<sup>
<xref ref-type="bibr" rid="bib278">278</xref>
</sup>
Deletion analysis identified a tuber-specific element located downstream from position −195. Sequences between −40 and −400 bp and between −400 and −957 bp of the transcriptional start site were able to confer tuber-specific expression on a heterologous truncated promoter.
<sup>
<xref ref-type="bibr" rid="bib281">281</xref>
</sup>
Sucrose inducibility was controlled by sequences downstream of position −228.
<sup>
<xref ref-type="bibr" rid="bib282">282</xref>
,
<xref ref-type="bibr" rid="bib283">283</xref>
</sup>
High levels of mature human serum albumin was expressed in potato tubers using the potato patatin B33 tuber-specific promoter.
<sup>
<xref ref-type="bibr" rid="bib284">284</xref>
</sup>
</p>
<p>Sporamin accounts for more than 80% of the total soluble proteins of tuberous roots of sweet potato
<sup>
<xref ref-type="bibr" rid="bib285">285</xref>
</sup>
and can be induced by wounding and sucrose.
<sup>
<xref ref-type="bibr" rid="bib286">286</xref>
</sup>
Two wound response-like elements, a G box-like element and a GCC core-like sequence, were found in the sporamin gene promoter.
<sup>
<xref ref-type="bibr" rid="bib287">287</xref>
</sup>
When overexpressed in potato, the sporamin promoter was highly active in leaves, stems and different size tubers.
<sup>
<xref ref-type="bibr" rid="bib288">288</xref>
</sup>
Deletion of the sporamin A promoter sequences extending from position −305 (relative to the transcription start site) to −283 and from −146 to −87 resulted in an approximately 40-fold enhancement in GUS reporter expression. It was observed that the sequence between positions −282 and −165 contained to two
<italic>cis-</italic>
acting elements, termed CMSREs (carbohydrate metabolite signal responsive elements) 1 and 2 are responsible for the sucrose-responsiveness of the promoter.
<sup>
<xref ref-type="bibr" rid="bib289">289</xref>
</sup>
</p>
</sec>
<sec>
<title>Promoters active in the vascular tissues</title>
<p>The plant's vascular system acts as a bridge between the leaves and other parts of the shoot, with the roots.
<sup>
<xref ref-type="bibr" rid="bib290">290</xref>
</sup>
This system, comprised of two kinds of conducting tissue, the xylem and phloem enables efficient long-distance transport between the organs.
<sup>
<xref ref-type="bibr" rid="bib291">291</xref>
</sup>
Xylem is primarily responsible for water transport and movement of soluble mineral nutrients from the roots throughout the plant.
<sup>
<xref ref-type="bibr" rid="bib292">292</xref>
</sup>
Phloem, on the other hand, transports sugars from source tissues such as the photosynthetic leaf cells to sink or storage tissues such as the roots, flowers or fruits.
<sup>
<xref ref-type="bibr" rid="bib293">293</xref>
,
<xref ref-type="bibr" rid="bib294">294</xref>
</sup>
Targeting a transgene into the vasculature using either a xylem or phloem-specific promoter allows gene expression at the site of infection and can potentially control vascular maladies. It can also provide a rapid response in response to wounding and for the control of aphids and other sap sucking insects.
<sup>
<xref ref-type="bibr" rid="bib295 bib296 bib297">295–297</xref>
</sup>
</p>
<p>A 494 bp promoter fragment of the glycine-rich wall protein GRP 1.8 from the French bean translationally fused to the
<italic>gus</italic>
gene expressed the gene in vascular tissue of roots, stems, leaves and flowers. Four
<italic>cis-</italic>
acting regulatory regions, SE1 and SE2 (stem elements), a negative regulatory element and a root-specific element, were found to control the tissue-specific expression.
<sup>
<xref ref-type="bibr" rid="bib298">298</xref>
</sup>
The vs-1 motif in the GRP 1.8 promoter was a
<italic>cis-</italic>
element that specifically bound to a transcription activation factor VSF-1 protein and allows xylem-specific expression.
<sup>
<xref ref-type="bibr" rid="bib299">299</xref>
</sup>
The gene was developmentally expressed during differentiation of both primary and secondary vascular tissue and was also rapidly induced (within <30 min) after excision-wounding of young stems.
<sup>
<xref ref-type="bibr" rid="bib300">300</xref>
</sup>
The bean phenylalanine ammonia-lyase gene 2 (
<italic>PAL2</italic>
) is expressed in the early stages of vascular development at the inception of xylem differentiation. Deletion analysis revealed the presence of
<italic>cis</italic>
-elements located between nucleotides −289 and −74 relative to the transcription start site being essential for xylem expression.
<sup>
<xref ref-type="bibr" rid="bib301">301</xref>
</sup>
Expression of the PAL2 promoter in the vascular system involves positive and negative regulatory
<italic>cis</italic>
-elements. Among these elements is an AC-rich motif implicated in xylem expression.
<sup>
<xref ref-type="bibr" rid="bib302">302</xref>
</sup>
Similarly, the citrus PAL gene (
<italic>CsPP</italic>
) promoter fused to the
<italic>gus</italic>
gene and transformed into tobacco and ‘Valencia’ sweet orange preferentially, but not exclusively, conferred gene expression in xylem tissues of tobacco. Weaker GUS staining was also detected throughout the petiole region in tobacco and citrus CsPP transgenic plants.
<sup>
<xref ref-type="bibr" rid="bib303">303</xref>
</sup>
The
<italic>Arabidopsis</italic>
PAL promoter when transformed into citrus expressed exclusively in the xylem parenchyma.
<sup>
<xref ref-type="bibr" rid="bib304">304</xref>
</sup>
</p>
<p>The full-length promoter and a series of 5′ deletions of the pea cytosolic glutamine synthetase
<italic>GS3A</italic>
gene were fused to the
<italic>gus</italic>
gene and introduced into tobacco and alfalfa. The
<italic>GS3A</italic>
promoter directed GUS expression in the phloem cells of the vasculature in leaves, stems and roots. Interestingly, the promoter was found to be active even when deleted to −132 relative to the start of transcription.
<sup>
<xref ref-type="bibr" rid="bib305">305</xref>
</sup>
The
<italic>Arabidopsis</italic>
sucrose-H
<sup>+</sup>
symporter
<italic>AtSUC2</italic>
<sup>
<xref ref-type="bibr" rid="bib306">306</xref>
</sup>
has been used to direct phloem-specific gene expression in a number of horticultural crops, such as Mexican lime,
<sup>
<xref ref-type="bibr" rid="bib307">307</xref>
</sup>
sweet orange,
<sup>
<xref ref-type="bibr" rid="bib308">308</xref>
</sup>
pears
<sup>
<xref ref-type="bibr" rid="bib309">309</xref>
</sup>
and strawberries.
<sup>
<xref ref-type="bibr" rid="bib310">310</xref>
</sup>
Two alleles of the
<italic>Citrus sinensis</italic>
sucrose synthase-1 promoter (
<italic>CsSUS1p</italic>
) were inserted upstream of the
<italic>gus</italic>
gene to test their ability to drive expression in the phloem of transgenic
<italic>A. thaliana</italic>
and
<italic>N. tabacum</italic>
. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the
<italic>CsSUS1p-2</italic>
allele also generated a significant level of expression in non-target tissues. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides −410 to −268 relative to the transcriptional start site contained elements required for phloem-specific expression, while nucleotides −268 to −103 contained elements necessary for wound-specific expression.
<sup>
<xref ref-type="bibr" rid="bib311">311</xref>
</sup>
In citrus, the CsSUS promoter appeared leaky with some laminar tissue staining.
<sup>
<xref ref-type="bibr" rid="bib312">312</xref>
</sup>
A citrus phloem protein 2 (CsPP2) promoter was also evaluated in sweet orange and gene was observed to be preferentially expressed in the phloem.
<sup>
<xref ref-type="bibr" rid="bib308">308</xref>
</sup>
Two heterologous promoters, rolC and CoYMVP, were fused with the
<italic>gus</italic>
reporter gene and evaluated in the vegetative tissues of apple. It was observed that the CoYMV promoter was slightly more active than the rolC promoter, although both expressed GUS at a lower level than the CaMV 35S promoter. This analysis demonstrated that with both the rolC and CoYMV promoters the reporter gene activity was primarily localized to vascular tissues, particularly the phloem.
<sup>
<xref ref-type="bibr" rid="bib313">313</xref>
</sup>
</p>
</sec>
<sec>
<title>Inducible promoters</title>
<p>These promoters are induced by either physical factors such as biotic and abiotic factors or chemical agents and is a powerful tool to regulate the expression of genes at certain stages of plant or tissue development.
<sup>
<xref ref-type="bibr" rid="bib314 bib315 bib316 bib317 bib318">314–318</xref>
</sup>
Examples of physically regulated promoters include heat shock promoters,
<sup>
<xref ref-type="bibr" rid="bib319">319</xref>
</sup>
cold inducible promoters,
<sup>
<xref ref-type="bibr" rid="bib320">320</xref>
</sup>
light inducible promoters,
<sup>
<xref ref-type="bibr" rid="bib321">321</xref>
</sup>
light repressible promoters
<sup>
<xref ref-type="bibr" rid="bib322">322</xref>
</sup>
or wound inducible promoters.
<sup>
<xref ref-type="bibr" rid="bib323">323</xref>
</sup>
Chemically inducible promoters include alcohol regulated promoters,
<sup>
<xref ref-type="bibr" rid="bib324">324</xref>
</sup>
tetracycline regulated promoters,
<sup>
<xref ref-type="bibr" rid="bib325">325</xref>
</sup>
steroid responsive promoters such as glucocorticoid receptor promoters, estrogen and ecdysone receptor promoters,
<sup>
<xref ref-type="bibr" rid="bib316">316</xref>
,
<xref ref-type="bibr" rid="bib326">326</xref>
</sup>
metal-responsive promoters
<sup>
<xref ref-type="bibr" rid="bib327">327</xref>
</sup>
and pathogenesis related promoters.
<sup>
<xref ref-type="bibr" rid="bib328">328</xref>
</sup>
Some of these promoters have been isolated from horticultural crops or used for horticultural plant improvement.</p>
<p>The potato proteinase inhibitor II gene (
<italic>pinII</italic>
) is a chymotrypsin and trypsin inhibitor
<sup>
<xref ref-type="bibr" rid="bib329">329</xref>
</sup>
and is wound and UV irradiation inducible.
<sup>
<xref ref-type="bibr" rid="bib330">330</xref>
,
<xref ref-type="bibr" rid="bib331">331</xref>
</sup>
The sequence TATAAA is found 26 nucleotides upstream of the transcription initiation site and the sequence CAAAT at position –103 in the promoter.
<sup>
<xref ref-type="bibr" rid="bib332">332</xref>
</sup>
The wound inducibility of this promoter has been evaluated in several plant species to test gene function that involve cell-specific and systemic induction.
<sup>
<xref ref-type="bibr" rid="bib333">333</xref>
</sup>
The PinII promoter has been utilized in the wound-inducible expression of the bacterial isopentenyl transferase (
<italic>ipt</italic>
) gene into
<italic>Nicotiana plumbaginifolia</italic>
.
<sup>
<xref ref-type="bibr" rid="bib334">334</xref>
</sup>
In transgenic rice plants, the expression of the pinII-
<italic>gus</italic>
fusion gene displayed a systemic wound response.
<sup>
<xref ref-type="bibr" rid="bib335">335</xref>
</sup>
In alfalfa, GUS expression was observed in leaf and root vascular tissue, and in some plants, expression was observed in leaf mesophyll cells. Mechanical wounding of leaves increased GUS expression approximately twofold over 24 h.
<sup>
<xref ref-type="bibr" rid="bib336">336</xref>
</sup>
The PinII promoter is active in monocot species also. Localized induced gene expression was obtained in white spruce seedlings (
<italic>Picea glauca</italic>
) using a similar pinII-
<italic>gus</italic>
construct.
<sup>
<xref ref-type="bibr" rid="bib337">337</xref>
</sup>
In rice, the wound-inducible expression of the
<italic>pinII</italic>
gene driven by its own promoter, together with the first intron of the rice actin 1 gene (
<italic>act1</italic>
), resulted in high-level accumulation of the PINII protein in the transgenic plants.
<sup>
<xref ref-type="bibr" rid="bib338">338</xref>
</sup>
The
<italic>wun1</italic>
gene is another wound inducible gene from potato.
<sup>
<xref ref-type="bibr" rid="bib339">339</xref>
</sup>
Histochemical analysis of transgenic tobacco plants that expressing the wun1–
<italic>gus</italic>
fusions demonstrated the wound-inducible and cell-specific wun1 promoter activity in plants containing the −1022 bp fragment.
<sup>
<xref ref-type="bibr" rid="bib340">340</xref>
</sup>
</p>
<p>The tomato
<italic>Lehsp23.8</italic>
heat shock protein gene's expression is induced by treatment with high or low temperatures, heavy metal or ABA. Using the
<italic>gus</italic>
reporter gene system, the developmental and tissue-specific expression of the
<italic>gus</italic>
gene controlled by the
<italic>Lehsp23.8</italic>
promoter was characterized in transgenic tomato plants. The optimal heat-shock temperatures leading to the maximal GUS activity in the pericarp of green, breaker, pink and red fruits were 42, 36, 39 and 39 °C, respectively.
<sup>
<xref ref-type="bibr" rid="bib341">341</xref>
</sup>
Deletion analysis of the
<italic>Lehsp23.8</italic>
promoter revealed a proximal region (−565 to −23 bp) to harbor
<italic>cis-</italic>
regulatory elements that conferred high levels of heat-induced expression in transgenic tobacco. Mutation of the five proximal HSEs (HSE1 to 5) led to an absence of heat inducibility.
<sup>
<xref ref-type="bibr" rid="bib342">342</xref>
</sup>
The tomato chloroplast small heat shock protein (HSP),
<italic>HSP21</italic>
, is also induced by heat treatment in leaves.
<sup>
<xref ref-type="bibr" rid="bib343">343</xref>
</sup>
Several sunflower genes encode small HSPs.
<sup>
<xref ref-type="bibr" rid="bib344">344</xref>
,
<xref ref-type="bibr" rid="bib345">345</xref>
</sup>
In vegetative tissues, these mRNAs accumulated in response to either heat shock (42 °C), ABA or mild water stress treatments. The
<italic>Hahsp17</italic>
.7
<italic>G4</italic>
mRNA is also active during zygotic embryogenesis at 25 °C. Developmental induction of the G4 promoter was faithfully reproduced during zygotic embryogenesis in transgenic plants containing G4: GUS translational fusions. Distal sequences of this promoter (between −1132 and −395) were needed to confer a preferential spatial expression of GUS activity in the cotyledons while proximal regions confer responses to ABA and heat shock
<sup>
<xref ref-type="bibr" rid="bib346">346</xref>
</sup>
This −83 to +163 fragment was observed to be sufficient to support a promoter activity in tobacco galls induced by the root–knot nematode
<italic>Meloidogyne incognita</italic>
. GUS activity was largely restricted to giant cells within the galls.
<sup>
<xref ref-type="bibr" rid="bib347">347</xref>
</sup>
However, the
<italic>Hahsp17.6G1</italic>
(
<italic>G1</italic>
) promoter which is not induced by heat shock, was observed to be silent in these giant cells, indicating that the high metabolic rate of giant cells produced as a result of nematode infection may somehow mimic heat-shock and/or other stress responses.
<sup>
<xref ref-type="bibr" rid="bib348">348</xref>
</sup>
Other examples include the strong oxidative stress-inducible peroxidase
<italic>SWPA2</italic>
promoter from sweet potato. This promoter contained several
<italic>cis-</italic>
element sequences implicated in oxidative stress such as GCN-4, AP-1, HSTF and SP-1 reported in animal cells and a plant-specific G-box. A 1314 bp promoter fragment fused to the
<italic>gus</italic>
gene and transformed into tobacco exhibited about 30 times higher GUS expression than the CaMV 35S promoter in response to environmental stresses including hydrogen peroxide, wounding and UV treatment.
<sup>
<xref ref-type="bibr" rid="bib349">349</xref>
</sup>
similarly, when potatoes were transformed with a stress inducible
<italic>Arabidopsis</italic>
rd29A promoter driving the cold tolerance CBF genes, freezing tolerance was increased by 2 °C.
<sup>
<xref ref-type="bibr" rid="bib350">350</xref>
</sup>
</p>
<p>Several promoters are chemically induced. Ethylene treatment or leaves wounding rapidly induced the melon
<italic>ACC oxidase</italic>
gene, CM-ACO1-
<italic>gus</italic>
gene in transgenic tobacco plants.
<sup>
<xref ref-type="bibr" rid="bib351">351</xref>
</sup>
Jasmonates and alpha-linolenic acid strongly induced the expression of the wound-induced 4CL promoter in parsley cell cultures and transgenic tobacco plants expressing 4CL1–
<italic>GUS</italic>
gene fusions. This supported a role for jasmonates in mediating wound-induced gene expression.
<sup>
<xref ref-type="bibr" rid="bib352">352</xref>
</sup>
Two wound response-like elements, a G box-like element and a GCC core-like sequence were found within a 1.25 kb
<italic>sporamin</italic>
promoter. Transgenic tobacco containing this promoter driving the
<italic>gus</italic>
gene was wounded and a high level of GUS activity was observed in stems and leaves of, but not in roots. Exogenous application of methyl jasmonate also activated the sporamin promoter in leaves and stems of sweet potato.
<sup>
<xref ref-type="bibr" rid="bib287">287</xref>
</sup>
The chemically inducible PR-1a tobacco promoter was fused to the
<italic>Bacillus thuringiensis cry1Ab</italic>
gene and transformed into broccoli. Two progeny lines expressed the
<italic>cry1Ab</italic>
gene and provided insect resistance when treated with the chemical inducers 2,6-dichloroiso-nicotinic acid or 1,2,3-benzothiadiazole-7-carbothioic acid
<italic>S</italic>
-methyl ester.
<sup>
<xref ref-type="bibr" rid="bib353">353</xref>
</sup>
Other examples include the alfalfa pathogen-inducible PR 10 promoter. This promoter fused to the
<italic>Vitis</italic>
stilbene synthase 1 (
<italic>VvSS1</italic>
) gene was introduced into the grape rootstock genome. Transgenic plants accumulated 5- to 100-fold resveratrol in leaves infected with
<italic>Botrytis</italic>
using an
<italic>in vitro</italic>
test.
<sup>
<xref ref-type="bibr" rid="bib354">354</xref>
</sup>
</p>
<p>Some promoters can be regulated both physically and chemically. A 2.2 kb promoter region of the tomato prosystemin gene fused to the
<italic>gus</italic>
gene and transformed back into tomato contains elements conferring its correct temporal and spatial expression in the vascular bundles of transgenic tomato plants by wounding and by treatment of the plants with methyl jasmonate.
<sup>
<xref ref-type="bibr" rid="bib323">323</xref>
</sup>
</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>The global human population is increasing at an unprecedented rate and is projected to cross 11 billion before the end of this century.
<sup>
<xref ref-type="bibr" rid="bib355">355</xref>
</sup>
This doubling of the population and a rapid increase in global food demand creates huge challenges for the sustainability both of food production and the ability to grow more from a shrinking cultivable land mass. Thus far, the combined effects of improved varieties, increased fertilizer use and irrigation coupled with increased pesticide use have been instrumental in allowing world food production to double in the last 35 years
<sup>
<xref ref-type="bibr" rid="bib356">356</xref>
</sup>
A multifaceted and linked global strategy to increase food production from shrinking land and water resources will ensure sustainable and equitable food security.
<sup>
<xref ref-type="bibr" rid="bib357">357</xref>
,
<xref ref-type="bibr" rid="bib358">358</xref>
</sup>
Fruits and vegetables claimed an increasing share of the world agricultural trade, from 10.6% in 1961 to 17% in 2001.
<sup>
<xref ref-type="bibr" rid="bib359">359</xref>
</sup>
It is expected that demand for horticultural commodities, especially fruits, vegetables and flowers will continue to increase with the increase in the purchasing ability of the expanding middle class and an growing awareness of the many health benefits associated with an increased consumption of fruits and vegetables.
<sup>
<xref ref-type="bibr" rid="bib360">360</xref>
,
<xref ref-type="bibr" rid="bib361">361</xref>
</sup>
</p>
<p>Acreage under genetically modified crop plants has increased substantially in recent years as more and more acreage is consumed to feed, clothe and sustain a growing world population.
<sup>
<xref ref-type="bibr" rid="bib362">362</xref>
</sup>
However, there has been limited progress in the commercialization of genetically modified horticultural commodities, with the exception of the Hawaiian papaya cultivars resistant to papaya ringspot virus
<sup>
<xref ref-type="bibr" rid="bib363">363</xref>
,
<xref ref-type="bibr" rid="bib364">364</xref>
</sup>
and color-altered varieties of carnation flowers.
<sup>
<xref ref-type="bibr" rid="bib365">365</xref>
</sup>
Development of genetically modified horticultural cultivars that can alleviate consumer concerns and the related reluctance of food processors and marketers to accept new biotech horticultural commodities can speed up the introduction of horticultural products already developed.
<sup>
<xref ref-type="bibr" rid="bib366">366</xref>
</sup>
</p>
<p>In recent years, molecular advancement in the field of bioinformatics has been rapid.
<sup>
<xref ref-type="bibr" rid="bib37">37</xref>
</sup>
With the genome of a number of horticultural species being sequenced and the availability of numerous online databases for analyzing, identifying and characterizing promoters from different horticultural species,
<sup>
<xref ref-type="bibr" rid="bib367 bib368 bib369 bib370 bib371">367–371</xref>
</sup>
it has become relatively easier to identify and characterize plant derived promoters and other genetic elements. Identification and incorporation of plant promoter and other genetic sequences by exploiting the expanding public databases and bioinformatics services can potentially alleviate some of the public concerns about safety issues with the use of a genetically modified horticultural crop.
<sup>
<xref ref-type="bibr" rid="bib372">372</xref>
,
<xref ref-type="bibr" rid="bib373">373</xref>
</sup>
Development of precision breeding techniques (previously termed as cisgenic or intragenic genetic improvement)
<sup>
<xref ref-type="bibr" rid="bib374">374</xref>
</sup>
will enable more precise genetic modification of plants.
<sup>
<xref ref-type="bibr" rid="bib375">375</xref>
</sup>
The resulting horticultural plant, devoid of DNA from other gene pool and restricted to a modulation of existing traits from the sexually compatible gene pool, could also result in less comprehensive regulation towards the release of a precision bred plant, thereby decreasing the regulatory approval costs.
<sup>
<xref ref-type="bibr" rid="bib373">373</xref>
</sup>
</p>
</sec>
</body>
<back>
<notes>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<ref id="bib1">
<mixed-citation publication-type="journal">Mitsuhara I, Ugaki M, Hirochika H et al.
<article-title>Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants.</article-title>
<source>Plant Cell Physiol</source>
<year>1996</year>
;
<volume>37</volume>
:
<fpage>49</fpage>
–59.
<pub-id pub-id-type="pmid">8720924</pub-id>
</mixed-citation>
</ref>
<ref id="bib2">
<mixed-citation publication-type="book">Komarnytsky S, Borisjuk N. Functional analysis of promoter elements in plants. In: Setlow J (ed.)
<source>Genetic Engineering</source>
. Vol. 25. Berlin: Springer,
<year>2003</year>
:
<fpage>113</fpage>
–141.</mixed-citation>
</ref>
<ref id="bib3">
<mixed-citation publication-type="journal">Lee TI, Young RA.
