Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000336 ( Pmc/Corpus ); précédent : 0003359; suivant : 0003370 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae</title>
<author>
<name sortKey="Weng, Mao Lun" sort="Weng, Mao Lun" uniqKey="Weng M" first="Mao-Lun" last="Weng">Mao-Lun Weng</name>
<affiliation>
<nlm:aff id="evw115-aff1">Department of Biology, University of Maryland, College Park</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruhlman, Tracey A" sort="Ruhlman, Tracey A" uniqKey="Ruhlman T" first="Tracey A." last="Ruhlman">Tracey A. Ruhlman</name>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jansen, Robert K" sort="Jansen, Robert K" uniqKey="Jansen R" first="Robert K." last="Jansen">Robert K. Jansen</name>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evw115-aff3">Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27190001</idno>
<idno type="pmc">4943186</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943186</idno>
<idno type="RBID">PMC:4943186</idno>
<idno type="doi">10.1093/gbe/evw115</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000336</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae</title>
<author>
<name sortKey="Weng, Mao Lun" sort="Weng, Mao Lun" uniqKey="Weng M" first="Mao-Lun" last="Weng">Mao-Lun Weng</name>
<affiliation>
<nlm:aff id="evw115-aff1">Department of Biology, University of Maryland, College Park</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ruhlman, Tracey A" sort="Ruhlman, Tracey A" uniqKey="Ruhlman T" first="Tracey A." last="Ruhlman">Tracey A. Ruhlman</name>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jansen, Robert K" sort="Jansen, Robert K" uniqKey="Jansen R" first="Robert K." last="Jansen">Robert K. Jansen</name>
<affiliation>
<nlm:aff id="evw115-aff2">Department of Integrative Biology, University of Texas, Austin</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evw115-aff3">Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome Biology and Evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (
<italic>dN</italic>
) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakker, Ft" uniqKey="Bakker F">FT Bakker</name>
</author>
<author>
<name sortKey="Culham, A" uniqKey="Culham A">A Culham</name>
</author>
<author>
<name sortKey="Hettiarachi, P" uniqKey="Hettiarachi P">P Hettiarachi</name>
</author>
<author>
<name sortKey="Touloumenidou, T" uniqKey="Touloumenidou T">T Touloumenidou</name>
</author>
<author>
<name sortKey="Gibby, M" uniqKey="Gibby M">M. Gibby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barreto, Fs" uniqKey="Barreto F">FS Barreto</name>
</author>
<author>
<name sortKey="Burton, Rs" uniqKey="Burton R">RS. Burton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhattacherjee, A" uniqKey="Bhattacherjee A">A Bhattacherjee</name>
</author>
<author>
<name sortKey="Mallik, S" uniqKey="Mallik S">S Mallik</name>
</author>
<author>
<name sortKey="Kundu, S" uniqKey="Kundu S">S. Kundu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blazier, Jc" uniqKey="Blazier J">JC Blazier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandvain, Y" uniqKey="Brandvain Y">Y Brandvain</name>
</author>
<author>
<name sortKey="Wade, Mj" uniqKey="Wade M">MJ. Wade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bubunenko, Mg" uniqKey="Bubunenko M">MG Bubunenko</name>
</author>
<author>
<name sortKey="Schmidt, J" uniqKey="Schmidt J">J Schmidt</name>
</author>
<author>
<name sortKey="Subramanian, Ar" uniqKey="Subramanian A">AR. Subramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budar, F" uniqKey="Budar F">F Budar</name>
</author>
<author>
<name sortKey="Fujii, S" uniqKey="Fujii S">S. Fujii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cusack, Bp" uniqKey="Cusack B">BP Cusack</name>
</author>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH. Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Smet, R" uniqKey="De Smet R">R De Smet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drouin, G" uniqKey="Drouin G">G Drouin</name>
</author>
<author>
<name sortKey="Daoud, H" uniqKey="Daoud H">H Daoud</name>
</author>
<author>
<name sortKey="Xia, J" uniqKey="Xia J">J. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emanuelsson, O" uniqKey="Emanuelsson O">O Emanuelsson</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleischmann, Tt" uniqKey="Fleischmann T">TT Fleischmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabriel, W" uniqKey="Gabriel W">W Gabriel</name>
</author>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Burger, R" uniqKey="Burger R">R. Burger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gantt, Js" uniqKey="Gantt J">JS Gantt</name>
</author>
<author>
<name sortKey="Baldauf, Sl" uniqKey="Baldauf S">SL Baldauf</name>
</author>
<author>
<name sortKey="Calie, Pj" uniqKey="Calie P">PJ Calie</name>
</author>
<author>
<name sortKey="Weeden, Nf" uniqKey="Weeden N">NF Weeden</name>
</author>
<author>
<name sortKey="Palmer, Jd" uniqKey="Palmer J">JD. Palmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodstein, Dm" uniqKey="Goodstein D">DM Goodstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gray, Mw" uniqKey="Gray M">MW Gray</name>
</author>
<author>
<name sortKey="Burger, G" uniqKey="Burger G">G Burger</name>
</author>
<author>
<name sortKey="Lang, Bf" uniqKey="Lang B">BF. Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greiner, S" uniqKey="Greiner S">S Greiner</name>
</author>
<author>
<name sortKey="Bock, R" uniqKey="Bock R">R. Bock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guisinger, Mm" uniqKey="Guisinger M">MM Guisinger</name>
</author>
<author>
<name sortKey="Kuehl, Jv" uniqKey="Kuehl J">JV Kuehl</name>
</author>
<author>
<name sortKey="Boore, Jl" uniqKey="Boore J">JL Boore</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guisinger, Mm" uniqKey="Guisinger M">MM Guisinger</name>
</author>
<author>
<name sortKey="Kuehl, Jv" uniqKey="Kuehl J">JV Kuehl</name>
</author>
<author>
<name sortKey="Boore, Jl" uniqKey="Boore J">JL Boore</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
<author>
<name sortKey="Saski, C" uniqKey="Saski C">C Saski</name>
</author>
<author>
<name sortKey="Lee, S B" uniqKey="Lee S">S-B Lee</name>
</author>
<author>
<name sortKey="Hansen, Ak" uniqKey="Hansen A">AK Hansen</name>
</author>
<author>
<name sortKey="Daniell, H" uniqKey="Daniell H">H. Daniell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonson, Na" uniqKey="Jonson N">NA. Jonson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaczanowska, M" uniqKey="Kaczanowska M">M Kaczanowska</name>
