Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress

Identifieur interne : 000393 ( Pmc/Corpus ); précédent : 000392; suivant : 000394

Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress

Auteurs : Sowbiya Muneer ; Chung Ho Ko ; Hao Wei ; Yuze Chen ; Byoung Ryong Jeong

Source :

RBID : PMC:4911148

Abstract

Background

Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night).

Results

Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions.

Conclusions

Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion).


Url:
DOI: 10.1371/journal.pone.0157439
PubMed: 27310261
PubMed Central: 4911148

Links to Exploration step

PMC:4911148

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress</title>
<author>
<name sortKey="Muneer, Sowbiya" sort="Muneer, Sowbiya" uniqKey="Muneer S" first="Sowbiya" last="Muneer">Sowbiya Muneer</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ko, Chung Ho" sort="Ko, Chung Ho" uniqKey="Ko C" first="Chung Ho" last="Ko">Chung Ho Ko</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hao" sort="Wei, Hao" uniqKey="Wei H" first="Hao" last="Wei">Hao Wei</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yuze" sort="Chen, Yuze" uniqKey="Chen Y" first="Yuze" last="Chen">Yuze Chen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Byoung Ryong" sort="Jeong, Byoung Ryong" uniqKey="Jeong B" first="Byoung Ryong" last="Jeong">Byoung Ryong Jeong</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27310261</idno>
<idno type="pmc">4911148</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911148</idno>
<idno type="RBID">PMC:4911148</idno>
<idno type="doi">10.1371/journal.pone.0157439</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000393</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress</title>
<author>
<name sortKey="Muneer, Sowbiya" sort="Muneer, Sowbiya" uniqKey="Muneer S" first="Sowbiya" last="Muneer">Sowbiya Muneer</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ko, Chung Ho" sort="Ko, Chung Ho" uniqKey="Ko C" first="Chung Ho" last="Ko">Chung Ho Ko</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hao" sort="Wei, Hao" uniqKey="Wei H" first="Hao" last="Wei">Hao Wei</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yuze" sort="Chen, Yuze" uniqKey="Chen Y" first="Yuze" last="Chen">Yuze Chen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Byoung Ryong" sort="Jeong, Byoung Ryong" uniqKey="Jeong B" first="Byoung Ryong" last="Jeong">Byoung Ryong Jeong</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="sec001">
<title>Background</title>
<p>Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night).</p>
</sec>
<sec id="sec002">
<title>Results</title>
<p>Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion).</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wahid, A" uniqKey="Wahid A">A Wahid</name>
</author>
<author>
<name sortKey="Gelani, S" uniqKey="Gelani S">S Gelani</name>
</author>
<author>
<name sortKey="Ashraf, M" uniqKey="Ashraf M">M Ashraf</name>
</author>
<author>
<name sortKey="Foolad, Mr" uniqKey="Foolad M">MR Foolad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Zhu, G" uniqKey="Zhu G">G Zhu</name>
</author>
<author>
<name sortKey="Guo, Q" uniqKey="Guo Q">Q Guo</name>
</author>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z Zhu</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Yuan, Z" uniqKey="Yuan Z">Z Yuan</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
<author>
<name sortKey="Lu, M" uniqKey="Lu M">M Lu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howarth C, J" uniqKey="Howarth C J">J Howarth C</name>
</author>
<author>
<name sortKey="Ashraf, M" uniqKey="Ashraf M">M. Ashraf</name>
</author>
<author>
<name sortKey="Harris, P J C" uniqKey="Harris P">P. J. C. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnabas, B" uniqKey="Barnabas B">B Barnabás</name>
</author>
<author>
<name sortKey="Jager, K" uniqKey="Jager K">K Jager</name>
</author>
<author>
<name sortKey="Feher, A" uniqKey="Feher A">A Feher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Lin, H" uniqKey="Lin H">H Lin</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Ren, J" uniqKey="Ren J">J Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Dg" uniqKey="Lee D">DG Lee</name>
</author>
<author>
<name sortKey="Ahsan, N" uniqKey="Ahsan N">N Ahsan</name>
</author>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
<author>
<name sortKey="Kang, Ky" uniqKey="Kang K">KY Kang</name>
</author>
<author>
<name sortKey="Bahk, Jd" uniqKey="Bahk J">JD Bahk</name>
</author>
<author>
<name sortKey="Lee, Ij" uniqKey="Lee I">IJ Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, Ww" uniqKey="Xing W">WW Xing</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Shao, Qs" uniqKey="Shao Q">QS Shao</name>
</author>
<author>
<name sortKey="Shu, S" uniqKey="Shu S">S Shu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivard, Cl" uniqKey="Rivard C">CL Rivard</name>
</author>
<author>
<name sortKey="Louws, Fj" uniqKey="Louws F">FJ Louws</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esta, Mt" uniqKey="Esta M">MT Estañ</name>
</author>
<author>
<name sortKey="Martinez Rodrigues, Mm" uniqKey="Martinez Rodrigues M">MM Martinez-Rodrigues</name>
</author>
<author>
<name sortKey="Perez Alfoce, F" uniqKey="Perez Alfoce F">F Perez-Alfoce</name>
</author>
<author>
<name sortKey="Flowers, Tj" uniqKey="Flowers T">TJ Flowers</name>
</author>
<author>
<name sortKey="Bolarin, Mc" uniqKey="Bolarin M">MC Bolarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siguenza, C" uniqKey="Siguenza C">C Sigüenza</name>
</author>
<author>
<name sortKey="Schochow, M" uniqKey="Schochow M">M Schochow</name>
</author>
<author>
<name sortKey="Turini, T" uniqKey="Turini T">T Turini</name>
</author>
<author>
<name sortKey="Ploeg, A" uniqKey="Ploeg A">A Ploeg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olmstead, Ma" uniqKey="Olmstead M">MA Olmstead</name>
</author>
<author>
<name sortKey="Lang, Ns" uniqKey="Lang N">NS Lang</name>
</author>
<author>
<name sortKey="Ewers, Fw" uniqKey="Ewers F">FW Ewers</name>
</author>
<author>
<name sortKey="Owens, Sa" uniqKey="Owens S">SA Owens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
<author>
<name sortKey="Ding, X" uniqKey="Ding X">X Ding</name>
</author>
<author>
<name sortKey="Shi, K" uniqKey="Shi K">K Shi</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corbesier, L" uniqKey="Corbesier L">L Corbesier</name>
</author>
<author>
<name sortKey="Vincent, C" uniqKey="Vincent C">C Vincent</name>
</author>
<author>
<name sortKey="Jang, S" uniqKey="Jang S">S Jang</name>
</author>
<author>
<name sortKey="Fornara, F" uniqKey="Fornara F">F Fornara</name>
</author>
<author>
<name sortKey="Fan, Q" uniqKey="Fan Q">Q Fan</name>
</author>
<author>
<name sortKey="Searle, I" uniqKey="Searle I">I Searle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cookson, Sj" uniqKey="Cookson S">SJ Cookson</name>
</author>
<author>
<name sortKey="Moreno, Mjc" uniqKey="Moreno M">MJC Moreno</name>
</author>
<author>
<name sortKey="Hevin, C" uniqKey="Hevin C">C Hevin</name>
</author>
<author>
<name sortKey="Mendome, Lzn" uniqKey="Mendome L">LZN Mendome</name>
</author>
<author>
<name sortKey="Delrot, S" uniqKey="Delrot S">S Delrot</name>
</author>
<author>
<name sortKey="Trossat Magnin, C" uniqKey="Trossat Magnin C">C Trossat-Magnin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cookson, Sj" uniqKey="Cookson S">SJ Cookson</name>
</author>
<author>
<name sortKey="Clemente, Moreno Mj" uniqKey="Clemente M">Moreno MJ Clemente</name>
</author>
<author>
<name sortKey="Hevin, C" uniqKey="Hevin C">C Hevin</name>
</author>
<author>
<name sortKey="Nyamba Mendome, Lz" uniqKey="Nyamba Mendome L">LZ Nyamba Mendome</name>
</author>
<author>
<name sortKey="Delrot, S" uniqKey="Delrot S">S Delrot</name>
</author>
<author>
<name sortKey="Magnin, N" uniqKey="Magnin N">N Magnin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vitale, A" uniqKey="Vitale A">A Vitale</name>
</author>
<author>
<name sortKey="Rocco, M" uniqKey="Rocco M">M Rocco</name>
</author>
<author>
<name sortKey="Arena, S" uniqKey="Arena S">S Arena</name>
</author>
<author>
<name sortKey="Giuffrida, F" uniqKey="Giuffrida F">F Giuffrida</name>
</author>
<author>
<name sortKey="Cassaniti, C" uniqKey="Cassaniti C">C Cassaniti</name>
</author>
<author>
<name sortKey="Scaloni, A" uniqKey="Scaloni A">A Scaloni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumari, A" uniqKey="Kumari A">A Kumari</name>
</author>
<author>
<name sortKey="Kumar, J" uniqKey="Kumar J">J Kumar</name>
</author>
<author>
<name sortKey="Chaudhury, A" uniqKey="Chaudhury A">A Chaudhury</name>
</author>
<author>
<name sortKey="Sing, Sp" uniqKey="Sing S">SP Sing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muneer, S" uniqKey="Muneer S">S Muneer</name>
</author>
<author>
<name sortKey="Ko, Ch" uniqKey="Ko C">CH Ko</name>
</author>
<author>
<name sortKey="Soundararajan, P" uniqKey="Soundararajan P">P Soundararajan</name>
</author>
<author>
<name sortKey="Manivannan, A" uniqKey="Manivannan A">A Manivannan</name>
</author>
<author>
<name sortKey="Park, Yg" uniqKey="Park Y">YG Park</name>
</author>
<author>
<name sortKey="Jeong, Br" uniqKey="Jeong B">BR Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M Kim</name>
</author>
<author>
<name sortKey="Canio, W" uniqKey="Canio W">W Canio</name>
</author>
<author>
<name sortKey="Kessler, S" uniqKey="Kessler S">S Kessler</name>
</author>
<author>
<name sortKey="Sinha, N" uniqKey="Sinha N">N Sinha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prassinos, C" uniqKey="Prassinos C">C Prassinos</name>
</author>
<author>
<name sortKey="Ko, Jh" uniqKey="Ko J">JH Ko</name>
</author>
<author>
<name sortKey="Lang, G" uniqKey="Lang G">G Lang</name>
</author>
<author>
<name sortKey="Iezzoni, Af" uniqKey="Iezzoni A">AF Iezzoni</name>
</author>
<author>
<name sortKey="Han, Kh" uniqKey="Han K">KH Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stegemann, S" uniqKey="Stegemann S">S Stegemann</name>
</author>
<author>
<name sortKey="Bock, R" uniqKey="Bock R">R Bock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soumelidou, K" uniqKey="Soumelidou K">K Soumelidou</name>
</author>
<author>
<name sortKey="Battey, Nh" uniqKey="Battey N">NH Battey</name>
</author>
<author>
<name sortKey="John, P" uniqKey="John P">P John</name>
</author>
<author>
<name sortKey="Barnett, Jr" uniqKey="Barnett J">JR Barnett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milien, M" uniqKey="Milien M">M Milien</name>
</author>
<author>
<name sortKey="Renault Spilmont, As" uniqKey="Renault Spilmont A">AS Renault-Spilmont</name>
</author>
<author>
<name sortKey="Cookson, Sj" uniqKey="Cookson S">SJ Cookson</name>
</author>
<author>
<name sortKey="Sarrazin, A" uniqKey="Sarrazin A">A Sarrazin</name>
</author>
<author>
<name sortKey="Verdeil, Jl" uniqKey="Verdeil J">JL Verdeil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuentes, I" uniqKey="Fuentes I">I Fuentes</name>
</author>
<author>
<name sortKey="Stegemann, S" uniqKey="Stegemann S">S Stegemann</name>
</author>
<author>
<name sortKey="Golczyk, H" uniqKey="Golczyk H">H Golczyk</name>
</author>
<author>
<name sortKey="Karcher, D" uniqKey="Karcher D">D Karcher</name>
</author>
<author>
<name sortKey="Bock, R" uniqKey="Bock R">R Bock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kollmann, R" uniqKey="Kollmann R">R Kollmann</name>
</author>
<author>
<name sortKey="Glockmann, C" uniqKey="Glockmann C">C Glockmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Garcia, N" uniqKey="Fernandez Garcia N">N Fernandez-Garcia</name>
</author>
<author>
<name sortKey="Carvajal, M" uniqKey="Carvajal M">M Carvajal</name>
</author>
<author>
<name sortKey="Olmos, E" uniqKey="Olmos E">E Olmos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flaishman, Ma" uniqKey="Flaishman M">MA Flaishman</name>
</author>
<author>
<name sortKey="Loginovsky, K" uniqKey="Loginovsky K">K Loginovsky</name>
</author>
<author>
<name sortKey="Golobowich, S" uniqKey="Golobowich S">S Golobowich</name>
</author>
<author>
<name sortKey="Lev Yadun, S" uniqKey="Lev Yadun S">S Lev-Yadun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H Yin</name>
</author>
<author>
<name sortKey="Yan, B" uniqKey="Yan B">B Yan</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Jia, P" uniqKey="Jia P">P Jia</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muneer, S" uniqKey="Muneer S">S Muneer</name>
</author>
<author>
<name sortKey="Ahmad, J" uniqKey="Ahmad J">J Ahmad</name>
</author>
<author>
<name sortKey="Bashir, H" uniqKey="Bashir H">H Bashir</name>
</author>
<author>
<name sortKey="Qureshi, Mi" uniqKey="Qureshi M">MI Qureshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rocco, M" uniqKey="Rocco M">M Rocco</name>
</author>
<author>
<name sortKey="D Mbrosio, C" uniqKey="D Mbrosio C">C D’Ambrosio</name>
</author>
<author>
<name sortKey="Arena, S" uniqKey="Arena S">S Arena</name>
</author>
<author>
<name sortKey="Faurobert, M" uniqKey="Faurobert M">M Faurobert</name>
</author>
<author>
<name sortKey="Scaloni, A" uniqKey="Scaloni A">A Scaloni</name>
</author>
<author>
<name sortKey="Marra, M" uniqKey="Marra M">M Marra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ercolano, Mr" uniqKey="Ercolano M">MR Ercolano</name>
</author>
<author>
<name sortKey="Sanseverino, W" uniqKey="Sanseverino W">W Sanseverino</name>
</author>
<author>
<name sortKey="Carli, P" uniqKey="Carli P">P Carli</name>
</author>
<author>
<name sortKey="Ferriello, F" uniqKey="Ferriello F">F Ferriello</name>
</author>
<author>
<name sortKey="Frusciante, L" uniqKey="Frusciante L">L Frusciante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yh" uniqKey="Liu Y">YH Liu</name>
</author>
<author>
<name sortKey="Offler, Ce" uniqKey="Offler C">CE Offler</name>
</author>
<author>
<name sortKey="Ruan, Yl" uniqKey="Ruan Y">YL Ruan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romero Puertas, Mc" uniqKey="Romero Puertas M">MC Romero-Puertas</name>
</author>
<author>
<name sortKey="Rodriguez Serrano, M" uniqKey="Rodriguez Serrano M">M Rodríguez-Serrano</name>
</author>
<author>
<name sortKey="Corpas, Fj" uniqKey="Corpas F">FJ Corpas</name>
</author>
<author>
<name sortKey="G Mez, M" uniqKey="G Mez M">M Gómez</name>
</author>
<author>
<name sortKey="Del Rio, La" uniqKey="Del Rio L">LA Del Río</name>
</author>
<author>
<name sortKey="Sandalio, Lm" uniqKey="Sandalio L">LM Sandalio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhindsa, Rh" uniqKey="Dhindsa R">RH Dhindsa</name>
</author>
<author>
<name sortKey="Plumb Dhindsa, P" uniqKey="Plumb Dhindsa P">P Plumb-Dhindsa</name>
</author>
<author>
<name sortKey="Thorpe, Ta" uniqKey="Thorpe T">TA Thorpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakano, M" uniqKey="Nakano M">M Nakano</name>
</author>
<author>
<name sortKey="Nobuta, K" uniqKey="Nobuta K">K Nobuta</name>
</author>
<author>
<name sortKey="Vemaraju, K" uniqKey="Vemaraju K">K Vemaraju</name>
</author>
<author>
<name sortKey="Tej, Ss" uniqKey="Tej S">SS Tej</name>
</author>
<author>
<name sortKey="Skogen, Jw" uniqKey="Skogen J">JW Skogen</name>
</author>
<author>
<name sortKey="Meyers, Bc" uniqKey="Meyers B">BC Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aebi, H" uniqKey="Aebi H">H Aebi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, M" uniqKey="Rodriguez M">M Rodríguez</name>
</author>
<author>
<name sortKey="Canales, E" uniqKey="Canales E">E Canales</name>
</author>
<author>
<name sortKey="Borras Hidalgo, O" uniqKey="Borras Hidalgo O">O Borrás-Hidalgo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hasanuzzaman, Z" uniqKey="Hasanuzzaman Z">Z Hasanuzzaman</name>
</author>
<author>
<name sortKey="Nahar, K" uniqKey="Nahar K">K Nahar</name>
</author>
<author>
<name sortKey="Alam Md, M" uniqKey="Alam Md M">M Alam Md</name>
</author>
<author>
<name sortKey="Roychowdhury, R" uniqKey="Roychowdhury R">R Roychowdhury</name>
</author>
<author>
<name sortKey="Fujita, M" uniqKey="Fujita M">M Fujita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivero, R M" uniqKey="Rivero R">R M Rivero</name>
</author>
<author>
<name sortKey="Ruiz, Jm" uniqKey="Ruiz J">JM Ruiz</name>
</author>
<author>
<name sortKey="Garcia, Pc" uniqKey="Garcia P">PC Garcia</name>
</author>
<author>
<name sortKey="L Pez Lefebre, Lr" uniqKey="L Pez Lefebre L">LR López-Lefebre</name>
</author>
<author>
<name sortKey="Sanchez, E" uniqKey="Sanchez E">E Sánchez</name>
</author>
<author>
<name sortKey="Romero, L" uniqKey="Romero L">L Romero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flanagan, Lb" uniqKey="Flanagan L">LB Flanagan</name>
</author>
<author>
<name sortKey="Johnson, Bg" uniqKey="Johnson B">BG Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apel, K" uniqKey="Apel K">K Apel</name>
</author>
<author>
<name sortKey="Hirt, H" uniqKey="Hirt H">H Hirt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N Suzuki</name>
</author>
<author>
<name sortKey="Koussevitzky, S" uniqKey="Koussevitzky S">S Koussevitzky</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R Mittler</name>
</author>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muneer, S" uniqKey="Muneer S">S Muneer</name>
</author>
<author>
<name sortKey="Kim, Th" uniqKey="Kim T">TH Kim</name>
</author>
<author>
<name sortKey="Qureshi, Mi" uniqKey="Qureshi M">MI Qureshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernaandez Garciaa, N" uniqKey="Fernaandez Garciaa N">N Fernaândez-Garciâa</name>
</author>
<author>
<name sortKey="Carvajal, Micaela" uniqKey="Carvajal M">Micaela Carvajal</name>
</author>
<author>
<name sortKey="Olmos, E" uniqKey="Olmos E">E Olmos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irrisarri, P" uniqKey="Irrisarri P">p Irrisarri</name>
</author>
<author>
<name sortKey="Binczycki, P" uniqKey="Binczycki P">P Binczycki</name>
</author>
<author>
<name sortKey="Errea, P" uniqKey="Errea P">P Errea</name>
</author>
<author>
<name sortKey="Martens, Hj" uniqKey="Martens H">HJ Martens</name>
</author>
<author>
<name sortKey="Pina, A" uniqKey="Pina A">A Pina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaves, Mm" uniqKey="Chaves M">MM Chaves</name>
</author>
<author>
<name sortKey="Maroco, Jp" uniqKey="Maroco J">JP Maroco</name>
</author>
<author>
<name sortKey="Pereira, Js" uniqKey="Pereira J">JS Pereira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, X" uniqKey="Bai X">X Bai</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Ahmad, P" uniqKey="Ahmad P">P Ahmad</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molassiotis, An" uniqKey="Molassiotis A">AN Molassiotis</name>
</author>
<author>
<name sortKey="Diamantidis, Gc" uniqKey="Diamantidis G">GC Diamantidis</name>
</author>
<author>
<name sortKey="Therios, In" uniqKey="Therios I">IN Therios</name>
</author>
<author>
<name sortKey="Tsirakoglou, V" uniqKey="Tsirakoglou V">V Tsirakoglou</name>
</author>
<author>