<article-title>Transcription of eukaryotic protein-coding genes.</article-title>
<source>Annu Rev Genet</source>
<year>2000</year>
;
<volume>34</volume>
:
<fpage>77</fpage>
–137.
<pub-id pub-id-type="pmid">11092823</pub-id>
</mixed-citation>
</ref>
<ref id="bib4">
<mixed-citation publication-type="journal">Katagiri F, Chua NH.
<article-title>Plant transcription factors: present knowledge and future challenges.</article-title>
<source>Trends Genet TIG</source>
<year>1992</year>
;
<volume>8</volume>
:
<fpage>22</fpage>
–27.
<pub-id pub-id-type="pmid">1369731</pub-id>
</mixed-citation>
</ref>
<ref id="bib5">
<mixed-citation publication-type="journal">Banerji J, Rusconi S, Schaffner W.
<article-title>Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences.</article-title>
<source>Cell</source>
<year>1981</year>
;
<volume>27</volume>
:
<fpage>299</fpage>
–308.
<pub-id pub-id-type="pmid">6277502</pub-id>
</mixed-citation>
</ref>
<ref id="bib6">
<mixed-citation publication-type="journal">Singh KB.
<article-title>Transcriptional regulation in plants: the importance of combinatorial control.</article-title>
<source>Plant Physiol</source>
<year>1998</year>
;
<volume>118</volume>
:
<fpage>1111</fpage>
–1120.
<pub-id pub-id-type="pmid">9847085</pub-id>
</mixed-citation>
</ref>
<ref id="bib7">
<mixed-citation publication-type="journal">Wu K, Malik K, Tian L et al.
<article-title>Enhancers and core promoter elements are essential for the activity of a cryptic gene activation sequence from tobacco, tCUP.</article-title>
<source>Mol Genet Genomics</source>
<year>2001</year>
;
<volume>265</volume>
:
<fpage>763</fpage>
–770.
<pub-id pub-id-type="pmid">11523793</pub-id>
</mixed-citation>
</ref>
<ref id="bib8">
<mixed-citation publication-type="journal">Novina CD, Roy AL.
<article-title>Core promoters and transcriptional control.</article-title>
<source>Trends Genet</source>
<year>1996</year>
;
<volume>12</volume>
:
<fpage>351</fpage>
–355.
<pub-id pub-id-type="pmid">8855664</pub-id>
</mixed-citation>
</ref>
<ref id="bib9">
<mixed-citation publication-type="journal">Juven-Gershon T, Kadonaga JT.
<article-title>Regulation of gene expression via the core promoter and the basal transcriptional machinery.</article-title>
<source>Dev Biol</source>
<year>2010</year>
;
<volume>339</volume>
:
<fpage>225</fpage>
–229.
<pub-id pub-id-type="pmid">19682982</pub-id>
</mixed-citation>
</ref>
<ref id="bib10">
<mixed-citation publication-type="journal">Smale ST, Baltimore D.
<article-title>The “initiator” as a transcription control element.</article-title>
<source>Cell</source>
<year>1989</year>
;
<volume>57</volume>
:
<fpage>103</fpage>
–113.
<pub-id pub-id-type="pmid">2467742</pub-id>
</mixed-citation>
</ref>
<ref id="bib11">
<mixed-citation publication-type="journal">Breathnach R, Chambon P.
<article-title>Organization and expression of eucaryotic split genes coding for proteins.</article-title>
<source>Annu Rev Biochem</source>
<year>1981</year>
;
<volume>50</volume>
:
<fpage>349</fpage>
–383.
<pub-id pub-id-type="pmid">6791577</pub-id>
</mixed-citation>
</ref>
<ref id="bib12">
<mixed-citation publication-type="journal">Means AL, Farnham PJ.
<article-title>Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.</article-title>
<source>Mol Cell Biol</source>
<year>1990</year>
;
<volume>10</volume>
:
<fpage>653</fpage>
–661.
<pub-id pub-id-type="pmid">2300058</pub-id>
</mixed-citation>
</ref>
<ref id="bib13">
<mixed-citation publication-type="journal">Mukherjee B, Burma S, Hasnain SE.
<article-title>The 30-kDa protein binding to the “initiator” of the baculovirus polyhedrin promoter also binds specifically to the coding strand.</article-title>
<source>J Biol Chem</source>
<year>1995</year>
;
<volume>270</volume>
:
<fpage>4405</fpage>
–4411.
<pub-id pub-id-type="pmid">7876205</pub-id>
</mixed-citation>
</ref>
<ref id="bib14">
<mixed-citation publication-type="journal">Seto E, Shi Y, Shenk T.
<article-title>YY1 is an initiator sequence-binding protein that directs and activates transcription
<italic>in vitro</italic>
.</article-title>
<source>Nature</source>
<year>1991</year>
;
<volume>354</volume>
:
<fpage>241</fpage>
–245.
<pub-id pub-id-type="pmid">1720509</pub-id>
</mixed-citation>
</ref>
<ref id="bib15">
<mixed-citation publication-type="journal">Smale ST, Baltimore D.
<article-title>The “initiator” as a transcription control element.</article-title>
<source>Cell</source>
<year>1989</year>
;
<volume>57</volume>
:
<fpage>103</fpage>
–113.
<pub-id pub-id-type="pmid">2467742</pub-id>
</mixed-citation>
</ref>
<ref id="bib16">
<mixed-citation publication-type="journal">Zenzie-Gregory B, O'Shea-Greenfield A, Smale ST.
<article-title>Similar mechanisms for transcription initiation mediated through a TATA box or an initiator element.</article-title>
<source>J Biol Chem</source>
<year>1992</year>
;
<volume>267</volume>
:
<fpage>2823</fpage>
–2830.
<pub-id pub-id-type="pmid">1733976</pub-id>
</mixed-citation>
</ref>
<ref id="bib17">
<mixed-citation publication-type="journal">Gudynaite-Savitch L, Johnson DA, Miki BL.
<article-title>Strategies to mitigate transgene-promoter interactions.</article-title>
<source>Plant Biotechnol J</source>
<year>2009</year>
;
<volume>7</volume>
:
<fpage>472</fpage>
–485.
<pub-id pub-id-type="pmid">19490507</pub-id>
</mixed-citation>
</ref>
<ref id="bib18">
<mixed-citation publication-type="other">Wen Z, Yang YZ, Zhang JJ et al.
<article-title>Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.</article-title>
<source>Plant Biotechnol J</source>
<year>2014</year>
; in press.</mixed-citation>
</ref>
<ref id="bib19">
<mixed-citation publication-type="journal">Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB.
<article-title>Different temporal and spatial gene expression patterns occur during anther development.</article-title>
<source>Plant Cell</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>1201</fpage>
–1224.
<pub-id pub-id-type="pmid">12354953</pub-id>
</mixed-citation>
</ref>
<ref id="bib20">
<mixed-citation publication-type="journal">Yang Y, Li R, Qi M.
<article-title>
<italic>In vivo</italic>
analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves.</article-title>
<source>Plant J</source>
<year>2000</year>
;
<volume>22</volume>
:
<fpage>543</fpage>
–551.
<pub-id pub-id-type="pmid">10886774</pub-id>
</mixed-citation>
</ref>
<ref id="bib21">
<mixed-citation publication-type="journal">Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B.
<article-title>Differential combinatorial interactions of
<italic>cis</italic>
-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes.</article-title>
<source>Plant Mol Biol</source>
<year>2005</year>
;
<volume>57</volume>
:
<fpage>155</fpage>
–171.
<pub-id pub-id-type="pmid">15821875</pub-id>
</mixed-citation>
</ref>
<ref id="bib22">
<mixed-citation publication-type="journal">Maniatis T, Goodbourn S, Fischer JA.
<article-title>Regulation of inducible and tissue-specific gene expression.</article-title>
<source>Science</source>
<year>1987</year>
;
<volume>236</volume>
:
<fpage>1237</fpage>
–1245.
<pub-id pub-id-type="pmid">3296191</pub-id>
</mixed-citation>
</ref>
<ref id="bib23">
<mixed-citation publication-type="journal">Krieger EK, Allen E, Gilbertson LA, Roberts JK.
<article-title>The Flavr Savr tomato, an early example of RNAi technology.</article-title>
<source>HortScience</source>
<year>2008</year>
;
<volume>43</volume>
:
<fpage>962</fpage>
–964.</mixed-citation>
</ref>
<ref id="bib24">
<mixed-citation publication-type="book">Martineau B.
<source>First Fruit: The Creation of the Flavr Savr Tomato and the Birth of Biotech Foods</source>
. New York: McGraw-Hill Companies,
<year>2001</year>
.</mixed-citation>
</ref>
<ref id="bib25">
<mixed-citation publication-type="journal">Kramer MG, Redenbaugh K.
<article-title>Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story.</article-title>
<source>Euphytica</source>
<year>1994</year>
;
<volume>79</volume>
:
<fpage>293</fpage>
–297.</mixed-citation>
</ref>
<ref id="bib26">
<mixed-citation publication-type="journal">Odell JT, Nagy F, Chua NH.
<article-title>Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter.</article-title>
<source>Nature</source>
<year>1985</year>
;
<volume>313</volume>
:
<fpage>810</fpage>
–812.
<pub-id pub-id-type="pmid">3974711</pub-id>
</mixed-citation>
</ref>
<ref id="bib27">
<mixed-citation publication-type="journal">Benfey PN, Chua NH.
<article-title>The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants.</article-title>
<source>Science</source>
<year>1990</year>
;
<volume>250</volume>
:
<fpage>959</fpage>
–966.
<pub-id pub-id-type="pmid">17746920</pub-id>
</mixed-citation>
</ref>
<ref id="bib28">
<mixed-citation publication-type="journal">Opperman CH, Taylor CG, Conkling MA.
<article-title>Root–knot nematode-directed expression of a plant root-specific gene.</article-title>
<source>Science</source>
<year>1994</year>
;
<volume>263</volume>
:
<fpage>221</fpage>
–223.
<pub-id pub-id-type="pmid">17839183</pub-id>
</mixed-citation>
</ref>
<ref id="bib29">
<mixed-citation publication-type="journal">Ruf S, Hermann M, Berger IJ, Carrer H, Bock R.
<article-title>Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.</article-title>
<source>Nat Biotechnol</source>
<year>2001</year>
;
<volume>19</volume>
:
<fpage>870</fpage>
–875.
<pub-id pub-id-type="pmid">11533648</pub-id>
</mixed-citation>
</ref>
<ref id="bib30">
<mixed-citation publication-type="journal">Kizis D, Lumbreras V, Pagès M.
<article-title>Role of AP2/EREBP transcription factors in gene regulation during abiotic stress.</article-title>
<source>FEBS Lett</source>
<year>2001</year>
;
<volume>498</volume>
:
<fpage>187</fpage>
–189.
<pub-id pub-id-type="pmid">11412854</pub-id>
</mixed-citation>
</ref>
<ref id="bib31">
<mixed-citation publication-type="journal">Yamamoto YY, Obokata J.
<article-title>ppdb: a plant promoter database.</article-title>
<source>Nucleic Acids Res</source>
<year>2008</year>
;
<volume>36</volume>
:
<fpage>D977</fpage>
–D981.
<pub-id pub-id-type="pmid">17947329</pub-id>
</mixed-citation>
</ref>
<ref id="bib32">
<mixed-citation publication-type="journal">Rombauts S, Déhais P, van Montagu M, Rouzé P.
<article-title>PlantCARE, a plant
<italic>cis</italic>
-acting regulatory element database.</article-title>
<source>Nucleic Acids Res</source>
<year>1999</year>
;
<volume>27</volume>
:
<fpage>295</fpage>
–296.
<pub-id pub-id-type="pmid">9847207</pub-id>
</mixed-citation>
</ref>
<ref id="bib33">
<mixed-citation publication-type="journal">Lescot M, Déhais P, Thijs G et al.
<article-title>PlantCARE, a database of plant
<italic>cis</italic>
-acting regulatory elements and a portal to tools for
<italic>in silico</italic>
analysis of promoter sequences.</article-title>
<source>Nucleic Acids Res</source>
<year>2002</year>
;
<volume>30</volume>
:
<fpage>325</fpage>
–327.
<pub-id pub-id-type="pmid">11752327</pub-id>
</mixed-citation>
</ref>
<ref id="bib34">
<mixed-citation publication-type="journal">Goodman RM, Hauptli H, Crossway A, Knauf VC.
<article-title>Gene transfer in crop improvement.</article-title>
<source>Science</source>
<year>1987</year>
;
<volume>236</volume>
:
<fpage>48</fpage>
–54.
<pub-id pub-id-type="pmid">17759205</pub-id>
</mixed-citation>
</ref>
<ref id="bib35">
<mixed-citation publication-type="journal">Birch RG.
<article-title>Plant transformation: problems and strategies for practical application.</article-title>
<source>Annu Rev Plant Biol</source>
<year>1997</year>
;
<volume>48</volume>
:
<fpage>297</fpage>
–326.</mixed-citation>
</ref>
<ref id="bib36">
<mixed-citation publication-type="journal">Gupta P, Raghuvanshi S, Tyagi AK.
<article-title>Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets,
<italic>Eleusine coracana</italic>
and
<italic>Echinochloa crusgalli</italic>
.</article-title>
<source>Plant Biotechnol</source>
<year>2001</year>
;
<volume>18</volume>
:
<fpage>275</fpage>
–282.</mixed-citation>
</ref>
<ref id="bib37">
<mixed-citation publication-type="journal">Porto MS, Pinheiro MP, Batista VG et al.
<article-title>Plant promoters: an approach of structure and function.</article-title>
<source>Mol Biotechnol</source>
<year>2014</year>
;
<volume>56</volume>
:
<fpage>38</fpage>
–49.
<pub-id pub-id-type="pmid">24122284</pub-id>
</mixed-citation>
</ref>
<ref id="bib38">
<mixed-citation publication-type="journal">Kay R, Chan A, Daly M, McPherson J.
<article-title>Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes.</article-title>
<source>Science</source>
<year>1987</year>
;
<volume>236</volume>
:
<fpage>1299</fpage>
–1302.
<pub-id pub-id-type="pmid">17770331</pub-id>
</mixed-citation>
</ref>
<ref id="bib39">
<mixed-citation publication-type="journal">Schnurr J, Guerra D.
<article-title>The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco.</article-title>
<source>Plant Cell Rep</source>
<year>2000</year>
;
<volume>19</volume>
:
<fpage>279</fpage>
–282.</mixed-citation>
</ref>
<ref id="bib40">
<mixed-citation publication-type="journal">Pretová A, Obert B, Wetzstein H.
<article-title>Leaf developmental stage and tissue location affect the detection of β-glucuronidase in transgenic tobacco plants.</article-title>
<source>Biotechnol Lett</source>
<year>2001</year>
;
<volume>23</volume>
:
<fpage>555</fpage>
–558.</mixed-citation>
</ref>
<ref id="bib41">
<mixed-citation publication-type="journal">de Mesa MC, Santiago-Doménech N, Pliego-Alfaro F, Quesada M, Mercado J.
<article-title>The CaMV 35S promoter is highly active on floral organs and pollen of transgenic strawberry plants.</article-title>
<source>Plant Cell Rep</source>
<year>2004</year>
;
<volume>23</volume>
:
<fpage>32</fpage>
–38.
<pub-id pub-id-type="pmid">15048584</pub-id>
</mixed-citation>
</ref>
<ref id="bib42">
<mixed-citation publication-type="journal">Mascarenhas JP, Hamilton DA.
<article-title>Artifacts in the localization of GUS activity in anothers of petunia transformed with a CaMV 35S-GUS construct.</article-title>
<source>Plant J</source>
<year>1992</year>
;
<volume>2</volume>
:
<fpage>405</fpage>
–408.</mixed-citation>
</ref>
<ref id="bib43">
<mixed-citation publication-type="journal">van der Leede-Plegt LM, van de Ven BC, Bino RJ, van der Salm TP, van Tunen AJ.
<article-title>Introduction and differential use of various promoters in pollen grains of
<italic>Nicotiana glutinosa</italic>
and
<italic>Lilium longiflorum</italic>
.</article-title>
<source>Plant Cell Rep</source>
<year>1992</year>
;
<volume>11</volume>
:
<fpage>20</fpage>
–24.
<pub-id pub-id-type="pmid">24213031</pub-id>
</mixed-citation>
</ref>
<ref id="bib44">
<mixed-citation publication-type="journal">de Jong J, Mertens MM, Rademaker W.
<article-title>Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA.</article-title>
<source>Plant Cell Rep</source>
<year>1994</year>
;
<volume>14</volume>
:
<fpage>59</fpage>
–64.
<pub-id pub-id-type="pmid">24194229</pub-id>
</mixed-citation>
</ref>
<ref id="bib45">
<mixed-citation publication-type="journal">Bhullar S, Datta S, Advani S et al.
<article-title>Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity.</article-title>
<source>Plant Biotechnol J</source>
<year>2007</year>
;
<volume>5</volume>
:
<fpage>696</fpage>
–708.
<pub-id pub-id-type="pmid">17608668</pub-id>
</mixed-citation>
</ref>
<ref id="bib46">
<mixed-citation publication-type="journal">Mitsuhara I, Ugaki M, Hirochika H et al.
<article-title>Efficient promoter cassettes for enhanced expression of foregin genes in dicotyledonous and monocotyledonous plants.</article-title>
<source>Plant Cell Physiol</source>
<year>1996</year>
;
<volume>37</volume>
:
<fpage>49</fpage>
–59.
<pub-id pub-id-type="pmid">8720924</pub-id>
</mixed-citation>
</ref>
<ref id="bib47">
<mixed-citation publication-type="journal">Dhadi SR, Krom N, Ramakrishna W.
<article-title>Genome-wide comparative analysis of putative bidirectional promoters from rice,
<italic>Arabidopsis</italic>
and
<italic>Populus</italic>
.</article-title>
<source>Gene</source>
<year>2009</year>
;
<volume>429</volume>
:
<fpage>65</fpage>
–73.
<pub-id pub-id-type="pmid">18973799</pub-id>
</mixed-citation>
</ref>
<ref id="bib48">
<mixed-citation publication-type="journal">Li ZT, Jayasankar S, Gray D.
<article-title>Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco.</article-title>
<source>Transgenic Res</source>
<year>2004</year>
;
<volume>13</volume>
:
<fpage>143</fpage>
–154.
<pub-id pub-id-type="pmid">15198202</pub-id>
</mixed-citation>
</ref>
<ref id="bib49">
<mixed-citation publication-type="journal">Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ.
<article-title>Large-scale characterization of promoters from grapevine (
<italic>Vitis</italic>
spp.) using quantitative anthocyanin and GUS assay systems.</article-title>
<source>Plant Sci</source>
<year>2012</year>
;
<volume>196</volume>
:
<fpage>132</fpage>
–142.
<pub-id pub-id-type="pmid">23017908</pub-id>
</mixed-citation>
</ref>
<ref id="bib50">
<mixed-citation publication-type="journal">Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC.
<article-title>Stable transformation of papaya via microprojectile bombardment.</article-title>
<source>Plant Cell Rep</source>
<year>1990</year>
;
<volume>9</volume>
:
<fpage>189</fpage>
–194.
<pub-id pub-id-type="pmid">24226700</pub-id>
</mixed-citation>
</ref>
<ref id="bib51">
<mixed-citation publication-type="other">Gonsalves D, Gonsalves C, Ferreira S et al.
<article-title>Transgenic virus resistant papaya: From hope to reality for controlling papaya ringspot virus in Hawaii.</article-title>
APSnet Feature, July
<year>2004</year>
.</mixed-citation>
</ref>
<ref id="bib52">
<mixed-citation publication-type="journal">Scorza R, Ravelonandro M, Callahan AM et al.
<article-title>Transgenic plums (
<italic>Prunus domestica</italic>
L.) express the plum pox virus coat protein gene.</article-title>
<source>Plant Cell Rep</source>
<year>1994</year>
;
<volume>14</volume>
:
<fpage>18</fpage>
–22.
<pub-id pub-id-type="pmid">24194220</pub-id>
</mixed-citation>
</ref>
<ref id="bib53">
<mixed-citation publication-type="journal">Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M.
<article-title>Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene.</article-title>
<source>Transgenic Res</source>
<year>2001</year>
;
<volume>10</volume>
:
<fpage>201</fpage>
–209.
<pub-id pub-id-type="pmid">11437277</pub-id>
</mixed-citation>
</ref>
<ref id="bib54">
<mixed-citation publication-type="journal">Scorza R, Callahan A, Dardick C et al.
<article-title>Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum-from concept to product.</article-title>
<source>Plant Cell Tissue Organ Culture (PCTOC)</source>
<year>2013</year>
;
<volume>115</volume>
:
<fpage>1</fpage>
–12.</mixed-citation>
</ref>
<ref id="bib55">
<mixed-citation publication-type="journal">Zanek MC, Reyes CA, Cervera M et al.
<article-title>Genetic transformation of sweet orange with the coat protein gene of
<italic>Citrus psorosis</italic>
virus and evaluation of resistance against the virus.</article-title>
<source>Plant Cell Rep</source>
<year>2008</year>
;
<volume>27</volume>
:
<fpage>57</fpage>
–66.
<pub-id pub-id-type="pmid">17712560</pub-id>
</mixed-citation>
</ref>
<ref id="bib56">
<mixed-citation publication-type="journal">Fuentes A, Ramos PL, Fiallo E et al.
<article-title>Intron–hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants.</article-title>
<source>Transgenic Res</source>
<year>2006</year>
;
<volume>15</volume>
:
<fpage>291</fpage>
–304.
<pub-id pub-id-type="pmid">16779645</pub-id>
</mixed-citation>
</ref>
<ref id="bib57">
<mixed-citation publication-type="journal">Flachowsky H, Szankowski I, Fischer TC et al.
<article-title>Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight.</article-title>
<source>Planta</source>
<year>2010</year>
;
<volume>231</volume>
:
<fpage>623</fpage>
–635.
<pub-id pub-id-type="pmid">19967387</pub-id>
</mixed-citation>
</ref>
<ref id="bib58">
<mixed-citation publication-type="journal">Maximova S, Miller C, Antúnez de Mayolo G, Pishak S, Young A, Guiltinan MJ.
<article-title>Stable transformation of
<italic>Theobroma cacao</italic>
L. and influence of matrix attachment regions on GFP expression.</article-title>
<source>Plant Cell Rep</source>
<year>2003</year>
;
<volume>21</volume>
:
<fpage>872</fpage>
–883.
<pub-id pub-id-type="pmid">12789505</pub-id>
</mixed-citation>
</ref>
<ref id="bib59">
<mixed-citation publication-type="journal">Mondal S, Dutt M, Grosser J, Dewdney M.
<article-title>Transgenic citrus expressing the antimicrobial gene Attacin E (
<italic>attE</italic>
) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by
<italic>Elsinoë fawcettii</italic>
.</article-title>
<source>Eur J Plant Pathol</source>
<year>2012</year>
;
<volume>133</volume>
:
<fpage>391</fpage>
–404.</mixed-citation>
</ref>
<ref id="bib60">
<mixed-citation publication-type="journal">Qin Y, Teixeira da Silva JA, Zhang L, Zhang S.
<article-title>Transgenic strawberry: state of the art for improved traits.</article-title>
<source>Biotechnol Adv</source>
<year>2008</year>
;
<volume>26</volume>
:
<fpage>219</fpage>
–232.
<pub-id pub-id-type="pmid">18280082</pub-id>
</mixed-citation>
</ref>
<ref id="bib61">
<mixed-citation publication-type="journal">Dhekney SA, Li ZT, Gray DJ.