</author>
<author>
<name sortKey="Ryden Aulin, Mr" uniqKey="Ryden Aulin M">MR. Ryden-Aulin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K Katoh</name>
</author>
<author>
<name sortKey="Misawa, K" uniqKey="Misawa K">K Misawa</name>
</author>
<author>
<name sortKey="Kuma, K" uniqKey="Kuma K">K Kuma</name>
</author>
<author>
<name sortKey="Miyata, T" uniqKey="Miyata T">T. Miyata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kearse, M" uniqKey="Kearse M">M Kearse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleine, T" uniqKey="Kleine T">T Kleine</name>
</author>
<author>
<name sortKey="Maier, Ug" uniqKey="Maier U">UG Maier</name>
</author>
<author>
<name sortKey="Leister, D" uniqKey="Leister D">D. Leister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosakovsky Pond, Sl" uniqKey="Kosakovsky Pond S">SL Kosakovsky Pond</name>
</author>
<author>
<name sortKey="Muse, Sv" uniqKey="Muse S">SV. Muse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kryazhimskiy, S" uniqKey="Kryazhimskiy S">S Kryazhimskiy</name>
</author>
<author>
<name sortKey="Dushoff, J" uniqKey="Dushoff J">J Dushoff</name>
</author>
<author>
<name sortKey="Bazykin, Ga" uniqKey="Bazykin G">GA Bazykin</name>
</author>
<author>
<name sortKey="Plotkin, Jb" uniqKey="Plotkin J">JB. Plotkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levin, D" uniqKey="Levin D">D. Levin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovell, Sc" uniqKey="Lovell S">SC Lovell</name>
</author>
<author>
<name sortKey="Robertson, Dl" uniqKey="Robertson D">DL. Robertson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M. Lynch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maier, U G" uniqKey="Maier U">U-G Maier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maisnier Patin, S" uniqKey="Maisnier Patin S">S Maisnier-Patin</name>
</author>
<author>
<name sortKey="Paulander, W" uniqKey="Paulander W">W Paulander</name>
</author>
<author>
<name sortKey="Pennhag, A" uniqKey="Pennhag A">A Pennhag</name>
</author>
<author>
<name sortKey="Andersson, Di" uniqKey="Andersson D">DI. Andersson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchler Bauer, A" uniqKey="Marchler Bauer A">A Marchler-Bauer</name>
</author>
<author>
<name sortKey="Derbyshire, Mk" uniqKey="Derbyshire M">MK Derbyshire</name>
</author>
<author>
<name sortKey="Gonzales, Nr" uniqKey="Gonzales N">NR Gonzales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marin Navarro, J" uniqKey="Marin Navarro J">J Marín-Navarro</name>
</author>
<author>
<name sortKey="Manuell, Al" uniqKey="Manuell A">AL Manuell</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Mayfield, Sp" uniqKey="Mayfield S">SP. Mayfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuo, M" uniqKey="Matsuo M">M Matsuo</name>
</author>
<author>
<name sortKey="Ito, Y" uniqKey="Ito Y">Y Ito</name>
</author>
<author>
<name sortKey="Yamauchi, R" uniqKey="Yamauchi R">R Yamauchi</name>
</author>
<author>
<name sortKey="Obokata, J" uniqKey="Obokata J">J. Obokata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcfadden, Gi" uniqKey="Mcfadden G">GI. McFadden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, K" uniqKey="Muller K">K. Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neiman, M" uniqKey="Neiman M">M Neiman</name>
</author>
<author>
<name sortKey="Taylor, Dr" uniqKey="Taylor D">DR. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
<author>
<name sortKey="Engelbrecht, J" uniqKey="Engelbrecht J">J Engelbrecht</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G. von Heijne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nielsen, R" uniqKey="Nielsen R">R. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noutsos, C" uniqKey="Noutsos C">C Noutsos</name>
</author>
<author>
<name sortKey="Richly, E" uniqKey="Richly E">E Richly</name>
</author>
<author>
<name sortKey="Leister, D" uniqKey="Leister D">D. Leister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohno, S" uniqKey="Ohno S">S. Ohno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Osada, N" uniqKey="Osada N">N Osada</name>
</author>
<author>
<name sortKey="Akashi, H" uniqKey="Akashi H">H. Akashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peden, Jf" uniqKey="Peden J">JF. Peden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peled Zehavi, H" uniqKey="Peled Zehavi H">H Peled-Zehavi</name>
</author>
<author>
<name sortKey="Danon, A" uniqKey="Danon A">A. Danon</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rand, Dm" uniqKey="Rand D">DM Rand</name>
</author>
<author>
<name sortKey="Haney, Ra" uniqKey="Haney R">RA Haney</name>
</author>
<author>
<name sortKey="Fry, Aj" uniqKey="Fry A">AJ. Fry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruhlman, Ta" uniqKey="Ruhlman T">TA Ruhlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruhlman, Ta" uniqKey="Ruhlman T">TA Ruhlman</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saitou, N" uniqKey="Saitou N">N Saitou</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M. Nei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scannell, Dr" uniqKey="Scannell D">DR Scannell</name>
</author>
<author>
<name sortKey="Byrne, Kp" uniqKey="Byrne K">KP Byrne</name>
</author>
<author>
<name sortKey="Gordon, Jl" uniqKey="Gordon J">JL Gordon</name>
</author>
<author>
<name sortKey="Wong, S" uniqKey="Wong S">S Wong</name>
</author>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH. Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, Tr" uniqKey="Schmidt T">TR Schmidt</name>
</author>
<author>
<name sortKey="Wu, W" uniqKey="Wu W">W Wu</name>
</author>
<author>
<name sortKey="Goodman, M" uniqKey="Goodman M">M Goodman</name>
</author>
<author>
<name sortKey="Grossman, Li" uniqKey="Grossman L">LI. Grossman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapiro, B" uniqKey="Shapiro B">B Shapiro</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Pybus, Og" uniqKey="Pybus O">OG Pybus</name>
</author>
<author>
<name sortKey="Holmes, Ec" uniqKey="Holmes E">EC. Holmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, Mr" uniqKey="Sharma M">MR Sharma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharp, Pm" uniqKey="Sharp P">PM Sharp</name>
</author>
<author>
<name sortKey="Li, Wh" uniqKey="Li W">WH. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simmons, Mp" uniqKey="Simmons M">MP Simmons</name>
</author>
<author>
<name sortKey="Ochoterena, H" uniqKey="Ochoterena H">H. Ochoterena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sloan, Db" uniqKey="Sloan D">DB. Sloan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sloan, Db" uniqKey="Sloan D">DB Sloan</name>