<name sortKey="Dimassi, Kn" uniqKey="Dimassi K">KN Dimassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, Bs" uniqKey="Zheng B">BS Zheng</name>
</author>
<author>
<name sortKey="Chu, Hl" uniqKey="Chu H">HL Chu</name>
</author>
<author>
<name sortKey="Jin, Sh" uniqKey="Jin S">SH Jin</name>
</author>
<author>
<name sortKey="Huang, Yj" uniqKey="Huang Y">YJ Huang</name>
</author>
<author>
<name sortKey="Wang, Zj" uniqKey="Wang Z">ZJ Wang</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, K" uniqKey="Yuan K">K Yuan</name>
</author>
<author>
<name sortKey="Ding, X" uniqKey="Ding X">X Ding</name>
</author>
<author>
<name sortKey="Yang, Lf" uniqKey="Yang L">LF Yang</name>
</author>
<author>
<name sortKey="Wang, Zh" uniqKey="Wang Z">ZH Wang</name>
</author>
<author>
<name sortKey="Lin, Wf" uniqKey="Lin W">WF Lin</name>
</author>
<author>
<name sortKey="Cao, Jh" uniqKey="Cao J">JH Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Zheng, Hq" uniqKey="Zheng H">HQ Zheng</name>
</author>
<author>
<name sortKey="Sha, W" uniqKey="Sha W">W Sha</name>
</author>
<author>
<name sortKey="Zeng, R" uniqKey="Zeng R">R Zeng</name>
</author>
<author>
<name sortKey="Xia, Qc" uniqKey="Xia Q">QC Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X Wen</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Wei, Z" uniqKey="Wei Z">Z Wei</name>
</author>
<author>
<name sortKey="Qiao, Z" uniqKey="Qiao Z">Z Qiao</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
<author>
<name sortKey="Cheng, L" uniqKey="Cheng L">L Cheng</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majoul, T" uniqKey="Majoul T">T Majoul</name>
</author>
<author>
<name sortKey="Bancel, E" uniqKey="Bancel E">E Bancel</name>
</author>
<author>
<name sortKey="Triboi, E" uniqKey="Triboi E">E Triboi</name>
</author>
<author>
<name sortKey="Hamida, Jb" uniqKey="Hamida J">JB Hamida</name>
</author>
<author>
<name sortKey="Branlard, G" uniqKey="Branlard G">G Branlard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neilson, Ka" uniqKey="Neilson K">KA Neilson</name>
</author>
<author>
<name sortKey="Gammulla, Cg" uniqKey="Gammulla C">CG Gammulla</name>
</author>
<author>
<name sortKey="Mirzaei, M" uniqKey="Mirzaei M">M Mirzaei</name>
</author>
<author>
<name sortKey="Imin, N" uniqKey="Imin N">N Imin</name>
</author>
<author>
<name sortKey="Haynes, Pa" uniqKey="Haynes P">PA Haynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herald, Vl" uniqKey="Herald V">VL Herald</name>
</author>
<author>
<name sortKey="Heazlewood, Jl" uniqKey="Heazlewood J">JL Heazlewood</name>
</author>
<author>
<name sortKey="Day, Da" uniqKey="Day D">DA Day</name>
</author>
<author>
<name sortKey="Millar, Ah" uniqKey="Millar A">AH Millar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, F" uniqKey="Zhao F">F Zhao</name>
</author>
<author>
<name sortKey="Song, Cp" uniqKey="Song C">CP Song</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shabala, S" uniqKey="Shabala S">S Shabala</name>
</author>
<author>
<name sortKey="Cuin, Ta" uniqKey="Cuin T">TA Cuin</name>
</author>
<author>
<name sortKey="Pang, J" uniqKey="Pang J">J Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beltran Pe A, E" uniqKey="Beltran Pe A E">E Beltrán-Peňa</name>
</author>
<author>
<name sortKey="Aguilar, R" uniqKey="Aguilar R">R Aguilar</name>
</author>
<author>
<name sortKey="Ortiz Lo Pez, A" uniqKey="Ortiz Lo Pez A">A Ortiz-Lo´pez</name>
</author>
<author>
<name sortKey="Dinkova, Td" uniqKey="Dinkova T">TD Dinkova</name>
</author>
<author>
<name sortKey="De Jime Nez, Es" uniqKey="De Jime Nez E">ES de Jime´nez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Ky" uniqKey="Kim K">KY Kim</name>
</author>
<author>
<name sortKey="Park, Sw" uniqKey="Park S">SW Park</name>
</author>
<author>
<name sortKey="Chug, Ys" uniqKey="Chug Y">YS Chug</name>
</author>
<author>
<name sortKey="Chung, Ch" uniqKey="Chung C">CH Chung</name>
</author>
<author>
<name sortKey="Kim, Ji" uniqKey="Kim J">JI Kim</name>
</author>
<author>
<name sortKey="Lee, Jh" uniqKey="Lee J">JH Lee</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27310261</article-id>
<article-id pub-id-type="pmc">4911148</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0157439</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-49254</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Agriculture</subject>
<subj-group>
<subject>Crop Science</subject>
<subj-group>
<subject>Crops</subject>
<subj-group>
<subject>Fruits</subject>
<subj-group>
<subject>Tomatoes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Plants</subject>
<subj-group>
<subject>Fruits</subject>
<subj-group>
<subject>Tomatoes</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and life sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>DNA-binding proteins</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Physiology</subject>
<subj-group>
<subject>Plant Defenses</subject>
<subj-group>
<subject>Plant Resistance to Abiotic Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Pathology</subject>
<subj-group>
<subject>Plant Resistance to Abiotic Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Ecology</subject>
<subj-group>
<subject>Plant Ecology</subject>
<subj-group>
<subject>Plant-Environment Interactions</subject>
<subj-group>
<subject>Plant Resistance to Abiotic Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Ecology and Environmental Sciences</subject>
<subj-group>
<subject>Ecology</subject>
<subj-group>
<subject>Plant Ecology</subject>
<subj-group>
<subject>Plant-Environment Interactions</subject>
<subj-group>
<subject>Plant Resistance to Abiotic Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Ecology</subject>
<subj-group>
<subject>Plant-Environment Interactions</subject>
<subj-group>
<subject>Plant Resistance to Abiotic Stress</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
<subj-group>
<subject>Photosynthesis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Biochemistry</subject>
<subj-group>
<subject>Photosynthesis</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Plant Science</subject>
<subj-group>
<subject>Plant Physiology</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteomics</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Chaperone Proteins</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress</article-title>
<alt-title alt-title-type="running-head">New Insights from Proteome of Tomato Graft Unions Exposed to Temperature Stress</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Muneer</surname>
<given-names>Sowbiya</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ko</surname>
<given-names>Chung Ho</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="currentaff001">
<sup>¤a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wei</surname>
<given-names>Hao</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Yuze</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="currentaff002">
<sup>¤b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jeong</surname>
<given-names>Byoung Ryong</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, Korea</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Dai</surname>
<given-names>Shaojun</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Northeast Forestry University, CHINA</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: SM BRJ. Performed the experiments: SM CHK. Analyzed the data: SM. Contributed reagents/materials/analysis tools: BRJ. Wrote the paper: SM BRJ. Helped in physiological data collection: HW YC.</p>
</fn>
<fn fn-type="current-aff" id="currentaff001">
<label>¤a</label>
<p>Current address: Korea National Arboretum, Useful Plant Resource Centre, 21–4, Dudam-gil, Yongmun-myeon, yangpyeong-gun, Gyeonggi-do, 12519, Korea</p>
</fn>
<fn fn-type="current-aff" id="currentaff002">
<label>¤b</label>
<p>Current address: Solar Energy Base, Pudong Twon, Jimo, Qingdao City, Shandong Province, 266234, China</p>
</fn>
<corresp id="cor001">* E-mail:
<email>brjeong@gnu.ac.kr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>11</volume>
<issue>6</issue>
<elocation-id>e0157439</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>31</day>
<month>5</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 Muneer et al</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Muneer et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pone.0157439.pdf"></self-uri>
<abstract>
<sec id="sec001">
<title>Background</title>
<p>Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night).</p>
</sec>
<sec id="sec002">
<title>Results</title>
<p>Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion).</p>
</sec>
</abstract>
<funding-group>
<award-group id="award001">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100003668</institution-id>
<institution>Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries</institution>
</institution-wrap>
</funding-source>
<award-id>Project No. 312034-04</award-id>
<principal-award-recipient>
<name>
<surname>Jeong</surname>
<given-names>Byoung Ryong</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture Forestry and Fisheries (Project No. 312034-04). SM, CHK, HW and YC were supported by a scholarship from BK21 program, Ministry of Education, Korea.</funding-statement>
</funding-group>
<counts>
<fig-count count="9"></fig-count>
<table-count count="2"></table-count>
<page-count count="23"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All data is presented in the manuscript and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All data is presented in the manuscript and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec004">
<title>Introduction</title>
<p>Temperature is a critical factor that influences plant growth and development; both yield and quality are reduced when the temperature is above or below optimal levels [
<xref rid="pone.0157439.ref001" ref-type="bibr">1</xref>
<xref rid="pone.0157439.ref003" ref-type="bibr">3</xref>
]. High-diverse temperature is increasingly prevalent because of global warming, and the harmful effects associated with high temperatures are reduction in the developmental phases of plant life cycle, and the processes like transpiration, photosynthesis, and respiration. The high temperature stress also affect cellular, physiological, biochemical and molecular response including protein denaturation and aggregation, cellular homeostasis disruption and fluidity increases in lipid membranes. An additional damaging effect of high temperatures is the inactivation of enzymes in chloroplasts, and mitochondria [
<xref rid="pone.0157439.ref004" ref-type="bibr">4</xref>
<xref rid="pone.0157439.ref006" ref-type="bibr">6</xref>
]. These injuries eventually lead to the production of harmful reactive oxygen species (ROS) [
<xref rid="pone.0157439.ref007" ref-type="bibr">7</xref>
]. To defend against cellular metabolism stress that is triggered by high temperature, plants respond by reprograming their transcriptome, proteome, and metabolome, which alters the levels of several transcripts, proteins, metabolites, and lipids. These changes cause the plant to balance its metabolic processes under high temperature. As, it is well known that temperature plays a central role for plant growth and development and this subject is a cross talk which has attracted a great response from agriculturalists and horticulturists for scrutinizing an optimal temperature for plant growth. The horticulturists widely use grafting technique for plant propagation and breeding to obtain better quality and other hybrid varities of fruits and vegetables however, greenhouse conditions always fluctuate with temperatures. The fluctuations in temperatures sometimes lead to high temperature which results in formation of ROS as described above. The temperature is more sensitive to grafted plants especially at initial stage at the time of grafting due to wounds. These reasons attracted the current study to investigate graft junctions to different temperatures and find out possible mechanisms to stress tolerance for grafted plants. Alternatively, a better approach for defense against biotic or abiotic stress during grafting is the eco-friendly technique of eliminating or reducing stresses such as salt stress [
<xref rid="pone.0157439.ref008" ref-type="bibr">8</xref>
] and soil-borne pathogens [
<xref rid="pone.0157439.ref009" ref-type="bibr">9</xref>
]. Previous studies have largely focused on physiological responses and protein synthesis or degradation in response to diverse temperature; however, proteomic analysis of graft unions will reveal novel consequences of diverse temperature (vascular connections) that have not been previously investigated.</p>
<p>Grafting is an asexual plant propagation technique that has been widely used in agricultural practice for thousands of years to aid crop cultivation. In general, woody plants are grafted to facilitate dwarfing, propagation, and firmness, while herbaceous plants are grafted to increase productivity and control the damage caused by biotic or abiotic stresses. Among the herbaceous plants, the highest consumed horticultural crops, such as tomatoes, cucumbers, sweet cherries, and melons, are typically grafted [
<xref rid="pone.0157439.ref010" ref-type="bibr">10</xref>
<xref rid="pone.0157439.ref013" ref-type="bibr">13</xref>
]. Grafting has been extensively used for decades in signaling pathways research and has led to the discovery of numerous plant processes, including the discovery of the flowering protein FLOWERING LOCUS T [
<xref rid="pone.0157439.ref014" ref-type="bibr">14</xref>
], the transcriptional changes related to graft interface-specific genes [
<xref rid="pone.0157439.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0157439.ref018" ref-type="bibr">18</xref>
], and most recently, the rootstock/scion proteins involved in various plant processes such as the transport activity of vascular connections [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. Rootstock and scion grafts also improve biotic or abiotic stress tolerance [
<xref rid="pone.0157439.ref008" ref-type="bibr">8</xref>
,
<xref rid="pone.0157439.ref020" ref-type="bibr">20</xref>
<xref rid="pone.0157439.ref021" ref-type="bibr">21</xref>
].</p>
<p>Graft union development is an intricate process during which histological and physiological alterations occur, such as the regeneration of organs and even the exchange of genetic materials between rootstocks and scions [
<xref rid="pone.0157439.ref022" ref-type="bibr">22</xref>
]. Numerous imaging techniques and common histological methods have been predominately used for studying the physiological alterations that occur in rootstocks and scions during graft union development [
<xref rid="pone.0157439.ref012" ref-type="bibr">12</xref>
,
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
,
<xref rid="pone.0157439.ref023" ref-type="bibr">23</xref>
<xref rid="pone.0157439.ref025" ref-type="bibr">25</xref>
]. Numerous studies have characterized the morphological and physiological variations between graft unions [
<xref rid="pone.0157439.ref026" ref-type="bibr">26</xref>
<xref rid="pone.0157439.ref028" ref-type="bibr">28</xref>
], and a few recent studies investigated molecular modifications associated with graft unions [
<xref rid="pone.0157439.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0157439.ref017" ref-type="bibr">17</xref>
,
<xref rid="pone.0157439.ref029" ref-type="bibr">29</xref>
]. However, little is known about proteins or genes that are present in graft unions (specifically between rootstocks and scions) with the exception of our recent findings in watermelons grafted on bottle-gourds [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. To investigate the proteins in graft unions, proteomics is an ideal tool that may reveal novel insight into the plant processes promoting rootstock/scions vascular connections, because proteomics provides a broad overview of baseline protein signals. Proteomics can also be used to investigate signal transduction pathways following photophosphorylation during plant photosynthesis [
<xref rid="pone.0157439.ref030" ref-type="bibr">30</xref>
].</p>
<p>The tomato (
<italic>Solanum lycopersicum</italic>
L.) is one of the most important crop species worldwide due to its high economic significance and its many promising genetic and agronomic features. The tomato has become a model plant for molecular studies that are aiming to improve fruit quality and resistance towards abiotic stresses [
<xref rid="pone.0157439.ref031" ref-type="bibr">31</xref>
<xref rid="pone.0157439.ref032" ref-type="bibr">32</xref>
]. However, many biotic and abiotic stresses affect the tomato, which cause severe annual yield losses worldwide. The present study was studied to reveal the mechanisms to temperature stress tolerance in graft unions of tomato cultivars. To follow our objective physiological and proteomic analysis were used and measurements included growth parameters such as biomass, hardness of graft unions, vascular transport activity, physiological measurements such H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
localizations, and molecular aspects such as western blots of stress-responsive proteins and proteomic analysis using 2-DE gel electrophoresis followed by mass spectrometry.</p>
</sec>
<sec sec-type="materials|methods" id="sec005">
<title>Materials and Methods</title>
<sec id="sec006">
<title>Plant materials, grafting procedure, and temperature treatments</title>
<p>Three genotypes that are widely used in Asian countries, particularly in Korea, were selected for this study: ‘Super Sunload’ and ‘Super Doterang’ as scions and ‘B-blocking’ as a rootstock. The two different genotypes for Scion ‘Super Sunload’ and ‘Super Doterang’ were used due to variations in their morphological changes under different temperatures as described to us by local growers of Korea. The other reason for selecting these cultivars were because of their popularity in Korea for fruit consumption. Whereas, ‘B-blocking’ were used as a rootstock due to strong firmness of root. The seeds obtained from Jeil Seed Company (Jeungpyeong-gun, Korea) were disinfected using 1% sodium hypochlorite (NaClO) followed by ten washing with 100 ml distilled water were germinated on square plug tray containing commercial Tosilee medium (Tosilee medium, Shinan Precision Co., Jinju, Korea) for four weeks in a greenhouse of Gyeongsang National University, Korea (Department of Horticulture). After germination and appearance of true leaves on all three tomato genotypes, plants were selected for grafting processes.</p>
<p>The grafting process was implemented by sharp dissecting blade four weeks post-germination as described in detail in our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
] (
<xref ref-type="supplementary-material" rid="pone.0157439.s001">S1 Fig</xref>