<article-title>Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance.</article-title>
<source>In Vitro Cell Dev Biol Plant</source>
<year>2011</year>
;
<volume>47</volume>
:
<fpage>458</fpage>
–466.</mixed-citation>
</ref>
<ref id="bib62">
<mixed-citation publication-type="journal">Marchant R, Davey MR, Lucas JA et al.
<article-title>Expression of a chitinase transgene in rose (
<italic>Rosa hybrida</italic>
L.) reduces development of blackspot disease (
<italic>Diplocarpon rosae</italic>
Wolf).</article-title>
<source>Mol Breed</source>
<year>1998</year>
;
<volume>4</volume>
:
<fpage>187</fpage>
–194.</mixed-citation>
</ref>
<ref id="bib63">
<mixed-citation publication-type="journal">Li X, Gasic K, Cammue B, Broekaert W, Korban SS.
<article-title>Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (
<italic>Sphaerotheca pannosa</italic>
).</article-title>
<source>Planta</source>
<year>2003</year>
;
<volume>218</volume>
:
<fpage>226</fpage>
–232.
<pub-id pub-id-type="pmid">14508687</pub-id>
</mixed-citation>
</ref>
<ref id="bib64">
<mixed-citation publication-type="journal">Graham IA, Besser K, Blumer S et al.
<article-title>The genetic map of
<italic>Artemisia annua</italic>
L. identifies loci affecting yield of the antimalarial drug artemisinin.</article-title>
<source>Science</source>
<year>2010</year>
;
<volume>327</volume>
:
<fpage>328</fpage>
–331.
<pub-id pub-id-type="pmid">20075252</pub-id>
</mixed-citation>
</ref>
<ref id="bib65">
<mixed-citation publication-type="journal">McCafferty HR, Moore PH, Zhu YJ.
<article-title>Improved
<italic>Carica papaya</italic>
tolerance to carmine spider mite by the expression of
<italic>Manduca sexta</italic>
chitinase transgene.</article-title>
<source>Transgenic Res</source>
<year>2006</year>
;
<volume>15</volume>
:
<fpage>337</fpage>
–347.
<pub-id pub-id-type="pmid">16779649</pub-id>
</mixed-citation>
</ref>
<ref id="bib66">
<mixed-citation publication-type="journal">Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED.
<article-title>Transgenic broccoli with high levels of
<italic>Bacillus thuringiensis</italic>
Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C.</article-title>
<source>Mol Breed</source>
<year>1999</year>
;
<volume>5</volume>
:
<fpage>131</fpage>
–141.</mixed-citation>
</ref>
<ref id="bib67">
<mixed-citation publication-type="journal">Shelton A, Hatch SL, Zhao JZ, Chen M, Earle EB, Cao J.
<article-title>Suppression of diamondback moth using Bt-transgenic plants as a trap crop.</article-title>
<source>Crop Prot</source>
<year>2008</year>
;
<volume>27</volume>
:
<fpage>403</fpage>
–409.</mixed-citation>
</ref>
<ref id="bib68">
<mixed-citation publication-type="journal">Dhekney SA, Litz RE, Amador DAM, Yadav AK.
<article-title>Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes.</article-title>
<source>In Vitro Cell Dev Biol Plant</source>
<year>2007</year>
;
<volume>43</volume>
:
<fpage>195</fpage>
–202.</mixed-citation>
</ref>
<ref id="bib69">
<mixed-citation publication-type="journal">Jin Y, Ni DA, Ruan YL.
<article-title>Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.</article-title>
<source>Plant Cell Online</source>
<year>2009</year>
;
<volume>21</volume>
:
<fpage>2072</fpage>
–2089.</mixed-citation>
</ref>
<ref id="bib70">
<mixed-citation publication-type="journal">Hsieh TH, Lee JT, Yang PT et al.
<article-title>Heterology expression of the
<italic>Arabidopsis</italic>
C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato.</article-title>
<source>Plant Physiol</source>
<year>2002</year>
;
<volume>129</volume>
:
<fpage>1086</fpage>
–1094.
<pub-id pub-id-type="pmid">12114563</pub-id>
</mixed-citation>
</ref>
<ref id="bib71">
<mixed-citation publication-type="journal">Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC.
<article-title>The
<italic>Vitis vinifera</italic>
C-repeat binding protein 4 (
<italic>VvCBF4</italic>
) transcriptional factor enhances freezing tolerance in wine grape.</article-title>
<source>Plant Biotechnol J</source>
<year>2012</year>
;
<volume>10</volume>
:
<fpage>105</fpage>
–124.
<pub-id pub-id-type="pmid">21914113</pub-id>
</mixed-citation>
</ref>
<ref id="bib72">
<mixed-citation publication-type="journal">Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D.
<article-title>Ectopic expression of a novel peach (
<italic>Prunus persica</italic>
) CBF transcription factor in apple (
<italic>Malus × domestica</italic>
) results in short-day induced dormancy and increased cold hardiness.</article-title>
<source>Planta</source>
<year>2011</year>
;
<volume>233</volume>
:
<fpage>971</fpage>
–983.
<pub-id pub-id-type="pmid">21274560</pub-id>
</mixed-citation>
</ref>
<ref id="bib73">
<mixed-citation publication-type="journal">Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y.
<article-title>Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic
<italic>Arabidopsis</italic>
.</article-title>
<source>Plant Cell Rep</source>
<year>2010</year>
;
<volume>29</volume>
:
<fpage>977</fpage>
–986.
<pub-id pub-id-type="pmid">20559833</pub-id>
</mixed-citation>
</ref>
<ref id="bib74">
<mixed-citation publication-type="journal">Tian L, Tan L, Liu F, Cai H, Sun C.
<article-title>Identification of quantitative trait loci associated with salt tolerance at seedling stage from
<italic>Oryza rufipogon</italic>
.</article-title>
<source>J Genet Genomics</source>
<year>2011</year>
;
<volume>38</volume>
:
<fpage>593</fpage>
–601.
<pub-id pub-id-type="pmid">22196402</pub-id>
</mixed-citation>
</ref>
<ref id="bib75">
<mixed-citation publication-type="journal">Gaxiola RA, Li J, Undurraga S et al.
<article-title>Drought-and salt-tolerant plants result from overexpression of the AVP1 H
<sup>+</sup>
-pump.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
;
<volume>98</volume>
:
<fpage>11444</fpage>
–11449.
<pub-id pub-id-type="pmid">11572991</pub-id>
</mixed-citation>
</ref>
<ref id="bib76">
<mixed-citation publication-type="journal">Dandekar AM, Teo G, Defilippi BG et al.
<article-title>Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit.</article-title>
<source>Transgenic Res</source>
<year>2004</year>
;
<volume>13</volume>
:
<fpage>373</fpage>
–384.
<pub-id pub-id-type="pmid">15517996</pub-id>
</mixed-citation>
</ref>
<ref id="bib77">
<mixed-citation publication-type="journal">Tieman DM, Harriman RW, Ramamohan G, Handa AK.
<article-title>An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit.</article-title>
<source>Plant Cell Online</source>
<year>1992</year>
;
<volume>4</volume>
:
<fpage>667</fpage>
–679.</mixed-citation>
</ref>
<ref id="bib78">
<mixed-citation publication-type="journal">Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM.
<article-title>Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants.</article-title>
<source>Plant Cell Online</source>
<year>1991</year>
;
<volume>3</volume>
:
<fpage>1187</fpage>
–1193.</mixed-citation>
</ref>
<ref id="bib79">
<mixed-citation publication-type="journal">Sheehy RE, Kramer M, Hiatt WR.
<article-title>Reduction of polygalacturonase activity in tomato fruit by antisense RNA.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1988</year>
;
<volume>85</volume>
:
<fpage>8805</fpage>
–8809.
<pub-id pub-id-type="pmid">16593997</pub-id>
</mixed-citation>
</ref>
<ref id="bib80">
<mixed-citation publication-type="journal">Bruening G, Lyons J.
<article-title>The case of the FLAVR SAVR tomato.</article-title>
<source>Calif Agric</source>
<year>2000</year>
;
<volume>54</volume>
:
<fpage>6</fpage>
–7.</mixed-citation>
</ref>
<ref id="bib81">
<mixed-citation publication-type="journal">Xiong AS, Yao QH, Peng RH, Li X, Han PL, Fan HQ.
<article-title>Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato.</article-title>
<source>Plant Cell Rep</source>
<year>2005</year>
;
<volume>23</volume>
:
<fpage>639</fpage>
–646.
<pub-id pub-id-type="pmid">15503033</pub-id>
</mixed-citation>
</ref>
<ref id="bib82">
<mixed-citation publication-type="journal">Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A.
<article-title>Enhancement of fruit shelf life by suppressing
<italic>N</italic>
-glycan processing enzymes.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2010</year>
;
<volume>107</volume>
:
<fpage>2413</fpage>
–2418.
<pub-id pub-id-type="pmid">20133661</pub-id>
</mixed-citation>
</ref>
<ref id="bib83">
<mixed-citation publication-type="journal">Lloyd AM, Walbot V, Davis RW.
<article-title>
<italic>Arabidopsis</italic>
and
<italic>Nicotiana</italic>
anthocyanin production activated by maize regulators R and C1.</article-title>
<source>Science</source>
<year>1992</year>
;
<volume>258</volume>
:
<fpage>1773</fpage>
–1775.
<pub-id pub-id-type="pmid">1465611</pub-id>
</mixed-citation>
</ref>
<ref id="bib84">
<mixed-citation publication-type="journal">Bradley JM, Davies KM, Deroles SC, Bloor SJ, Lewis DH.
<article-title>The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia.</article-title>
<source>Plant J</source>
<year>1998</year>
;
<volume>13</volume>
:
<fpage>381</fpage>
–392.</mixed-citation>
</ref>
<ref id="bib85">
<mixed-citation publication-type="journal">Ueyama Y, Suzukib K, Fukuchi-Mizutani M et al.
<article-title>Molecular and biochemical characterization of torenia flavonoid 3'-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes.</article-title>
<source>Plant Sci</source>
<year>2002</year>
;
<volume>163</volume>
:
<fpage>253</fpage>
–263.</mixed-citation>
</ref>
<ref id="bib86">
<mixed-citation publication-type="journal">Liu G, Sánchez-Fernández RO, Li ZS, Rea PA.
<article-title>Enhanced multispecificity of
<italic>Arabidopsis</italic>
vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2.</article-title>
<source>J Biol Chem</source>
<year>2001</year>
;
<volume>276</volume>
:
<fpage>8648</fpage>
–8656.
<pub-id pub-id-type="pmid">11115509</pub-id>
</mixed-citation>
</ref>
<ref id="bib87">
<mixed-citation publication-type="journal">Nakagawa H, Jiang CJ, Sakakibara H et al.
<article-title>Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms.</article-title>
<source>Plant J</source>
<year>2005</year>
;
<volume>41</volume>
:
<fpage>512</fpage>
–523.
<pub-id pub-id-type="pmid">15686516</pub-id>
</mixed-citation>
</ref>
<ref id="bib88">
<mixed-citation publication-type="book">Cobb D, Schneiter N, Guo S, Humiston GA, Harriman B, Bolar J. Flower specific expression of an ethylene receptor (ETR1-1) confers ethylene insensitivity in transgenic petunia. In:
<source>Proceedings of the XXVIth International Horticultural Congress</source>
; 11–17 August; Toronto, Canada. (ISHS, Leuven, Belgium),
<year>2002</year>
, p.
<fpage>83</fpage>
.</mixed-citation>
</ref>
<ref id="bib89">
<mixed-citation publication-type="journal">Lütken H, Clarke JL, Müller R.
<article-title>Genetic engineering and sustainable production of ornamentals: current status and future directions.</article-title>
<source>Plant Cell Rep</source>
<year>2012</year>
;
<volume>31</volume>
:
<fpage>1141</fpage>
–1157.
<pub-id pub-id-type="pmid">22527196</pub-id>
</mixed-citation>
</ref>
<ref id="bib90">
<mixed-citation publication-type="journal">Lewinsohn E, Schalechet F, Wilkinson J et al.
<article-title>Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits.</article-title>
<source>Plant Physiol</source>
<year>2001</year>
;
<volume>127</volume>
:
<fpage>1256</fpage>
–1265.
<pub-id pub-id-type="pmid">11706204</pub-id>
</mixed-citation>
</ref>
<ref id="bib91">
<mixed-citation publication-type="journal">Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ.
<article-title>Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains.</article-title>
<source>Transgenic Res</source>
<year>1997</year>
;
<volume>6</volume>
:
<fpage>143</fpage>
–156.
<pub-id pub-id-type="pmid">9090062</pub-id>
</mixed-citation>
</ref>
<ref id="bib92">
<mixed-citation publication-type="journal">Venter M.
<article-title>Synthetic promoters: genetic control through
<italic>cis</italic>
engineering.</article-title>
<source>Trends Plant Sci</source>
<year>2007</year>
;
<volume>12</volume>
:
<fpage>118</fpage>
–124.
<pub-id pub-id-type="pmid">17292658</pub-id>
</mixed-citation>
</ref>
<ref id="bib93">
<mixed-citation publication-type="journal">Ranjan R, Patro S, Kumari S, Kumar D, Dey N, Maiti IB.
<article-title>Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV).</article-title>
<source>J Biotechnol</source>
<year>2011</year>
;
<volume>152</volume>
:
<fpage>58</fpage>
–62.
<pub-id pub-id-type="pmid">21262279</pub-id>
</mixed-citation>
</ref>
<ref id="bib94">
<mixed-citation publication-type="journal">Acharya S, Ranjan R, Pattanaik S, Maiti IB, Dey N.
<article-title>Efficient chimeric plant promoters derived from plant infecting viral promoter sequences.</article-title>
<source>Planta</source>
<year>2014</year>
;
<volume>239</volume>
:
<fpage>381</fpage>
–396.
<pub-id pub-id-type="pmid">24178585</pub-id>
</mixed-citation>
</ref>
<ref id="bib95">
<mixed-citation publication-type="journal">Vaccari I, Martinelli L.
<article-title>Evaluation of the phosphomannose isomerase-based selection system for gene transfer in grape.</article-title>
<source>Vitis</source>
<year>2009</year>
;
<volume>48</volume>
:
<fpage>137</fpage>
–144.</mixed-citation>
</ref>
<ref id="bib96">
<mixed-citation publication-type="journal">Schenk PM, Remans T, Sági L et al.
<article-title>Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants.</article-title>
<source>Plant Mol Biol</source>
<year>2001</year>
;
<volume>47</volume>
:
<fpage>399</fpage>
–412.
<pub-id pub-id-type="pmid">11587511</pub-id>
</mixed-citation>
</ref>
<ref id="bib97">
<mixed-citation publication-type="journal">Li Z, Gmitter F Jr, Grosser J, Chen C, Gray D.
<article-title>Isolation and characterization of a novel anthocyanin-promoting MYBA gene family in
<italic>Citrus</italic>
.</article-title>
<source>Tree Genet Genomes</source>
<year>2012</year>
;
<volume>8</volume>
:
<fpage>675</fpage>
–685.</mixed-citation>
</ref>
<ref id="bib98">
<mixed-citation publication-type="journal">Masura SS, Parveez GK, Ismail I.
<article-title>Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (
<italic>uep1</italic>
) gene.</article-title>
<source>New Biotechnol</source>
<year>2010</year>
;
<volume>27</volume>
:
<fpage>289</fpage>
–299.</mixed-citation>
</ref>
<ref id="bib99">
<mixed-citation publication-type="journal">Kamo K.
<article-title>Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy.</article-title>
<source>Plant Cell Rep</source>
<year>2003</year>
;
<volume>21</volume>
:
<fpage>797</fpage>
–803.
<pub-id pub-id-type="pmid">12789525</pub-id>
</mixed-citation>
</ref>
<ref id="bib100">
<mixed-citation publication-type="journal">Annadana S, Mlynárová L, Udayakumar M, de Jong J, Nap JP.
<article-title>The potato Lhca3. St. 1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters.</article-title>
<source>Mol Breed</source>
<year>2002</year>
;
<volume>8</volume>
:
<fpage>335</fpage>
–344.</mixed-citation>
</ref>
<ref id="bib101">
<mixed-citation publication-type="journal">Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.
<article-title>Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.</article-title>
<source>Nat Biotechnol</source>
<year>1999</year>
;
<volume>17</volume>
:
<fpage>287</fpage>
–291.
<pub-id pub-id-type="pmid">10096298</pub-id>
</mixed-citation>
</ref>
<ref id="bib102">
<mixed-citation publication-type="journal">Deikman J, Kline R, Fischer RL.
<article-title>Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (
<italic>Lycopersicon esculentum</italic>
).</article-title>
<source>Plant Physiol</source>
<year>1992</year>
;
<volume>100</volume>
:
<fpage>2013</fpage>
–2017.
<pub-id pub-id-type="pmid">16653232</pub-id>
</mixed-citation>
</ref>
<ref id="bib103">
<mixed-citation publication-type="journal">Deikman J, Xu R, Kneissl ML, Ciardi JA, Kim KN, Pelah D.
<article-title>Separation of
<italic>cis</italic>
elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related
<italic>E8</italic>
gene.</article-title>
<source>Plant Mol Biol</source>
<year>1998</year>
;
<volume>37</volume>
:
<fpage>1001</fpage>
–1011.
<pub-id pub-id-type="pmid">9700072</pub-id>
</mixed-citation>
</ref>
<ref id="bib104">
<mixed-citation publication-type="journal">Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ,
<article-title>Ross GS Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato.</article-title>
<source>Plant Mol Biol</source>
<year>1998</year>
;
<volume>38</volume>
:
<fpage>449</fpage>
–460.
<pub-id pub-id-type="pmid">9747852</pub-id>
</mixed-citation>
</ref>
<ref id="bib105">
<mixed-citation publication-type="journal">Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D.
<article-title>Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato.</article-title>
<source>Plant J</source>
<year>1996</year>
;
<volume>9</volume>
:
<fpage>525</fpage>
–535.
<pub-id pub-id-type="pmid">8624515</pub-id>
</mixed-citation>
</ref>
<ref id="bib106">
<mixed-citation publication-type="journal">Choudhury SR, Singh SK, Roy S, Sengupta DN.
<article-title>An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5′-phosphate and aminoethoxyvinylglycine.</article-title>
<source>J Biosci</source>
<year>2010</year>
;
<volume>35</volume>
:
<fpage>281</fpage>
–294.
<pub-id pub-id-type="pmid">20689184</pub-id>
</mixed-citation>
</ref>
<ref id="bib107">
<mixed-citation publication-type="journal">Moon H, Callahan AM.
<article-title>Developmental regulation of peach ACC oxidase promoter–GUS fusions in transgenic tomato fruits.</article-title>
<source>J Exp Botany</source>
<year>2004</year>
;
<volume>55</volume>
:
<fpage>1519</fpage>
–1528.
<pub-id pub-id-type="pmid">15208348</pub-id>
</mixed-citation>
</ref>
<ref id="bib108">
<mixed-citation publication-type="journal">Hiwasa-Tanase K, Kuroda H, Hirai T, Aoki K, Takane K, Ezura H.
<article-title>Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development.</article-title>
<source>Plant Cell Rep</source>
<year>2012</year>
;
<volume>31</volume>
:
<fpage>1415</fpage>
–1424.
<pub-id pub-id-type="pmid">22481231</pub-id>
</mixed-citation>
</ref>
<ref id="bib109">
<mixed-citation publication-type="journal">Karaaslan M, Hrazdina G.
<article-title>Characterization of an expansin gene and its ripening-specific promoter fragments from sour cherry (
<italic>Prunus cerasus</italic>
L.) cultivars.</article-title>
<source>Acta Physiol Plant</source>
<year>2010</year>
;
<volume>32</volume>
:
<fpage>1073</fpage>
–1084.</mixed-citation>
</ref>
<ref id="bib110">
<mixed-citation publication-type="journal">Unni SC, Vivek PJ, Maju TT, Varghese RT, Soniya EV.
<article-title>Molecular cloning and characterization of fruit specific promoter from
<italic>Cucumis sativus</italic>
L.</article-title>
<source>Am J Mol Biol</source>
<year>2012</year>
;
<volume>2</volume>
:
<fpage>132</fpage>
.</mixed-citation>
</ref>
<ref id="bib111">
<mixed-citation publication-type="journal">Wu T, Qin ZW, Feng Z, Zhou XY, Xin M, Du YL.
<article-title>Functional analysis of the promoter of a female-specific cucumber CsACS1G gene.</article-title>
<source>Plant Mol Biol Rep</source>
<year>2012</year>
;
<volume>30</volume>
:
<fpage>235</fpage>
–241.</mixed-citation>
</ref>
<ref id="bib112">
<mixed-citation publication-type="journal">Bustamante CA, Civello PM, Martínez GA.
<article-title>Cloning of the promoter region of β-xylosidase (
<italic>FaXyl1</italic>
) gene and effect of plant growth regulators on the expression of
<italic>FaXyl1</italic>
in strawberry fruit.</article-title>
<source>Plant Sci</source>
<year>2009</year>
;
<volume>177</volume>
:
<fpage>49</fpage>
–56.</mixed-citation>
</ref>
<ref id="bib113">
<mixed-citation publication-type="other">Rahim MA, Busatto N, Trainotti L. Regulation of anthocyanin biosynthesis in peach fruits.
<source>Planta</source>
<year>2014</year>
; in press.</mixed-citation>
</ref>
<ref id="bib114">
<mixed-citation publication-type="journal">Yamagata H, Yonesu K, Hirata A, Aizono Y.
<article-title>TGTCACA motif is a novel
<italic>cis</italic>
-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene.</article-title>
<source>J Biol Chem</source>
<year>2002</year>
;
<volume>277</volume>
:
<fpage>11582</fpage>
–11590.
<pub-id pub-id-type="pmid">11782472</pub-id>
</mixed-citation>
</ref>
<ref id="bib115">
<mixed-citation publication-type="journal">Yin T, Wu H, Zhang S et al.
<article-title>Two negative
<italic>cis</italic>
-regulatory regions involved in fruit-specific promoter activity from watermelon (
<italic>Citrullus vulgaris</italic>
S.).</article-title>
<source>J Exp Botany</source>
<year>2009</year>
;
<volume>60</volume>
:
<fpage>169</fpage>
–185.
<pub-id pub-id-type="pmid">19073962</pub-id>
</mixed-citation>
</ref>
<ref id="bib116">
<mixed-citation publication-type="journal">Choudhury SR, Roy S, Das R, Sengupta DN.
<article-title>Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.</article-title>
<source>Planta</source>
<year>2008</year>
;
<volume>229</volume>
:
<fpage>207</fpage>
–223.
<pub-id pub-id-type="pmid">18830708</pub-id>
</mixed-citation>
</ref>
<ref id="bib117">
<mixed-citation publication-type="journal">Sorkina A, Bardosh G, Liu YZ et al.
<article-title>Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato.</article-title>
<source>Plant Cell Rep</source>
<year>2011</year>
;
<volume>30</volume>
:
<fpage>1627</fpage>
–1640.
<pub-id pub-id-type="pmid">21538100</pub-id>
</mixed-citation>
</ref>
<ref id="bib118">
<mixed-citation publication-type="journal">Endo T, Shimada T, Fujii H, Moriguchi T, Omura M.
<article-title>Promoter analysis of a type 3 metallothionein-like gene abundant in Satsuma mandarin (
<italic>Citrus unshiu</italic>
Marc.) fruit.</article-title>
<source>Sci Hort</source>
<year>2007</year>
;
<volume>112</volume>
:
<fpage>207</fpage>
–214.</mixed-citation>
</ref>
<ref id="bib119">
<mixed-citation publication-type="journal">Omidvar V, Abdullah SN, Izadfard A, Ho CL, Mahmood M.