</author>
<author>
<name sortKey="Triant, Da" uniqKey="Triant D">DA Triant</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M Wu</name>
</author>
<author>
<name sortKey="Taylor, Dr" uniqKey="Taylor D">DR. Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
<author>
<name sortKey="Hoover, P" uniqKey="Hoover P">P Hoover</name>
</author>
<author>
<name sortKey="Rougemont, J" uniqKey="Rougemont J">J. Rougemont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stegemann, S" uniqKey="Stegemann S">S Stegemann</name>
</author>
<author>
<name sortKey="Bock, R" uniqKey="Bock R">R. Bock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmis, Jn" uniqKey="Timmis J">JN Timmis</name>
</author>
<author>
<name sortKey="Ayliffe, Ma" uniqKey="Ayliffe M">MA Ayliffe</name>
</author>
<author>
<name sortKey="Huang, Cy" uniqKey="Huang C">CY Huang</name>
</author>
<author>
<name sortKey="Martin, W" uniqKey="Martin W">W. Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ueda, M" uniqKey="Ueda M">M Ueda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ueda, M" uniqKey="Ueda M">M Ueda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weng, M L" uniqKey="Weng M">M-L Weng</name>
</author>
<author>
<name sortKey="Blazier, Jc" uniqKey="Blazier J">JC Blazier</name>
</author>
<author>
<name sortKey="Govindu, M" uniqKey="Govindu M">M Govindu</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weng, M L" uniqKey="Weng M">M-L Weng</name>
</author>
<author>
<name sortKey="Ruhlman, Ta" uniqKey="Ruhlman T">TA Ruhlman</name>
</author>
<author>
<name sortKey="Gibby, M" uniqKey="Gibby M">M Gibby</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wertheim, Jo" uniqKey="Wertheim J">JO Wertheim</name>
</author>
<author>
<name sortKey="Murrell, B" uniqKey="Murrell B">B Murrell</name>
</author>
<author>
<name sortKey="Smith, Md" uniqKey="Smith M">MD Smith</name>
</author>
<author>
<name sortKey="Kosakovsky Pond, Sl" uniqKey="Kosakovsky Pond S">SL Kosakovsky Pond</name>
</author>
<author>
<name sortKey="Scheffler, K" uniqKey="Scheffler K">K. Scheffler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH Wolfe</name>
</author>
<author>
<name sortKey="Li, Wh" uniqKey="Li W">WH Li</name>
</author>
<author>
<name sortKey="Sharp, Pm" uniqKey="Sharp P">PM. Sharp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wright, F" uniqKey="Wright F">F. Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyman, Sk" uniqKey="Wyman S">SK Wyman</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK Jansen</name>
</author>
<author>
<name sortKey="Boore, Jl" uniqKey="Boore J">JL. Boore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamaguchi, K" uniqKey="Yamaguchi K">K Yamaguchi</name>
</author>
<author>
<name sortKey="Subramanian, Ar" uniqKey="Subramanian A">AR. Subramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamaguchi, K" uniqKey="Yamaguchi K">K Yamaguchi</name>
</author>
<author>
<name sortKey="Von Knoblauch, K" uniqKey="Von Knoblauch K">K von Knoblauch</name>
</author>
<author>
<name sortKey="Subramanian, Ar" uniqKey="Subramanian A">AR. Subramanian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Wong, Wsw" uniqKey="Wong W">WSW Wong</name>
</author>
<author>
<name sortKey="Nielsen, R" uniqKey="Nielsen R">R. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Broughton, Re" uniqKey="Broughton R">RE. Broughton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Nielsen, R" uniqKey="Nielsen R">R Nielsen</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Ruhlman, Ta" uniqKey="Ruhlman T">TA Ruhlman</name>
</author>
<author>
<name sortKey="Mower, Jp" uniqKey="Mower J">JP Mower</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Ruhlman, Ta" uniqKey="Ruhlman T">TA Ruhlman</name>
</author>
<author>
<name sortKey="Sabir, J" uniqKey="Sabir J">J Sabir</name>
</author>
<author>
<name sortKey="Blazier, Jc" uniqKey="Blazier J">JC Blazier</name>
</author>
<author>
<name sortKey="Jansen, Rk" uniqKey="Jansen R">RK. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Vision, Tj" uniqKey="Vision T">TJ Vision</name>
</author>
<author>
<name sortKey="Gaut, Bs" uniqKey="Gaut B">BS. Gaut</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Genome Biol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Genome Biol Evol</journal-id>
<journal-id journal-id-type="publisher-id">gbe</journal-id>
<journal-id journal-id-type="hwp">gbe</journal-id>
<journal-title-group>
<journal-title>Genome Biology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="epub">1759-6653</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27190001</article-id>
<article-id pub-id-type="pmc">4943186</article-id>
<article-id pub-id-type="doi">10.1093/gbe/evw115</article-id>
<article-id pub-id-type="publisher-id">evw115</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Weng</surname>
<given-names>Mao-Lun</given-names>
</name>
<xref ref-type="aff" rid="evw115-aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="evw115-aff2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="evw115-cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ruhlman</surname>
<given-names>Tracey A.</given-names>
</name>
<xref ref-type="aff" rid="evw115-aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jansen</surname>
<given-names>Robert K.</given-names>
</name>
<xref ref-type="aff" rid="evw115-aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="evw115-aff3">
<sup>3</sup>
</xref>
</contrib>
<aff id="evw115-aff1">
<label>1</label>
Department of Biology, University of Maryland, College Park</aff>
<aff id="evw115-aff2">
<label>2</label>
Department of Integrative Biology, University of Texas, Austin</aff>
<aff id="evw115-aff3">
<label>3</label>
Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia</aff>
</contrib-group>
<author-notes>
<corresp id="evw115-cor1">
<label>*</label>
Corresponding author: E-mail:
<email>maolun@umd.edu</email>
.</corresp>
<fn id="evw115-FM1">
<p>
<bold>Data deposition:</bold>
The GenBank accession number for plastid genomes was included in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online.</p>
</fn>
<fn id="evw115-FM2">
<p>
<bold>Associate editor:</bold>
Shu-Miaw Chaw</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>13</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>8</volume>
<issue>6</issue>
<fpage>1824</fpage>
<lpage>1838</lpage>
<history>
<date date-type="accepted">
<day>9</day>
<month>5</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</copyright-statement>