). The grafted plants were maintained at a relative humidity of 98±2% and a 16 h photoperiod with three different temperatures viz., 23/23°C (day/night), 25/18°C (day/night) (indicates standard-normal temperature) and 30/15°C (day/night) (indicates high-low temperature). The selection of these three particular temperatures were due to several reasons, 23/23°C and 25/18°C are standard temperatures used for plant growth and developments as reported in several studies and also mean of the both temperatures are slightly different from each other. Additionally, the vapour pressure deficit (VPD) was another reason to select these two temperatures. Whereas, 30/15°C was randomly selected as 30°C is considered very high for healing process during grafting and 15°C is very low for tomato plants. After two weeks the grafted plants grown under diverse temperatures, the firm rootstock and scions (vascular portions) were excised smoothly 2–3 cm (possibility of optimal genetic material at this point) around the grafted junction and immediately frozen in liquid N
<sub>2</sub>
and stored at a deep-freezer (-80°C) for further analysis. For physiological measurements, the grafted plants were continuously observed from day 2
<sup>nd</sup>
of grafting up to 2 weeks. The details about time point selection for physiological and proteomic analysis is given in detail in previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
<sec id="sec007">
<title>Measurement of biomass and hardness of vascular connections</title>
<p>The biomass of rootstock and scions (around graft union, 2–3 cm) were constantly weighed on weighing balance from 2 days to 2 weeks as described in detail in our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]</p>
</sec>
<sec id="sec008">
<title>Vascular staining (absorbable flower dye blue staining)</title>
<p>Vascular staining method was followed as described in our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. Samples were fixed in 0.1% absorbable flower dye blue for 20–30 min and were rinsed with water. The rootstock and scion samples were then cut into transverse and longitudinal section with the help of sharp surgical razor/blade and were observed under light microscope (Nikon Eclipse Ci-S/Ci-L, Japan)</p>
</sec>
<sec id="sec009">
<title>Histochemical localization of H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
</title>
<p>H
<sub>2</sub>
O
<sub>2</sub>
localization were analyzed by the method described by Liu et al. [
<xref rid="pone.0157439.ref033" ref-type="bibr">33</xref>
]. Briefly free-hand sections from rootstock and scions (2–3 cm graft junctions) were prepared transversely with a razor blade. The sections were soaked in 1% solution of 3,3’-diaminobenzidine (DAB) (Sigma-Aldrich) in Tris–HCl buffer (pH 6.5), vacuum-infiltrated for 5 min and then incubated at room temperature for 2 h in dark conditions. The sections were illuminated until the appearance of brown spots characteristic of the reaction of DAB (3’3-diaminobenzidine) with H
<sub>2</sub>
O
<sub>2</sub>
. The sections of rootstock and scions were bleached by immersing in boiling ethanol to visualize the brown spots and were photographed with a digital camera (Nikon Eclipse Ci-S/Ci-L, Japan) at a default resolution of 300 dpi.</p>
<p>
<italic>In situ</italic>
localization of O
<sub>2</sub>
<sup>-1</sup>
was detected by Romero-Puertas et al. [
<xref rid="pone.0157439.ref034" ref-type="bibr">34</xref>
], the transverse sections of rootstock and scions (2–3 cm graft junctions) were immersed in a 0.1% solution of nitro blue tetrazolium (NBT) (Sigma-Aldrich) in K-phosphate buffer (pH 6.4), containing 10 mM Na-azide, and were vacuum infiltrated for 5 min and illuminated until appearance of dark spots, characteristic of blue formazan precipitate. After bleaching in boiling ethanol, the rootstock/scions sections were photographed as described above for H
<sub>2</sub>
O
<sub>2</sub>
localization.</p>
</sec>
<sec id="sec010">
<title>Antioxidant enzyme activities</title>
<p>For antioxidant enzyme activities about 0.5 g of rootstock/scion (2–3 cm graft junction) were homogenized in liquid nitrogen in precooled pestle and mortar. The grounded powder were extracted in 0.5 M extraction buffer (pH 7.5) by centrifugation at 13, 0000 rpm (Eppendorf centrifuge 5430R) for 20 min at 4°C. SOD activity in the supernatant was assayed for its ability to inhibit the photochemical reduction of nitro blue tetrazolium (NBT) by reading the absorbance at 560 nm as described by Dhindsa et al., [
<xref rid="pone.0157439.ref035" ref-type="bibr">35</xref>
]. One unit of enzyme activity was defined as the amount of enzyme required to inhibit 50% of the NBT photoreduction in comparison with tubes lacking the plant extract. Ascorbate peroxidase (APX) activity was estimated by measuring the absorbance of a supernatant at 290 nm (extinction coefficient of absorbance 2.8 mM
<sup>-1</sup>
cm
<sup>-1</sup>
for ascorbate) according to Nokano et al., [
<xref rid="pone.0157439.ref036" ref-type="bibr">36</xref>
]. One unit of enzyme was expressed as the amount necessary to decompose 1 μmole of ascorbate per min. Catalase (CAT) activity was estimated by measuring the absorbance in supernatant at 240 nm as a result of H
<sub>2</sub>
O
<sub>2</sub>
degradation (extinction coefficient of 36 mM
<sup>-1</sup>
cm
<sup>-1</sup>
) as described by Aebi et al., [
<xref rid="pone.0157439.ref037" ref-type="bibr">37</xref>
]. One unit of enzyme determines the amount necessary to decompose 1 μm of H
<sub>2</sub>
O
<sub>2</sub>
per min.</p>
</sec>
<sec id="sec011">
<title>Immunoblot analysis (Western blot)</title>
<p>For western blotting, the 2–3 cm graft junctions (rootstock/scions) were homogenized in extraction buffer containing 40 mM (w/v) Tris-HCl, pH 7.5, 2 mM (w/v) EDTA, 0.07% (w/v) β-mercaptoethanol, 2% (w/v) PVP and 1% (v/v) Triton X-100 as described in our previous studies [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. The extract was centrifuged at 13,000 rpm (Eppendorf 5430R) for 10 min at 4°C. The supernatant was mixed with 6-X protein-dye containing 240 mM Tris-HCl (pH 6.8), 40% glycerol, 8% SDS, 0.04% bromophenol blue and 5% beta-mercaptoethanol. The samples containing 40 μg proteins were loaded on 12.5% polyacrylamide gel (Bio-Rad, Hercules, CA, USA). The protein concentration was determined by Bradford method using BSA (bovine serum albumin) as a standard curve. After electrophoresis, the gels were transferred to 0.45 μM nitrocellulose membrane (Sigma-Aldrich). After protein transfer, the blots were blocked with 5% nonfat dry skimmed milk or bovine serum albumin (Sigma-Aldrich). After washing with TBS, the blots were incubated with monoclonal primary antibodies 1:1000 dilution of anti-SOD (Cell Signaling #2770) for superoxide dismutase, 1:1000 dilution of anti-CAT (Cell signaling #12980) for catalase, and 1:1000 dilution of anti-APX/L (Cell signaling #AS08 368) for ascorbate peroxidase for 1:30 h. The blots were treated with 1:1000 dilution HRP-linked anti-rabbit 1gG (Cell Signaling #7074) for 1 h as a secondary antibody. Chemoluminance reactions were performed with super signal west pico chemiluminescent substrates (Cell Signaling SignalFire
<sup>TM</sup>
ECL Reagent #6883) on X-ray films.</p>
</sec>
<sec id="sec012">
<title>Protein sample preparation for 2-DE</title>
<p>About 2–3 cm graft junction (rootstock/scion) from grafted tomato plants under diverse temperature were harvested and homogenized in liquid nitrogen in precooled pestle and mortar. The proteins were extracted in commercially available protein extraction buffer kit (Bio-Rad, Hercules, CA, USA) according to manufacturer’s instructions described in detail in our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
<sec id="sec013">
<title>Two-dimensional gel electrophoresis (2-DE) and silver staining</title>
<p>For isoelectric focusing (IEF), the Multiphor
<sup>TM</sup>
II system (GE Healthcare) and IPG strip (pH 4–7, nonlinear, 11 cm, GE Healthcare) were used according to manufacturer’s instructions. The procedure for 2-DE and silver staining is described in detail in previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
<sec id="sec014">
<title>Image and data analysis</title>
<p>In each treatment, three independent biological replicates were taken. Gels were taken under constant settings by a photo imager. The protein spots from all 2-DE gels were matched to have the same number across all gels. A master gel image containing matched spots across all gels was auto-generated. The missing spots from the 2-DE gels were resolved using an extensive analysis ‘landmark’ tool and respective spot volumes were normalized according to the total gel image density as recommended by the Progenesis SameSpots TotalLab (New Castle, UK). The gels from all the treatments were compared by creating three different replicate groups, and each replicate group contained the gel images corresponding to a specific treatment. In each group, an average quantity was determined for each spot, and pairwise quantitative and statistical analysis sets were generated by comparing the volume of a given spot across all treatments.</p>
</sec>
<sec id="sec015">
<title>Protein in gel digestion</title>
<p>The differential protein spots were excised manually from the 2D gels with the help of a clean razor blade and were chopped into small pieces. The description for in-gel digestion is given in detail in our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
<sec id="sec016">
<title>Protein identification using MALDI-TOF MS and MS/MS analysis</title>
<p>The digested peptide solution was spotted onto the MALDI-TOF MS target plate with a pipette. MALDI-MS analysis was performed with a Voyager DE-STR mass spectrometer (Applied Biosystems, Framingham, MA, USA). For full description please refer our previous reports [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
<sec id="sec017">
<title>Protein functional classifications</title>
<p>The identified proteins were classified into different categories of biological processes in which they are involved according to gene ontology (
<ext-link ext-link-type="uri" xlink:href="http://www.geneontology.org/">http://www.geneontology.org/</ext-link>
).</p>
</sec>
<sec id="sec018">
<title>Statistical analysis</title>
<p>For physiological parameters, a complete randomized design was utilized with four replicates. The Tukey’s studentized range test was employed to compare the means of separate replicates. Unless stated otherwise, the conclusions are predicted on differences between the means, with a significance level set at
<italic>P</italic>
< 0.05. For proteomic data, the coefficient of variation was computed for the matched spot quantities in each set of experiments with the replicate groups. All results were expressed as the Mean±SE. Differences between protein spots in all treatments were determined using two-way analysis of variance followed by a Student’s t-test with
<italic>p</italic>
< 0.05 as the limit of significance.</p>
</sec>
</sec>
<sec id="sec019">
<title>Results and Discussion</title>
<sec id="sec020">
<title>Physiological indices and vascular transport activity in rootstock and scions</title>
<p>Physiological responses such as the fresh/dry biomass and hardness of ‘Super Sunload’ and ‘Super Doterang’ scions grafted onto ‘B-blocking’ tomato rootstock and grown under diverse temperature (normal-standard and high-low) were evaluated to select the optimal time point for molecular and proteomic analyses. The fresh and dry biomass of the rootstock and scions of all tomato genotypes did not show any changes 48 h post grafting when grown under diverse temperature; however, a significant change was observed after 48 h (
<xref ref-type="fig" rid="pone.0157439.g001">Fig 1</xref>
) as the biomass of the rootstock and scions of all the tomato genotypes markedly decreased under high-low temperature (30/15°C) compared with normal conditions (23/23°C and 25/18°C). Similarly, the evaluation of the graft union pressure revealed a maximum hardness of the graft unions between ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ tomato rootstock (
<xref ref-type="fig" rid="pone.0157439.g001">Fig 1</xref>
) two weeks after grafting under normal temperature conditions (23/23°C and 25/18°C). The high temperature causes loss of cell water content which ultimately lead to reduction in growth [
<xref rid="pone.0157439.ref038" ref-type="bibr">38</xref>
<xref rid="pone.0157439.ref039" ref-type="bibr">39</xref>
]. The other symptoms of temperature stress on plants are chlorosis and necrosis as also observed in our grafted plants (
<xref ref-type="supplementary-material" rid="pone.0157439.s001">S1 Fig</xref>
). Previous studies on non-grafted plants showed that standard day/night temperature regimes of either 23/23°C or 25/18°C, produced the maximum amount of plant biomass [
<xref rid="pone.0157439.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0157439.ref040" ref-type="bibr">40</xref>
<xref rid="pone.0157439.ref041" ref-type="bibr">41</xref>
]. Our results reinforce the hypothesis that standard temperature regimes are ideal for plant biomass, even in the case of grafted plants.</p>
<fig id="pone.0157439.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g001</object-id>
<label>Fig 1</label>
<caption>
<p>
<bold>(A-D) Biomass of rootstock/scions and (E-F) hardness of graft unions in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18</bold>
°
<bold>C) and high-low (30/15</bold>
°
<bold>C).</bold>
Line diagrams among different treatments represent Mean±SE of four biological replicates (n = 4).</p>
</caption>
<graphic xlink:href="pone.0157439.g001"></graphic>
</fig>
<p>In vascular transport we observed the passage of blue coloration from the rootstock to both scion genotypes ‘Super Sunload’ and ‘Super Doterang’, with particularly good passage observed using standard temperature regimes (23/23°C or 25/18°C) (
<xref ref-type="fig" rid="pone.0157439.g002">Fig 2</xref>
,
<xref ref-type="supplementary-material" rid="pone.0157439.s002">S2 Fig</xref>
). The transport of blue color was also observed under high-low temperature (30/15°C), but slight variations were observed in the scions of the tomato genotypes. Vascular transport activity was previously detected in many grafted plants, including sweet cherry [
<xref rid="pone.0157439.ref012" ref-type="bibr">12</xref>
], Arabidopsis [
<xref rid="pone.0157439.ref029" ref-type="bibr">29</xref>
], and watermelons [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. Stained regions indicate appropriate and effective connections to vessels and the functional transport of nutrients and other important minerals between the rootstock and scion. The effect of temperature on vascular transport activity in grafted plants has not been previously demonstrated, and our results suggest that standard temperature may adequately facilitate transport of minerals and ions from rootstocks to scions.</p>
<fig id="pone.0157439.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Horizontal sections of graft interfaces for vascular transport activity in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>The rootstocks were submerged in absorbable flower dye blue for 10–20 min and rootstock as well as scions were cut into transverse sections with razor blade. The cross sections were observed under light microscope.</p>
</caption>
<graphic xlink:href="pone.0157439.g002"></graphic>
</fig>
</sec>
<sec id="sec021">
<title>DAB and NBT mediated localization of H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
in rootstock and scions</title>
<p>The physiological results show that grafted tomato plants exhibited comprehensive fluctuations under high-low temperature (30/15°C) compared to normal-standard temperature (23/23 and 25/18°C). In previous experiments with non-grafted plants under high temperatures [
<xref rid="pone.0157439.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0157439.ref006" ref-type="bibr">6</xref>
], plants showed similar trends under instable temperature, and the first and foremost effect was the production of reactive oxygen species (ROS). We investigated ROS formation in rootstock and scions using DAB staining for H
<sub>2</sub>
O
<sub>2</sub>
localization and NBT staining for O
<sub>2</sub>
<sup>-1</sup>
localization (Figs
<xref ref-type="fig" rid="pone.0157439.g003">3</xref>
and
<xref ref-type="fig" rid="pone.0157439.g004">4</xref>
, respectively). We observed a significant reddish-brown coloration near epidermal and cortical regions of rootstock and scions grown under high-low temperature (30/15°C) (
<xref ref-type="fig" rid="pone.0157439.g003">Fig 3</xref>
). Less to no coloration was observed under normal-standard temperatures (23/23 or 25/15°C). A bluish color in the rootstock and scions that were grown under high-low temperature (30/15°C) showed that O
<sub>2</sub>
<sup>-1</sup>
was localized near epidermal and cortical regions (
<xref ref-type="fig" rid="pone.0157439.g004">Fig 4</xref>
), whereas no blue coloration was observed in the rootstock and scions that were grown under normal-standard temperatures (23/23 and 25/15°C).</p>
<fig id="pone.0157439.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g003</object-id>
<label>Fig 3</label>
<caption>
<title>DAB-mediated localizations of H
<sub>2</sub>
O
<sub>2</sub>
in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>The rootstocks and scions were cut into transverse sections with razor blade, stained with DAB and observed under light microscope.</p>
</caption>
<graphic xlink:href="pone.0157439.g003"></graphic>
</fig>
<fig id="pone.0157439.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g004</object-id>
<label>Fig 4</label>
<caption>
<title>NBT-mediated localizations of O
<sub>2</sub>
<sup>-1</sup>
in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>The rootstocks and scions were cut into transverse sections with razor blade, stained with NBT and observed under light microscope.</p>
</caption>
<graphic xlink:href="pone.0157439.g004"></graphic>
</fig>
<p>Reactive oxygen species (ROS) accumulate when plants are exposed to abiotic or biotic stress, such as pathogen attack, high light, drought, heat, abnormal temperatures, or metal toxicities [
<xref rid="pone.0157439.ref042" ref-type="bibr">42</xref>
<xref rid="pone.0157439.ref044" ref-type="bibr">44</xref>
] in non-grafted plants. Oxidative stress in graft interfaces has been also reported under several abiotic stresses [
<xref rid="pone.0157439.ref045" ref-type="bibr">45</xref>
<xref rid="pone.0157439.ref046" ref-type="bibr">46</xref>
]. ROS involving H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
are vital signal molecules [
<xref rid="pone.0157439.ref047" ref-type="bibr">47</xref>
]. Under normal circumstances, ROS are sustained in homeostasis with an appropriate accumulation of antioxidant enzymes and other molecules located in various cell compartments of plants; however, when plants are under stress conditions, ROS are induced to levels that cause oxidative damage, as shown in previous studies [