<article-title>The oil palm metallothionein promoter contains a novel AGTTAGG motif conferring its fruit-specific expression and is inducible by abiotic factors.</article-title>
<source>Planta</source>
<year>2010</year>
;
<volume>232</volume>
:
<fpage>925</fpage>
–936.
<pub-id pub-id-type="pmid">20635097</pub-id>
</mixed-citation>
</ref>
<ref id="bib120">
<mixed-citation publication-type="journal">Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP.
<article-title>The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.</article-title>
<source>Plant Physiol</source>
<year>2007</year>
;
<volume>143</volume>
:
<fpage>1347</fpage>
–1361.
<pub-id pub-id-type="pmid">17208963</pub-id>
</mixed-citation>
</ref>
<ref id="bib121">
<mixed-citation publication-type="journal">Palapol Y, Ketsa S, Lin-Wang K, Ferguson IB, Allan AC.
<article-title>A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (
<italic>Garcinia mangostana</italic>
L.) fruit during ripening.</article-title>
<source>Planta</source>
<year>2009</year>
;
<volume>229</volume>
:
<fpage>1323</fpage>
–1334.
<pub-id pub-id-type="pmid">19306102</pub-id>
</mixed-citation>
</ref>
<ref id="bib122">
<mixed-citation publication-type="journal">Takos AM, Robinson SP, Walker AR.
<article-title>Transcriptional regulation of the flavonoid pathway in the skin of dark-grown ‘Cripps’ Red’ apples in response to sunlight.</article-title>
<source>J Hort Sci Biotechnol</source>
<year>2006</year>
;
<volume>81</volume>
:
<fpage>735</fpage>
–744.</mixed-citation>
</ref>
<ref id="bib123">
<mixed-citation publication-type="journal">Kobayashi S, Goto-Yamamoto N, Hirochika H.
<article-title>Retrotransposon-induced mutations in grape skin color.</article-title>
<source>Science</source>
<year>2004</year>
;
<volume>304</volume>
:
<fpage>982</fpage>
–982.
<pub-id pub-id-type="pmid">15143274</pub-id>
</mixed-citation>
</ref>
<ref id="bib124">
<mixed-citation publication-type="journal">Gollop R, Even S, Colova-Tsolova V, Perl A.
<article-title>Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region.</article-title>
<source>J Exp Botany</source>
<year>2002</year>
;
<volume>53</volume>
:
<fpage>1397</fpage>
–1409.
<pub-id pub-id-type="pmid">12021287</pub-id>
</mixed-citation>
</ref>
<ref id="bib125">
<mixed-citation publication-type="journal">Lai B, Li XJ, Hu B et al.
<article-title>LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in
<italic>Litchi chinensis</italic>
.</article-title>
<source>PloS ONE</source>
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e86293</fpage>
.
<pub-id pub-id-type="pmid">24466010</pub-id>
</mixed-citation>
</ref>
<ref id="bib126">
<mixed-citation publication-type="journal">Yang Q, Yuan D, Shi L et al.
<article-title>Functional characterization of the
<italic>Gentiana lutea</italic>
zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.</article-title>
<source>Transgenic Res</source>
<year>2012</year>
;
<volume>21</volume>
:
<fpage>1043</fpage>
–1056.
<pub-id pub-id-type="pmid">22297392</pub-id>
</mixed-citation>
</ref>
<ref id="bib127">
<mixed-citation publication-type="journal">Bhat D, Anjanasree K, Lenka S, Bansal K.
<article-title>Isolation and characterization of fruit-specific promoters ACS4 and EXP1 from tomato (
<italic>Solanum lycopersicum</italic>
L).</article-title>
<source>J Plant Biochem Biotechnol</source>
<year>2010</year>
;
<volume>19</volume>
:
<fpage>51</fpage>
–57.</mixed-citation>
</ref>
<ref id="bib128">
<mixed-citation publication-type="journal">Lin E, Burns DJ, Gardner RC.
<article-title>Fruit developmental regulation of the kiwifruit actinidin promoter is conserved in transgenic petunia plants.</article-title>
<source>Plant Mol Biol</source>
<year>1993</year>
;
<volume>23</volume>
:
<fpage>489</fpage>
–499.
<pub-id pub-id-type="pmid">8219084</pub-id>
</mixed-citation>
</ref>
<ref id="bib129">
<mixed-citation publication-type="book">Litz RE, Padilla G.
<source>Genetic transformation of fruit trees.</source>
In:
<source>Genomics of Tree Crops</source>
. Berlin: Springer,
<year>2012</year>
:
<fpage>117</fpage>
–153.</mixed-citation>
</ref>
<ref id="bib130">
<mixed-citation publication-type="journal">Lücker J et al.
<article-title>Monoterpene biosynthesis in lemon (
<italic>Citrus limon</italic>
).</article-title>
<source>Eur J Biochem</source>
<year>2002</year>
;
<volume>269</volume>
:
<fpage>3160</fpage>
–3171.
<pub-id pub-id-type="pmid">12084056</pub-id>
</mixed-citation>
</ref>
<ref id="bib131">
<mixed-citation publication-type="journal">Rai MK, Shekhawat N.
<article-title>Recent advances in genetic engineering for improvement of fruit crops.</article-title>
<source>Plant Cell Tissue Organ Culture (PCTOC)</source>
<year>2014</year>
;
<volume>116</volume>
:
<fpage>1</fpage>
–15.</mixed-citation>
</ref>
<ref id="bib132">
<mixed-citation publication-type="journal">Hirai T, Duhita N, Hiwasa-Tanase K, Ezura H.
<article-title>Cultivation under salt stress increases the concentration of recombinant miraculin in transgenic tomato fruit, resulting in an increase in purification efficiency.</article-title>
<source>Plant Biotechnol</source>
<year>2011</year>
;
<volume>28</volume>
:
<fpage>387</fpage>
–392.</mixed-citation>
</ref>
<ref id="bib133">
<mixed-citation publication-type="journal">Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK.
<article-title>Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life.</article-title>
<source>Nat Biotechnol</source>
<year>2002</year>
;
<volume>20</volume>
:
<fpage>613</fpage>
–618.
<pub-id pub-id-type="pmid">12042867</pub-id>
</mixed-citation>
</ref>
<ref id="bib134">
<mixed-citation publication-type="journal">Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R.
<article-title>Induction of parthenocarpy in tomato via specific expression of the
<italic>rolB</italic>
gene in the ovary.</article-title>
<source>Planta</source>
<year>2003</year>
;
<volume>217</volume>
:
<fpage>726</fpage>
–735.
<pub-id pub-id-type="pmid">12783228</pub-id>
</mixed-citation>
</ref>
<ref id="bib135">
<mixed-citation publication-type="journal">Kesanakurti D, Kolattukudy PE, Kirti PB.
<article-title>Fruit-specific overexpression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage.</article-title>
<source>Physiol Plant</source>
<year>2012</year>
;
<volume>146</volume>
:
<fpage>136</fpage>
–148.
<pub-id pub-id-type="pmid">22462603</pub-id>
</mixed-citation>
</ref>
<ref id="bib136">
<mixed-citation publication-type="journal">Raharjo S, Witjaksono ED, Gomez-Lim M, Suarez I, Litz R.
<article-title>Genetic transformation of avocado.</article-title>
<source>ISHS Acta Hort</source>
<year>2003</year>
;
<volume>692</volume>
:
<fpage>115</fpage>
–118.</mixed-citation>
</ref>
<ref id="bib137">
<mixed-citation publication-type="journal">Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A, Mezzetti B.
<article-title>Auxin synthesis-encoding transgene enhances grape fecundity.</article-title>
<source>Plant Physiol</source>
<year>2007</year>
;
<volume>143</volume>
:
<fpage>1689</fpage>
–1694.
<pub-id pub-id-type="pmid">17337528</pub-id>
</mixed-citation>
</ref>
<ref id="bib138">
<mixed-citation publication-type="journal">Mezzetti B, Landi L, Pandolfini T, Spena A.
<article-title>The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry.</article-title>
<source>BMC Biotechnol</source>
<year>2004</year>
;
<volume>4</volume>
:
<fpage>4</fpage>
.
<pub-id pub-id-type="pmid">15113427</pub-id>
</mixed-citation>
</ref>
<ref id="bib139">
<mixed-citation publication-type="journal">Thomas TL.
<article-title>Gene expression during plant embryogenesis and germination: an overview.</article-title>
<source>Plant Cell</source>
<year>1993</year>
;
<volume>5</volume>
:
<fpage>1401</fpage>
–1410.
<pub-id pub-id-type="pmid">8281041</pub-id>
</mixed-citation>
</ref>
<ref id="bib140">
<mixed-citation publication-type="journal">Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC.
<article-title>Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich,
<italic>cis</italic>
-acting sequence found upstream of a French bean beta-phaseolin gene.</article-title>
<source>Plant Cell</source>
<year>1989</year>
;
<volume>1</volume>
:
<fpage>839</fpage>
–853.
<pub-id pub-id-type="pmid">2535526</pub-id>
</mixed-citation>
</ref>
<ref id="bib141">
<mixed-citation publication-type="journal">van der Geest AH, Hall TC.
<article-title>A 68 bp element of the beta-phaseolin promoter functions as a seed-specific enhancer.</article-title>
<source>Plant Mol Biol</source>
<year>1996</year>
;
<volume>32</volume>
:
<fpage>579</fpage>
–588.
<pub-id pub-id-type="pmid">8980510</pub-id>
</mixed-citation>
</ref>
<ref id="bib142">
<mixed-citation publication-type="journal">Fauteux F, Stromvik MV.
<article-title>Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae.</article-title>
<source>BMC Plant Biol</source>
<year>2009</year>
;
<volume>9</volume>
:
<fpage>126</fpage>
.
<pub-id pub-id-type="pmid">19843335</pub-id>
</mixed-citation>
</ref>
<ref id="bib143">
<mixed-citation publication-type="journal">Shirsat A, Wilford N, Croy R, Boulter D.
<article-title>Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco.</article-title>
<source>Mol Gen Genet</source>
<year>1989</year>
;
<volume>215</volume>
:
<fpage>326</fpage>
–331.
<pub-id pub-id-type="pmid">2710102</pub-id>
</mixed-citation>
</ref>
<ref id="bib144">
<mixed-citation publication-type="journal">Kroj T, Savino G, Valon C, Giraudat J, Parcy F.
<article-title>Regulation of storage protein gene expression in
<italic>Arabidopsis</italic>
.</article-title>
<source>Development</source>
<year>2003</year>
;
<volume>130</volume>
:
<fpage>6065</fpage>
–6073.
<pub-id pub-id-type="pmid">14597573</pub-id>
</mixed-citation>
</ref>
<ref id="bib145">
<mixed-citation publication-type="journal">Li ZT, Gray D.
<article-title>Isolation by improved thermal asymmetric interlaced PCR and characterization of a seed-specific 2S albumin gene and its promoter from grape (
<italic>Vitis vinifera</italic>
L.).</article-title>
<source>Genome</source>
<year>2005</year>
;
<volume>48</volume>
:
<fpage>312</fpage>
–320.
<pub-id pub-id-type="pmid">15838554</pub-id>
</mixed-citation>
</ref>
<ref id="bib146">
<mixed-citation publication-type="journal">Dasgupta S, Dasgupta J, Mandal RK.
<article-title>Cloning and sequencing of 5′ flanking sequence from the gene encoding 2S storage protein, from two Brassica species.</article-title>
<source>Gene</source>
<year>1993</year>
;
<volume>133</volume>
:
<fpage>301</fpage>
–302.
<pub-id pub-id-type="pmid">8224919</pub-id>
</mixed-citation>
</ref>
<ref id="bib147">
<mixed-citation publication-type="journal">Vincentz M, Leite A, Neshich G et al.
<article-title>ACGT and vicilin core sequences in a promoter domain required for seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein.</article-title>
<source>Plant Mol Biol</source>
<year>1997</year>
;
<volume>34</volume>
:
<fpage>879</fpage>
–889.
<pub-id pub-id-type="pmid">9290640</pub-id>
</mixed-citation>
</ref>
<ref id="bib148">
<mixed-citation publication-type="journal">Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M, Rask L.
<article-title>Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different
<italic>cis</italic>
-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.</article-title>
<source>Plant J</source>
<year>2000</year>
;
<volume>24</volume>
:
<fpage>57</fpage>
–66.
<pub-id pub-id-type="pmid">11029704</pub-id>
</mixed-citation>
</ref>
<ref id="bib149">
<mixed-citation publication-type="journal">Bies-Etheve N, da Silva Conceicao A, Giraudat J et al.
<article-title>Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation.</article-title>
<source>Plant Mol Biol</source>
<year>1999</year>
;
<volume>40</volume>
:
<fpage>1045</fpage>
–1054.
<pub-id pub-id-type="pmid">10527428</pub-id>
</mixed-citation>
</ref>
<ref id="bib150">
<mixed-citation publication-type="journal">Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L.
<article-title>Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic
<italic>Brassica napus</italic>
seeds.</article-title>
<source>Planta</source>
<year>1996</year>
;
<volume>199</volume>
:
<fpage>515</fpage>
–519.
<pub-id pub-id-type="pmid">8818291</pub-id>
</mixed-citation>
</ref>
<ref id="bib151">
<mixed-citation publication-type="journal">Rask L, Ellerström M, Ezcurra I, Stålberg K, Wycliffe P.
<article-title>Seed-specific regulation of the napin promoter in
<italic>Brassica napus</italic>
.</article-title>
<source>J Plant Physiol</source>
<year>1998</year>
;
<volume>152</volume>
:
<fpage>595</fpage>
–599.</mixed-citation>
</ref>
<ref id="bib152">
<mixed-citation publication-type="journal">Shirsat AH.
<article-title>A transposon-like structure in the 5′ flanking sequence of a legumin gene from
<italic>Pisum sativum</italic>
.</article-title>
<source>Mol Gen Genet</source>
<year>1988</year>
;
<volume>212</volume>
:
<fpage>129</fpage>
–133.
<pub-id pub-id-type="pmid">2836701</pub-id>
</mixed-citation>
</ref>
<ref id="bib153">
<mixed-citation publication-type="journal">Lycett GW, Croy RR, Shirsat AH, Richards DM, Boulter D.
<article-title>The 5'-flanking regions of three pea legumin genes: comparison of the DNA sequences.</article-title>
<source>Nucleic Acids Res</source>
<year>1985</year>
;
<volume>13</volume>
:
<fpage>6733</fpage>
–6743.
<pub-id pub-id-type="pmid">2997721</pub-id>
</mixed-citation>
</ref>
<ref id="bib154">
<mixed-citation publication-type="journal">Rerie WG, Whitecross M, Higgins TJ.
<article-title>Developmental and environmental regulation of pea legumin genes in transgenic tobacco.</article-title>
<source>Mol Gen Genet</source>
<year>1991</year>
;
<volume>225</volume>
:
<fpage>148</fpage>
–157.
<pub-id pub-id-type="pmid">2000086</pub-id>
</mixed-citation>
</ref>
<ref id="bib155">
<mixed-citation publication-type="journal">Shirsat AH, Meakin PJ, Gatehouse JA.
<article-title>Sequences 5′ to the conserved 28 bp Leg box element regulate the expression of pea seed storage protein gene legA.</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
;
<volume>15</volume>
:
<fpage>685</fpage>
–693.
<pub-id pub-id-type="pmid">2102882</pub-id>
</mixed-citation>
</ref>
<ref id="bib156">
<mixed-citation publication-type="journal">Baumlein H, Boerjan W, Nagy I, Panitz R, Inzé D, Wobus U.
<article-title>Upstream sequences regulating legumin gene expression in heterologous transgenic plants.</article-title>
<source>Mol Gen Genet</source>
<year>1991</year>
;
<volume>225</volume>
:
<fpage>121</fpage>
–128.
<pub-id pub-id-type="pmid">2000085</pub-id>
</mixed-citation>
</ref>
<ref id="bib157">
<mixed-citation publication-type="journal">Baumlein H, Nagy I, Villarroel R, Inze D, Wobus U.
<article-title>
<italic>Cis</italic>
-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene.</article-title>
<source>Plant J</source>
<year>1992</year>
;
<volume>2</volume>
:
<fpage>233</fpage>
–239.
<pub-id pub-id-type="pmid">1338774</pub-id>
</mixed-citation>
</ref>
<ref id="bib158">
<mixed-citation publication-type="journal">Fiedler U, Filistein R, Wobus U, Baumlein H.
<article-title>A complex ensemble of cis-regulatory elements controls the expression of a
<italic>Vicia faba</italic>
non-storage seed protein gene.</article-title>
<source>Plant Mol Biol</source>
<year>1993</year>
;
<volume>22</volume>
:
<fpage>669</fpage>
–679.
<pub-id pub-id-type="pmid">8343602</pub-id>
</mixed-citation>
</ref>
<ref id="bib159">
<mixed-citation publication-type="journal">Kawagoe Y, Murai N.
<article-title>Four distinct nuclear proteins recognize
<italic>in vitro</italic>
the proximal promoter of the bean seed storage protein beta-phaseolin gene conferring spatial and temporal control.</article-title>
<source>Plant J</source>
<year>1992</year>
;
<volume>2</volume>
:
<fpage>927</fpage>
–936.
<pub-id pub-id-type="pmid">1302641</pub-id>
</mixed-citation>
</ref>
<ref id="bib160">
<mixed-citation publication-type="journal">Kawagoe Y, Campbell BR, Murai N.
<article-title>Synergism between CACGTG (G-box) and CACCTG
<italic>cis</italic>
-elements is required for activation of the bean seed storage protein beta-phaseolin gene.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>885</fpage>
–890.
<pub-id pub-id-type="pmid">8054993</pub-id>
</mixed-citation>
</ref>
<ref id="bib161">
<mixed-citation publication-type="journal">Bustos MM, Begum D, Kalkan FA, Battraw MJ, Hall TC.
<article-title>Positive and negative
<italic>cis</italic>
-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter.</article-title>
<source>EMBO J</source>
<year>1991</year>
;
<volume>10</volume>
:
<fpage>1469</fpage>
–1479.
<pub-id pub-id-type="pmid">2026144</pub-id>
</mixed-citation>
</ref>
<ref id="bib162">
<mixed-citation publication-type="journal">Chung HJ, Fu H, Thomas T.
<article-title>Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot
<italic>Dc3</italic>
gene.</article-title>
<source>Planta</source>
<year>2005</year>
;
<volume>220</volume>
:
<fpage>424</fpage>
–433.
<pub-id pub-id-type="pmid">15378369</pub-id>
</mixed-citation>
</ref>
<ref id="bib163">
<mixed-citation publication-type="journal">Kim SY, Chung HJ, Thomas TL.
<article-title>Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system.</article-title>
<source>Plant J</source>
<year>1997</year>
;
<volume>11</volume>
:
<fpage>1237</fpage>
–1251.
<pub-id pub-id-type="pmid">9225465</pub-id>
</mixed-citation>
</ref>
<ref id="bib164">
<mixed-citation publication-type="journal">Chak RKF, Thomas TL, Quatrano RS, Rock CD.
<article-title>The genes ABI1 and ABI2 are involved in abscisic acid- and drought-inducible expression of the
<italic>Daucus carota</italic>
L. Dc3 promoter in guard cells of transgenic
<italic>Arabidopsis thaliana</italic>
(L.) Heynh.</article-title>
<source>Planta</source>
<year>2000</year>
;
<volume>210</volume>
:
<fpage>875</fpage>
–883.
<pub-id pub-id-type="pmid">10872217</pub-id>
</mixed-citation>
</ref>
<ref id="bib165">
<mixed-citation publication-type="journal">Chak RK, Thomas TL, Quatrano RS, Rock CD.
<article-title>The genes ABI1 and ABI2 are involved in abscisic acid-and drought-inducible expression of the
<italic>Daucus carota</italic>
L. Dc3 promoter in guard cells of transgenic
<italic>Arabidopsis thaliana</italic>
(L.) Heynh.</article-title>
<source>Planta</source>
<year>2000</year>
;
<volume>210</volume>
:
<fpage>875</fpage>
–883.
<pub-id pub-id-type="pmid">10872217</pub-id>
</mixed-citation>
</ref>
<ref id="bib166">
<mixed-citation publication-type="journal">Vivekananda J, Drew MC, Thomas TL.
<article-title>Hormonal and environmental regulation of the carrot lea-class gene
<italic>Dc3</italic>
.</article-title>
<source>Plant Physiol</source>
<year>1992</year>
;
<volume>100</volume>
:
<fpage>576</fpage>
–581.
<pub-id pub-id-type="pmid">16653031</pub-id>
</mixed-citation>
</ref>
<ref id="bib167">
<mixed-citation publication-type="journal">Yamamoto S, Nishihara M, Morikawa H, Yamauchi D, Minamikawa T.
<article-title>Promoter analysis of seed storage protein genes from
<italic>Canavalia gladiata</italic>
D.C.</article-title>
<source>Plant Mol Biol</source>
<year>1995</year>
;
<volume>27</volume>
:
<fpage>729</fpage>
–741.
<pub-id pub-id-type="pmid">7727750</pub-id>
</mixed-citation>
</ref>
<ref id="bib168">
<mixed-citation publication-type="journal">de Pater S, Pham K, Klitsie I, Kijne J.
<article-title>The 22 bp W1 element in the pea lectin promoter is necessary and, as a multimer, sufficient for high gene expression in tobacco seeds.</article-title>
<source>Plant Mol Biol</source>
<year>1996</year>
;
<volume>32</volume>
:
<fpage>515</fpage>
–523.
<pub-id pub-id-type="pmid">8980500</pub-id>
</mixed-citation>
</ref>
<ref id="bib169">
<mixed-citation publication-type="journal">de Pater S, Katagiri F, Kijne J, Chua NH.
<article-title>bZIP proteins bind to a palindromic sequence without an ACGT core located in a seed-specific element of the pea lectin promoter.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>6</volume>
:
<fpage>133</fpage>
–140.
<pub-id pub-id-type="pmid">7920707</pub-id>
</mixed-citation>
</ref>
<ref id="bib170">
<mixed-citation publication-type="journal">Bogue MA, Vonder Haar RA, Nuccio ML, Griffing LR, Thomas TL.
<article-title>Developmentally regulated expression of a sunflower 11S seed protein gene in transgenic tobacco.</article-title>
<source>Mol Gen Genet</source>
<year>1990</year>
;
<volume>222</volume>
:
<fpage>49</fpage>
–57.
<pub-id pub-id-type="pmid">2233680</pub-id>
</mixed-citation>
</ref>
<ref id="bib171">
<mixed-citation publication-type="journal">Nishikawa F, Endo T, Shimada T et al.
<article-title>Isolation and characterization of a citrus FT/TFL1 homologue (
<italic>CuMFT1</italic>
), which shows quantitatively preferential expression in
<italic>Citrus</italic>
seeds.</article-title>
<source>J Jpn Soc Hort Sci</source>
<year>2008</year>
;
<volume>77</volume>
:
<fpage>38</fpage>
–46.</mixed-citation>
</ref>
<ref id="bib172">
<mixed-citation publication-type="journal">Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD.
<article-title>Developmentally regulated expression of the bean beta-phaseolin gene in tobacco seed.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1985</year>
;
<volume>82</volume>
:
<fpage>3320</fpage>
–3324.
<pub-id pub-id-type="pmid">16578787</pub-id>
</mixed-citation>
</ref>
<ref id="bib173">
<mixed-citation publication-type="journal">Ouwerkerk PB, Memelink J.
<article-title>A G-box element from the
<italic>Catharanthus roseus</italic>
strictosidine synthase (
<italic>Str</italic>
) gene promoter confers seed-specific expression in transgenic tobacco plants.</article-title>
<source>Mol Gen Genet</source>
<year>1999</year>
;
<volume>261</volume>
:
<fpage>635</fpage>
–643.