<copyright-year>2016</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by-nc/4.0/" license-type="creative-commons">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">http://creativecommons.org/licenses/by-nc/4.0/</ext-link>
), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</license-p>
</license>
</permissions>
<abstract>
<p>Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (
<italic>dN</italic>
) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits.</p>
</abstract>
<kwd-group kwd-group-type="author">
<kwd>coevolution</kwd>
<kwd>plastid</kwd>
<kwd>Geraniaceae</kwd>
<kwd>ribosome</kwd>
<kwd>nonsynonymous substitution</kwd>
</kwd-group>
<counts>
<page-count count="15"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Plastids and mitochondria, the cytoplasmic organelles of eukaryotic cells that contain their own genomes, are descendants of free-living prokaryotes (
<xref rid="evw115-B16" ref-type="bibr">Gray et al. 2001</xref>
;
<xref rid="evw115-B38" ref-type="bibr">McFadden 2001</xref>
). Since the establishment of endosymbiosis, the bulk of plastid genetic material has been transferred to the nuclear genome (
<xref rid="evw115-B65" ref-type="bibr">Timmis et al. 2004</xref>
) and nuclear-encoded proteins regulate the expression of genes retained in the organelle genome (
<xref rid="evw115-B48" ref-type="bibr">Peled-Zehavi and Danon 2007</xref>
). As a result proper functioning of the plastid requires the import of proteins encoded by nuclear genes and is dependent on coordination between organelle- and nuclear-encoded proteins that assemble plastid-localized multisubunit complexes.</p>
<p>Multisubunit protein complexes comprising proteins encoded by both the organelle and nuclear genomes are critical for cellular function and provide an ideal system to examine intergenomic coevolution (
<xref rid="evw115-B50" ref-type="bibr">Rand et al. 2004</xref>
;
<xref rid="evw115-B60" ref-type="bibr">Sloan 2015</xref>
;
<xref rid="evw115-B83" ref-type="bibr">Zhang et al. 2015</xref>
). In order to maintain proper function, purifying selection is likely the driving force in the evolution of these subunits. However, if mutations arise and become fixed in subunits encoded by one genome, either by drift or positive selection, these alterations may trigger corresponding changes in subunits encoded by the other genome. These coevolutionary changes can be detected by comparisons of the nucleotide substitution rates of subunits encoded in the organelles and nucleus (
<xref rid="evw115-B31" ref-type="bibr">Lovell and Robertson 2010</xref>
).</p>
<p>In animal cells, there is evidence of compensatory evolution between mitochondrial and nuclear-encoded genes (
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi 2012</xref>
;
<xref rid="evw115-B2" ref-type="bibr">Barreto and Burton 2013</xref>
). In plant cells, studies have found coordinated acceleration in plastid- and nuclear-encoded subunits that are part of the same protein complex (
<xref rid="evw115-B61" ref-type="bibr">Sloan et al. 2014</xref>
;
<xref rid="evw115-B83" ref-type="bibr">Zhang et al. 2015</xref>
). However, except for the
<xref rid="evw115-B83" ref-type="bibr">Zhang et al. (2015)</xref>
study, the evolutionary forces driving this coordinated acceleration in plants have not been investigated within a phylogenetic framework.</p>
<p>The plastid ribosome (70S) is composed of a small subunit (30S) and a large subunit (50S), both of which contain plastid- and nuclear-encoded subunits. In the model plant tobacco (
<italic>Nicotiana tabacum</italic>
), the small subunit has 21 proteins that have homologs in
<italic>Escherichia coli</italic>
, of which 12 are plastid-encoded and nine are nuclear-encoded (
<xref rid="evw115-B12" ref-type="bibr">Fleischmann et al. 2011</xref>
). Similarly, the large subunit has 31 proteins that have homologs in
<italic>E. coli</italic>
, of which nine are plastid-encoded and 22 nuclear-encoded (
<xref rid="evw115-B12" ref-type="bibr">Fleischmann et al. 2011</xref>
). In addition, there are six nuclear-encoded, plastid-specific ribosomal proteins that have no homology to any bacterial ribosomal protein (
<xref rid="evw115-B74" ref-type="bibr">Yamaguchi and Subramanian 2000</xref>
;
<xref rid="evw115-B75" ref-type="bibr">Yamaguchi et al. 2000</xref>
).</p>
<p>The pseudogenization or loss of plastid-encoded ribosomal protein genes from plastid genomes has been documented multiple times across angiosperms (
<xref rid="evw115-B20" ref-type="bibr">Jansen et al. 2007</xref>
;
<xref rid="evw115-B52" ref-type="bibr">Ruhlman and Jansen 2014</xref>
). Endosymbiotic gene transfer is an ongoing evolutionary process (
<xref rid="evw115-B37" ref-type="bibr">Matsuo et al. 2005</xref>
;
<xref rid="evw115-B43" ref-type="bibr">Noutsos et al. 2005</xref>
;
<xref rid="evw115-B63" ref-type="bibr">Stegemann and Bock 2006</xref>
;
<xref rid="evw115-B27" ref-type="bibr">Kleine et al. 2009</xref>
) and while rare, the establishment of nuclear expression for a transferred gene could render the plastid-encoded copy redundant. Functional plastid-to-nucleus gene transfers have been associated with pseudogenization and/or loss of plastid-encoded ribosomal protein genes, such as
<italic>rpl22</italic>
in Fagaceae (
<xref rid="evw115-B21" ref-type="bibr">Jansen et al. 2011</xref>
) and Fabaceae (
<xref rid="evw115-B14" ref-type="bibr">Gantt et al. 1991</xref>
), and
<italic>rpl32</italic>
in
<italic>Populus</italic>
(
<xref rid="evw115-B8" ref-type="bibr">Cusack and Wolfe 2007</xref>
;
<xref rid="evw115-B66" ref-type="bibr">Ueda et al. 2007</xref>
) and Ranunculaceae subfamily Thalictroideae (
<xref rid="evw115-B46" ref-type="bibr">Park et al. 2015</xref>
).</p>
<p>In other cases, such as
<italic>rps16</italic>
and
<italic>rpl23</italic>
, genes for ribosomal proteins have been lost from the plastid genome with their function substituted by an alternative gene product. The product of plastid-encoded
<italic>rps16</italic>
gene in
<italic>Medicago</italic>
and
<italic>Populus</italic>
was substituted by a mitochondrial RPS16 that is nuclear-encoded and dual-targeted to both organelles (
<xref rid="evw115-B67" ref-type="bibr">Ueda et al. 2008</xref>
). In spinach (
<italic>Spinacia oleracea</italic>
), the plastid-encoded
<italic>rpl23</italic>
is a truncated pseudogene, and the eukaryotic cytosolic RPL23 has replaced the product of prokaryotic
<italic>rpl23</italic>
in the plastid ribosome (
<xref rid="evw115-B6" ref-type="bibr">Bubunenko et al. 1994</xref>
).</p>
<p>Coordination between the nucleus and organelles is vital for eukaryotic cells, yet molecular evolutionary rates can vary dramatically between the genomes in these compartments (