<xref rid="pone.0157439.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0157439.ref048" ref-type="bibr">48</xref>
]. In this study, ROS were produced mostly in epidermal and cortical cells of the rootstock and scions of tomato plants under high-low temperature (30/15°C), whereas a sufficient equilibrium was maintained in normal-standard temperature conditions (23/23 or 25/15°C).</p>
</sec>
<sec id="sec022">
<title>Antioxidant enzyme activities in rootstock and scions and their western blot expression</title>
<p>The H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
<sup>-1</sup>
localization experiments in rootstock and scions confirmed formation of ROS under high-low temperature (30/15°C). To investigate the detoxification of oxidative damage, we evaluated three important enzyme activities and their immunoblots. Approximately 2–3 cm of graft junctions (rootstock/scions) from all treatments were selected for this analysis. The activities of antioxidant enzymes that play an essential role in ROS homeostasis in plants, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), were differently affected at the diverse temperature (
<xref ref-type="fig" rid="pone.0157439.g005">Fig 5A</xref>
). When grafted plants were exposed to high-low temperature (30/15°C), a significant increase was detected in all three antioxidant enzymes compared to plants exposed to normal-standard temperatures (23/23 and 25/15°C). Antioxidant enzyme activities (SOD, APX, and CAT) were further confirmed using immunoblot expression analysis (
<xref ref-type="fig" rid="pone.0157439.g005">Fig 5B</xref>
) [For uncropped images please see
<xref ref-type="supplementary-material" rid="pone.0157439.s003">S3 Fig</xref>
], which revealed a similar trend to the SOD, APX, and CAT expression patterns observed by Western blot.</p>
<fig id="pone.0157439.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g005</object-id>
<label>Fig 5</label>
<caption>
<p>
<bold>(A) Antioxidant enzyme activities and (B) western blotting of SOD, APX, and CAT in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</bold>
(Note: About 2–3 cm graft union (rootstock/scion) were cut near the junction and were used for the analysis). Bar diagrams represent Mean±SE of four biological replicates (n = 4). Significant differences among treatments are indicated by small letters with p ≤ 0.05 according Tukey’s test.</p>
</caption>
<graphic xlink:href="pone.0157439.g005"></graphic>
</fig>
<p>Oxidative damage is a key cytotoxic consequence of ROS generation. The SOD enzyme plays an important role in the ascorbate-glutathione cycle by mediating the dismutation of superoxide anions to produce H
<sub>2</sub>
O
<sub>2</sub>
[
<xref rid="pone.0157439.ref044" ref-type="bibr">44</xref>
]. Our results show a significant increase in relative enzyme activity and immunoblot expression of SOD under high-low temperatures (30/15°C) in the rootstock/scions of grafted tomatoes, which suggests an increase in SOD activity to quench ROS production. Similarly, the antioxidant enzymes APX and CAT play a significant role in ROS control. APX associates with glucose through the pentose phosphate pathway and NADPH to generate the reduced form of GSH from the oxidized disulfide form (GSSG). We observed that enzyme activity of APX and CAT increased markedly in high-low temperatures (30/15°C), which might be attributable to limitations in heme-catalyzed damage to the APX and CAT proteins, as shown by our immunoblots (
<xref ref-type="fig" rid="pone.0157439.g005">Fig 5B</xref>
). These data provide confirmation that grafting may aid plants in enduring abiotic stresses, particularly temperature or heat stress.</p>
</sec>
<sec id="sec023">
<title>Proteomic analysis in rootstock and scions</title>
<p>To repair the oxidative damage caused by abiotic stresses, including temperature, on cellular metabolism, plants respond by reprograming their transcriptome, proteome, and metabolome, which alters the expression of several transcripts, proteins, metabolites, and lipids. Our physiological data show that rootstock and scions exhibited remarkable changes under diverse temperatures. Previous studies mainly considered the physiological and transcriptome responses of grafted plants [
<xref rid="pone.0157439.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0157439.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0157439.ref049" ref-type="bibr">49</xref>
<xref rid="pone.0157439.ref050" ref-type="bibr">50</xref>
]. With the exception of our recent finding on the proteome in graft unions of watermelons [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
], there has been little research on protein expression in graft unions (vascular connections) that are under abiotic stress. To investigate proteins in graft unions under diverse temperatures, we used two-dimensional gel electrophoresis followed by mass spectrometry. This proteomic approach revealed novel insight about the graft unions of tomato genotypes for various plant processes, as subsequently discussed in detail.</p>
<p>The relative total protein profile was first evaluated in the first dimension using sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) (
<xref ref-type="fig" rid="pone.0157439.g006">Fig 6</xref>
). Comparative proteomic analysis of ‘Super Sunload’ and ‘Super Doterang’ scions grafted on ‘B-blocking’ rootstock was performed using IPG strips (
<italic>pI</italic>
4–7) in 2–3 cm graft unions subjected to diverse temperatures (
<xref ref-type="fig" rid="pone.0157439.g007">Fig 7</xref>
,
<xref ref-type="supplementary-material" rid="pone.0157439.s004">S4 Fig</xref>
). The results show that 700–900 proteins were detected in the graft union of ‘Super Sunload’ and ‘B-blocking’ (Figs
<xref ref-type="fig" rid="pone.0157439.g008">8</xref>
and
<xref ref-type="fig" rid="pone.0157439.g009">9A</xref>
,
<xref ref-type="supplementary-material" rid="pone.0157439.s005">S5 Fig</xref>
), and among the 700–900 proteins, 47 of them were differentially expressed between normal-standard (23/23 and 25/18°C) and high-low (30/15°C) temperatures. When the ‘Super Doterang’ scion was grafted onto ‘B-blocking’ rootstock, 200–600 proteins were detected on each of the 2-DE gels (Figs
<xref ref-type="fig" rid="pone.0157439.g008">8</xref>
and
<xref ref-type="fig" rid="pone.0157439.g009">9B</xref>
),
<xref ref-type="supplementary-material" rid="pone.0157439.s005">S5 Fig</xref>
), and among the 200–600 protein, 40 were differentially expressed between normal-standard (23/23 and 25/18°C) and high-low (30/15°C) temperatures. Spot quantification and fold changes between differentially expressed proteins are presented in
<xref ref-type="supplementary-material" rid="pone.0157439.s008">S1 Table</xref>
and
<xref ref-type="supplementary-material" rid="pone.0157439.s009">S2 Table</xref>
.</p>
<fig id="pone.0157439.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g006</object-id>
<label>Fig 6</label>
<caption>
<p>
<bold>First dimensional SDS-PAGE of in graft unions of (A) ‘Super Sunload’ (B) ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock</bold>
grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</p>
</caption>
<graphic xlink:href="pone.0157439.g006"></graphic>
</fig>
<fig id="pone.0157439.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g007</object-id>
<label>Fig 7</label>
<caption>
<p>
<bold>Representative raw data of 2-DE gels with three technical replicates in graft unions (A) ‘Super Sunload’ (B) ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</bold>
About 70 μg of proteins from 2–3 cm graft unions were focused on 11 cm IPG strips (
<italic>pI</italic>
4–7) for first dimension and separated on 12.5% (w/v) polyacrylamide gels (SDS-PAGE) for second dimension.</p>
</caption>
<graphic xlink:href="pone.0157439.g007"></graphic>
</fig>
<fig id="pone.0157439.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g008</object-id>
<label>Fig 8</label>
<caption>
<title>Higher level match set of protein spots detected by 2-DE.</title>
<p>
<bold>The match set was created from three standard gels for each time point of 2-DE gels as shown in
<xref ref-type="fig" rid="pone.0157439.g007">Fig 7</xref>
.</bold>
The numbers on the gel indicate differentially expressed proteins. For descriptive quantification of differentially expressed proteins and easy spot picking please refer to
<xref ref-type="supplementary-material" rid="pone.0157439.s008">S1 Table</xref>
,
<xref ref-type="supplementary-material" rid="pone.0157439.s009">S2 Table</xref>
, and
<xref ref-type="supplementary-material" rid="pone.0157439.s005">S5 Fig</xref>
, which are actually numbered in
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
.</p>
</caption>
<graphic xlink:href="pone.0157439.g008"></graphic>
</fig>
<fig id="pone.0157439.g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.g009</object-id>
<label>Fig 9</label>
<caption>
<p>
<bold>(A-B) Comparative analysis and (C-D) Functional classification of identified proteins of graft unions in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</bold>
The identified proteins (please see
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
) were classified based on their putative biological functions.</p>
</caption>
<graphic xlink:href="pone.0157439.g009"></graphic>
</fig>
</sec>
<sec id="sec024">
<title>Identification and functional classification of proteins in rootstock and scions</title>
<p>The differentially expressed proteins from graft unions were excised from 2-DE gels and evaluated using MALDI-TOF MS (For spectra screen shots please see
<xref ref-type="supplementary-material" rid="pone.0157439.s006">S1 File</xref>
and
<xref ref-type="supplementary-material" rid="pone.0157439.s007">S2 File</xref>
) Approximately 90% of the 47 differentially expressed proteins from the graft union of ‘Super Sunload’ and ‘B-blocking’ and 40 from that of ‘Super Doterang’ and ‘B-blocking’ were successfully identified (
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
, For MS-MS ion search please refer to
<xref ref-type="supplementary-material" rid="pone.0157439.s010">S3 Table</xref>
and
<xref ref-type="supplementary-material" rid="pone.0157439.s011">S4 Table</xref>
). Most of the proteins identified by mass spectrometry had functional annotations in the universal protein data bank, whereas only a few of the proteins were unknown or uncharacterized, with no functional annotations. The results indicate that most of the proteins identified under diverse temperatures had a significant relationship to the defense response, photosynthesis, ion transport or ion binding, and protein synthesis. These results provide an overview of the proteins involved in graft unions and unique insight for acclimatization under diverse temperatures. Using gene ontology analysis (
<ext-link ext-link-type="uri" xlink:href="http://www.geneontology.com/">www.geneontology.com</ext-link>
), we classified 47 proteins identified from ‘Super Sunload’ grafts, and 40 proteins from ‘Super Doterang’ grafts, into different functional groups (
<xref ref-type="fig" rid="pone.0157439.g009">Fig 9C and 9D</xref>
).</p>
<table-wrap id="pone.0157439.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.t001</object-id>
<label>Table 1</label>
<caption>
<title>Proteins identified by MALDI-TOF MS in tomato ‘Super Sunload’ as the Scion and ‘B blocking’ as rootstock.</title>
</caption>
<alternatives>
<graphic id="pone.0157439.t001g" xlink:href="pone.0157439.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Spot No.</th>
<th align="left" rowspan="1" colspan="1">Protein Name</th>
<th align="left" rowspan="1" colspan="1">Plant species</th>
<th align="left" rowspan="1" colspan="1">gi number</th>
<th align="left" rowspan="1" colspan="1">Protein score</th>
<th align="left" rowspan="1" colspan="1">Biological function</th>
<th align="left" rowspan="1" colspan="1">Mr value</th>
<th align="left" rowspan="1" colspan="1">Calcu.
<italic>pI/</italic>
Exp.
<italic>pI</italic>
</th>
<th align="left" rowspan="1" colspan="1">Sequence coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Glycine rich RNA binding protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brassica rapa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|685366678</td>
<td align="center" rowspan="1" colspan="1">156</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">16189</td>
<td align="center" rowspan="1" colspan="1">7.7/5.6</td>
<td align="center" rowspan="1" colspan="1">77</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">Chaperone protein ClpB3, chloroplastic isoform X1</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eucalyptus grandis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|702465984</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">108781</td>
<td align="center" rowspan="1" colspan="1">6.1/5.7</td>
<td align="center" rowspan="1" colspan="1">47</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">BnaC08g04510D</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brassica napus</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|674915372</td>
<td align="center" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">17555</td>
<td align="center" rowspan="1" colspan="1">6.4/5.8</td>
<td align="center" rowspan="1" colspan="1">87</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">Kinesis-like protein NACK2</td>
<td align="left" rowspan="1" colspan="1">
<italic>Camelina sativa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|727647144</td>
<td align="center" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">Chloroplast accumulation movement</td>
<td align="center" rowspan="1" colspan="1">141541</td>
<td align="center" rowspan="1" colspan="1">4.8/5.1</td>
<td align="center" rowspan="1" colspan="1">44</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">Phosphoglycerate kinase, cytosolic like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Phoenix dactylifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|672171816</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">50730</td>
<td align="center" rowspan="1" colspan="1">8.2/7.0</td>
<td align="center" rowspan="1" colspan="1">58</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">Chaperone protein ClpD2, chlroplasticlike</td>
<td align="left" rowspan="1" colspan="1">
<italic>Setaria italica</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|514801217</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">102421</td>
<td align="center" rowspan="1" colspan="1">8.5/4.5</td>
<td align="center" rowspan="1" colspan="1">48</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F-box protein PP2-B10</td>
<td align="left" rowspan="1" colspan="1">
<italic>Solanum lycopersicum</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|723751136</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">31143</td>
<td align="center" rowspan="1" colspan="1">5.4/4.6</td>
<td align="center" rowspan="1" colspan="1">79</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">OJ1005_B10.30</td>
<td align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|21902113</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="center" rowspan="1" colspan="1">18481</td>
<td align="center" rowspan="1" colspan="1">10.0/5.0</td>
<td align="center" rowspan="1" colspan="1">76</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Capsella rubella</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|565483670</td>
<td align="center" rowspan="1" colspan="1">159</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">56015</td>
<td align="center" rowspan="1" colspan="1">9.4/4.5</td>
<td align="center" rowspan="1" colspan="1">63</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">Isopentenyl-diphosphate delta isomerase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|357507779</td>
<td align="center" rowspan="1" colspan="1">153</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">32914</td>
<td align="center" rowspan="1" colspan="1">6.1/4.6</td>
<td align="center" rowspan="1" colspan="1">73</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">Elongation factor Ts, mitochondrial</td>
<td align="left" rowspan="1" colspan="1">
<italic>Auxenochlorella protothecoides</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|760438191</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">38838</td>
<td align="center" rowspan="1" colspan="1">6.4/5.0</td>
<td align="center" rowspan="1" colspan="1">71</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">Serine/threonine protein kinase TOUSLED</td>
<td align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|18420352</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1">ATP synthesis</td>
<td align="center" rowspan="1" colspan="1">78101</td>
<td align="center" rowspan="1" colspan="1">8.2/5.7</td>
<td align="center" rowspan="1" colspan="1">46</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">Malate dehydrogenase (NADP), chloroplastic</td>
<td align="left" rowspan="1" colspan="1">
<italic>Aegilops tauschii</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|475591288</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">41976</td>
<td align="center" rowspan="1" colspan="1">5.3/5.8</td>
<td align="center" rowspan="1" colspan="1">53</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|566187036</td>
<td align="center" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">39813</td>
<td align="center" rowspan="1" colspan="1">4.5/6.0</td>
<td align="center" rowspan="1" colspan="1">59</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">Oxygen evolving enhancer protein 1–2, chloroplastic</td>
<td align="left" rowspan="1" colspan="1">
<italic>Camelina sativa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|727467168</td>
<td align="center" rowspan="1" colspan="1">156</td>
<td align="left" rowspan="1" colspan="1">Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">35401</td>
<td align="center" rowspan="1" colspan="1">6.0/6.8</td>
<td align="center" rowspan="1" colspan="1">64</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">Respiratory burst oxidase like protein C</td>
<td align="left" rowspan="1" colspan="1">
<italic>Glycine soja]</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|734403915</td>
<td align="center" rowspan="1" colspan="1">154</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">15223</td>
<td align="center" rowspan="1" colspan="1">4.6/6.7</td>
<td align="center" rowspan="1" colspan="1">89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">Guanine nucleotide binding protein subunit beta like protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Glycine soja</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|734377181</td>
<td align="center" rowspan="1" colspan="1">66</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">24355</td>
<td align="center" rowspan="1" colspan="1">7.5/6.7</td>