<pub-id pub-id-type="pmid">10394900</pub-id>
</mixed-citation>
</ref>
<ref id="bib174">
<mixed-citation publication-type="journal">Endress PK.
<article-title>Origins of flower morphology.</article-title>
<source>J Exp Zool</source>
<year>2001</year>
;
<volume>291</volume>
:
<fpage>105</fpage>
–115.
<pub-id pub-id-type="pmid">11479912</pub-id>
</mixed-citation>
</ref>
<ref id="bib175">
<mixed-citation publication-type="journal">Theiszen G, Saedler H.
<article-title>Plant biology: floral quartets.</article-title>
<source>Nature</source>
<year>2001</year>
;
<volume>409</volume>
:
<fpage>469</fpage>
–471.
<pub-id pub-id-type="pmid">11206529</pub-id>
</mixed-citation>
</ref>
<ref id="bib176">
<mixed-citation publication-type="journal">Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R.
<article-title>Floricaula: a homeotic gene required for flower development in antirrhinum majus.</article-title>
<source>Cell</source>
<year>1990</year>
;
<volume>63</volume>
:
<fpage>1311</fpage>
–1322.
<pub-id pub-id-type="pmid">1702033</pub-id>
</mixed-citation>
</ref>
<ref id="bib177">
<mixed-citation publication-type="journal">Yang Y, Singer S, Liu Z.
<article-title>Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel, stamen, and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco.</article-title>
<source>Plant Mol Biol Rep</source>
<year>2011</year>
;
<volume>29</volume>
:
<fpage>162</fpage>
–170.</mixed-citation>
</ref>
<ref id="bib178">
<mixed-citation publication-type="journal">Bovy AG, Angenent GC, Dons HJ, van Altvorst AC.
<article-title>Heterologous expression of the
<italic>Arabidopsis</italic>
etr1-1 allele inhibits the senescence of carnation flowers.</article-title>
<source>Mol Breed</source>
<year>1999</year>
;
<volume>5</volume>
:
<fpage>301</fpage>
–308.</mixed-citation>
</ref>
<ref id="bib179">
<mixed-citation publication-type="journal">Chang H, Jones ML, Banowetz GM, Clark DG.
<article-title>Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene.</article-title>
<source>Plant Physiol</source>
<year>2003</year>
;
<volume>132</volume>
:
<fpage>2174</fpage>
–2183.
<pub-id pub-id-type="pmid">12913172</pub-id>
</mixed-citation>
</ref>
<ref id="bib180">
<mixed-citation publication-type="journal">Serek M, Woltering E, Sisler E, Frello S, Sriskandarajah S.
<article-title>Controlling ethylene responses in flowers at the receptor level.</article-title>
<source>Biotechnol Adv</source>
<year>2006</year>
;
<volume>24</volume>
:
<fpage>368</fpage>
–381.
<pub-id pub-id-type="pmid">16584864</pub-id>
</mixed-citation>
</ref>
<ref id="bib181">
<mixed-citation publication-type="journal">Tanaka Y, Katsumoto Y, Brugliera F, Mason J.
<article-title>Genetic engineering in floriculture.</article-title>
<source>Plant Cell Tissue Organ Culture</source>
<year>2005</year>
;
<volume>80</volume>
:
<fpage>1</fpage>
–24.</mixed-citation>
</ref>
<ref id="bib182">
<mixed-citation publication-type="journal">Savin KW, Baudinette SC, Graham MW et al.
<article-title>Antisense ACC oxidase RNA delays carnation petal senescence.</article-title>
<source>HortScience</source>
<year>1995</year>
;
<volume>30</volume>
:
<fpage>970</fpage>
–972.</mixed-citation>
</ref>
<ref id="bib183">
<mixed-citation publication-type="journal">Aida R, Kishimoto S, Tanaka Y, Shibata M.
<article-title>Modification of flower color in torenia(
<italic>Torenia fournieri</italic>
Lind.) by genetic transformation.</article-title>
<source>Plant Sci</source>
<year>2000</year>
;
<volume>153</volume>
:
<fpage>33</fpage>
–42.</mixed-citation>
</ref>
<ref id="bib184">
<mixed-citation publication-type="journal">Tanaka Y, Tsuda S, Kusumi T.
<article-title>Metabolic engineering to modify flower color.</article-title>
<source>Plant Cell Physiol</source>
<year>1998</year>
;
<volume>39</volume>
:
<fpage>1119</fpage>
–1126.</mixed-citation>
</ref>
<ref id="bib185">
<mixed-citation publication-type="journal">Zuker A, Tzfira T, Meir H et al.
<article-title>Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene.</article-title>
<source>Mol Breed</source>
<year>2002</year>
;
<volume>9</volume>
:
<fpage>33</fpage>
–41.</mixed-citation>
</ref>
<ref id="bib186">
<mixed-citation publication-type="journal">Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC.
<article-title>ODORANT1 regulates fragrance biosynthesis in petunia flowers.</article-title>
<source>Plant Cell Online</source>
<year>2005</year>
;
<volume>17</volume>
:
<fpage>1612</fpage>
–1624.</mixed-citation>
</ref>
<ref id="bib187">
<mixed-citation publication-type="journal">Aranovich D, Lewinsohn E, Zaccai M.
<article-title>Post-harvest enhancement of aroma in transgenic lisianthus (
<italic>Eustoma grandiflorum</italic>
) using the
<italic>Clarkia breweri</italic>
benzyl alcohol acetyltransferase (
<italic>BEAT</italic>
) gene.</article-title>
<source>Postharvest Biol Technol</source>
<year>2007</year>
;
<volume>43</volume>
:
<fpage>255</fpage>
–260.</mixed-citation>
</ref>
<ref id="bib188">
<mixed-citation publication-type="journal">Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB.
<article-title>Induction of male sterility in plants by a chimaeric ribonuclease gene.</article-title>
<source>Nature</source>
<year>1990</year>
;
<volume>347</volume>
:
<fpage>737</fpage>
–741.</mixed-citation>
</ref>
<ref id="bib189">
<mixed-citation publication-type="journal">Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T.
<article-title>Induction of male sterility in plants by metabolic engineering of the carbohydrate supply.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
;
<volume>98</volume>
:
<fpage>6522</fpage>
–6527.
<pub-id pub-id-type="pmid">11371651</pub-id>
</mixed-citation>
</ref>
<ref id="bib190">
<mixed-citation publication-type="journal">Mariani C, Gossele V, de Beuckeleer M et al.
<article-title>A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants.</article-title>
<source>Nature</source>
<year>1992</year>
;
<volume>357</volume>
:
<fpage>384</fpage>
–387.</mixed-citation>
</ref>
<ref id="bib191">
<mixed-citation publication-type="journal">Goldman M, Goldberg R, Mariani C.
<article-title>Female sterile tobacco plants are produced by stigma-specific cell ablation.</article-title>
<source>EMBO J</source>
<year>1994</year>
;
<volume>13</volume>
:
<fpage>2976</fpage>
.
<pub-id pub-id-type="pmid">8039494</pub-id>
</mixed-citation>
</ref>
<ref id="bib192">
<mixed-citation publication-type="journal">Mitsuda N, Hiratsu K, Todaka D et al.
<article-title>Efficient production of male and female sterile plants by expression of a chimeric repressor in
<italic>Arabidopsis</italic>
and rice.</article-title>
<source>Plant Biotechnol J</source>
<year>2006</year>
;
<volume>4</volume>
:
<fpage>325</fpage>
–332.
<pub-id pub-id-type="pmid">17147638</pub-id>
</mixed-citation>
</ref>
<ref id="bib193">
<mixed-citation publication-type="journal">Koes R, Spelt CE, Reif HJ, van den Elzen PJ, Veltkamp E, Mol JN.
<article-title>Floral tissue of
<italic>Petunia hybrida</italic>
(V30) expresses only one member of the chalcone synthase multigene family.</article-title>
<source>Nucleic Acids Res</source>
<year>1986</year>
;
<volume>14</volume>
:
<fpage>5229</fpage>
–5239.
<pub-id pub-id-type="pmid">3016642</pub-id>
</mixed-citation>
</ref>
<ref id="bib194">
<mixed-citation publication-type="journal">Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP.
<article-title>Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis.</article-title>
<source>Nat Struct Mol Biol</source>
<year>1999</year>
;
<volume>6</volume>
:
<fpage>775</fpage>
–784.</mixed-citation>
</ref>
<ref id="bib195">
<mixed-citation publication-type="journal">Faktor O, Loake G, Dixon RA, Lamb CJ.
<article-title>The G-box and H-box in a 39 bp region of a French bean chalcone synthase promoter constitute a tissue-specific regulatory element.</article-title>
<source>Plant J</source>
<year>1997</year>
;
<volume>11</volume>
:
<fpage>1105</fpage>
–1113.</mixed-citation>
</ref>
<ref id="bib196">
<mixed-citation publication-type="journal">Lipphardt S, Brettschneider R, Kreuzaler F, Schell J, Dangl JL.
<article-title>UV-inducible transient expression in parsley protoplasts identifies regulatory
<italic>cis</italic>
-elements of a chimeric
<italic>Antirrhinum majus</italic>
chalcone synthase gene.</article-title>
<source>EMBO J</source>
<year>1988</year>
;
<volume>7</volume>
:
<fpage>4027</fpage>
.
<pub-id pub-id-type="pmid">16453865</pub-id>
</mixed-citation>
</ref>
<ref id="bib197">
<mixed-citation publication-type="journal">Koes RE, van Blokland R, Quattrocchio F, van Tunen AJ, Mol J.
<article-title>Chalcone synthase promoters in petunia are active in pigmented and unpigmented cell types.</article-title>
<source>Plant Cell Online</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>379</fpage>
–392.</mixed-citation>
</ref>
<ref id="bib198">
<mixed-citation publication-type="journal">Schmid J, Doerner PW, Clouse SD, Dixon RA, Lamb CJ.
<article-title>Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco.</article-title>
<source>Plant Cell Online</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>619</fpage>
–631.</mixed-citation>
</ref>
<ref id="bib199">
<mixed-citation publication-type="journal">Loake GJ, Faktor O, Lamb CJ, Dixon RA.
<article-title>Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG)
<italic>cis</italic>
elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1992</year>
;
<volume>89</volume>
:
<fpage>9230</fpage>
–9234.
<pub-id pub-id-type="pmid">1409628</pub-id>
</mixed-citation>
</ref>
<ref id="bib200">
<mixed-citation publication-type="journal">Faktor O, Kooter JM, Loake GJ, Dixone RA, Lamb CJ.
<article-title>Differential utilization of regulatory
<italic>cis</italic>
-elements for stress-induced and tissue-specific activity of a French bean chalcone synthase promoter.</article-title>
<source>Plant Sci</source>
<year>1997</year>
;
<volume>124</volume>
:
<fpage>175</fpage>
–182.</mixed-citation>
</ref>
<ref id="bib201">
<mixed-citation publication-type="journal">Harrison MJ, Lawton MA, Lamb CJ, Dixon RA.
<article-title>Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1991</year>
;
<volume>88</volume>
:
<fpage>2515</fpage>
–2519.
<pub-id pub-id-type="pmid">2006188</pub-id>
</mixed-citation>
</ref>
<ref id="bib202">
<mixed-citation publication-type="journal">Harrison M, Choudhary A, Dubery I, Lamb C, Dixon R.
<article-title>Stress responses in alfalfa (
<italic>Medicago sativa</italic>
L.). 8.
<italic>Cis</italic>
-elements and
<italic>trans</italic>
-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts.</article-title>
<source>Plant Mol Biol</source>
<year>1991</year>
;
<volume>16</volume>
:
<fpage>877</fpage>
–890.
<pub-id pub-id-type="pmid">1859870</pub-id>
</mixed-citation>
</ref>
<ref id="bib203">
<mixed-citation publication-type="journal">van der Meer IM, Spelt CE, Mol JN, Stuitje AR.
<article-title>Promoter analysis of the chalcone synthase (
<italic>chsA</italic>
) gene of
<italic>Petunia hybrida</italic>
: a 67 bp promoter region directs flower-specific expression.</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
;
<volume>15</volume>
:
<fpage>95</fpage>
–109.
<pub-id pub-id-type="pmid">2103446</pub-id>
</mixed-citation>
</ref>
<ref id="bib204">
<mixed-citation publication-type="journal">Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y.
<article-title>Sugar-dependent expression of the
<italic>CHS-A</italic>
gene for chalcone synthase from petunia in transgenic
<italic>Arabidopsis</italic>
.</article-title>
<source>Plant Physiol</source>
<year>1991</year>
;
<volume>97</volume>
:
<fpage>1414</fpage>
–1421.
<pub-id pub-id-type="pmid">16668565</pub-id>
</mixed-citation>
</ref>
<ref id="bib205">
<mixed-citation publication-type="journal">van der Meer I, Spelt C, Mol JM, Stuitje A.
<article-title>Promoter analysis of the chalcone synthase (chsA) gene of
<italic>Petunia hybrida</italic>
: a 67 bp promoter region directs flower-specific expression.</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
;
<volume>15</volume>
:
<fpage>95</fpage>
–109.
<pub-id pub-id-type="pmid">2103446</pub-id>
</mixed-citation>
</ref>
<ref id="bib206">
<mixed-citation publication-type="journal">Fritze K, Staiger D, Czaja I, Walden R, Schell J, Wing D.
<article-title>Developmental and UV light regulation of the snapdragon chalcone synthase promoter.</article-title>
<source>Plant Cell Online</source>
<year>1991</year>
;
<volume>3</volume>
:
<fpage>893</fpage>
–905.</mixed-citation>
</ref>
<ref id="bib207">
<mixed-citation publication-type="journal">Wang J, Letham DS, Cornish E, Stevenson KR.
<article-title>Studies of cytokinin action and metabolism using tobacco plants expressing either the
<italic>ipt</italic>
or the
<italic>gus</italic>
gene controlled by a chalcone synthase promoter. I. Developmental features of the transgenic plants.</article-title>
<source>Funct Plant Biol</source>
<year>1997</year>
;
<volume>24</volume>
:
<fpage>661</fpage>
–672.</mixed-citation>
</ref>
<ref id="bib208">
<mixed-citation publication-type="journal">Staiger D, Kaulen H, Schell J.
<article-title>A nuclear factor recognizing a positive regulatory upstream element of the
<italic>Antirrhinum majus</italic>
chalcone synthase promoter.</article-title>
<source>Plant Physiol</source>
<year>1990</year>
;
<volume>93</volume>
:
<fpage>1347</fpage>
–1353.
<pub-id pub-id-type="pmid">16667623</pub-id>
</mixed-citation>
</ref>
<ref id="bib209">
<mixed-citation publication-type="journal">Staiger D, Kaulen H, Schell J.
<article-title>A CACGTG motif of the
<italic>Antirrhinum majus</italic>
chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1989</year>
;
<volume>86</volume>
:
<fpage>6930</fpage>
–6934.
<pub-id pub-id-type="pmid">2780550</pub-id>
</mixed-citation>
</ref>
<ref id="bib210">
<mixed-citation publication-type="journal">Kobayashi H, Oikawa Y, Koiwa H, Yamamura S.
<article-title>Flower-specific gene expression directed by the promoter of a chalcone synthase gene from
<italic>Gentiana triflora</italic>
in
<italic>Petunia hybrida</italic>
.</article-title>
<source>Plant Sci</source>
<year>1998</year>
;
<volume>131</volume>
:
<fpage>173</fpage>
–180.</mixed-citation>
</ref>
<ref id="bib211">
<mixed-citation publication-type="journal">Block A, Dangl JL, Hahlbrock K, Schulze-Lefert P.
<article-title>Functional borders, genetic fine structure, and distance requirements of
<italic>cis</italic>
elements mediating light responsiveness of the parsley chalcone synthase promoter.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1990</year>
;
<volume>87</volume>
:
<fpage>5387</fpage>
–5391.
<pub-id pub-id-type="pmid">2371277</pub-id>
</mixed-citation>
</ref>
<ref id="bib212">
<mixed-citation publication-type="journal">Annadana S, Beekwilder MJ, Kuipers G et al.
<article-title>Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of
<italic>Dendranthema grandiflora</italic>
.</article-title>
<source>Transgenic Res</source>
<year>2002</year>
;
<volume>11</volume>
:
<fpage>437</fpage>
–445.
<pub-id pub-id-type="pmid">12212845</pub-id>
</mixed-citation>
</ref>
<ref id="bib213">
<mixed-citation publication-type="journal">Sassa H, Ushijima K, Hirano H.
<article-title>A pistil-specific thaumatin/PR5-like protein gene of Japanese pear (
<italic>Pyrus serotina</italic>
): sequence and promoter activity of the 5' region in transgenic tobacco.</article-title>
<source>Plant Mol Biol</source>
<year>2002</year>
;
<volume>50</volume>
:
<fpage>371</fpage>
–377.
<pub-id pub-id-type="pmid">12369614</pub-id>
</mixed-citation>
</ref>
<ref id="bib214">
<mixed-citation publication-type="journal">Sassa H, Hirano H.
<article-title>Style-specific and developmentally regulated accumulation of a glycosylated thaumatin/PR5-like protein in Japanese pear (
<italic>Pyrus serotina</italic>
Rehd.).</article-title>
<source>Planta</source>
<year>1998</year>
;
<volume>205</volume>
:
<fpage>514</fpage>
–521.
<pub-id pub-id-type="pmid">9684355</pub-id>
</mixed-citation>
</ref>
<ref id="bib215">
<mixed-citation publication-type="journal">Kuboyama T.
<article-title>A novel thaumatin-like protein gene of tobacco is specifically expressed in the transmitting tissue of stigma and style.</article-title>
<source>Sex Plant Reprod</source>
<year>1998</year>
;
<volume>11</volume>
:
<fpage>251</fpage>
–256.</mixed-citation>
</ref>
<ref id="bib216">
<mixed-citation publication-type="journal">Schaart J, Salentijn E, Krens F.
<article-title>Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (
<italic>Fragaria × ananassa</italic>
) plants.</article-title>
<source>Plant Cell Rep</source>
<year>2002</year>
;
<volume>21</volume>
:
<fpage>313</fpage>
–319.</mixed-citation>
</ref>
<ref id="bib217">
<mixed-citation publication-type="journal">Castillejo C, de la Fuente JI, Iannetta P, Botella MÁ, Valpuesta V.
<article-title>Pectin esterase gene family in strawberry fruit: study of
<italic>FaPE1</italic>
, a ripening-specific isoform.</article-title>
<source>J Exp Botany</source>
<year>2004</year>
;
<volume>55</volume>
:
<fpage>909</fpage>
–918.
<pub-id pub-id-type="pmid">15020638</pub-id>
</mixed-citation>
</ref>
<ref id="bib218">
<mixed-citation publication-type="journal">Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF.
<article-title>Discrete spatial and temporal
<italic>cis</italic>
-acting elements regulate transcription of the
<italic>Arabidopsis</italic>
floral homeotic gene APETALA3.</article-title>
<source>Development</source>
<year>1998</year>
;
<volume>125</volume>
:
<fpage>1711</fpage>
–1721.
<pub-id pub-id-type="pmid">9521909</pub-id>
</mixed-citation>
</ref>
<ref id="bib219">
<mixed-citation publication-type="journal">Yang Y, Singer SD, Liu Z.
<article-title>Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel, stamen, and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco.</article-title>
<source>Plant Mol Biol Rep</source>
<year>2011</year>
;
<volume>29</volume>
:
<fpage>162</fpage>
–170.</mixed-citation>
</ref>
<ref id="bib220">
<mixed-citation publication-type="journal">Nacken WK, Huijser P, Beltran JP, Saedler H, Sommer H.
<article-title>Molecular characterization of two stamen-specific genes,
<italic>tap1</italic>
and
<italic>fil1</italic>
, that are expressed in the wild type, but not in the deficiens mutant of
<italic>Antirrhinum majus</italic>
.</article-title>
<source>Mol Gen Genet</source>
<year>1991</year>
;
<volume>229</volume>
:
<fpage>129</fpage>
–136.
<pub-id pub-id-type="pmid">1680216</pub-id>
</mixed-citation>
</ref>
<ref id="bib221">
<mixed-citation publication-type="journal">Choi YO, Kim SS, Lee S et al.
<article-title>Isolation and promoter analysis of anther-specific genes encoding putative arabinogalactan proteins in
<italic>Malus× domestica</italic>
.</article-title>
<source>Plant Cell Rep</source>
<year>2010</year>
;
<volume>29</volume>
:
<fpage>15</fpage>
–24.
<pub-id pub-id-type="pmid">19890636</pub-id>
</mixed-citation>
</ref>
<ref id="bib222">
<mixed-citation publication-type="journal">van Tunen AJ, Mur LA, Brouns CS, Rienstra JD, Koes RE, Moi JN.
<article-title>Pollen-and anther-specific chi promoters from petunia: tandem promoter regulation of the
<italic>chiA</italic>
gene.</article-title>
<source>Plant Cell Online</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>393</fpage>
–401.</mixed-citation>
</ref>
<ref id="bib223">
<mixed-citation publication-type="journal">Twell D, Yamaguchi J, McCormick S.
<article-title>Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis.</article-title>
<source>Development</source>
<year>1990</year>
;
<volume>109</volume>
:
<fpage>705</fpage>
–713.
<pub-id pub-id-type="pmid">2401221</pub-id>
</mixed-citation>
</ref>
<ref id="bib224">
<mixed-citation publication-type="journal">Ficker M, Wemmer T, Thompson R.
<article-title>A promoter directing high level expression in pistils of transgenic plants.</article-title>
<source>Plant Mol Biol</source>
<year>1997</year>
;
<volume>35</volume>
:
<fpage>425</fpage>
–431.
<pub-id pub-id-type="pmid">9349266</pub-id>
</mixed-citation>
</ref>
<ref id="bib225">
<mixed-citation publication-type="journal">Mccormick S.
<article-title>Molecular analysis of male gametogenesis in plants.</article-title>
<source>Trends Genet</source>
<year>1991</year>
;
<volume>7</volume>
:
<fpage>298</fpage>
–303.
<pub-id pub-id-type="pmid">1763428</pub-id>
</mixed-citation>
</ref>
<ref id="bib226">
<mixed-citation publication-type="journal">Kriete G, Niehaus K, Perlick A, Pühler A, Broer I.
<article-title>Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound
<italic>N</italic>
-acetyl-
<sc>l</sc>
-phosphinothricin.</article-title>
<source>Plant J</source>
<year>1996</year>
;
<volume>9</volume>
:
<fpage>809</fpage>
–818.
<pub-id pub-id-type="pmid">8696362</pub-id>
</mixed-citation>
</ref>
<ref id="bib227">
<mixed-citation publication-type="journal">Guerrero FD, Crossland L, Smutzer GS, Hamilton DA, Mascarenhas JP.
<article-title>Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco.</article-title>
<source>Mol Gen Genet</source>
<year>1990</year>
;
<volume>224</volume>
:
<fpage>161</fpage>
–168.
<pub-id pub-id-type="pmid">2277635</pub-id>
</mixed-citation>
</ref>
<ref id="bib228">
<mixed-citation publication-type="journal">Wang Z, Zou YJ, Li XY et al.
<article-title>Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing.</article-title>
<source>Plant Cell Online</source>
<year>2006</year>
;
<volume>18</volume>
:
<fpage>676</fpage>
–687.</mixed-citation>
</ref>
<ref id="bib229">
<mixed-citation publication-type="journal">Zou JT, Zhan XY, Wu HM, Wang H, Cheung AY.