<xref rid="evw115-B71" ref-type="bibr">Wolfe et al. 1987</xref>
;
<xref rid="evw115-B10" ref-type="bibr">Drouin et al. 2008</xref>
). The intergenomic dynamics that maintain organismal function despite the contrasting evolutionary trajectories of nuclear and organellar genomes have been previously studied through cytonuclear coadaptation (
<xref rid="evw115-B7" ref-type="bibr">Budar and Fujii 2012</xref>
;
<xref rid="evw115-B17" ref-type="bibr">Greiner and Bock 2013</xref>
), speciation (
<xref rid="evw115-B30" ref-type="bibr">Levin 2003</xref>
), hybrid incompatibility (
<xref rid="evw115-B23" ref-type="bibr">Jonson 2010</xref>
), endosymbiotic gene transfer (
<xref rid="evw115-B5" ref-type="bibr">Brandvain and Wade 2009</xref>
), and compensatory evolution (
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi 2012</xref>
;
<xref rid="evw115-B2" ref-type="bibr">Barreto and Burton 2013</xref>
). Plastid-nuclear compensatory evolution has rarely been investigated due to the low and homogeneous substitution rates in plastid genes. The highly accelerated substitution rates in different lineages and functional groups of genes in Geraniaceae plastid genomes (
<xref rid="evw115-B18" ref-type="bibr">Guisinger et al. 2008</xref>
;
<xref rid="evw115-B69" ref-type="bibr">Weng et al. 2012</xref>
), however, provide an excellent system for investigating compensatory coevolution in plant cells.</p>
<p>In this study, ribosomal gene sequences were assembled for 25 species of Geraniaceae and seven outgroups from other rosids. We analyzed each species for rates of synonymous (
<italic>dS</italic>
) and nonsynonymous (
<italic>dN</italic>
) nucleotide substitutions, and
<italic>dN</italic>
/
<italic>dS</italic>
ratios (ω or omega) for five sets of genes: nuclear-encoded plastid-targeted ribosomal protein genes (NuCpRP), nuclear-encoded cytosol-targeted ribosomal genes (NuCyRP), other nuclear-encoded plastid-targeted genes that are not involved in ribosomes (NuCpOT), plastid-encoded ribosomal protein genes (CpRP) and plastid-encoded photosynthesis genes (CpPS). We found that both NuCpRP and CpRP had significantly higher
<italic>dN</italic>
than other nuclear- and plastid-encoded genes, and that both NuCpRP and CpRP had higher ω in Geraniaceae than in the outgroups. Furthermore, our analyses revealed that nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny suggesting cytonuclear coevolution between plastid- and nuclear-encoded subunits of the plastid ribosome.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Plastid-Encoded Gene Sequences</title>
<p>Seven outgroup and 25 Geraniaceae species were included in the study (
<xref ref-type="fig" rid="evw115-F1">fig. 1</xref>
). Published plastid genome sequences were downloaded from NCBI (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Sequences for CpRP, CpPS, and ribosomal RNA genes in these species were identified from the available annotations. Previously unpublished
<italic>Pelargonium</italic>
and
<italic>Geranium</italic>
plastid genomes were de novo assembled following the methods in
<xref rid="evw115-B68" ref-type="bibr">Weng et al. (2014)</xref>
. Sequences for CpRP and CpPS in assembled contigs were identified using DOGMA (
<xref rid="evw115-B73" ref-type="bibr">Wyman et al. 2004</xref>
) with default settings, and submitted to Genbank. The accession numbers for all species in this study are listed in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online.
<fig id="evw115-F1" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 1.—</label>
<caption>
<p>Cladogram of species included in the study. Topology was based on the ML tree generated from concatenated CpRP sequences listed in
<xref ref-type="table" rid="evw115-T1">table 1</xref>
. Geraniaceae (thick branches) are specified as foreground lineages that can have different ω in branch-site tests implemented in the software of Phylogenetic Analysis by ML, PAML (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
).</p>
</caption>
<graphic xlink:href="evw115f1p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Nuclear-Encoded Gene Sequences</title>
<p>Nuclear genome sequences for
<italic>Eucalyptus grandis</italic>
,
<italic>Vitis vinifera</italic>
,
<italic>Gossypium raimondii</italic>
,
<italic>Arabidopsis thaliana</italic>
, and
<italic>Citrus sinensis</italic>
were obtained from Phytozome v9.1 (
<xref rid="evw115-B15" ref-type="bibr">Goodstein et al. 2012</xref>
). The sequencing and assembly of transcriptomes for
<italic>Melianthus villosus</italic>
,
<italic>Francoa sonchifolia</italic>
, and 25 Geraniaceae species were described previously (
<xref rid="evw115-B82" ref-type="bibr">Zhang et al. 2013</xref>
and
<xref rid="evw115-B51" ref-type="bibr">Ruhlman et al. 2015</xref>
). Nuclear-encoded NuCpRP, NuCpOT, and NuCyRP in
<italic>A. thaliana</italic>
were identified from the UniProt database (
<ext-link ext-link-type="uri" xlink:href="http://www.uniprot.org">www.uniprot.org</ext-link>
, last accessed on May 18, 2016), Plant Proteomics Data Base (
<xref rid="evw115-B64" ref-type="bibr">Sun et al. 2009</xref>
) and the literature (
<xref rid="evw115-B74" ref-type="bibr">Yamaguchi and Subramanian 2000</xref>
;
<xref rid="evw115-B75" ref-type="bibr">Yamaguchi et al. 2000</xref>
). The corresponding coding sequences for
<italic>A. thaliana</italic>
were downloaded from The
<italic>Arabidopsis</italic>
Information Resource database (
<ext-link ext-link-type="uri" xlink:href="https://www.arabidopsis.org">https://www.arabidopsis.org</ext-link>
, last accessed on May 18, 2016). Sequences for NuCpRP, NuCpOT, and NuCyRP from 31 species, excluding
<italic>A. thaliana</italic>
, were obtained by reciprocal blast searches (tBLASTn and BLASTx default settings in BLAST version 2.2.29+) against downloaded genome or transcriptome assemblies (
<xref ref-type="table" rid="evw115-T1">table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online) using translated
<italic>A. thaliana</italic>
genes as queries. Because plant genomes often contain multiple copies of NuCyRP, neighbor-joining trees (
<xref rid="evw115-B53" ref-type="bibr">Saitou and Nei 1987</xref>
) were constructed using Geneious Version 6.1.8 (
<ext-link ext-link-type="uri" xlink:href="http://www.geneious.com">http://www.geneious.com</ext-link>
, last accessed on May 18, 2016;
<xref rid="evw115-B26" ref-type="bibr">Kearse et al. 2012</xref>
) and the copies congruent with the species tree were selected for rate analyses.