<td align="center" rowspan="1" colspan="1">41</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">Salutaridine reductase like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|731394250</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">22903</td>
<td align="center" rowspan="1" colspan="1">5.3/6.9</td>
<td align="center" rowspan="1" colspan="1">48</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">14-3-3-like protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|357465085</td>
<td align="center" rowspan="1" colspan="1">64</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">23284</td>
<td align="center" rowspan="1" colspan="1">5.5/7.0</td>
<td align="center" rowspan="1" colspan="1">41</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">Predicted protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Hordeum vulgare</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|326526473</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="center" rowspan="1" colspan="1">69541</td>
<td align="center" rowspan="1" colspan="1">8.4/4.4</td>
<td align="center" rowspan="1" colspan="1">57</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eutrema salsugineum</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|567215911</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">26822</td>
<td align="center" rowspan="1" colspan="1">7.6/4.5</td>
<td align="center" rowspan="1" colspan="1">70</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">Petal death protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eucalyptus grandis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|702433120</td>
<td align="center" rowspan="1" colspan="1">65</td>
<td align="left" rowspan="1" colspan="1">Flower development</td>
<td align="center" rowspan="1" colspan="1">55227</td>
<td align="center" rowspan="1" colspan="1">6.9/4.4</td>
<td align="center" rowspan="1" colspan="1">57</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">Naringenin,2oxoglutarate 3 dioxygenase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Gossypium arboreum</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|728819992</td>
<td align="center" rowspan="1" colspan="1">162</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">31082</td>
<td align="center" rowspan="1" colspan="1">7.0/4.5</td>
<td align="center" rowspan="1" colspan="1">84</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">Unnamed protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Coffea canephora</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|661887453</td>
<td align="center" rowspan="1" colspan="1">56</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="center" rowspan="1" colspan="1">122350</td>
<td align="center" rowspan="1" colspan="1">5.1/4.6</td>
<td align="center" rowspan="1" colspan="1">40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">Specific tissue protein 1, putative</td>
<td align="left" rowspan="1" colspan="1">
<italic>Theobroma cacao</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|590685892</td>
<td align="center" rowspan="1" colspan="1">157</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">39675</td>
<td align="center" rowspan="1" colspan="1">5.0/5.0</td>
<td align="center" rowspan="1" colspan="1">80</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Zea mays</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|413947743</td>
<td align="center" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">21539</td>
<td align="center" rowspan="1" colspan="1">4.9/5.1</td>
<td align="center" rowspan="1" colspan="1">82</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">Peroxisome biogenesis factor 10 isoform X2</td>
<td align="left" rowspan="1" colspan="1">
<italic>Nicotiana tomentosiformis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|697125368</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Photorespiration</td>
<td align="center" rowspan="1" colspan="1">35271</td>
<td align="center" rowspan="1" colspan="1">9.5/6.0</td>
<td align="center" rowspan="1" colspan="1">72</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="left" rowspan="1" colspan="1">U box domain containing protein 27</td>
<td align="left" rowspan="1" colspan="1">
<italic>Setaria italica</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|514801386</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Chitin response</td>
<td align="center" rowspan="1" colspan="1">45408</td>
<td align="center" rowspan="1" colspan="1">6.4/7.0</td>
<td align="center" rowspan="1" colspan="1">38</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">Predicted protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Micromonas sp</italic>
.</td>
<td align="left" rowspan="1" colspan="1">gi|255073969</td>
<td align="center" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="center" rowspan="1" colspan="1">162180</td>
<td align="center" rowspan="1" colspan="1">6.0/6.8</td>
<td align="center" rowspan="1" colspan="1">37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">Dehydrodolichyl diphosphate synthase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Citrus sinensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|568825414</td>
<td align="center" rowspan="1" colspan="1">157</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">40876</td>
<td align="center" rowspan="1" colspan="1">5.9/5.9</td>
<td align="center" rowspan="1" colspan="1">72</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="left" rowspan="1" colspan="1">Putative porphobilinogen deaminase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Ostreococcus tauri</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|308803813</td>
<td align="center" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">47732</td>
<td align="center" rowspan="1" colspan="1">9.5/6.0</td>
<td align="center" rowspan="1" colspan="1">60</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="left" rowspan="1" colspan="1">UDPG pyrophosphorylase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Gentiana triflora</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|685051837</td>
<td align="center" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">52332</td>
<td align="center" rowspan="1" colspan="1">5.5/6.8</td>
<td align="center" rowspan="1" colspan="1">54</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">Serine/threonine protein kinase TIO</td>
<td align="left" rowspan="1" colspan="1">
<italic>Beta vulgaris</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|731321632</td>
<td align="center" rowspan="1" colspan="1">63</td>
<td align="left" rowspan="1" colspan="1">ATP synthesis</td>
<td align="center" rowspan="1" colspan="1">145082</td>
<td align="center" rowspan="1" colspan="1">8.4/6.9</td>
<td align="center" rowspan="1" colspan="1">16</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">Glycerate dehydrogenase isoform X1</td>
<td align="left" rowspan="1" colspan="1">
<italic>Phoenix dactylifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|672174015</td>
<td align="center" rowspan="1" colspan="1">63</td>
<td align="left" rowspan="1" colspan="1">Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">46653</td>
<td align="center" rowspan="1" colspan="1">8.8/7.0</td>
<td align="center" rowspan="1" colspan="1">37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Dynamin related protein 5A</td>
<td align="left" rowspan="1" colspan="1">
<italic>Tarenaya hassleriana</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|729360263</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">90674</td>
<td align="center" rowspan="1" colspan="1">6.8/5.7</td>
<td align="center" rowspan="1" colspan="1">54</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">41</td>
<td align="left" rowspan="1" colspan="1">Dalanyldalanine carbox peptidase, putative</td>
<td align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|255602672</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Secondary Metabolism</td>
<td align="center" rowspan="1" colspan="1">29299</td>
<td align="center" rowspan="1" colspan="1">7.7/4.6</td>
<td align="center" rowspan="1" colspan="1">65</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">42</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">
<italic>-</italic>
</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">43</td>
<td align="left" rowspan="1" colspan="1">14-3-3-like protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|357465085</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">23284</td>
<td align="center" rowspan="1" colspan="1">5.5/4.1</td>
<td align="center" rowspan="1" colspan="1">40</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone.0157439.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0157439.t002</object-id>
<label>Table 2</label>
<caption>
<title>Proteins identified by MALDI-TOF MS in tomato ‘Super Doterang’ as the Scion and ‘B blocking’ as rootstock.</title>
</caption>
<alternatives>
<graphic id="pone.0157439.t002g" xlink:href="pone.0157439.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Spot No.</th>
<th align="left" rowspan="1" colspan="1">Protein Name</th>
<th align="left" rowspan="1" colspan="1">Plant species</th>
<th align="left" rowspan="1" colspan="1">gi number</th>
<th align="left" rowspan="1" colspan="1">Protein score</th>
<th align="left" rowspan="1" colspan="1">Biological function</th>
<th align="left" rowspan="1" colspan="1">Mr value</th>
<th align="left" rowspan="1" colspan="1">Calcu.
<italic>pI/</italic>
Exp.
<italic>pI</italic>
</th>
<th align="left" rowspan="1" colspan="1">Sequence coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">TRIGALACTOSYLDIACYLGLYCEROL 2, chloroplastic</td>
<td align="left" rowspan="1" colspan="1">
<italic>Prunus mume</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|645231498</td>
<td align="center" rowspan="1" colspan="1">52</td>
<td align="left" rowspan="1" colspan="1">Ion transport</td>
<td align="center" rowspan="1" colspan="1">40819</td>
<td align="left" rowspan="1" colspan="1">8.9/4.5</td>
<td align="center" rowspan="1" colspan="1">68</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">Histone-lysine N-methyltransferase MEDEA-like isoform X3</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brassica rapa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|685369870</td>
<td align="center" rowspan="1" colspan="1">93</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">67832</td>
<td align="left" rowspan="1" colspan="1">6.7/4.9</td>
<td align="center" rowspan="1" colspan="1">53</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">20 kDa chaperonin, chloroplastic</td>
<td align="left" rowspan="1" colspan="1">
<italic>Triticum urartu</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|473945885</td>
<td align="center" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Defense response/Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">25891</td>
<td align="left" rowspan="1" colspan="1">8.8/5.2</td>
<td align="center" rowspan="1" colspan="1">67</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">B-box zinc finger protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Bambusa oldhamii</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|194245129</td>
<td align="center" rowspan="1" colspan="1">98</td>
<td align="left" rowspan="1" colspan="1">Transcription regulation</td>
<td align="center" rowspan="1" colspan="1">27083</td>
<td align="left" rowspan="1" colspan="1">4.9/5.5</td>
<td align="center" rowspan="1" colspan="1">59</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">histidine triad family protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Arabidopsis lyrata</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|297800468</td>
<td align="center" rowspan="1" colspan="1">60</td>
<td align="left" rowspan="1" colspan="1">Catalytic activity</td>
<td align="center" rowspan="1" colspan="1">16772</td>
<td align="left" rowspan="1" colspan="1">7.8/6.2</td>
<td align="center" rowspan="1" colspan="1">63</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">glyceraldehyde 3phosphate dehydrogenase GAPC1, chlroplasticlike</td>
<td align="left" rowspan="1" colspan="1">
<italic>Oryza brachyantha</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|573918618</td>
<td align="center" rowspan="1" colspan="1">77</td>
<td align="left" rowspan="1" colspan="1">photosynthesis</td>
<td align="center" rowspan="1" colspan="1">40309</td>
<td align="left" rowspan="1" colspan="1">8.2/6.3</td>
<td align="center" rowspan="1" colspan="1">69</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">toll/interleukin1 receptor like protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eucalyptus grandis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|702303259</td>
<td align="center" rowspan="1" colspan="1">144</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">19220</td>
<td align="left" rowspan="1" colspan="1">5.1/7.0</td>
<td align="center" rowspan="1" colspan="1">82</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">ATPdependent Cip protease proteolytic subunit 2, partial</td>
<td align="left" rowspan="1" colspan="1">
<italic>Auxenochlorella protothecoides</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|760447615</td>
<td align="center" rowspan="1" colspan="1">146</td>
<td align="left" rowspan="1" colspan="1">Ion transport</td>
<td align="center" rowspan="1" colspan="1">24634</td>
<td align="left" rowspan="1" colspan="1">9.3/4.5</td>
<td align="center" rowspan="1" colspan="1">75</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">ATP synthase beta subunit, partial (chloroplast)</td>
<td align="left" rowspan="1" colspan="1">
<italic>Coleochaete soluta</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|19033065</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Ion transport</td>
<td align="center" rowspan="1" colspan="1">43360</td>
<td align="left" rowspan="1" colspan="1">4.9/4.9</td>
<td align="center" rowspan="1" colspan="1">70</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Gossypium raimondii</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|763772676</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="center" rowspan="1" colspan="1">49204</td>
<td align="left" rowspan="1" colspan="1">9.3/5.0</td>
<td align="center" rowspan="1" colspan="1">51</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">F-box/Kelchrepeat protein At3g23880like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Fragaria vesca</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|470140284</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Protein ubiquitination</td>
<td align="center" rowspan="1" colspan="1">45716</td>
<td align="left" rowspan="1" colspan="1">5.3/5.1</td>
<td align="center" rowspan="1" colspan="1">72</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">PREDICTED: flavonoid 3'monooxygenaselike</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brachypodium distachyon</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|721620334</td>
<td align="center" rowspan="1" colspan="1">151</td>
<td align="left" rowspan="1" colspan="1">Ion binding</td>
<td align="center" rowspan="1" colspan="1">57732</td>
<td align="left" rowspan="1" colspan="1">7.8/5.2</td>
<td align="center" rowspan="1" colspan="1">67</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">Probable cinnamyl alcohol dehydrogenase 9</td>
<td align="left" rowspan="1" colspan="1">
<italic>Musa acuminata</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|695066375</td>
<td align="center" rowspan="1" colspan="1">154</td>
<td align="left" rowspan="1" colspan="1">Oxidoreductase activity</td>
<td align="center" rowspan="1" colspan="1">38475</td>
<td align="left" rowspan="1" colspan="1">6.2/5.3</td>
<td align="center" rowspan="1" colspan="1">79</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">Glycine rich RNAbinding protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Glycine soja</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|734418868</td>
<td align="center" rowspan="1" colspan="1">144</td>
<td align="left" rowspan="1" colspan="1">Transcription regulation</td>
<td align="center" rowspan="1" colspan="1">16409</td>
<td align="left" rowspan="1" colspan="1">5.8/4.5</td>
<td align="center" rowspan="1" colspan="1">89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">Grx_S12 glutaredoxin subgroup I</td>
<td align="left" rowspan="1" colspan="1">
<italic>Zea mays</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|226505492</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="left" rowspan="1" colspan="1">Electron carrier activity</td>
<td align="center" rowspan="1" colspan="1">18063</td>
<td align="left" rowspan="1" colspan="1">9.6/4.6</td>
<td align="center" rowspan="1" colspan="1">85</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">Kinesinlike calmodulinbinding protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Glycine soja</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|734422866</td>
<td align="center" rowspan="1" colspan="1">159</td>
<td align="left" rowspan="1" colspan="1">Oxidoreductase activity</td>
<td align="center" rowspan="1" colspan="1">79863</td>
<td align="left" rowspan="1" colspan="1">6.4/5.3</td>
<td align="center" rowspan="1" colspan="1">50</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">Root phototropism protein 3like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Prunus mume</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|645222231</td>
<td align="center" rowspan="1" colspan="1">63</td>
<td align="left" rowspan="1" colspan="1">Signal transduction</td>
<td align="center" rowspan="1" colspan="1">66044</td>
<td align="left" rowspan="1" colspan="1">8.9/5.5</td>
<td align="center" rowspan="1" colspan="1">48</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">Unknown</td>
<td align="left" rowspan="1" colspan="1">
<italic>Lotus japonicus</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|388498152</td>
<td align="center" rowspan="1" colspan="1">52</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">26725</td>
<td align="left" rowspan="1" colspan="1">5.2/6.0</td>
<td align="center" rowspan="1" colspan="1">70</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">Helicase, Cterminal, Argonaute and Dicer protein, PAZ, Ribonuclease III, bacterial isoform 2</td>
<td align="left" rowspan="1" colspan="1">
<italic>Theobroma cacao</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|590720646</td>
<td align="center" rowspan="1" colspan="1">153</td>
<td align="left" rowspan="1" colspan="1">Ion binding</td>
<td align="center" rowspan="1" colspan="1">180152</td>
<td align="left" rowspan="1" colspan="1">5.9/6.2</td>
<td align="center" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">NADPH:quinone reductase, partial</td>
<td align="left" rowspan="1" colspan="1">
<italic>Paeonia californica</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|723437961</td>
<td align="center" rowspan="1" colspan="1">147</td>
<td align="left" rowspan="1" colspan="1">Oxidoreductase activity</td>