<article-title>Characterization of a rice pollen-specific gene and its expression.</article-title>
<source>Am J Botany</source>
<year>1994</year>
;
<volume>81</volume>
:
<fpage>552</fpage>
–561.</mixed-citation>
</ref>
<ref id="bib230">
<mixed-citation publication-type="journal">Hernould M, Suharsono S, Litvak S, Araya A, Mouras A.
<article-title>Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1993</year>
;
<volume>90</volume>
:
<fpage>2370</fpage>
–2374.
<pub-id pub-id-type="pmid">7681593</pub-id>
</mixed-citation>
</ref>
<ref id="bib231">
<mixed-citation publication-type="journal">He S, Abad AR, Gelvin SB, Mackenzie SA.
<article-title>A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1996</year>
;
<volume>93</volume>
:
<fpage>11763</fpage>
–11768.
<pub-id pub-id-type="pmid">8876211</pub-id>
</mixed-citation>
</ref>
<ref id="bib232">
<mixed-citation publication-type="journal">de Block M, Debrouwer D, Moens T.
<article-title>The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters.</article-title>
<source>Theor Appl Genet</source>
<year>1997</year>
;
<volume>95</volume>
:
<fpage>125</fpage>
–131.</mixed-citation>
</ref>
<ref id="bib233">
<mixed-citation publication-type="journal">Ariizumi T, Amagai M, Shibata D, Hatakeyama K, Watanabe M, Toriyama K.
<article-title>Comparative study of promoter activity of three anther-specific genes encoding lipid transfer protein, xyloglucan endotransglucosylase/hydrolase and polygalacturonase in transgenic
<italic>Arabidopsis thaliana</italic>
.</article-title>
<source>Plant Cell Rep</source>
<year>2002</year>
;
<volume>21</volume>
:
<fpage>90</fpage>
–96.</mixed-citation>
</ref>
<ref id="bib234">
<mixed-citation publication-type="journal">Twell D, Patel S, Sorensen A et al.
<article-title>Activation and developmental regulation of an
<italic>Arabidopsis</italic>
anther-specific promoter in microspores and pollen of
<italic>Nicotiana tabacum</italic>
.</article-title>
<source>Sex Plant Reprod</source>
<year>1993</year>
;
<volume>6</volume>
:
<fpage>217</fpage>
–224.</mixed-citation>
</ref>
<ref id="bib235">
<mixed-citation publication-type="journal">Paul W, Hodge R, Smartt S, Draper J, Scott R.
<article-title>The isolation and characterisation of the tapetum-specific
<italic>Arabidopsis thaliana</italic>
A9 gene.</article-title>
<source>Plant Mol Biol</source>
<year>1992</year>
;
<volume>19</volume>
:
<fpage>611</fpage>
–622.
<pub-id pub-id-type="pmid">1627774</pub-id>
</mixed-citation>
</ref>
<ref id="bib236">
<mixed-citation publication-type="journal">de Oliveira DE, Franco LO, Simoens C et al.
<article-title>Inflorescence-specific genes from
<italic>Arabidopsis thaliana</italic>
encoding glycine-rich proteins.</article-title>
<source>Plant J</source>
<year>1993</year>
;
<volume>3</volume>
:
<fpage>495</fpage>
–507.
<pub-id pub-id-type="pmid">8220457</pub-id>
</mixed-citation>
</ref>
<ref id="bib237">
<mixed-citation publication-type="journal">Twell D, Wing R, Yamaguchi J, McCormick S.
<article-title>Isolation and expression of an anther-specific gene from tomato.</article-title>
<source>Mol Gen Genet</source>
<year>1989</year>
;
<volume>217</volume>
:
<fpage>240</fpage>
–245.
<pub-id pub-id-type="pmid">2770694</pub-id>
</mixed-citation>
</ref>
<ref id="bib238">
<mixed-citation publication-type="journal">Roque E, Gómez MD, Ellul P et al.
<article-title>The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation.</article-title>
<source>Plant Cell Rep</source>
<year>2007</year>
;
<volume>26</volume>
:
<fpage>313</fpage>
–325.
<pub-id pub-id-type="pmid">17016735</pub-id>
</mixed-citation>
</ref>
<ref id="bib239">
<mixed-citation publication-type="journal">Twell D, Klein TM, Fromm ME, McCormick S.
<article-title>Transient expression of chimeric genes delivered into pollen by microprojectile bombardment.</article-title>
<source>Plant Physiol</source>
<year>1989</year>
;
<volume>91</volume>
:
<fpage>1270</fpage>
–1274.
<pub-id pub-id-type="pmid">16667175</pub-id>
</mixed-citation>
</ref>
<ref id="bib240">
<mixed-citation publication-type="journal">Mascarenhas JP.
<article-title>The male gametophyte of flowering plants.</article-title>
<source>Plant Cell</source>
<year>1989</year>
;
<volume>1</volume>
:
<fpage>657</fpage>
.
<pub-id pub-id-type="pmid">12359904</pub-id>
</mixed-citation>
</ref>
<ref id="bib241">
<mixed-citation publication-type="journal">Muschietti J, Dircks L, Vancanneyt G, McCormick S.
<article-title>LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>6</volume>
:
<fpage>321</fpage>
–338.
<pub-id pub-id-type="pmid">7920720</pub-id>
</mixed-citation>
</ref>
<ref id="bib242">
<mixed-citation publication-type="journal">Bate N, Twell D.
<article-title>Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements.</article-title>
<source>Plant Mol Biol</source>
<year>1998</year>
;
<volume>37</volume>
:
<fpage>859</fpage>
–869.
<pub-id pub-id-type="pmid">9678581</pub-id>
</mixed-citation>
</ref>
<ref id="bib243">
<mixed-citation publication-type="journal">Eady C, Lindsey K, Twell D.
<article-title>Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bicellular and tricellular pollen.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>543</fpage>
–550.</mixed-citation>
</ref>
<ref id="bib244">
<mixed-citation publication-type="journal">Kato H, Xie G, Sato Y, Imai R.
<article-title>Isolation of anther-specific gene promoters suitable for transgene expression in rice.</article-title>
<source>Plant Mol Biol Rep</source>
<year>2010</year>
;
<volume>28</volume>
:
<fpage>381</fpage>
–387.</mixed-citation>
</ref>
<ref id="bib245">
<mixed-citation publication-type="journal">Nishihara M, Ito M, Tanaka I et al.
<article-title>Expression of the β-glucuronidase gene in pollen of lily (
<italic>Lilium longiflorum</italic>
), tobacco (
<italic>Nicotiana tabacum</italic>
),
<italic>Nicotiana rustica</italic>
, and peony (
<italic>Paeonia lactiflora</italic>
) by particle bombardment.</article-title>
<source>Plant Physiol</source>
<year>1993</year>
;
<volume>102</volume>
:
<fpage>357</fpage>
–361.
<pub-id pub-id-type="pmid">12231826</pub-id>
</mixed-citation>
</ref>
<ref id="bib246">
<mixed-citation publication-type="journal">Miyoshi H, Usami T, Tanaka I.
<article-title>High level of GUS gene expression driven by pollen-specific promoters in electroporated lily pollen protoplasts.</article-title>
<source>Sex Plant Reprod</source>
<year>1995</year>
;
<volume>8</volume>
:
<fpage>205</fpage>
–209.</mixed-citation>
</ref>
<ref id="bib247">
<mixed-citation publication-type="journal">Bhalla PL, Smith N.
<article-title>
<italic>Agrobacterium tumefaciens</italic>
-mediated transformation of cauliflower,
<italic>Brassica oleracea</italic>
var. botrytis.</article-title>
<source>Mol Breed</source>
<year>1998</year>
;
<volume>4</volume>
:
<fpage>531</fpage>
–541.</mixed-citation>
</ref>
<ref id="bib248">
<mixed-citation publication-type="journal">Xu S, Liu G, Chen R.
<article-title>Characterization of an anther and tapetum-specific gene and its highly specific promoter isolated from tomato.</article-title>
<source>Plant Cell Rep</source>
<year>2006</year>
;
<volume>25</volume>
:
<fpage>231</fpage>
–240.
<pub-id pub-id-type="pmid">16491381</pub-id>
</mixed-citation>
</ref>
<ref id="bib249">
<mixed-citation publication-type="journal">Kim H, Park BS, Jin YM, Chung T.
<article-title>Promoter sequences of two homologous pectin esterase genes from Chinese cabbage (
<italic>Brassica campestris</italic>
L. ssp. pekinensis) and pollen-specific expression of the GUS gene driven by a promoter in tobacco plants.</article-title>
<source>Mol Cells</source>
<year>1997</year>
;
<volume>7</volume>
:
<fpage>21</fpage>
–27.
<pub-id pub-id-type="pmid">9085260</pub-id>
</mixed-citation>
</ref>
<ref id="bib250">
<mixed-citation publication-type="journal">Gómez MD, Beltrán JP, Cañas LA.
<article-title>The pea END1 promoter drives anther-specific gene expression in different plant species.</article-title>
<source>Planta</source>
<year>2004</year>
;
<volume>219</volume>
:
<fpage>967</fpage>
–981.
<pub-id pub-id-type="pmid">15221384</pub-id>
</mixed-citation>
</ref>
<ref id="bib251">
<mixed-citation publication-type="book">Boyce CK. The evolutionary history of roots and leaves. In:
<source>Vascular Transport in Plants</source>
. Amsterdam: Academic Press,
<year>2005</year>
:
<fpage>479</fpage>
–499.</mixed-citation>
</ref>
<ref id="bib252">
<mixed-citation publication-type="journal">Schiefelbein JW, Benfey PN.
<article-title>The development of plant roots: new approaches to underground problems.</article-title>
<source>Plant Cell</source>
<year>1991</year>
;
<volume>3</volume>
:
<fpage>1147</fpage>
.
<pub-id pub-id-type="pmid">1821762</pub-id>
</mixed-citation>
</ref>
<ref id="bib253">
<mixed-citation publication-type="journal">Olsen S, Kemper W.
<article-title>Movement of nutrients to plant roots.</article-title>
<source>Adv Agron</source>
<year>1968</year>
;
<volume>20</volume>
:
<fpage>91</fpage>
–151.</mixed-citation>
</ref>
<ref id="bib254">
<mixed-citation publication-type="journal">Lynch J.
<article-title>Root architecture and plant productivity.</article-title>
<source>Plant Physiol</source>
<year>1995</year>
;
<volume>109</volume>
:
<fpage>7</fpage>
.
<pub-id pub-id-type="pmid">12228579</pub-id>
</mixed-citation>
</ref>
<ref id="bib255">
<mixed-citation publication-type="journal">Aiken R, Smucker A.
<article-title>Root system regulation of whole plant growth.</article-title>
<source>Annu Rev Phytopathol</source>
<year>1996</year>
;
<volume>34</volume>
:
<fpage>325</fpage>
–346.
<pub-id pub-id-type="pmid">15012546</pub-id>
</mixed-citation>
</ref>
<ref id="bib256">
<mixed-citation publication-type="journal">Rost TL, Bryant JA.
<article-title>Root organization and gene expression patterns.</article-title>
<source>J Exp Botany</source>
<year>1996</year>
;
<volume>47</volume>
:
<fpage>1613</fpage>
–1628.</mixed-citation>
</ref>
<ref id="bib257">
<mixed-citation publication-type="journal">Rovira A.
<article-title>Interactions between plant roots and soil microorganisms.</article-title>
<source>Annu Rev Microbiol</source>
<year>1965</year>
;
<volume>19</volume>
:
<fpage>241</fpage>
–266.
<pub-id pub-id-type="pmid">5318440</pub-id>
</mixed-citation>
</ref>
<ref id="bib258">
<mixed-citation publication-type="journal">Cook RJ.
<article-title>Advances in plant health management in the twentieth century.</article-title>
<source>Annu Rev Phytopathol</source>
<year>2000</year>
;
<volume>38</volume>
:
<fpage>95</fpage>
–116.
<pub-id pub-id-type="pmid">11701838</pub-id>
</mixed-citation>
</ref>
<ref id="bib259">
<mixed-citation publication-type="book">Foy CD.
<source>Limitations to Plant Root Growth</source>
. Berlin: Springer,
<year>1992</year>
:
<fpage>97</fpage>
–149.</mixed-citation>
</ref>
<ref id="bib260">
<mixed-citation publication-type="journal">Neher DA.
<article-title>Role of nematodes in soil health and their use as indicators.</article-title>
<source>J Nematol</source>
<year>2001</year>
;
<volume>33</volume>
:
<fpage>161</fpage>
.
<pub-id pub-id-type="pmid">19265875</pub-id>
</mixed-citation>
</ref>
<ref id="bib261">
<mixed-citation publication-type="journal">Potenza C, Aleman L, Sengupta-Gopalan C.
<article-title>Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation.</article-title>
<source>In Vitro Cell Dev Biol Plant</source>
<year>2004</year>
;
<volume>40</volume>
:
<fpage>1</fpage>
–22.</mixed-citation>
</ref>
<ref id="bib262">
<mixed-citation publication-type="journal">Yamamoto YT, Taylor CG, Acedo GN, Cheng CL, Conkling MA.
<article-title>Characterization of
<italic>cis</italic>
-acting sequences regulating root-specific gene expression in tobacco.</article-title>
<source>Plant Cell Online</source>
<year>1991</year>
;
<volume>3</volume>
:
<fpage>371</fpage>
–382.</mixed-citation>
</ref>
<ref id="bib263">
<mixed-citation publication-type="journal">Jones MO, Kamarainen-Karppinen T, Koskimaki JJ et al.
<article-title>The promoter from SlREO, a highly-expressed, root-specific
<italic>Solanum lycopersicum</italic>
gene, directs expression to cortex of mature roots.</article-title>
<source>Funct Plant Biol</source>
<year>2009</year>
;
<volume>35</volume>
:
<fpage>1224</fpage>
–1233.</mixed-citation>
</ref>
<ref id="bib264">
<mixed-citation publication-type="journal">Maurel C, Verdoucq L, Luu DT, Santoni V.
<article-title>Plant aquaporins: membrane channels with multiple integrated functions.</article-title>
<source>Annu Rev Plant Biol</source>
<year>2008</year>
;
<volume>59</volume>
:
<fpage>595</fpage>
–624.
<pub-id pub-id-type="pmid">18444909</pub-id>
</mixed-citation>
</ref>
<ref id="bib265">
<mixed-citation publication-type="journal">Javot H, Maurel C.
<article-title>The role of aquaporins in root water uptake.</article-title>
<source>Ann Botany</source>
<year>2002</year>
;
<volume>90</volume>
:
<fpage>301</fpage>
–313.
<pub-id pub-id-type="pmid">12234142</pub-id>
</mixed-citation>
</ref>
<ref id="bib266">
<mixed-citation publication-type="journal">Chan YL, Prasad V, Sanjaya et al.
<article-title>Transgenic tomato plants expressing an Arabidopsis thionin (Thi2. 1) driven by fruit-inactive promoter battle against phytopathogenic attack.</article-title>
<source>Planta</source>
<year>2005</year>
;
<volume>221</volume>
:
<fpage>386</fpage>
–393.
<pub-id pub-id-type="pmid">15657715</pub-id>
</mixed-citation>
</ref>
<ref id="bib267">
<mixed-citation publication-type="journal">Vaughan SP, James DJ, Lindsey K, Massiah AJ.
<article-title>Characterization of FaRB7, a near root-specific gene from strawberry (
<italic>Fragaria× ananassa</italic>
Duch.) and promoter activity analysis in homologous and heterologous hosts.</article-title>
<source>J Exp Botany</source>
<year>2006</year>
;
<volume>57</volume>
:
<fpage>3901</fpage>
–3910.
<pub-id pub-id-type="pmid">17032728</pub-id>
</mixed-citation>
</ref>
<ref id="bib268">
<mixed-citation publication-type="journal">Yamada S, Nelson DE, Ley E, Marquez S, Bohnert HJ.
<article-title>The expression of an aquaporin promoter from
<italic>Mesembryanthemum crystallinum</italic>
in tobacco.</article-title>
<source>Plant Cell Physiol</source>
<year>1997</year>
;
<volume>38</volume>
:
<fpage>1326</fpage>
–1332.
<pub-id pub-id-type="pmid">9522465</pub-id>
</mixed-citation>
</ref>
<ref id="bib269">
<mixed-citation publication-type="journal">Schultze M, Kondorosi A.
<article-title>Regulation of symbiotic root nodule development.</article-title>
<source>Annu Rev Genet</source>
<year>1998</year>
;
<volume>32</volume>
:
<fpage>33</fpage>
–57.
<pub-id pub-id-type="pmid">9928474</pub-id>
</mixed-citation>
</ref>
<ref id="bib270">
<mixed-citation publication-type="journal">Forde BG, Freeman J, Oliver JE, Pineda M.
<article-title>Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean.</article-title>
<source>Plant Cell</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>925</fpage>
–939.
<pub-id pub-id-type="pmid">1983793</pub-id>
</mixed-citation>
</ref>
<ref id="bib271">
<mixed-citation publication-type="journal">Vieweg MF, Frühling M, Quandt HJ et al.
<article-title>The promoter of the
<italic>Vicia faba</italic>
L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants.</article-title>
<source>Mol Plant–Microbe Interact</source>
<year>2004</year>
;
<volume>17</volume>
:
<fpage>62</fpage>
–69.
<pub-id pub-id-type="pmid">14714869</pub-id>
</mixed-citation>
</ref>
<ref id="bib272">
<mixed-citation publication-type="journal">Frühling M, Schröder G, Hohnjec N, Pühler A, Perlick AM, Küster H.
<article-title>The promoter of the
<italic>Vicia faba</italic>
L. gene VfEnod12 encoding an early nodulin is active in cortical cells and nodule primordia of transgenic hairy roots of
<italic>Vicia hirsuta</italic>
as well as in the prefixing zone II of mature transgenic
<italic>V. hirsuta</italic>
root nodules.</article-title>
<source>Plant Sci</source>
<year>2000</year>
;
<volume>160</volume>
:
<fpage>67</fpage>
–75.
<pub-id pub-id-type="pmid">11164578</pub-id>
</mixed-citation>
</ref>
<ref id="bib273">
<mixed-citation publication-type="journal">Szabados L, Ratet P, Grunenberg B, de Bruijn FJ.
<article-title>Functional analysis of the
<italic>Sesbania rostrata</italic>
leghemoglobin
<italic>glb3</italic>
gene 5'-upstream region in transgenic
<italic>Lotus corniculatus</italic>
and
<italic>Nicotiana tabacum</italic>
plants.</article-title>
<source>Plant Cell Online</source>
<year>1990</year>
;
<volume>2</volume>
:
<fpage>973</fpage>
–986.</mixed-citation>
</ref>
<ref id="bib274">
<mixed-citation publication-type="journal">Vijn I, Christiansen H, Lauridsen P et al.
<article-title>A 200 bp region of the pea ENOD12 promoter is sufficient for nodule-specific and Nod factor induced expression.</article-title>
<source>Plant Mol Biol</source>
<year>1995</year>
;
<volume>28</volume>
:
<fpage>1103</fpage>
–1110.
<pub-id pub-id-type="pmid">7548827</pub-id>
</mixed-citation>
</ref>
<ref id="bib275">
<mixed-citation publication-type="journal">Carsolio C, Campos F, Sánchez F, Rocha-Sosa M.
<article-title>The expression of a chimeric
<italic>Phaseolus vulgaris</italic>
nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic
<italic>Lotus corniculatus</italic>
nodules.</article-title>
<source>Plant Mol Biol</source>
<year>1994</year>
;
<volume>26</volume>
:
<fpage>1995</fpage>
–2001.
<pub-id pub-id-type="pmid">7858234</pub-id>
</mixed-citation>
</ref>
<ref id="bib276">
<mixed-citation publication-type="journal">Kloosterman B, de Koeyer D, Griffiths R et al.
<article-title>Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array.</article-title>
<source>Funct Integr Genomics</source>
<year>2008</year>
;
<volume>8</volume>
:
<fpage>329</fpage>
–340.
<pub-id pub-id-type="pmid">18504629</pub-id>
</mixed-citation>
</ref>
<ref id="bib277">
<mixed-citation publication-type="journal">Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG.
<article-title>Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development.</article-title>
<source>Plant J</source>
<year>1996</year>
;
<volume>9</volume>
:
<fpage>745</fpage>
–753.
<pub-id pub-id-type="pmid">8653120</pub-id>
</mixed-citation>
</ref>
<ref id="bib278">
<mixed-citation publication-type="journal">Jefferson R, Goldsbrough A, Bevan M.
<article-title>Transcriptional regulation of a patatin-1 gene in potato.</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
;
<volume>14</volume>
:
<fpage>995</fpage>
–1006.
<pub-id pub-id-type="pmid">2102881</pub-id>
</mixed-citation>
</ref>
<ref id="bib279">
<mixed-citation publication-type="journal">Grierson C, Du JS, de Torres Zabala M et al.
<article-title>Separate
<italic>cis</italic>
sequences and
<italic>trans</italic>
factors direct metabolic and developmental regulation of a potato tuber storage protein gene.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>815</fpage>
–826.
<pub-id pub-id-type="pmid">8054988</pub-id>
</mixed-citation>
</ref>
<ref id="bib280">
<mixed-citation publication-type="journal">Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L.
<article-title>Both developmental and metabolic signals activate the promoter of a class I patatin gene.</article-title>
<source>EMBO J</source>
<year>1989</year>
;
<volume>8</volume>
:
<fpage>23</fpage>
.
<pub-id pub-id-type="pmid">16453867</pub-id>
</mixed-citation>
</ref>
<ref id="bib281">
<mixed-citation publication-type="journal">Jefferson R, Goldsbrough A, Bevan M.
<article-title>Transcriptional regulation of a patatin-1 gene in potato.</article-title>
<source>Plant Mol Biol</source>
<year>1990</year>
;
<volume>14</volume>
:
<fpage>995</fpage>
–1006.
<pub-id pub-id-type="pmid">2102881</pub-id>
</mixed-citation>
</ref>
<ref id="bib282">
<mixed-citation publication-type="journal">Liu XJ, Prat S, Willmitzer L, Frommer WB.
<article-title>
<italic>cis</italic>
regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS–gene fusion.</article-title>
<source>Mol Gen Genet</source>
<year>1990</year>
;
<volume>223</volume>
:
<fpage>401</fpage>
–406.
<pub-id pub-id-type="pmid">2270080</pub-id>
</mixed-citation>
</ref>
<ref id="bib283">
<mixed-citation publication-type="journal">Grierson C, Du JS, de Torres Zabala M et al.
<article-title>Separate
<italic>cis</italic>
sequences and
<italic>trans</italic>
factors direct metabolic and developmental regulation of a potato tuber storage protein gene.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>815</fpage>
–826.
<pub-id pub-id-type="pmid">8054988</pub-id>
</mixed-citation>
</ref>
<ref id="bib284">
<mixed-citation publication-type="journal">Farran I, Sánchez-Serrano J, Medina J, Prieto J, Mingo-Castel A.
<article-title>Targeted expression of human serum albumin to potato tubers.</article-title>
<source>Transgenic Res</source>
<year>2002</year>
;
<volume>11</volume>
:
<fpage>337</fpage>
–346.
<pub-id pub-id-type="pmid">12212837</pub-id>
</mixed-citation>
</ref>
<ref id="bib285">
<mixed-citation publication-type="journal">Hattori T, Nakagawa T, Maeshima M, Nakamura K, Asahi T.
<article-title>Molecular cloning and nucleotide sequence of cDNA for sporamin, the major soluble protein of sweet potato tuberous roots.</article-title>
<source>Plant Mol Biol</source>
<year>1985</year>
;
<volume>5</volume>
:
<fpage>313</fpage>
–320.