<table-wrap id="evw115-T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>List of Genes included in the Study</p>
</caption>
<table frame="hsides" rules="groups">
<thead align="left">
<tr>
<th colspan="3" align="center" rowspan="1">Nuclear-Encoded
<hr></hr>
</th>
<th colspan="3" align="center" rowspan="1">Plastid-Encoded
<hr></hr>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1">NuCyRP (17)</th>
<th rowspan="1" colspan="1">NuCpRP (29)</th>
<th rowspan="1" colspan="1">NuCpOT (15)</th>
<th rowspan="1" colspan="1">CpRP (20)</th>
<th rowspan="1" colspan="1">CpPS (20)</th>
<th rowspan="1" colspan="1">rRNA (4)</th>
</tr>
</thead>
<tbody align="left">
<tr>
<td rowspan="1" colspan="1">
<italic>RPP0C</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSRP-1*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>CAO</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl2</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psaA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rrn23</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL3A</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSRP-2*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>CRTISO</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl14*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psaB</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rrn16</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL3B</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL1*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>OEP80</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl16*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psaC</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rrn4.5</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL4A</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL3*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PDH-E1-BETA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl20</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psaI</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rrn5</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL7A</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL4*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSAK*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl23</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psaJ</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL8B</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL5*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSAL</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>rpl32</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbA</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL10AA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL6*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSBO2</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl33</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbB</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL12A</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL11*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSBQ-2</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl36*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbC</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL17A</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL13*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSBR</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>rps2*</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbD</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL23AA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL15</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>PSY</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rps3*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbE</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPL26B</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL17*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SS1</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>rps4*</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbF</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPSaA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL18-1*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>TOC33</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>rps7</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbH</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPS5B</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL18-2</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>TOC64-III</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rps8</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbI</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPS9C*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL19*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>TSA1</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rps11*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbJ</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPS13B</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL21*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>TSB1</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rps12</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbK</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPS15AE</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL24*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>rps14*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbL</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>RPS20C</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL27*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>rps15*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbM</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPL28*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>rps16</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbN</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPL29*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<bold>
<italic>rps18</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbT</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPL31</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>rps19*</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>psbZ</italic>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPL34</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPL35</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS1*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS5*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS6*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS9*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS10*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS13*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>RPS20*</italic>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="evw115-TF1">
<p>NOTE.—Gene names follow the UniProt convention. Numbers in parenthesis are the total number of genes in the gene group. Genes with residues that show positive selection are in bold. Asterisks indicate genes with significantly higher ω in Geraniaceae compared to outgroups.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>To identify potential plastid-to-nucleus gene transfer, CpRP sequences from Geraniaceae were translated and reciprocal BLAST searches were performed against transcriptome sequences (tBLASTn and BLASTx default settings in BLAST version 2.2.29+).</p>
<p>The product of the plastid-encoded ribosomal gene,
<italic>rpl23</italic>
, has been substituted by a cytosolic homolog of eukaryotic origin in the spinach plastid ribosome (
<xref rid="evw115-B6" ref-type="bibr">Bubunenko et al. 1994</xref>
). To examine whether this gene substitution occurred in Geraniaceae, the amino acid sequence of Rpl23 (UniProt id: Q9LWB5) from the spinach plastid ribosome was downloaded from the UniProt database and used to perform BLAST searches against translated transcriptome sequences (tBLASTn default settings in BLAST version 2.2.29+).</p>
</sec>
<sec>
<title>Prediction of Transit Peptides</title>
<p>The cleavage site of 5′-transit peptides for nuclear-encoded plastid-targeted genes (NuCpRP and NuCpOT) was predicted in silico using the TargetP web server (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/TargetP/">http://www.cbs.dtu.dk/services/TargetP/</ext-link>
, last accessed on May 18, 2016;
<xref rid="evw115-B41" ref-type="bibr">Nielsen et al. 1997</xref>
;
<xref rid="evw115-B11" ref-type="bibr">Emanuelsson et al. 2000</xref>
). Transit peptide sequences were excluded from rate and coevolution analyses.</p>
</sec>
<sec>