<td align="center" rowspan="1" colspan="1">11425</td>
<td align="left" rowspan="1" colspan="1">5.3/6.8</td>
<td align="center" rowspan="1" colspan="1">90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">Calciumbinding mitochondrial protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brachypodium distachyon</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|357136915</td>
<td align="center" rowspan="1" colspan="1">156</td>
<td align="left" rowspan="1" colspan="1">Ion transport</td>
<td align="center" rowspan="1" colspan="1">66589</td>
<td align="left" rowspan="1" colspan="1">8.2/7.0</td>
<td align="center" rowspan="1" colspan="1">40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">Clathrin adaptor complexes medium subunit family protein isoform 4</td>
<td align="left" rowspan="1" colspan="1">
<italic>Theobroma cacao</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|590675715</td>
<td align="center" rowspan="1" colspan="1">144</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">40101</td>
<td align="left" rowspan="1" colspan="1">9.1/4.5</td>
<td align="center" rowspan="1" colspan="1">51</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">Glycine rich cell wall structural protein 1.0like isoform X6</td>
<td align="left" rowspan="1" colspan="1">
<italic>Camelina sativa</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|727588178</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Cell wall organization</td>
<td align="center" rowspan="1" colspan="1">28133</td>
<td align="left" rowspan="1" colspan="1">9.7/4.6</td>
<td align="center" rowspan="1" colspan="1">61</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">Glycine-rich cell wall structural protein-like isoform X2</td>
<td align="left" rowspan="1" colspan="1">
<italic>Nicotiana sylvestris</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|698478559</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Cell wall organization</td>
<td align="center" rowspan="1" colspan="1">32597</td>
<td align="left" rowspan="1" colspan="1">10.2/4.7</td>
<td align="center" rowspan="1" colspan="1">57</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">GDPmannose pyrophosphorylase, partial</td>
<td align="left" rowspan="1" colspan="1">
<italic>Moringa oleifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|697651840</td>
<td align="center" rowspan="1" colspan="1">144</td>
<td align="left" rowspan="1" colspan="1">Defense response</td>
<td align="center" rowspan="1" colspan="1">37446</td>
<td align="left" rowspan="1" colspan="1">6.2/4.6</td>
<td align="center" rowspan="1" colspan="1">65</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Erythranthe guttata</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|604331105</td>
<td align="center" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">24832</td>
<td align="left" rowspan="1" colspan="1">6.8/5.0</td>
<td align="center" rowspan="1" colspan="1">81</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">Putative adenylate kinase</td>
<td align="left" rowspan="1" colspan="1">
<italic>Ostreococcus tauri</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|308803679</td>
<td align="center" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">Kinase activity</td>
<td align="center" rowspan="1" colspan="1">28185</td>
<td align="left" rowspan="1" colspan="1">7.6/5.1</td>
<td align="center" rowspan="1" colspan="1">56</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">Phosphoenolpyruvate carboxylase, partial</td>
<td align="left" rowspan="1" colspan="1">
<italic>Alloteropsis cimicina</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|380691800</td>
<td align="center" rowspan="1" colspan="1">147</td>
<td align="left" rowspan="1" colspan="1">photosynthesis</td>
<td align="center" rowspan="1" colspan="1">96184</td>
<td align="left" rowspan="1" colspan="1">6.0/4.9</td>
<td align="center" rowspan="1" colspan="1">46</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">Photosystem I subunit VII</td>
<td align="left" rowspan="1" colspan="1">
<italic>Selaginella moellendorffii</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|255961344</td>
<td align="center" rowspan="1" colspan="1">147</td>
<td align="left" rowspan="1" colspan="1">photosynthesis</td>
<td align="center" rowspan="1" colspan="1">8792</td>
<td align="left" rowspan="1" colspan="1">8.6/5.1</td>
<td align="center" rowspan="1" colspan="1">89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">AspartatetRNA ligase, cytoplasmic</td>
<td align="left" rowspan="1" colspan="1">
<italic>Tarenaya hassleriana</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|729465175</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Ion transport</td>
<td align="center" rowspan="1" colspan="1">63293</td>
<td align="left" rowspan="1" colspan="1">6.1/5.2</td>
<td align="center" rowspan="1" colspan="1">58</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="left" rowspan="1" colspan="1">PremRNAsplicing factor SLU7like isoform X1</td>
<td align="left" rowspan="1" colspan="1">
<italic>Phoenix dactylifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|672135838</td>
<td align="center" rowspan="1" colspan="1">156</td>
<td align="left" rowspan="1" colspan="1">Protein biosynthesis</td>
<td align="center" rowspan="1" colspan="1">62250</td>
<td align="left" rowspan="1" colspan="1">6.1/5.3</td>
<td align="center" rowspan="1" colspan="1">58</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">Cytochrome b5like heme/steroid binding domain</td>
<td align="left" rowspan="1" colspan="1">
<italic>Ostreococcus tauri</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|693500036</td>
<td align="center" rowspan="1" colspan="1">57</td>
<td align="left" rowspan="1" colspan="1">Ion binding</td>
<td align="center" rowspan="1" colspan="1">17920</td>
<td align="left" rowspan="1" colspan="1">5.0/5.2</td>
<td align="center" rowspan="1" colspan="1">89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="left" rowspan="1" colspan="1">DEAD-box ATPdependent RNA helicase 5</td>
<td align="left" rowspan="1" colspan="1">
<italic>Morus notabilis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|703152401</td>
<td align="center" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">Ion binding</td>
<td align="center" rowspan="1" colspan="1">34228</td>
<td align="left" rowspan="1" colspan="1">9.5/5.5</td>
<td align="center" rowspan="1" colspan="1">44</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">Pentatricopeptide (PPR) repeat protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|657389740</td>
<td align="center" rowspan="1" colspan="1">149</td>
<td align="left" rowspan="1" colspan="1">Nucleotide binding</td>
<td align="center" rowspan="1" colspan="1">78684</td>
<td align="left" rowspan="1" colspan="1">8.1/5.6</td>
<td align="center" rowspan="1" colspan="1">46</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">Hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eucalyptus grandis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|629117084</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">36176</td>
<td align="left" rowspan="1" colspan="1">6.1/6.0</td>
<td align="center" rowspan="1" colspan="1">62</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="left" rowspan="1" colspan="1">oxygen evolving enhancer protein 12</td>
<td align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|15230324</td>
<td align="center" rowspan="1" colspan="1">153</td>
<td align="left" rowspan="1" colspan="1">Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">34998</td>
<td align="left" rowspan="1" colspan="1">5.9/6.1</td>
<td align="center" rowspan="1" colspan="1">75</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="left" rowspan="1" colspan="1">Arogenate dehydratase/prephenate dehydratase 1, chloroplastic isoform X1</td>
<td align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|731404317</td>
<td align="center" rowspan="1" colspan="1">150</td>
<td align="left" rowspan="1" colspan="1">Photosynthesis</td>
<td align="center" rowspan="1" colspan="1">43557</td>
<td align="left" rowspan="1" colspan="1">6.7/6.0</td>
<td align="center" rowspan="1" colspan="1">66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">Auxin response factor 18like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|225439992</td>
<td align="center" rowspan="1" colspan="1">152</td>
<td align="left" rowspan="1" colspan="1">Plant Hormone</td>
<td align="center" rowspan="1" colspan="1">77435</td>
<td align="left" rowspan="1" colspan="1">6.8/6.1</td>
<td align="center" rowspan="1" colspan="1">44</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">DNA ligase 1like</td>
<td align="left" rowspan="1" colspan="1">
<italic>Brachypodium distachyon</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|357140737</td>
<td align="center" rowspan="1" colspan="1">145</td>
<td align="left" rowspan="1" colspan="1">Ion binding</td>
<td align="center" rowspan="1" colspan="1">100742</td>
<td align="left" rowspan="1" colspan="1">9.3/5.4</td>
<td align="center" rowspan="1" colspan="1">28</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">glyoxylate/succinic semialdehyde reductase 2, chloroplastic isoform X1</td>
<td align="left" rowspan="1" colspan="1">
<italic>Eucalyptus grandis</italic>
</td>
<td align="left" rowspan="1" colspan="1">gi|702376573</td>
<td align="center" rowspan="1" colspan="1">147</td>
<td align="left" rowspan="1" colspan="1">photosynthesis</td>
<td align="center" rowspan="1" colspan="1">37774</td>
<td align="left" rowspan="1" colspan="1">8.8/5.5</td>
<td align="center" rowspan="1" colspan="1">67</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="sec025">
<title>Proteins related to defense response</title>
<p>Stress responsive proteins play an important role in detoxification of numerous abiotic stresses [
<xref rid="pone.0157439.ref051" ref-type="bibr">51</xref>
<xref rid="pone.0157439.ref053" ref-type="bibr">53</xref>
]. The proteins identified in this study were identified as having defense/stress-response functions, and the results are summarized in
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
. Under high-low temperature conditions, the proteins identified as defense/stress-response proteins triggered differential expressions in 2-DE gels, which suggests that the rootstocks might cause some stress on their scions, and vice versa. Stress-responsive proteins have also been previously observed in grafted rubber trees [
<xref rid="pone.0157439.ref051" ref-type="bibr">51</xref>
]. Additionally, several genes related to stress-response have been observed in grafted grapevine [
<xref rid="pone.0157439.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0157439.ref016" ref-type="bibr">16</xref>
]. Our results also show putative up-regulation of proteins related to stress tolerance under high-low temperature, which was confirmed by immunoblot analysis and analysis of the activities of critical stress responsive proteins (
<xref ref-type="fig" rid="pone.0157439.g005">Fig 5</xref>
). Proteins related to defense/stress-response are hypothesized to play a role in healing during grafting [
<xref rid="pone.0157439.ref009" ref-type="bibr">9</xref>
,
<xref rid="pone.0157439.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. Thus, our identification of stress/defense responsive proteins strongly implicate a robust antioxidant mechanism in graft unions under diverse temperature. Moreover, stress/defense responsive proteins were detected that have not been previously studied in graft unions.</p>
</sec>
<sec id="sec026">
<title>Proteins related to photosynthesis</title>
<p>Photosynthesis is an essential plant process and is sensitive to many environmental stresses including temperature and heat stress. In a proteomic study of graft unions, we observed that many proteins involved in the C
<sub>3</sub>
or C
<sub>4</sub>
(photosynthesis) cycle were down-regulated in response to diverse temperatures (
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
). The differential expression of photosynthesis proteins suggests that cell communication related to photosynthetic activity is increased in graft unions. Although several photosynthetic proteins that respond to temperature/heat stress have been detected in non-grafted plants [
<xref rid="pone.0157439.ref007" ref-type="bibr">7</xref>
,
<xref rid="pone.0157439.ref054" ref-type="bibr">54</xref>
<xref rid="pone.0157439.ref055" ref-type="bibr">55</xref>
], only a few genes related to photosynthesis have been observed in grafted apple and rubber trees [
<xref rid="pone.0157439.ref051" ref-type="bibr">51</xref>
]. The differential expression of photosynthetic proteins suggests a significant increase in diverse temperature in graft unions which may strongly interrupt the regulatory network of the photosynthetic system in the aerial parts of scions. The identification of photosynthetic proteins provides two important confirmations: the occurrence of anomalies in temperature for proper photosynthesis and the novel detection of photosynthetic proteins in graft unions.</p>
</sec>
<sec id="sec027">
<title>Proteins related to ion binding/ion transport</title>
<p>Proteins related to transport or binding of ions play a vital role in the vascular tissues of plants [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
]. The abundant number of ion transport/binding proteins has been well documented in the vascular cambium of plants [
<xref rid="pone.0157439.ref056" ref-type="bibr">56</xref>
<xref rid="pone.0157439.ref057" ref-type="bibr">57</xref>
]. The proteomic analysis of graft unions in tomatoes revealed an increased number of ion binding/transport proteins (
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
), which suggests appropriate communication between the rootstock and scions. Our 2-DE gels of tomato graft unions showed down-regulation of ion transport/binding under diverse temperature. This indicates that oxidative damage can disrupt the transport of minerals and ions. However, graft unions may be able to tolerate stress conditions to a certain point for optimal transport activity by increasing stress-responsive proteins, as shown by our immunoblot analysis and our analysis of the enzyme activities of stress-responsive proteins (
<xref ref-type="fig" rid="pone.0157439.g005">Fig 5</xref>
). The tolerance level for transport activity can also be observed in our vascular transport activity experiments (
<xref ref-type="fig" rid="pone.0157439.g002">Fig 2</xref>
), where the passage of blue dye (flower staining dye used to analyze transport activity) was at optimal levels, even under diverse temperature.</p>
</sec>
<sec id="sec028">
<title>Proteins related to protein synthesis</title>
<p>Protein synthesis in plants plays important physiological roles in the response to unfavorable conditions. The expression of genes that play a crucial role in the synthesis of proteins has been previously observed in many plants under diverse temperature [
<xref rid="pone.0157439.ref058" ref-type="bibr">58</xref>
<xref rid="pone.0157439.ref061" ref-type="bibr">61</xref>
]. Our proteome data (
<xref ref-type="table" rid="pone.0157439.t001">Table 1</xref>
and
<xref ref-type="table" rid="pone.0157439.t002">Table 2</xref>
) of graft unions also identified several differentially expressed proteins that are related to protein synthesis. The presence of proteins related to protein synthesis in graft unions indicates the enhancement of translational processes, and may be a function of ribosomal activity for appropriate protein synthesis under diverse temperature. Our results also identified proteins related to protein synthesis that had not been previously observed in graft unions, with the exception of our previous study in grafted watermelon [
<xref rid="pone.0157439.ref019" ref-type="bibr">19</xref>
].</p>
</sec>
</sec>
<sec id="sec029">
<title>Concluding Remarks</title>
<p>This study reports a systematic physiological and proteomic analysis of tomato plants grown under diverse temperatures using ‘Super Sunload’ and ‘Super Doterang’ as scions and ‘B-blocking’ as a rootstock. A total of 87 proteins were identified that responded to diverse temperatures, and these are involved in a wide range of cellular processes including defense/stress response, ion binding/transport, photosynthesis, and protein synthesis. In addition, a physiological analysis provided useful information for understanding the important role of temperature on graft unions. Our study provides unique insight on graft union (rootstock/scion) adaptation under diverse temperatures.</p>
</sec>
<sec sec-type="supplementary-material" id="sec030">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0157439.s001">
<label>S1 Fig</label>
<caption>
<p>
<bold>Representative images of grafted tomato plants grown under diverse temperatures (day/night; 23/23</bold>
<sup>
<bold>0</bold>
</sup>
<bold>C, 25/18</bold>
<sup>
<bold>0</bold>
</sup>
<bold>C, and 30/15</bold>
<sup>
<bold>0</bold>
</sup>
<bold>C) under greenhouse conditions</bold>
(A) ‘B-blocking’ used as rootstock and ‘Super Sunload’ as scion (B) ‘B-blocking’ used as rootstock and ‘Super Doterang’ as scion.</p>
<p>(JPG)</p>
</caption>
<media xlink:href="pone.0157439.s001.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s002">
<label>S2 Fig</label>
<caption>
<title>Longitudinal sections of graft unions analyzing vascular transport activity of ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>The rootstocks were submerged in absorbable flower dye blue for 10–20 min and rootstock as well as scions were cut into transverse sections with razor blade. The cross sections were observed under light microscope.</p>
<p>(JPG)</p>
</caption>
<media xlink:href="pone.0157439.s002.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s003">
<label>S3 Fig</label>
<caption>
<title>Uncropped images of western blots of SOD, APX, and CAT in ‘Super Sunload’ and ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(Note: About 2–3 cm graft union (rootstock/scion) were cut near the junction and were used for the analysis).</p>
<p>(JPG)</p>
</caption>
<media xlink:href="pone.0157439.s003.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s004">
<label>S4 Fig</label>
<caption>
<p>
<bold>Representative raw data of 2-DE gels in graft unions (A) ‘Super Sunload’ (B) ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</bold>
About 70 μg of proteins from 2–3 cm graft unions were focused on 11 cm IPG strips (
<italic>pI</italic>
4–7) for first dimension and separated on 12.5% (w/v) polyacrylamide gels (SDS-PAGE) for second dimension.</p>
<p>(JPG)</p>
</caption>
<media xlink:href="pone.0157439.s004.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s005">
<label>S5 Fig</label>
<caption>
<title>Higher level match set of protein spots detected by 2-DE.</title>
<p>
<bold>The match set was created from three standard gels for each time point of 2-DE gels as shown in