<pub-id pub-id-type="pmid">24306923</pub-id>
</mixed-citation>
</ref>
<ref id="bib286">
<mixed-citation publication-type="journal">Ohta S, Hattori T, Morikami A, Nakamura K.
<article-title>High-level expression of a sweet potato sporamin gene promoter: β-glucuroidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements.</article-title>
<source>Mol Gen Genet</source>
<year>1991</year>
;
<volume>225</volume>
:
<fpage>369</fpage>
–378.
<pub-id pub-id-type="pmid">2017135</pub-id>
</mixed-citation>
</ref>
<ref id="bib287">
<mixed-citation publication-type="journal">Wang SJ, Lan YC, Chen SF, Chen YM, Yeh KW.
<article-title>Wound-response regulation of the sweet potato sporamin gene promoter region.</article-title>
<source>Plant Mol Biol</source>
<year>2002</year>
;
<volume>48</volume>
:
<fpage>223</fpage>
–231.
<pub-id pub-id-type="pmid">11855724</pub-id>
</mixed-citation>
</ref>
<ref id="bib288">
<mixed-citation publication-type="journal">Hong YF, Liu CY, Cheng KJ et al.
<article-title>The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato.</article-title>
<source>Plant Mol Biol</source>
<year>2008</year>
;
<volume>67</volume>
:
<fpage>347</fpage>
–361.
<pub-id pub-id-type="pmid">18389377</pub-id>
</mixed-citation>
</ref>
<ref id="bib289">
<mixed-citation publication-type="journal">Morikami A, Matsunaga R, Tanaka Y, Suzuki S, Mano S, Nakamura K.
<article-title>Two
<italic>cis</italic>
-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco.</article-title>
<source>Mol Genet Genomics</source>
<year>2005</year>
;
<volume>272</volume>
:
<fpage>690</fpage>
–699.
<pub-id pub-id-type="pmid">15654621</pub-id>
</mixed-citation>
</ref>
<ref id="bib290">
<mixed-citation publication-type="journal">Ye ZH.
<article-title>Vascular tissue differentiation and pattern formation in plants.</article-title>
<source>Annu Rev Plant Biol</source>
<year>2002</year>
;
<volume>53</volume>
:
<fpage>183</fpage>
–202.
<pub-id pub-id-type="pmid">12221972</pub-id>
</mixed-citation>
</ref>
<ref id="bib291">
<mixed-citation publication-type="book">Aloni R. The induction of vascular tissues by auxin and cytokinin. In:
<source>Plant Hormones</source>
. Amsterdam: Springer,
<year>1995</year>
:
<fpage>531</fpage>
–546.</mixed-citation>
</ref>
<ref id="bib292">
<mixed-citation publication-type="book">Tyree MT, Zimmermann MH.
<source>Xylem Structure and the Ascent of Sap</source>
. Berlin: Springer,
<year>2002</year>
.</mixed-citation>
</ref>
<ref id="bib293">
<mixed-citation publication-type="book">Crafts AS, Crisp CE.
<source>Phloem Transport in Plants</source>
. San Francisco, CA: WH Freeman & Co.,
<year>1971</year>
.</mixed-citation>
</ref>
<ref id="bib294">
<mixed-citation publication-type="journal">van Bel AJ.
<article-title>The phloem, a miracle of ingenuity.</article-title>
<source>Plant Cell Environ</source>
<year>2003</year>
;
<volume>26</volume>
:
<fpage>125</fpage>
–149.</mixed-citation>
</ref>
<ref id="bib295">
<mixed-citation publication-type="journal">Hilder V, Powell KS, Gatehouse AM et al.
<article-title>Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids.</article-title>
<source>Transgenic Res</source>
<year>1995</year>
;
<volume>4</volume>
:
<fpage>18</fpage>
–25.</mixed-citation>
</ref>
<ref id="bib296">
<mixed-citation publication-type="journal">Stoger E, Williams S, Christou P, Down RE, Gatehouse JA.
<article-title>Expression of the insecticidal lectin from snowdrop (
<italic>Galanthus nivalis</italic>
agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid
<italic>Sitobion avenae</italic>
.</article-title>
<source>Mol Breed</source>
<year>1999</year>
;
<volume>5</volume>
:
<fpage>65</fpage>
–73.</mixed-citation>
</ref>
<ref id="bib297">
<mixed-citation publication-type="journal">Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S.
<article-title>Transgenic rice expressing
<italic>Allium sativum</italic>
leaf lectin with enhanced resistance against sap-sucking insect pests.</article-title>
<source>Planta</source>
<year>2006</year>
;
<volume>223</volume>
:
<fpage>1329</fpage>
–1343.
<pub-id pub-id-type="pmid">16404581</pub-id>
</mixed-citation>
</ref>
<ref id="bib298">
<mixed-citation publication-type="journal">Keller B, Baumgartner C.
<article-title>Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated.</article-title>
<source>Plant Cell</source>
<year>1991</year>
;
<volume>3</volume>
:
<fpage>1051</fpage>
–1061.
<pub-id pub-id-type="pmid">1821759</pub-id>
</mixed-citation>
</ref>
<ref id="bib299">
<mixed-citation publication-type="journal">Liu YH, Jia SR.
<article-title>[Vascular-specific promoters and
<italic>cis</italic>
-regulatory elements].</article-title>
<source>Sheng Wu Gong Cheng Xue Bao</source>
<year>2003</year>
;
<volume>19</volume>
:
<fpage>131</fpage>
–135. Chinese.
<pub-id pub-id-type="pmid">15966309</pub-id>
</mixed-citation>
</ref>
<ref id="bib300">
<mixed-citation publication-type="journal">Keller B, Schmid J, Lamb CJ.
<article-title>Vascular expression of a bean cell wall glycine-rich protein beta-glucuronidase gene fusion in transgenic tobacco.</article-title>
<source>EMBO J</source>
<year>1989</year>
;
<volume>8</volume>
:
<fpage>1309</fpage>
–1314.
<pub-id pub-id-type="pmid">16453880</pub-id>
</mixed-citation>
</ref>
<ref id="bib301">
<mixed-citation publication-type="journal">Leyva A, Liang X, Pintor-Toro JA, Dixon RA, Lamb CJ.
<article-title>
<italic>cis</italic>
-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression patterns.</article-title>
<source>Plant Cell</source>
<year>1992</year>
;
<volume>4</volume>
:
<fpage>263</fpage>
–271.
<pub-id pub-id-type="pmid">1498596</pub-id>
</mixed-citation>
</ref>
<ref id="bib302">
<mixed-citation publication-type="journal">Seguin A, Laible G, Leyva A, Dixon RA, Lamb CJ.
<article-title>Characterization of a gene encoding a DNA-binding protein that interacts
<italic>in vitro</italic>
with vascular specific
<italic>cis</italic>
elements of the phenylalanine ammonia-lyase promoter.</article-title>
<source>Plant Mol Biol</source>
<year>1997</year>
;
<volume>35</volume>
:
<fpage>281</fpage>
–291.
<pub-id pub-id-type="pmid">9349252</pub-id>
</mixed-citation>
</ref>
<ref id="bib303">
<mixed-citation publication-type="journal">de Azevedo FA, Mourão Filho FA, Schinor EH et al.
<article-title>GUS gene expression driven by a citrus promoter in transgenic tobacco and ‘Valencia’ sweet orange.</article-title>
<source>Pesq Agropec Bras</source>
<year>2006</year>
;
<volume>41</volume>
:
<fpage>1623</fpage>
–1628.</mixed-citation>
</ref>
<ref id="bib304">
<mixed-citation publication-type="book">Harakava R. Citrus variegated chlorosis: development of transgenic resistance and molecular studies of pathogenesis. PhD thesis, University of Florida, Gainesville, FL, USA,
<year>2000</year>
.</mixed-citation>
</ref>
<ref id="bib305">
<mixed-citation publication-type="journal">Brears T, Walker EL, Coruzzi GM.
<article-title>A promoter sequence involved in cell-specific expression of the pea glutamine synthetase
<italic>GS3A</italic>
gene in organs of transgenic tobacco and alfalfa.</article-title>
<source>Plant J</source>
<year>1991</year>
;
<volume>1</volume>
:
<fpage>235</fpage>
–244.
<pub-id pub-id-type="pmid">1688248</pub-id>
</mixed-citation>
</ref>
<ref id="bib306">
<mixed-citation publication-type="journal">Truernit E, Sauer N.
<article-title>The promoter of the
<italic>Arabidopsis thaliana</italic>
SUC2 sucrose-H
<sup>+</sup>
symporter gene directs expression of β-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2.</article-title>
<source>Planta</source>
<year>1995</year>
;
<volume>196</volume>
:
<fpage>564</fpage>
–570.
<pub-id pub-id-type="pmid">7647685</pub-id>
</mixed-citation>
</ref>
<ref id="bib307">
<mixed-citation publication-type="journal">Dutt M, Ananthakrishnan G, Jaromin M, Brlansky R, Grosser J.
<article-title>Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants.</article-title>
<source>Tree Physiol</source>
<year>2012</year>
;
<volume>32</volume>
:
<fpage>83</fpage>
–93.
<pub-id pub-id-type="pmid">22228816</pub-id>
</mixed-citation>
</ref>
<ref id="bib308">
<mixed-citation publication-type="journal">Miyata LY, Harakava R, Stipp LC et al.
<article-title>GUS expression in sweet oranges (
<italic>Citrus sinensis</italic>
L. Osbeck) driven by three different phloem-specific promoters.</article-title>
<source>Plant Cell Rep</source>
<year>2012</year>
;
<volume>31</volume>
:
<fpage>2005</fpage>
–2013.
<pub-id pub-id-type="pmid">22801867</pub-id>
</mixed-citation>
</ref>
<ref id="bib309">
<mixed-citation publication-type="journal">Sun Q, Zhao Y, Sun HY, Hammond RW, Davis RE, Xin L.
<article-title>High-efficiency and stable genetic transformation of pear (
<italic>Pyrus communis</italic>
L.) leaf segments and regeneration of transgenic plants.</article-title>
<source>Acta Physiol Plant</source>
<year>2011</year>
;
<volume>33</volume>
:
<fpage>383</fpage>
–390.</mixed-citation>
</ref>
<ref id="bib310">
<mixed-citation publication-type="journal">Zhao Y, Liu Q, Davis RE.
<article-title>Transgene expression in strawberries driven by a heterologous phloem-specific promoter.</article-title>
<source>Plant Cell Rep</source>
<year>2004</year>
;
<volume>23</volume>
:
<fpage>224</fpage>
–230.
<pub-id pub-id-type="pmid">15235813</pub-id>
</mixed-citation>
</ref>
<ref id="bib311">
<mixed-citation publication-type="journal">Singer SD, Hily JM, Cox KD.
<article-title>The sucrose synthase-1 promoter from
<italic>Citrus sinensis</italic>
directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants.</article-title>
<source>Planta</source>
<year>2011</year>
;
<volume>234</volume>
:
<fpage>623</fpage>
–637.
<pub-id pub-id-type="pmid">21594624</pub-id>
</mixed-citation>
</ref>
<ref id="bib312">
<mixed-citation publication-type="journal">Benyon L, Stover E, Bowman KD et al.
<article-title>GUS expression driven by constitutive and phloem-specific promoters in citrus hybrid US-802.</article-title>
<source>In Vitro Cell Dev Biol Plant</source>
<year>2013</year>
;
<volume>49</volume>
:
<fpage>255</fpage>
–265.</mixed-citation>
</ref>
<ref id="bib313">
<mixed-citation publication-type="journal">Gittins JR, Pellny TK, Biricolti S, Hiles ER, Passey AJ, James DJ.
<article-title>Transgene expression in the vegetative tissues of apple driven by the vascular-specific rolC and CoYMV promoters.</article-title>
<source>Transgenic Res</source>
<year>2003</year>
;
<volume>12</volume>
:
<fpage>391</fpage>
–402.
<pub-id pub-id-type="pmid">12885161</pub-id>
</mixed-citation>
</ref>
<ref id="bib314">
<mixed-citation publication-type="journal">Gatz C.
<article-title>Chemically inducible promoters in transgenic plants.</article-title>
<source>Curr Opin Biotechnol</source>
<year>1996</year>
;
<volume>7</volume>
:
<fpage>168</fpage>
–172.</mixed-citation>
</ref>
<ref id="bib315">
<mixed-citation publication-type="journal">Zuo J, Chua NH.
<article-title>Chemical-inducible systems for regulated expression of plant genes.</article-title>
<source>Curr Opin Biotechnol</source>
<year>2000</year>
;
<volume>11</volume>
:
<fpage>146</fpage>
–151.
<pub-id pub-id-type="pmid">10753773</pub-id>
</mixed-citation>
</ref>
<ref id="bib316">
<mixed-citation publication-type="journal">Schena M, Lloyd AM, Davis RW.
<article-title>A steroid-inducible gene expression system for plant cells.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1991</year>
;
<volume>88</volume>
:
<fpage>10421</fpage>
–10425.
<pub-id pub-id-type="pmid">1961707</pub-id>
</mixed-citation>
</ref>
<ref id="bib317">
<mixed-citation publication-type="journal">Vierling E.
<article-title>The roles of heat shock proteins in plants.</article-title>
<source>Annu Rev Plant Biol</source>
<year>1991</year>
;
<volume>42</volume>
:
<fpage>579</fpage>
–620.</mixed-citation>
</ref>
<ref id="bib318">
<mixed-citation publication-type="journal">Gatz C, Lenk I.
<article-title>Promoters that respond to chemical inducers.</article-title>
<source>Trends Plant Sci</source>
<year>1998</year>
;
<volume>3</volume>
:
<fpage>352</fpage>
–358.</mixed-citation>
</ref>
<ref id="bib319">
<mixed-citation publication-type="journal">Coca MA, Almoguera C, Thomas TL, Jordano J.
<article-title>Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter.</article-title>
<source>Plant Mol Biol</source>
<year>1996</year>
;
<volume>31</volume>
:
<fpage>863</fpage>
–876.
<pub-id pub-id-type="pmid">8806416</pub-id>
</mixed-citation>
</ref>
<ref id="bib320">
<mixed-citation publication-type="journal">Yamaguchi-Shinozaki K, Shinozaki K.
<article-title>Organization of
<italic>cis</italic>
-acting regulatory elements in osmotic-and cold-stress-responsive promoters.</article-title>
<source>Trends Plant Sci</source>
<year>2005</year>
;
<volume>10</volume>
:
<fpage>88</fpage>
–94.
<pub-id pub-id-type="pmid">15708346</pub-id>
</mixed-citation>
</ref>
<ref id="bib321">
<mixed-citation publication-type="journal">Weisshaar B, Armstrong GA, Block A, de Silva OD, Hahlbrock K.
<article-title>Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness.</article-title>
<source>EMBO J</source>
<year>1991</year>
;
<volume>10</volume>
:
<fpage>1777</fpage>
.
<pub-id pub-id-type="pmid">2050115</pub-id>
</mixed-citation>
</ref>
<ref id="bib322">
<mixed-citation publication-type="journal">Deeken R, Kaldenhoff R.
<article-title>Light-repressible receptor protein kinase: a novel photo-regulated gene from
<italic>Arabidopsis thaliana</italic>
.</article-title>
<source>Planta</source>
<year>1997</year>
;
<volume>202</volume>
:
<fpage>479</fpage>
–486.
<pub-id pub-id-type="pmid">9265789</pub-id>
</mixed-citation>
</ref>
<ref id="bib323">
<mixed-citation publication-type="journal">Jacinto T, McGurl B, Franceschi V, Delano-Freier J, Ryan CA.
<article-title>Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the β-glucuronidase gene in transgenic tomato plants.</article-title>
<source>Planta</source>
<year>1997</year>
;
<volume>203</volume>
:
<fpage>406</fpage>
–412.</mixed-citation>
</ref>
<ref id="bib324">
<mixed-citation publication-type="journal">Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J et al.
<article-title>Tissue-and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants.</article-title>
<source>Plant Mol Biol</source>
<year>1995</year>
;
<volume>27</volume>
:
<fpage>651</fpage>
–667.
<pub-id pub-id-type="pmid">7727744</pub-id>
</mixed-citation>
</ref>
<ref id="bib325">
<mixed-citation publication-type="journal">Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C.
<article-title>A chimeric transactivator allows tetracycline-responsive gene expression in whole plants.</article-title>
<source>Plant J</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>559</fpage>
–569.
<pub-id pub-id-type="pmid">8012406</pub-id>
</mixed-citation>
</ref>
<ref id="bib326">
<mixed-citation publication-type="journal">Martinez A, Sparks C, Hart CA, Thompson J, Jepson I.
<article-title>Ecdysone agonist inducible transcription in transgenic tobacco plants.</article-title>
<source>Plant J</source>
<year>1999</year>
;
<volume>19</volume>
:
<fpage>97</fpage>
–106.
<pub-id pub-id-type="pmid">10417731</pub-id>
</mixed-citation>
</ref>
<ref id="bib327">
<mixed-citation publication-type="journal">Rutherford JC, Bird AJ.
<article-title>Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells.</article-title>
<source>Eukaryot Cell</source>
<year>2004</year>
;
<volume>3</volume>
:
<fpage>1</fpage>
–13.
<pub-id pub-id-type="pmid">14871932</pub-id>
</mixed-citation>
</ref>
<ref id="bib328">
<mixed-citation publication-type="journal">Uknes S et al.
<article-title>Regulation of pathogenesis-related protein-1a gene expression in tobacco.</article-title>
<source>Plant Cell Online</source>
<year>1993</year>
;
<volume>5</volume>
:
<fpage>159</fpage>
–169.</mixed-citation>
</ref>
<ref id="bib329">
<mixed-citation publication-type="journal">Bryant J, Green TR, Gurusaddaiah T, Ryan CA.
<article-title>Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components.</article-title>
<source>Biochemistry</source>
<year>1976</year>
;
<volume>15</volume>
:
<fpage>3418</fpage>
–3424.
<pub-id pub-id-type="pmid">821519</pub-id>
</mixed-citation>
</ref>
<ref id="bib330">
<mixed-citation publication-type="journal">Bergey DR, Howe GA, Ryan CA.
<article-title>Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1996</year>
;
<volume>93</volume>
:
<fpage>12053</fpage>
–12058.
<pub-id pub-id-type="pmid">8901530</pub-id>
</mixed-citation>
</ref>
<ref id="bib331">
<mixed-citation publication-type="journal">Conconi A, Smerdon MJ, Howe GA, Ryan CA.
<article-title>The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation.</article-title>
<source>Nature</source>
<year>1996</year>
;
<volume>383</volume>
:
<fpage>826</fpage>
–829.
<pub-id pub-id-type="pmid">8893008</pub-id>
</mixed-citation>
</ref>
<ref id="bib332">
<mixed-citation publication-type="journal">Keil M, Sanchez-Serrano J, Schell J, Willmitzer L.
<article-title>Primary structure of a proteinase inhibitor II gene from potato (
<italic>Solanum tuberosum</italic>
).</article-title>
<source>Nucleic Acids Res</source>
<year>1986</year>
;
<volume>14</volume>
:
<fpage>5641</fpage>
–5650.
<pub-id pub-id-type="pmid">3016659</pub-id>
</mixed-citation>
</ref>
<ref id="bib333">
<mixed-citation publication-type="journal">Godard KA, Byun-McKay A, Levasseur C, Plant A, Séguin A, Bohlmann J.
<article-title>Testing of a heterologous, wound and insect-inducible promoter for functional genomics studies in conifer defense.</article-title>
<source>Plant Cell Rep</source>
<year>2007</year>
;
<volume>26</volume>
:
<fpage>2083</fpage>
–2090.
<pub-id pub-id-type="pmid">17671786</pub-id>
</mixed-citation>
</ref>
<ref id="bib334">
<mixed-citation publication-type="journal">Smigocki A, Neal JW Jr, McCanna I, Douglass L.
<article-title>Cytokinin-mediated insect resistance in
<italic>Nicotiana</italic>
plants transformed with the
<italic>ipt</italic>
gene.</article-title>
<source>Plant Mol Biol</source>
<year>1993</year>
;
<volume>23</volume>
:
<fpage>325</fpage>
–335.
<pub-id pub-id-type="pmid">8219068</pub-id>
</mixed-citation>
</ref>
<ref id="bib335">
<mixed-citation publication-type="journal">Xu D, McElroy D, Thornburg RW, Wu R.
<article-title>Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants.</article-title>
<source>Plant Mol Biol</source>
<year>1993</year>
;
<volume>22</volume>
:
<fpage>573</fpage>
–588.
<pub-id pub-id-type="pmid">8343596</pub-id>
</mixed-citation>
</ref>
<ref id="bib336">
<mixed-citation publication-type="journal">Samac DA, Smigocki AC.
<article-title>Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode.</article-title>
<source>Phytopathology</source>
<year>2003</year>
;
<volume>93</volume>
:
<fpage>799</fpage>
–804.
<pub-id pub-id-type="pmid">18943160</pub-id>
</mixed-citation>
</ref>
<ref id="bib337">
<mixed-citation publication-type="journal">Godard KA, Byun-McKay A, Levasseur C, Plant A, Séguin A, Bohlmann J.
<article-title>Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense.</article-title>
<source>Plant Cell Rep</source>
<year>2007</year>
;
<volume>26</volume>
:
<fpage>2083</fpage>
–2090.
<pub-id pub-id-type="pmid">17671786</pub-id>
</mixed-citation>
</ref>
<ref id="bib338">
<mixed-citation publication-type="journal">Duan X, Li X, Xue Q et al.
<article-title>Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.</article-title>
<source>Nat Biotechnol</source>
<year>1996</year>
;
<volume>14</volume>
:
<fpage>494</fpage>
–498.
<pub-id pub-id-type="pmid">9630927</pub-id>
</mixed-citation>
</ref>
<ref id="bib339">
<mixed-citation publication-type="journal">Logemann J, Schell J.
<article-title>Nucleotide sequence and regulated expression of a wound-inducible potato gene (
<italic>wun1</italic>
).</article-title>
<source>Mol Gen Genet</source>
<year>1989</year>
;
<volume>219</volume>
:
<fpage>81</fpage>
–88.
<pub-id pub-id-type="pmid">2615766</pub-id>
</mixed-citation>
</ref>
<ref id="bib340">
<mixed-citation publication-type="journal">Siebertz B, Logemann J, Willmitzer L, Schell J.
<article-title>
<italic>cis</italic>
-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression.</article-title>
<source>Plant Cell Online</source>
<year>1989</year>
;
<volume>1</volume>
:
<fpage>961</fpage>
–968.</mixed-citation>
</ref>
<ref id="bib341">
<mixed-citation publication-type="journal">Yi SY, Sun AQ, Sun Y et al.
<article-title>Differential regulation of
<italic>Lehsp23. 8</italic>
in tomato plants: analysis of a multiple stress-inducible promoter.</article-title>
<source>Plant Sci</source>
<year>2006</year>
;
<volume>171</volume>
:
<fpage>398</fpage>
–407.
<pub-id pub-id-type="pmid">22980210</pub-id>
</mixed-citation>
</ref>
<ref id="bib342">
<mixed-citation publication-type="journal">Yi SY, Liu J.
<article-title>Combinatorial interactions of two cis-acting elements, AT-rich regions and HSEs, in the expression of tomato
<italic>Lehsp23</italic>
. 8 upon heat and non-heat stresses.</article-title>
<source>J Plant Biol</source>
<year>2009</year>
;
<volume>52</volume>
:
<fpage>560</fpage>
–568.</mixed-citation>
</ref>
<ref id="bib343">
<mixed-citation publication-type="journal">Neta-Sharir I, Isaacson T, Lurie S, Weiss D.