<title>Prediction of Conserved Domains</title>
<p>Conserved domains were predicted by uploading the sequences to the NCBI Conserved Domain Database for comparison (v3.14 with default options and E-value threshold of 0.01;
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi">http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi</ext-link>
, last accessed on May 18, 2016;
<xref rid="evw115-B35" ref-type="bibr">Marchler-Bauer et al. 2015</xref>
).</p>
</sec>
<sec>
<title>Codon Usage Bias Estimation</title>
<p>To estimate the codon usage bias for NuCpRP and NuCyRP, the effective number of codons (Nc) (
<xref rid="evw115-B72" ref-type="bibr">Wright 1990</xref>
) was estimated using CodonW (
<ext-link ext-link-type="uri" xlink:href="http://codonw.sourceforge.net">http://codonw.sourceforge.net</ext-link>
, last accessed on May 18, 2016;
<xref rid="evw115-B47" ref-type="bibr">Peden 1999</xref>
). A
<italic>t</italic>
-test was used to assess the difference in Nc between NuCpRP and NuCyRP.</p>
</sec>
<sec>
<title>Substitution Rate Estimation</title>
<p>The CODEML program implemented in PAML v4.7 (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
) was used to estimate
<italic>dN</italic>
and
<italic>dS</italic>
for each gene. Nucleotide sequences were aligned by Multiple Alignment using Fast Fourier Transform (MAFFT) (
<xref rid="evw115-B25" ref-type="bibr">Katoh et al. 2002</xref>
) and gaps were excluded for rate estimations (cleandata = 1 in CODEML control file). The codon frequencies were determined by the F3 x 4 model. Transition/transversion ratios and ω were estimated with initial values of 2 and 0.4, respectively. The constraint species tree was constructed by maximum likelihood (ML) on the RAxML web server (
<xref rid="evw115-B62" ref-type="bibr">Stamatakis et al. 2008</xref>
) using a data set of concatenated plastid ribosomal protein genes (
<xref ref-type="table" rid="evw115-T1">table 1</xref>
). The free-ratio model (m1) allowing branch-specific ω was specified to estimate
<italic>dN</italic>
and
<italic>dS</italic>
for each branch. The Kruskal–Wallis rank sum tests were used to test whether branch-specific ω values were significantly different from each other. Likelihood ratio tests (LRTs) between two branch-models were conducted in PAML v4.7 (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
) and tested whether genes in Geraniaceae have elevated ω. The null model (m0) specified one ω shared across the entire tree, whereas the alternative model (m2) allowed the Geraniaceae lineages to have different values of ω. The same LRT scheme for detecting significant difference of
<italic>dN</italic>
and
<italic>dS</italic>
between Geraniaceae and outgroups was conducted using a custom batch script with MG94xHKY85 codon model in HyPhy (
<xref rid="evw115-B28" ref-type="bibr">Kosakovsky Pond and Muse 2005</xref>
), in which the null model specified a shared
<italic>dN</italic>
or
<italic>dS</italic>
across the tree whereas the alternative model allowed the Geraniaceae lineages to have different
<italic>dN</italic>
or
<italic>dS</italic>
. The
<italic>dN</italic>
and
<italic>dS</italic>
values for the Geraniaceae and outgroup branches were summed and binned by gene type (NuCpRP, NuCpOT, NuCyRP, CpRP, and CpPS). Wilcoxon rank sum tests were used to test rate differences between gene types and
<italic>P</italic>
values were adjusted by Bonferroni correction.</p>
</sec>
<sec>
<title>Detection of Positive Selection</title>
<p>LRTs were used to evaluate whether sites were under positive selection in Geraniaceae lineages. Two branch-site models were specified in the CODEML program in PAML (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
). The alternative model specified four different types of codon sites: sites under purifying selection across the phylogeny (ω < 1), neutral sites across the phylogeny (ω = 1), sites under purifying selection in outgroups but with positive selection (ω > 1) in Geraniaceae, and sites that are neutral in outgroups but with positive selection in Geraniaceae. The settings for the alternative model in CODEML control file were model = 2, NSsites = 2, fix_omega =0. The null model fixed the ω equal to one in Geraniaceae lineages. The settings for the null model in CODEML control file were model =2, NSsites =2, fix_omega =1, omega =1. Posterior probabilities for sites under positive selection were computed by Bayes Empirical analysis (
<xref rid="evw115-B77" ref-type="bibr">Yang et al. 2005</xref>
) included in the CODEML analysis.</p>
</sec>
<sec>
<title>Detection of Relaxed Selection</title>
<p>The RELAX program (
<xref rid="evw115-B70" ref-type="bibr">Wertheim et al. 2015</xref>
) implemented in HyPhy (
<xref rid="evw115-B28" ref-type="bibr">Kosakovsky Pond and Muse 2005</xref>
) was used to test whether the increased ω in Geraniaceae was due to relaxed purifying selection. Outgroup and Geraniaceae lineages were used as the reference and test branches, respectively. The selection intensity parameter (k) was introduced in the RELAX program to describe the relationship of ω in the test and the reference branches. The null model constrained k equal to one, whereas the alternative model set k as a free parameter. A LRT was used to test whether k significantly deviated from one. Rejection of the null model and both ω and k smaller than one indicated that purifying selection was relaxed in Geraniaceae relative to outgroups.</p>
</sec>
<sec>
<title>Identification of Contact Residues in the Plastid Ribosome</title>
<p>Protein structures for small and large subunits (PDB ids: 3BBN and 3BBO,
<xref rid="evw115-B57" ref-type="bibr">Sharma et al. 2007</xref>
) of the spinach plastid ribosome were downloaded from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB,
<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/">http://www.rcsb.org/</ext-link>
, last accessed on May 18, 2016). Amino acid residues between two proteins that are within 10Å were defined as contact residues.
<xref rid="evw115-B3" ref-type="bibr">Bhattacherjee et al. (2015)</xref>
showed that slightly deleterious mutations that destabilize structure within a protein and compensatory mutations that re-establish stable protein folding tend to co-occur within 10Å radius in 3D space. Nucleotide sequences of NuCpRP and CpRP from Geraniaceae and outgroups were translated and aligned with spinach ribosomal proteins using MAFFT to identify contact residues across the alignment.</p>
</sec>
<sec>
<title>Coevolution Analysis</title>
<p>For the analysis of coevolution, we tested 1) whether the nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches and 2) whether the nonsynonymous substitutions in CpRP and NuCpRP tend to occur sequentially on the tree more often than the null expectation. The posterior probability of ancestral codons for each node along the phylogenetic tree was estimated by the CODEML program in PAML (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
) using the F3 x 4 codon model. The most probable ancestral codons were recorded and branch-specific nonsynonymous substitutions for each codon were determined.</p>
<p>We analyzed every combination of two proteins from CpRP and NuCpRP. Each protein pair comprised a leading and a trailing protein. The terms “leading” and “trailing” protein did not imply physical interaction, but instead, simply describe the first and second protein in any given protein pair comparison. Every CpRP and NuCpPR can be either a leading or a trailing protein. For example, in Rpl2-Rpl14 comparison, Rpl2 is leading protein and Rpl14 is trailing protein, whereas in Rpl14-Rpl2 comparison, Rpl14 is leading and Rpl2 is trailing protein. To evaluate co-occurring substitutions, we systematically compared each pair of variable codons from a given protein pair. The number of codons that shared nonsynonymous substitutions at one, two, and tree branches were counted. This value was defined as the type I coevolution statistic. To evaluate sequential substitution, we tested whether the nonsynonymous substitutions in the leading protein on the phylogenetic tree were followed by nonsynonymous substitutions in the trailing protein more quickly than the null expectation (
<xref rid="evw115-B29" ref-type="bibr">Kryazhimskiy et al. 2011</xref>
). First, the number of consecutive nonsynonymous substitution pairs between the leading and the trailing proteins was calculated. Consecutive nonsynonymous substitutions were defined as a pair of nonsynonymous substitutions that occur consecutively in the same lineage (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Second, the number of branches between each consecutive nonsynonymous substitution pair was determined. Third, the number of branches between all consecutive nonsynonymous substitutions was summed and divided by the total number of consecutive nonsynonymous substitution pairs. This average was defined as the type II coevolution statistic between two proteins.</p>