<xref ref-type="fig" rid="pone.0157439.g008">Fig 8</xref>
.</bold>
The numbers on the gel indicate differentially expressed proteins. For descriptive quantification of differentially expressed proteins please refer to
<xref ref-type="supplementary-material" rid="pone.0157439.s008">S1 Table</xref>
and
<xref ref-type="supplementary-material" rid="pone.0157439.s009">S2 Table</xref>
.</p>
<p>(JPG)</p>
</caption>
<media xlink:href="pone.0157439.s005.jpg">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s006">
<label>S1 File</label>
<caption>
<title>Raw files/Screen shots of MS MS spectra of proteins in graft unions of ‘Super Sunload’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(ZIP)</p>
</caption>
<media xlink:href="pone.0157439.s006.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s007">
<label>S2 File</label>
<caption>
<title>Raw files/Screen shots of MS MS spectra of proteins in graft unions of ‘‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(ZIP)</p>
</caption>
<media xlink:href="pone.0157439.s007.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s008">
<label>S1 Table</label>
<caption>
<title>Spot quantification analyzed by Progenesis software in graft unions of ‘Super Sunload’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0157439.s008.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s009">
<label>S2 Table</label>
<caption>
<title>Spot quantification analyzed by progenesis software in graft unions of ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0157439.s009.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s010">
<label>S3 Table</label>
<caption>
<title>MS MS ion search in graft unions of ‘Super Sunload’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0157439.s010.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0157439.s011">
<label>S4 Table</label>
<caption>
<title>MS MS ion search in graft unions of ‘Super Doterang’ tomato scions grafted on ‘B-blocking’ as tomato rootstock grown under diverse day/night temperatures; normal-standard (23/23°C and 25/18°C) and high-low (30/15°C).</title>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0157439.s011.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture Forestry and Fisheries (Project No. 312034–04). SM, CHK, HW and YC were supported by a scholarship from BK21 program, Ministry of Education, Korea. Authors would also like to thank Mr. Prabhakaran Soundararajan, Department of Horticulture, Gyeongsang National University for helping in statistical analysis of Proteome data.</p>
</ack>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>ROS</term>
<def>
<p>reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>H
<sub>2</sub>
O
<sub>2</sub>
</term>
<def>
<p>hydrogen peroxide</p>
</def>
</def-item>
<def-item>
<term>O
<sub>2</sub>
<sup>-1</sup>
</term>
<def>
<p>singlet oxygen</p>
</def>
</def-item>
<def-item>
<term>SOD</term>
<def>
<p>superoxide dismutase</p>
</def>
</def-item>
<def-item>
<term>APX</term>
<def>
<p>ascorbate peroxidase</p>
</def>
</def-item>
<def-item>
<term>CAT</term>
<def>
<p>catalase</p>
</def>
</def-item>
<def-item>
<term>2-DE</term>
<def>
<p>second dimensional gel electrophoresis</p>
</def>
</def-item>
<def-item>
<term>IEF</term>
<def>
<p>isoelectric focusing</p>
</def>
</def-item>
<def-item>
<term>IPG</term>
<def>
<p>immobilized pressure gradient</p>
</def>
</def-item>
<def-item>
<term>MALDI-TOF MS</term>
<def>
<p>matrix-assisted laser desorption/ionization time of flight mass spectrometer</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>References</title>
<ref id="pone.0157439.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wahid</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Gelani</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ashraf</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Foolad</surname>
<given-names>MR</given-names>
</name>
.
<article-title>Heat tolerance in plants: An overview</article-title>
.
<source>Environ and Exp Bot</source>
<year>2007</year>
;
<volume>61</volume>
:
<fpage>199</fpage>
<lpage>223</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
.
<article-title>A comparative proteomic analysis of
<italic>Pinellia ternata</italic>
leaves exposed to heat stress</article-title>
.
<source>Int J of Mol Sci</source>
<year>2013</year>
;
<volume>14</volume>
:
<fpage>20614</fpage>
<lpage>20634</lpage>
.
<pub-id pub-id-type="pmid">24132150</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Yuan</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
.
<article-title>Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots</article-title>
.
<source>Acta Physiol Plantarum</source>
<year>2013</year>
;
<volume>35</volume>
:
<fpage>501</fpage>
<lpage>513</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref004">
<label>4</label>
<mixed-citation publication-type="book">
<name>
<surname>Howarth C</surname>
<given-names>J</given-names>
</name>
.
<chapter-title>Genetic improvements of tolerance to high temperature</chapter-title>
In:
<name>
<surname>Ashraf</surname>
<given-names>M.</given-names>
</name>
and
<name>
<surname>Harris</surname>
<given-names>P. J. C.</given-names>
</name>
(Eds.),
<source>Abiotic Stresses: Plant resistance through breeding and molecular approaches</source>
.
<publisher-name>Howarth Press Inc.</publisher-name>
,
<publisher-loc>New York</publisher-loc>
<year>2005</year>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Barnabás</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Jager</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Feher</surname>
<given-names>A</given-names>
</name>
.
<article-title>The effect of drought and heat stress on reproductive processes in cereals</article-title>
.
<source>Plant Cell and Environ</source>
<year>2008</year>
;
<volume>31</volume>
:
<fpage>11</fpage>
<lpage>38</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ren</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Comparative physiological and proteomic analyses of poplar (
<italic>Populus yunnanensis</italic>
) plantlets exposed to high temperature and drought</article-title>
.
<source>PLoS ONE</source>
<year>2014</year>
;
<volume>9</volume>
(
<issue>9</issue>
):
<fpage>e107605</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0107605">10.1371/journal.pone.0107605</ext-link>
</comment>
<pub-id pub-id-type="pmid">25225913</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Ahsan</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>SH</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Bahk</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>IJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>A proteomic approach in analyzing heat-responsive proteins in rice leaves</article-title>
.
<source>Proteomics</source>
<year>2007</year>
;
<volume>7</volume>
:
<fpage>3369</fpage>
<lpage>3383</lpage>
.
<pub-id pub-id-type="pmid">17722143</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xing</surname>
<given-names>WW</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Shao</surname>
<given-names>QS</given-names>
</name>
,
<name>
<surname>Shu</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Effect of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO
<sub>3</sub>
)
<sub>2</sub>
stress</article-title>
.
<source>Plant Physiol and Biochem</source>
<year>2015</year>
;
<volume>87</volume>
:
<fpage>124</fpage>
<lpage>132</lpage>
.
<pub-id pub-id-type="pmid">25579659</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rivard</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Louws</surname>
<given-names>FJ</given-names>
</name>
.
<article-title>Grafting to manage soilborne disease in heirloom tomato production</article-title>
.
<source>HortScience</source>
<year>2008</year>
;
<volume>43</volume>
:
<fpage>2104</fpage>
<lpage>2111</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Estañ</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Martinez-Rodrigues</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Perez-Alfoce</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Flowers</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Bolarin</surname>
<given-names>MC</given-names>
</name>
.
<article-title>Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot</article-title>
.
<source>J of Exp Bot</source>
<year>2005</year>
;
<volume>56</volume>
(
<issue>412</issue>
):
<fpage>703</fpage>
<lpage>712</lpage>
.
<pub-id pub-id-type="pmid">15557292</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sigüenza</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Schochow</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Turini</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ploeg</surname>
<given-names>A</given-names>
</name>
.
<article-title>Use of
<italic>Cucumis metuliferus</italic>
as a rootstock for melon to manage Meloidogyne incognita</article-title>
.
<source>J of Nematology</source>
<year>2005</year>
;
<volume>37</volume>
:
<fpage>276</fpage>
<lpage>280</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Olmstead</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Lang</surname>
<given-names>NS</given-names>
</name>
,
<name>
<surname>Ewers</surname>
<given-names>FW</given-names>
</name>
,
<name>
<surname>Owens</surname>
<given-names>SA</given-names>
</name>
.
<article-title>Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstock</article-title>
.
<source>J American Soci of Hort Sci</source>
<year>2006</year>
;
<volume>131</volume>
:
<fpage>577</fpage>
<lpage>585</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
.
<article-title>Grafting of
<italic>Cucumis sativus</italic>
onto
<italic>Cucurbita ficifolia</italic>
leads to improved plant growth, increased light utilization and reduced accumulation of reactive oxygen species in chilled plants</article-title>
.
<source>J Plant Res</source>
<year>2009</year>
;
<volume>122</volume>
:
<fpage>529</fpage>
<lpage>540</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s10265-009-0247-3">10.1007/s10265-009-0247-3</ext-link>
</comment>
<pub-id pub-id-type="pmid">19521746</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Corbesier</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Vincent</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Jang</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fornara</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Fan</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Searle</surname>
<given-names>I</given-names>
</name>
,
<etal>et al</etal>
<article-title>FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis</article-title>
.
<source>Science</source>
<year>2007</year>
;
<volume>316</volume>
:
<fpage>1030</fpage>
<lpage>1033</lpage>
.
<pub-id pub-id-type="pmid">17446353</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cookson</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Moreno</surname>
<given-names>MJC</given-names>
</name>
,
<name>
<surname>Hevin</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Mendome</surname>
<given-names>LZN</given-names>
</name>
,
<name>
<surname>Delrot</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Trossat-Magnin</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signaling, and secondary metabolism</article-title>
.
<source>J of Exp Bot</source>
<year>2013</year>
;
<volume>64</volume>
:
<fpage>2997</fpage>
<lpage>3008</lpage>
.
<pub-id pub-id-type="pmid">23698628</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cookson</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Clemente</surname>
<given-names>Moreno MJ</given-names>
</name>
,
<name>
<surname>Hevin</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Nyamba Mendome</surname>
<given-names>LZ</given-names>
</name>
,
<name>
<surname>Delrot</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Magnin</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Hetrografting with nonself rootstocks induces genes involved in stress response at the graft interface when compared with auto grafted controls</article-title>
.
<source>J of Exp Bot</source>
<year>2014</year>
;
<volume>65</volume>
:
<fpage>2473</fpage>
<lpage>2481</lpage>
.
<pub-id pub-id-type="pmid">24692649</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vitale</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Rocco</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Arena</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Giuffrida</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Cassaniti</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Scaloni</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock</article-title>
.
<source>Plant Physiol and Biochem</source>
<year>2014</year>
;
<volume>83</volume>
:
<fpage>207</fpage>
<lpage>216</lpage>
.
<pub-id pub-id-type="pmid">25173633</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kumari</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Chaudhury</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Sing</surname>
<given-names>SP</given-names>
</name>
.
<article-title>Grafting triggers differential responses between scion and rootstock</article-title>
.
<source>PLoS ONE</source>
<year>2015</year>
;
<volume>10</volume>
(
<issue>4</issue>
):
<fpage>e0124438</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0124438">10.1371/journal.pone.0124438</ext-link>
</comment>
<pub-id pub-id-type="pmid">25874958</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muneer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ko</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>Soundararajan</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Manivannan</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>YG</given-names>
</name>
,
<name>
<surname>Jeong</surname>
<given-names>BR</given-names>
</name>
.
<article-title>Proteomic study related to vascular connections in water melon scions grafted onto bottle-gourd rootstock under different light intensities</article-title>
.
<source>PLoS ONE</source>
<year>2015</year>
;
<volume>10</volume>
(
<issue>3</issue>
):
<fpage>e0120899</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0120899">10.1371/journal.pone.0120899</ext-link>
</comment>
<pub-id pub-id-type="pmid">25789769</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Canio</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Kessler</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sinha</surname>
<given-names>N</given-names>
</name>
.
<article-title>Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato</article-title>
.
<source>Science</source>
<year>2001</year>
;
<volume>293</volume>
:
<fpage>287</fpage>
<lpage>289</lpage>
.
<pub-id pub-id-type="pmid">11452121</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Prassinos</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Ko</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Lang</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Iezzoni</surname>
<given-names>AF</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>KH</given-names>
</name>
.
<article-title>Rootstock-induced dwarfing in cherries is caused by differential cessation of terminal meristem growth and is triggered by rootstock specific gene regulation</article-title>
.
<source>Tree Physiol</source>
<year>2009</year>
;
<volume>29</volume>
:
<fpage>927</fpage>
<lpage>936</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/tpp027">10.1093/treephys/tpp027</ext-link>
</comment>
<pub-id pub-id-type="pmid">19429629</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stegemann</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bock</surname>
<given-names>R</given-names>
</name>
.
<article-title>Exchange of genetic material between cells in plant tissue grafts</article-title>
.
<source>Science</source>
<year>2009</year>
;
<volume>324</volume>
:
<fpage>649</fpage>
<lpage>651</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1170397">10.1126/science.1170397</ext-link>
</comment>
<pub-id pub-id-type="pmid">19407205</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Soumelidou</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Battey</surname>
<given-names>NH</given-names>
</name>
,
<name>
<surname>John</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Barnett</surname>
<given-names>JR</given-names>
</name>
.
<article-title>The anatomy of the developing bud union and its relationship to dwarfing in apple</article-title>
.
<source>Annals of Bot</source>
<year>1994</year>
;
<volume>74</volume>
:
<fpage>605</fpage>
<lpage>611</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Milien</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Renault-Spilmont</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Cookson</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Sarrazin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Verdeil</surname>
<given-names>JL</given-names>
</name>
.
<article-title>Visualization of the 3D structure of the graft union of grapevine using X-ray tomography</article-title>
.
<source>Sci Hort</source>
<year>2012</year>
;
<volume>144</volume>
:
<fpage>130</fpage>
<lpage>140</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fuentes</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Stegemann</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Golczyk</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Karcher</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Bock</surname>
<given-names>R</given-names>
</name>
.
<article-title>Horizontal genome transfer as an asexual path to the formation of new species</article-title>
.
<source>Nature</source>
<year>2014</year>
;
<volume>511</volume>
:
<fpage>232</fpage>
<lpage>235</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature13291">10.1038/nature13291</ext-link>
</comment>
<pub-id pub-id-type="pmid">24909992</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kollmann</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Glockmann</surname>
<given-names>C</given-names>
</name>
.
<article-title>Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa</article-title>
.
<source>Protoplasma</source>
<year>1985</year>
;
<volume>124</volume>
:
<fpage>224</fpage>
<lpage>235</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fernandez-Garcia</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Carvajal</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Olmos</surname>
<given-names>E</given-names>
</name>
.
<article-title>Graft union formation in tomato plants, peroxidase and catalase involvement</article-title>
.
<source>Annals of Bot</source>
<year>2003</year>
;
<volume>93</volume>
:
<fpage>53</fpage>
<lpage>60</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flaishman</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Loginovsky</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Golobowich</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lev-Yadun</surname>
<given-names>S</given-names>
</name>
.
<article-title>
<italic>Arabidopsis thaliana</italic>