<article-title>Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation.</article-title>
<source>Plant Cell Online</source>
<year>2005</year>
;
<volume>17</volume>
:
<fpage>1829</fpage>
–1838.</mixed-citation>
</ref>
<ref id="bib344">
<mixed-citation publication-type="journal">Almoguera C, Jordano J.
<article-title>Developmental and environmental concurrent expression of sunflower dry seed stored low molecular weight heat-shock protein and Lea mRNAs.</article-title>
<source>Plant Mol Biol</source>
<year>1992</year>
;
<volume>19</volume>
:
<fpage>781</fpage>
–792.
<pub-id pub-id-type="pmid">1386536</pub-id>
</mixed-citation>
</ref>
<ref id="bib345">
<mixed-citation publication-type="journal">Díaz-Martín J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J.
<article-title>Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter.</article-title>
<source>Plant Physiol</source>
<year>2005</year>
;
<volume>139</volume>
:
<fpage>1483</fpage>
–1494.
<pub-id pub-id-type="pmid">16244139</pub-id>
</mixed-citation>
</ref>
<ref id="bib346">
<mixed-citation publication-type="journal">Coca MA, Almoguera C, Thomas TL, Jordano J.
<article-title>Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter.</article-title>
<source>Plant Mol Biol</source>
<year>1996</year>
;
<volume>31</volume>
:
<fpage>863</fpage>
–876.
<pub-id pub-id-type="pmid">8806416</pub-id>
</mixed-citation>
</ref>
<ref id="bib347">
<mixed-citation publication-type="journal">Escobar C, Barcala M, Portillo M, Almoguera C, Jordano J, Fenoll C.
<article-title>Induction of the Hahsp17.7G4 promoter by root–knot nematodes: involvement of heat-shock elements in promoter activity in giant cells.</article-title>
<source>Mol Plant–Microbe Interact</source>
<year>2003</year>
;
<volume>16</volume>
:
<fpage>1062</fpage>
–1068.
<pub-id pub-id-type="pmid">14651339</pub-id>
</mixed-citation>
</ref>
<ref id="bib348">
<mixed-citation publication-type="journal">Barcala M, García A, Cubas P et al.
<article-title>Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells.</article-title>
<source>Plant Mol Biol</source>
<year>2008</year>
;
<volume>66</volume>
:
<fpage>151</fpage>
–164.
<pub-id pub-id-type="pmid">18046507</pub-id>
</mixed-citation>
</ref>
<ref id="bib349">
<mixed-citation publication-type="journal">Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS.
<article-title>A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells.</article-title>
<source>Plant Mol Biol</source>
<year>2003</year>
;
<volume>51</volume>
:
<fpage>831</fpage>
–838.
<pub-id pub-id-type="pmid">12777043</pub-id>
</mixed-citation>
</ref>
<ref id="bib350">
<mixed-citation publication-type="journal">Pino MT, Skinner JS, Park EJ et al.
<article-title>Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.</article-title>
<source>Plant Biotechnol J</source>
<year>2007</year>
;
<volume>5</volume>
:
<fpage>591</fpage>
–604.
<pub-id pub-id-type="pmid">17559519</pub-id>
</mixed-citation>
</ref>
<ref id="bib351">
<mixed-citation publication-type="journal">Bouquin T, Lasserre E, Pradier J, Pech JC, Balagué C.
<article-title>Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways.</article-title>
<source>Plant Mol Biol</source>
<year>1997</year>
;
<volume>35</volume>
:
<fpage>1029</fpage>
–1035.
<pub-id pub-id-type="pmid">9426625</pub-id>
</mixed-citation>
</ref>
<ref id="bib352">
<mixed-citation publication-type="journal">Ellard-Ivey M, Douglas CJ.
<article-title>Role of jasmonates in the elicitor-and wound-inducible expression of defense genes in parsley and transgenic tobacco.</article-title>
<source>Plant Physiol</source>
<year>1996</year>
;
<volume>112</volume>
:
<fpage>183</fpage>
–192.
<pub-id pub-id-type="pmid">12226384</pub-id>
</mixed-citation>
</ref>
<ref id="bib353">
<mixed-citation publication-type="journal">Cao J, Shelton A, Earle E.
<article-title>Gene expression and insect resistance in transgenic broccoli containing a
<italic>Bacillus thuringiensis</italic>
cry1Ab gene with the chemically inducible PR-1a promoter.</article-title>
<source>Mol Breed</source>
<year>2001</year>
;
<volume>8</volume>
:
<fpage>207</fpage>
–216.</mixed-citation>
</ref>
<ref id="bib354">
<mixed-citation publication-type="journal">Coutos-Thévenot P, Poinssot B, Bonomelli A et al.
<article-title>
<italic>In vitro</italic>
tolerance to
<italic>Botrytis cinerea</italic>
of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase
<italic>Vst1</italic>
gene under the control of a pathogen-inducible PR 10 promoter.</article-title>
<source>J Exp Botany</source>
<year>2001</year>
;
<volume>52</volume>
:
<fpage>901</fpage>
–910.
<pub-id pub-id-type="pmid">11432907</pub-id>
</mixed-citation>
</ref>
<ref id="bib355">
<mixed-citation publication-type="journal">Laurance WF, Sayer J, Cassman KG.
<article-title>Agricultural expansion and its impacts on tropical nature.</article-title>
<source>Trends Ecol Evol</source>
<year>2014</year>
;
<volume>29</volume>
:
<fpage>107</fpage>
–116.
<pub-id pub-id-type="pmid">24388286</pub-id>
</mixed-citation>
</ref>
<ref id="bib356">
<mixed-citation publication-type="journal">Tilman D.
<article-title>Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices.</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1999</year>
;
<volume>96</volume>
:
<fpage>5995</fpage>
–6000.
<pub-id pub-id-type="pmid">10339530</pub-id>
</mixed-citation>
</ref>
<ref id="bib357">
<mixed-citation publication-type="journal">Godfray HC, Beddington JR, Crute IR et al.
<article-title>Food security: the challenge of feeding 9 billion people.</article-title>
<source>Science</source>
<year>2010</year>
;
<volume>327</volume>
:
<fpage>812</fpage>
–818.
<pub-id pub-id-type="pmid">20110467</pub-id>
</mixed-citation>
</ref>
<ref id="bib358">
<mixed-citation publication-type="journal">Foley JA, Ramankutty N, Brauman KA et al.
<article-title>Solutions for a cultivated planet.</article-title>
<source>Nature</source>
<year>2011</year>
;
<volume>478</volume>
:
<fpage>337</fpage>
–342.
<pub-id pub-id-type="pmid">21993620</pub-id>
</mixed-citation>
</ref>
<ref id="bib359">
<mixed-citation publication-type="journal">Huang S.
<article-title>Global trade of fruits and vegetables and the role of consumer demand. In:
<italic>Trade, Food, Diet and Health: Perspectives and Policy Options</italic>
.</article-title>
<source>Oxford: Wiley-Blackwell</source>
;
<volume>2010</volume>
:
<fpage>60</fpage>
–76.</mixed-citation>
</ref>
<ref id="bib360">
<mixed-citation publication-type="journal">Liu RH.
<article-title>Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals.</article-title>
<source>Am J Clin Nutr</source>
<year>2003</year>
;
<volume>78</volume>
:
<fpage>517S</fpage>
–520S.
<pub-id pub-id-type="pmid">12936943</pub-id>
</mixed-citation>
</ref>
<ref id="bib361">
<mixed-citation publication-type="journal">Liu RH.
<article-title>Potential synergy of phytochemicals in cancer prevention: mechanism of action.</article-title>
<source>J Nutr</source>
<year>2004</year>
;
<volume>134</volume>
:
<fpage>3479S</fpage>
–3485S.
<pub-id pub-id-type="pmid">15570057</pub-id>
</mixed-citation>
</ref>
<ref id="bib362">
<mixed-citation publication-type="journal">Barrows G, Sexton S, Zilberman D.
<article-title>Agricultural biotechnology: the promise and prospects of genetically modified crops.</article-title>
<source>J Econ Perspect</source>
<year>2014</year>
;
<volume>28</volume>
:
<fpage>99</fpage>
–119.</mixed-citation>
</ref>
<ref id="bib363">
<mixed-citation publication-type="journal">Gonsalves C, Lee DR, Gonsalves D.
<article-title>The adoption of genetically modified papaya in Hawaii and its implications for developing countries 1.</article-title>
<source>J Dev Stud</source>
<year>2007</year>
;
<volume>43</volume>
:
<fpage>177</fpage>
–191.</mixed-citation>
</ref>
<ref id="bib364">
<mixed-citation publication-type="journal">Ferreira SA, Pitz KY, Manshardt R et al.
<article-title>Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii.</article-title>
<source>Plant Dis</source>
<year>2002</year>
;
<volume>86</volume>
:
<fpage>101</fpage>
–105.</mixed-citation>
</ref>
<ref id="bib365">
<mixed-citation publication-type="journal">Tanaka Y, Brugliera F, Chandler S.
<article-title>Recent progress of flower colour modification by biotechnology.</article-title>
<source>Int J Mol Sci</source>
<year>2009</year>
;
<volume>10</volume>
:
<fpage>5350</fpage>
–5369.
<pub-id pub-id-type="pmid">20054474</pub-id>
</mixed-citation>
</ref>
<ref id="bib366">
<mixed-citation publication-type="journal">Bradford K, Alston J, Lemaux P, Sumner D.
<article-title>Challenges and opportunities for horticultural biotechnology.</article-title>
<source>Calif Agric</source>
<year>2004</year>
;
<volume>58</volume>
:
<fpage>68</fpage>
–71.</mixed-citation>
</ref>
<ref id="bib367">
<mixed-citation publication-type="journal">Mooney S.
<article-title>Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis.</article-title>
<source>Brief Bioinf</source>
<year>2005</year>
;
<volume>6</volume>
:
<fpage>44</fpage>
–56.</mixed-citation>
</ref>
<ref id="bib368">
<mixed-citation publication-type="journal">Lowe TM, Eddy SR.
<article-title>tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.</article-title>
<source>Nucleic Acids Res</source>
<year>1997</year>
;
<volume>25</volume>
:
<fpage>0955</fpage>
–0964.</mixed-citation>
</ref>
<ref id="bib369">
<mixed-citation publication-type="journal">Nagaraj SH, Gasser RB, Ranganathan S.
<article-title>A hitchhiker's guide to expressed sequence tag (EST) analysis.</article-title>
<source>Brief Bioinf</source>
<year>2007</year>
;
<volume>8</volume>
:
<fpage>6</fpage>
–21.</mixed-citation>
</ref>
<ref id="bib370">
<mixed-citation publication-type="journal">Ashurst JL, Collins JE.
<article-title>Gene annotation: prediction and testing.</article-title>
<source>Annu Rev Genomics Hum Genet</source>
<year>2003</year>
;
<volume>4</volume>
:
<fpage>69</fpage>
–88.
<pub-id pub-id-type="pmid">14527297</pub-id>
</mixed-citation>
</ref>
<ref id="bib371">
<mixed-citation publication-type="journal">Portales-Casamar E, Thongjuea S, Kwon AT et al.
<article-title>JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles.</article-title>
<source>Nucleic Acids Res</source>
<year>2009</year>
;
<volume>38</volume>
(Database issue):
<fpage>D105</fpage>
–D110.
<pub-id pub-id-type="pmid">19906716</pub-id>
</mixed-citation>
</ref>
<ref id="bib372">
<mixed-citation publication-type="journal">Espinoza C et al.
<article-title>Cisgenesis and intragenesis: new tools for improving crops.</article-title>
<source>Biol Res</source>
<year>2013</year>
;
<volume>46</volume>
:
<fpage>323</fpage>
–331.
<pub-id pub-id-type="pmid">24510134</pub-id>
</mixed-citation>
</ref>
<ref id="bib373">
<mixed-citation publication-type="journal">Holme IB, Wendt T, Holm PB.
<article-title>Intragenesis and cisgenesis as alternatives to transgenic crop development.</article-title>
<source>Plant Biotechnol J</source>
<year>2013</year>
;
<volume>11</volume>
:
<fpage>395</fpage>
–407.
<pub-id pub-id-type="pmid">23421562</pub-id>
</mixed-citation>
</ref>
<ref id="bib374">
<mixed-citation publication-type="journal">Nielsen KM.
<article-title>Transgenic organisms—time for conceptual diversification?</article-title>
<source>Nat Biotechnol</source>
<year>2003</year>
;
<volume>21</volume>
:
<fpage>227</fpage>
–228.
<pub-id pub-id-type="pmid">12610561</pub-id>
</mixed-citation>
</ref>
<ref id="bib375">
<mixed-citation publication-type="other">Gray DJ, Li ZT, Dhekney SA.
<article-title>Precision breeding of grapevine (
<italic>Vitis vinifera</italic>
L.) for improved traits.</article-title>
<source>Plant Sci</source>
<year>2014</year>
; in press.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<table-wrap id="tbl1">
<label>Table 1</label>
<caption>
<title>Description of the promoter fragments either isolated from horticultural crops or used to genetically modify a horticultural crop for improved traits</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Promoter</th>
<th align="left" valign="top" charoff="50">Origin</th>
<th align="left" valign="top" charoff="50">Crop use</th>
<th align="left" valign="top" charoff="50">References</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Constitutive expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">BSV</td>
<td align="left" valign="top" charoff="50">Banana streak badnavirus</td>
<td align="left" valign="top" charoff="50">Banana, Sunflower</td>
<td align="left" valign="top" charoff="50">96</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CaMV 35S</td>
<td align="left" valign="top" charoff="50">Cauliflower mosaic virus</td>
<td align="left" valign="top" charoff="50">Apple, broccoli, citrus, chrysanthemum, cocoa, collard, grape, Indian Mustard, Lilium,
<italic>Nicotiana glutinosa</italic>
, papaya, peach, petunia, plum, poplar, rose, strawberry, tomato, torenia</td>
<td align="left" valign="top" charoff="50">41–44, 47–63, 65–79, 84, 85, 87</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CMPS</td>
<td align="left" valign="top" charoff="50">Cestrum Yellow Leaf curling virus</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">95</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Lhca3.St.1</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">Chrysanthemum</td>
<td align="left" valign="top" charoff="50">100</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Mannopin synthase</td>
<td align="left" valign="top" charoff="50">Gladiolus</td>
<td align="left" valign="top" charoff="50">Gladiolus</td>
<td align="left" valign="top" charoff="50">99</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">RolD</td>
<td align="left" valign="top" charoff="50">
<italic>A. rhizogenes</italic>
</td>
<td align="left" valign="top" charoff="50">Gladiolus</td>
<td align="left" valign="top" charoff="50">99</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Uep1</td>
<td align="left" valign="top" charoff="50">Oilpalm</td>
<td align="left" valign="top" charoff="50">Oilpalm, tobacco</td>
<td align="left" valign="top" charoff="50">98</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Ubiquitin</td>
<td align="left" valign="top" charoff="50">Grape, gladiolus</td>
<td align="left" valign="top" charoff="50">Grape, gladiolus</td>
<td align="left" valign="top" charoff="50">49, 99</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Fruit-specific expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">ACC-oxidase</td>
<td align="left" valign="top" charoff="50">Peach, apple, tomato, banana</td>
<td align="left" valign="top" charoff="50">Tomato, banana</td>
<td align="left" valign="top" charoff="50">104–107</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">ADP-glucose pyrophosphorylase</td>
<td align="left" valign="top" charoff="50">Watermelon</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">115</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Expansin</td>
<td align="left" valign="top" charoff="50">Cherry, cucumber</td>
<td align="left" valign="top" charoff="50">Tomato, cucumber</td>
<td align="left" valign="top" charoff="50">109, 110</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Cucumisin</td>
<td align="left" valign="top" charoff="50">Melon</td>
<td align="left" valign="top" charoff="50">Melon</td>
<td align="left" valign="top" charoff="50">114</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">C11</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">Lemon</td>
<td align="left" valign="top" charoff="50">117</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CsACS1G/CsACS1</td>
<td align="left" valign="top" charoff="50">Cucumber</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">111</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CsExp</td>
<td align="left" valign="top" charoff="50">Cucumber</td>
<td align="left" valign="top" charoff="50">Cucumber</td>
<td align="left" valign="top" charoff="50">110</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">DefH9</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">138</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">DFR</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">124</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">E8</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">133</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Faxyl1</td>
<td align="left" valign="top" charoff="50">Strawberry</td>
<td align="left" valign="top" charoff="50">Strawberry</td>
<td align="left" valign="top" charoff="50">112</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">GIZEP</td>
<td align="left" valign="top" charoff="50">
<italic>Gentiana lutea</italic>
</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">126</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Metallothionin</td>
<td align="left" valign="top" charoff="50">Citrus, oilpalm</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">118, 119</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Pac1</td>
<td align="left" valign="top" charoff="50">Yeast</td>
<td align="left" valign="top" charoff="50">Avocado</td>
<td align="left" valign="top" charoff="50">136</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">RolB</td>
<td align="left" valign="top" charoff="50">
<italic>A. rhizogenes</italic>
</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">134</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">SPS</td>
<td align="left" valign="top" charoff="50">Banana</td>
<td align="left" valign="top" charoff="50">Banana</td>
<td align="left" valign="top" charoff="50">116</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">SIACS4/SIEXP1</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">127</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Seed-specific expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">2S</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">Grape, tobacco</td>
<td align="left" valign="top" charoff="50">145, 147</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CuMFT1</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">171</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Dc3</td>
<td align="left" valign="top" charoff="50">Carrot</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">163</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">HaG3-A</td>
<td align="left" valign="top" charoff="50">Sunflower</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">170</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">LeB4</td>
<td align="left" valign="top" charoff="50">
<italic>Vicia faba</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">156</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">LegA</td>
<td align="left" valign="top" charoff="50">Pea</td>
<td align="left" valign="top" charoff="50">
<italic>Helianthus</italic>
</td>
<td align="left" valign="top" charoff="50">143</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">NapA</td>
<td align="left" valign="top" charoff="50">
<italic>Brassica napus</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">150</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Phas</td>
<td align="left" valign="top" charoff="50">Bean</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">140, 172</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Psl</td>
<td align="left" valign="top" charoff="50">Pea</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">168</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Str</td>
<td align="left" valign="top" charoff="50">
<italic>Catharanthus roseus</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">173</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">USP</td>
<td align="left" valign="top" charoff="50">
<italic>Vicia faba</italic>
</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">158</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Floral tissue-specific expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">BAN215-6</td>
<td align="left" valign="top" charoff="50">
<italic>Brassica campestris</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">249</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CHS</td>
<td align="left" valign="top" charoff="50">Bean</td>
<td align="left" valign="top" charoff="50">Petunia, tobacco</td>
<td align="left" valign="top" charoff="50">197, 198</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">END1</td>
<td align="left" valign="top" charoff="50">Pea</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">250</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">GTCHS1</td>
<td align="left" valign="top" charoff="50">
<italic>Gentiana triflora</italic>
</td>
<td align="left" valign="top" charoff="50">Petunia</td>
<td align="left" valign="top" charoff="50">210</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">LAT52</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">
<italic>Lilium longiflorum</italic>
</td>
<td align="left" valign="top" charoff="50">246</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PsTL1</td>
<td align="left" valign="top" charoff="50">
<italic>Pyrus serotina</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">214</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">SK2</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">224</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TomA108</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">248</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Root-specific expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">B33</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">284</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">FaRB7</td>
<td align="left" valign="top" charoff="50">Strawberry</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">267</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Glb3 5'</td>
<td align="left" valign="top" charoff="50">
<italic>Sesbania rostrata</italic>
</td>
<td align="left" valign="top" charoff="50">Lotus</td>
<td align="left" valign="top" charoff="50">273</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">MipB</td>
<td align="left" valign="top" charoff="50">
<italic>Mesembryanthemum crystallinum</italic>
</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">268</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Npv30</td>
<td align="left" valign="top" charoff="50">Bean</td>
<td align="left" valign="top" charoff="50">Lotus</td>
<td align="left" valign="top" charoff="50">275</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PsENOD12A/PsENOD12B</td>
<td align="left" valign="top" charoff="50">Pea</td>
<td align="left" valign="top" charoff="50">
<italic>Vicia hirsuta</italic>
</td>
<td align="left" valign="top" charoff="50">274</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">RB7</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">267</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">SLREO</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">263</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">VfLb29</td>
<td align="left" valign="top" charoff="50">
<italic>Vicia faba</italic>
</td>
<td align="left" valign="top" charoff="50">
<italic>Vicia faba</italic>
</td>
<td align="left" valign="top" charoff="50">271</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Sporamin</td>
<td align="left" valign="top" charoff="50">Sweet potato</td>
<td align="left" valign="top" charoff="50">Potato, tobacco</td>
<td align="left" valign="top" charoff="50">287, 288</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Vascular tissue-specific expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">AtSUC2</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">Citrus, pear, strawberries</td>
<td align="left" valign="top" charoff="50">307, 309, 310</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CoYMVP</td>
<td align="left" valign="top" charoff="50">Commelina Yellow Mottle Virus</td>
<td align="left" valign="top" charoff="50">Apple</td>
<td align="left" valign="top" charoff="50">313</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CsPP2</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">Sweet orange</td>
<td align="left" valign="top" charoff="50">308</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CsSUS1p</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
/tobacco</td>
<td align="left" valign="top" charoff="50">311</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">GRP 1.8</td>
<td align="left" valign="top" charoff="50">Bean</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">300</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">GS3A</td>
<td align="left" valign="top" charoff="50">Pea</td>
<td align="left" valign="top" charoff="50">Alfalfa</td>
<td align="left" valign="top" charoff="50">305</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PAL2</td>
<td align="left" valign="top" charoff="50">Bean</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">302</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">RolC</td>
<td align="left" valign="top" charoff="50">
<italic>A. rhizogenes</italic>
</td>
<td align="left" valign="top" charoff="50">Apple</td>
<td align="left" valign="top" charoff="50">313</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">RTBV</td>
<td align="left" valign="top" charoff="50">Rice Tungro Virus</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">307</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Rice sucrose synthase l</td>
<td align="left" valign="top" charoff="50">Rice</td>
<td align="left" valign="top" charoff="50">Citrus</td>
<td align="left" valign="top" charoff="50">307</td>
</tr>
<tr>
<td colspan="4" align="left" valign="top" charoff="50">
<bold>Inducible expression</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">4CL</td>
<td align="left" valign="top" charoff="50">Parsley/tobacco</td>
<td align="left" valign="top" charoff="50">Parsley/tobacco</td>
<td align="left" valign="top" charoff="50">352</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">CM-ACO1</td>
<td align="left" valign="top" charoff="50">Melon</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">351</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">HSP</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Sunflower</td>
<td align="left" valign="top" charoff="50">344</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Lehsp23.8</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">341</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PinII</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">Alfalfa,
<italic>Nicotiana plumbaginifolia</italic>
, rice</td>
<td align="left" valign="top" charoff="50">334–336</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PR-1</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">Broccoli</td>
<td align="left" valign="top" charoff="50">353</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PR 10</td>
<td align="left" valign="top" charoff="50">Alfalfa</td>
<td align="left" valign="top" charoff="50">Grape</td>
<td align="left" valign="top" charoff="50">354</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Prosystemin</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">Tomato</td>
<td align="left" valign="top" charoff="50">323</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Rd29A</td>
<td align="left" valign="top" charoff="50">
<italic>Arabidopsis</italic>
</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">350</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">SWPA2</td>
<td align="left" valign="top" charoff="50">Sweet potato</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">349</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Wun1</td>
<td align="left" valign="top" charoff="50">Potato</td>
<td align="left" valign="top" charoff="50">Tobacco</td>
<td align="left" valign="top" charoff="50">340</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0004859 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0004859 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024