as a model system for graft union development in homografts and heterografts</article-title>
.
<source>J Plant Growth Regul</source>
<year>2008</year>
;
<volume>27</volume>
:
<fpage>231</fpage>
<lpage>239</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yin</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Yan</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jia</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Yan</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
<article-title>Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation</article-title>
.
<source>J Exp Bot</source>
<year>2012</year>
;
<volume>63</volume>
:
<fpage>4219</fpage>
<lpage>4232</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/ers109">10.1093/jxb/ers109</ext-link>
</comment>
<pub-id pub-id-type="pmid">22511803</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muneer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ahmad</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Bashir</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Qureshi</surname>
<given-names>MI</given-names>
</name>
.
<article-title>Proteomics of nitrogen fixing nodules under various environmental stresses</article-title>
.
<source>Plant Omics J</source>
<year>2012</year>
;
<volume>5</volume>
(
<issue>2</issue>
):
<fpage>167</fpage>
<lpage>176</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rocco</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>D’Ambrosio</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Arena</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Faurobert</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Scaloni</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Marra</surname>
<given-names>M</given-names>
</name>
.
<article-title>Proteomic analysis of tomato fruits from two ecotypes during ripening</article-title>
.
<source>Proteomics</source>
<year>2006</year>
;
<volume>6</volume>
:
<fpage>3781</fpage>
<lpage>3791</lpage>
.
<pub-id pub-id-type="pmid">16739135</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ercolano</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Sanseverino</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Carli</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Ferriello</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Frusciante</surname>
<given-names>L</given-names>
</name>
.
<article-title>Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects</article-title>
.
<source>Plant Cell Rep</source>
<year>2012</year>
;
<volume>31</volume>
:
<fpage>973</fpage>
<lpage>985</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00299-012-1234-z">10.1007/s00299-012-1234-z</ext-link>
</comment>
<pub-id pub-id-type="pmid">22350316</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>YH</given-names>
</name>
,
<name>
<surname>Offler</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Ruan</surname>
<given-names>YL</given-names>
</name>
.
<article-title>A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing</article-title>
.
<source>Front in Plant Sci</source>
<year>2014</year>
;
<volume>5</volume>
:
<fpage>1</fpage>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Romero-Puertas</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Rodríguez-Serrano</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Corpas</surname>
<given-names>FJ</given-names>
</name>
,
<name>
<surname>Gómez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Del Río</surname>
<given-names>LA</given-names>
</name>
,
<name>
<surname>Sandalio</surname>
<given-names>LM</given-names>
</name>
.
<article-title>Cadmium-induced subcellular accumulation of O2− and H
<sub>2</sub>
O
<sub>2</sub>
in pea leaves</article-title>
.
<source>Plant Cell Environ</source>
<year>2004</year>
;
<volume>27</volume>
:
<fpage>1122</fpage>
<lpage>1134</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dhindsa</surname>
<given-names>RH</given-names>
</name>
,
<name>
<surname>Plumb-Dhindsa</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Thorpe</surname>
<given-names>TA</given-names>
</name>
.
<article-title>Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT</article-title>
.
<source>J of Exp Bot</source>
<year>1981</year>
;
<volume>32</volume>
:
<fpage>93</fpage>
<lpage>101</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nakano</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Nobuta</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Vemaraju</surname>
<given-names>K</given-names>
</name>
.,
<name>
<surname>Tej</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Skogen</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Meyers</surname>
<given-names>BC</given-names>
</name>
<article-title>. Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNA and small RNA</article-title>
.
<source>Nucleic Acids Res</source>
<year>2006</year>
;
<volume>34</volume>
:
<fpage>731</fpage>
<lpage>735</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aebi</surname>
<given-names>H</given-names>
</name>
.
<article-title>Catalase in vitro</article-title>
.
<source>Methods Enzymol</source>
<year>1984</year>
;
<volume>105</volume>
:
<fpage>121</fpage>
<lpage>126</lpage>
.
<pub-id pub-id-type="pmid">6727660</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodríguez</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Canales</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Borrás-Hidalgo</surname>
<given-names>O</given-names>
</name>
.
<article-title>Molecular aspects of abiotic stress in plants</article-title>
.
<source>Biotechnol Appl</source>
<year>2005</year>
;
<volume>22</volume>
:
<fpage>1</fpage>
<lpage>10</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hasanuzzaman</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Nahar</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Alam Md</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Roychowdhury</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Fujita</surname>
<given-names>M</given-names>
</name>
.
<article-title>Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants</article-title>
.
<source>Int J Mol Sci</source>
.
<year>2013</year>
;
<volume>14</volume>
:
<fpage>9643</fpage>
<lpage>9684</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.3390/ijms14059643">10.3390/ijms14059643</ext-link>
</comment>
<pub-id pub-id-type="pmid">23644891</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rivero</surname>
<given-names>R M</given-names>
</name>
,
<name>
<surname>Ruiz</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Garcia</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>López-Lefebre</surname>
<given-names>LR</given-names>
</name>
,
<name>
<surname>Sánchez</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Romero</surname>
<given-names>L</given-names>
</name>
.
<article-title>Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants</article-title>
.
<source>Plant Sci</source>
<year>2001</year>
;
<volume>160</volume>
:
<fpage>315</fpage>
<lpage>321</lpage>
.
<pub-id pub-id-type="pmid">11164603</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flanagan</surname>
<given-names>LB</given-names>
</name>
,
<name>
<surname>Johnson</surname>
<given-names>BG</given-names>
</name>
.
<article-title>Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperature grassland</article-title>
.
<source>Agri and Forest Meteorol</source>
<year>2004</year>
;
<volume>130</volume>
:
<fpage>237</fpage>
<lpage>253</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Apel</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Hirt</surname>
<given-names>H</given-names>
</name>
.
<article-title>Reactive oxygen species: metabolism, oxidative stress, and signal transduction</article-title>
.
<source>Ann Rev in Plant Biol</source>
<year>2004</year>
;
<volume>55</volume>
:
<fpage>373</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="pmid">15377225</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Suzuki</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Koussevitzky</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Mittler</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>G</given-names>
</name>
.
<article-title>ROS and redox signalling in the response of plants to abiotic stress</article-title>
.
<source>Plant Cell Environ</source>
<year>2012</year>
;
<volume>35</volume>
:
<fpage>259</fpage>
<lpage>270</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-3040.2011.02336.x">10.1111/j.1365-3040.2011.02336.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">21486305</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muneer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Qureshi</surname>
<given-names>MI</given-names>
</name>
.
<article-title>Fe modulates Cd-induced oxidative stress and the expression of stress responsive proteins in the nodules of
<italic>Vigna radiata</italic>
</article-title>
.
<source>Plant Growth Regul</source>
<year>2012</year>
;
<volume>68</volume>
(
<issue>3</issue>
):
<fpage>421</fpage>
<lpage>433</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fernaândez-Garciâa</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Carvajal</surname>
<given-names>Micaela</given-names>
</name>
,
<name>
<surname>Olmos</surname>
<given-names>E</given-names>
</name>
.
<article-title>Graft union formation in tomato plants; peroxidase and catalase involvement</article-title>
.
<source>Annals of Bot</source>
<year>2004</year>
;
<volume>93</volume>
:
<fpage>53</fpage>
<lpage>60</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Irrisarri</surname>
<given-names>p</given-names>
</name>
,
<name>
<surname>Binczycki</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Errea</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Martens</surname>
<given-names>HJ</given-names>
</name>
,
<name>
<surname>Pina</surname>
<given-names>A</given-names>
</name>
.
<article-title>Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development</article-title>
.
<source>J of Plant Physiol</source>
<year>2015</year>
;
<volume>176</volume>
:
<fpage>25</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="pmid">25543953</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chaves</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Maroco</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Pereira</surname>
<given-names>JS</given-names>
</name>
.
<article-title>Understanding plant responses to drought-from genes to the whole plant</article-title>
.
<source>Fun Plant Biol</source>
<year>2003</year>
;
<volume>30</volume>
:
<fpage>239</fpage>
<lpage>264</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bai</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Ahmad</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
.
<article-title>Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize</article-title>
.
<source>J of Proteome Res</source>
<year>2011</year>
;
<volume>10</volume>
:
<fpage>4349</fpage>
<lpage>4364</lpage>
.
<pub-id pub-id-type="pmid">21846115</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Molassiotis</surname>
<given-names>AN</given-names>
</name>
,
<name>
<surname>Diamantidis</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Therios</surname>
<given-names>IN</given-names>
</name>
,
<name>
<surname>Tsirakoglou</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Dimassi</surname>
<given-names>KN</given-names>
</name>
.
<article-title>Oxidative stress, antioxidant activity and Fe(III)-chelate reductase activity of five
<italic>Prunus</italic>
rootstocks explants in response to Fe deficiency</article-title>
.
<source>Plant Growth Regul</source>
<year>2005</year>
;
<volume>46</volume>
:
<fpage>69</fpage>
<lpage>78</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zheng</surname>
<given-names>BS</given-names>
</name>
,
<name>
<surname>Chu</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>SH</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>YJ</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>ZJ</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>cDNA-AFLP analysis of gene expression in hickory (
<italic>Carya cathayensis</italic>
) during graft process</article-title>
.
<source>Tree Physiol</source>
<year>2010</year>
;
<volume>30</volume>
:
<fpage>297</fpage>
<lpage>303</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/tpp102">10.1093/treephys/tpp102</ext-link>
</comment>
<pub-id pub-id-type="pmid">20022866</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref051">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yuan</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>ZH</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>WF</given-names>
</name>
,
<name>
<surname>Cao</surname>
<given-names>JH</given-names>
</name>
.
<article-title>Proteome analysis of interaction between rootstocks and scions in
<italic>Hevea brasiliensis</italic>
</article-title>
.
<source>African J Biotech</source>
<year>2011</year>
;
<volume>10</volume>
:
<fpage>14816</fpage>
<lpage>14825</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0157439.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Zheng</surname>
<given-names>HQ</given-names>
</name>
,
<name>
<surname>Sha</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Zeng</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>QC</given-names>
</name>
.
<article-title>A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation</article-title>
<source>J Exp Bot</source>
<year>2006</year>
;
<volume>57</volume>
(
<issue>4</issue>
):
<fpage>827</fpage>
<lpage>835</lpage>
.
<pub-id pub-id-type="pmid">16449375</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Wen</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
.
<article-title>The combined effect of salt stress and heat shock on proteome profiling in
<italic>Suaeda salsa</italic>
</article-title>
.
<source>J of Plant Physiol</source>
<year>2011</year>
;
<volume>168</volume>
:
<fpage>1743</fpage>
<lpage>1752</lpage>
.
<pub-id pub-id-type="pmid">21663998</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Wei</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Qiao</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
.
<article-title>Proteomics analysis of alfalfa response to heat stress</article-title>
.
<source>PLoS ONE</source>
<year>2013</year>
;
<volume>8</volume>
(
<issue>12</issue>
):
<fpage>e82725</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0082725">10.1371/journal.pone.0082725</ext-link>
</comment>
<pub-id pub-id-type="pmid">24324825</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Majoul</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Bancel</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Triboi</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Hamida</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Branlard</surname>
<given-names>G</given-names>
</name>
.
<article-title>Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat responsive proteins from non-prolamins fraction</article-title>
.
<source>Proteomics</source>
<year>2004</year>
;
<volume>4</volume>
:
<fpage>505</fpage>
<lpage>513</lpage>
.
<pub-id pub-id-type="pmid">14760723</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Neilson</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Gammulla</surname>
<given-names>CG</given-names>
</name>
,
<name>
<surname>Mirzaei</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Imin</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Haynes</surname>
<given-names>PA</given-names>
</name>
.
<article-title>Proteomic analysis of diverse temperature in plants</article-title>
.
<source>Proteomics</source>
<year>2010</year>
;
<volume>10</volume>
:
<fpage>828</fpage>
<lpage>845</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/pmic.200900538">10.1002/pmic.200900538</ext-link>
</comment>
<pub-id pub-id-type="pmid">19953552</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Herald</surname>
<given-names>VL</given-names>
</name>
,
<name>
<surname>Heazlewood</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Millar</surname>
<given-names>AH</given-names>
</name>
.
<article-title>Proteomic identification of divalent cation binding proteins in plant mitochondria</article-title>
.
<source>FEBS Letters</source>
<year>2003</year>
;
<volume>537</volume>
:
<fpage>96</fpage>
<lpage>100</lpage>
.
<pub-id pub-id-type="pmid">12606038</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>CP</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
.
<article-title>Polyamines improve K
<sup>+</sup>
/Na
<sup>+</sup>
homeostasis in barley seedlings by regulating root ion channel activities</article-title>
.
<source>Plant Physiol</source>
<year>2007</year>
;
<volume>145</volume>
:
<fpage>1061</fpage>
<lpage>1072</lpage>
.
<pub-id pub-id-type="pmid">17905858</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shabala</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cuin</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Pang</surname>
<given-names>J</given-names>
</name>
.
<article-title>Xylem ionic relations and salinity tolerance in barley</article-title>
.
<source>Plant J</source>
<year>2010</year>
;
<volume>61</volume>
:
<fpage>839</fpage>
<lpage>853</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-313X.2009.04110.x">10.1111/j.1365-313X.2009.04110.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">20015063</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Beltrán-Peňa</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Aguilar</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ortiz-Lo´pez</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Dinkova</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>de Jime´nez</surname>
<given-names>ES</given-names>
</name>
.
<article-title>Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation</article-title>
.
<source>Physiol Plant</source>
<year>2002</year>
;
<volume>115</volume>
:
<fpage>291</fpage>
<lpage>297</lpage>
.
<pub-id pub-id-type="pmid">12060248</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0157439.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kim</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>SW</given-names>
</name>
,
<name>
<surname>Chug</surname>
<given-names>YS</given-names>
</name>
,
<name>
<surname>Chung</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>JI</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>JH</given-names>
</name>
.
<article-title>Molecular cloning of low-temperature-inducible ribosomal proteins from soybean</article-title>
.
<source>J of Exp Bot</source>
<year>2004</year>
;
<volume>55</volume>
:
<fpage>1153</fpage>
<lpage>1155</lpage>
.
<pub-id pub-id-type="pmid">15020631</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000393 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000393 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4911148
   |texte=   Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27310261" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024