<p>A null expectation of the coevolution statistics between two proteins was generated by simulation (
<xref rid="evw115-B56" ref-type="bibr">Shapiro et al. 2006</xref>
). One thousand codon sequences were simulated by the EVOLVER program in PAML (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
) using the estimated codon frequency, transition/transversion ratio, and branch specific ω from the original codon sequence of CpRP and NuCpRP. The null distribution of the coevolution statistics between a pair of proteins was the combination of the statistics between leading protein and simulated trailing protein and between the simulated leading protein and trailing protein. A one-tail significance of observed coevolution statistics was computed against the generated null normal distribution and
<italic>P</italic>
values were adjusted by false discovery rate using R (
<xref rid="evw115-B49" ref-type="bibr">R Core Team 2015</xref>
).</p>
<p>To address the effects of physical interaction on ribosomal protein coevolution, the positions from each sequence alignment that were identified as contact residues were extracted. The coevolution analyses described above were repeated on the alignments that included contact residues only.</p>
<p>Our method differs from the
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi (2012)</xref>
approach in two ways. First, we reported the most probable ancestral codon per node instead of every possible reconstructed codon. Due to the combinatorial explosion problem, including multiple reconstructed codons per node is not suitable for computing the coevolution statistics in a phylogeny of more than a dozen species. Second, in our analysis statistical significance was tested by sequence simulation rather than randomization, the former was able to explore the potential sequence space that a given gene might have evolved into.</p>
</sec>
<sec>
<title>Insertion and Deletion (Indel) Analysis for Plastid Ribosomal RNA Genes</title>
<p>Four plastid ribosomal RNA genes (
<italic>rrn23</italic>
,
<italic>rrn16</italic>
,
<italic>rrn5</italic>
, and
<italic>rrn4.5</italic>
) were extracted from all 32 species (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online) and aligned using MAFFT (
<xref rid="evw115-B25" ref-type="bibr">Katoh et al. 2002</xref>
). Indels were analyzed using the simple indel coding algorithm (
<xref rid="evw115-B59" ref-type="bibr">Simmons and Ochoterena 2000</xref>
) implemented in SeqState (
<xref rid="evw115-B39" ref-type="bibr">Müller 2005</xref>
).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>For all 32 taxa included in the study, 40 plastid-encoded genes (20 CpRP and 20 CpPS) were obtained from annotations of published plastid genomes or identified in DOGMA for de novo assembled plastomes (
<xref ref-type="table" rid="evw115-T1">table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Using reciprocal blast searches between translated gene sequences from
<italic>A. thaliana</italic>
and published nuclear genomes or de novo assembled transcriptomes, 61 nuclear-encoded (29 NuCpRP, 17 NuCyRP, and 15 NuCpOT) genes were obtained for all other species (
<xref ref-type="table" rid="evw115-T1">table 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary tables S1 and S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). The alignments for all individual genes are available in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary data file S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online.</p>
<sec>
<title>Identification of
<italic>rpl23</italic>
Gene Transfer or Substitution Events</title>
<p>The plastid-encoded
<italic>rpl23</italic>
in
<italic>Geranium maderense</italic>
is truncated leaving only 99 bp at the 5′-end (compared with 324 bp in
<italic>A. thaliana</italic>
). The absence of the 3′-sequence encoding the functional domain of Rpl23 (
<xref rid="evw115-B35" ref-type="bibr">Marchler-Bauer et al. 2015</xref>
) suggests that this may be a pseudogene. To investigate a potential plastid-to-nucleus functional transfer, we performed a reciprocal blast search between the translated plastid-encoded Rpl23 and the translated nuclear transcriptome of
<italic>G. maderense</italic>
(
<xref rid="evw115-B82" ref-type="bibr">Zhang et al. 2013</xref>
) and evaluated the top hits for the presence of a plastid transit peptide using TargetP (
<xref rid="evw115-B11" ref-type="bibr">Emanuelsson et al. 2000</xref>
). None of the top hits from reciprocal BLAST searches were predicted to contain a plastid transit peptide.</p>
<p>To explore the possible substitution of Rpl23 by a nuclear homolog, we queried the translated
<italic>G. maderense</italic>
transcriptome assembly with the amino acid sequence of the spinach Rpl23, which has a eukaryotic-cytosolic origin (
<xref rid="evw115-B6" ref-type="bibr">Bubunenko et al. 1994</xref>
). Of the two transcripts identified, one was predicted to contain a plastid transit peptide (0.771) (
<xref ref-type="fig" rid="evw115-F2">fig. 2</xref>
). The conserved 50S and 60S ribosomal protein L23 domains were identified in the C-terminus in both translated transcripts (
<xref ref-type="fig" rid="evw115-F2">fig. 2</xref>
). The two transcripts shared 81% and 71% amino acid sequence identity in the 50S and 60S ribosomal protein L23 domains, respectively.
<fig id="evw115-F2" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 2.—</label>
<caption>
<p>Amino acid sequence alignment of two putative nuclear-encoded
<italic>rpl23</italic>
transcripts in
<italic>Geranium maderense</italic>
. The 5′-plastid transit peptide and the cleavage site indicated by the black bar were predicted by TargetP (
<xref rid="evw115-B41" ref-type="bibr">Nielsen et al. 1997</xref>
;
<xref rid="evw115-B11" ref-type="bibr">Emanuelsson et al. 2000</xref>
). The conserved domains of the 50S and 60S ribosomal proteins L23 indicated by gray bars were predicted by NCBI Conserved Domain Database (
<xref rid="evw115-B35" ref-type="bibr">Marchler-Bauer et al. 2015</xref>
). The BLOSUM62 protein substitution matrix with a threshold of one was used to assess similarity between residues. The identical and 60–99% similarity residues were highlighted in black and gray, respectively.</p>
</caption>
<graphic xlink:href="evw115f2p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Both Plastid-Encoded and Plastid-Targeted Ribosomal Protein Genes in Geraniaceae Show Elevated
<italic>dN</italic>
and ω</title>
<p>The value of
<italic>dN</italic>
and
<italic>dS</italic>
was estimated for each gene by the free-ratio model (m1). The sum of branch lengths of
<italic>dN</italic>
and
<italic>dS</italic>
trees for Geraniaceae and outgroups were binned by gene and are shown in boxplots (
<xref ref-type="fig" rid="evw115-F3">fig. 3</xref>
). In Geraniaceae,
<italic>dN</italic>
for NuCpRP was significantly higher than all other nuclear-encoded genes (
<italic>P</italic>
< 0.001). Similarly among plastid-encoded genes, CpRP had significantly higher
<italic>dN</italic>
than CpPS (
<italic>P</italic>
< 0.001). In the outgroups, there were no significant differences in
<italic>dN</italic>
either between nuclear-encoded genes or between plastid-encoded genes. Comparisons between Geraniaceae and outgroups using Wilcoxon rank sum tests and LRTs both showed that Geraniaceae NuCpRP and CpRP had significantly higher
<italic>dN</italic>
(
<italic>P</italic>
< 0.001) (
<xref ref-type="fig" rid="evw115-F3">fig. 3</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online).
<fig id="evw115-F3" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 3.—</label>
<caption>
<p>Comparison of
<italic>dN</italic>
and
<italic>dS</italic>
values across different gene groups in Geraniaceae and outgroups. Asterisks indicate
<italic>P</italic>
< 0.01 (**) and
<italic>P</italic>
< 0.001 (***) after Bonferroni correction. NuCpRP: nuclear-encoded plastid targeted ribosomal genes, NuCyRP: nuclear-encoded cytosol-targeted ribosomal genes, NuCpOT: nuclear-encoded plastid-targeted nonribosomal genes, CpRP: plastid-encoded ribosomal genes, CpPS: plastid-encoded photosynthetic genes.</p>
</caption>
<graphic xlink:href="evw115f3p"></graphic>
</fig>
</p>
<p>In Geraniaceae comparison of
<italic>dS</italic>
among nuclear-encoded genes showed that NuCpRP had significantly lower
<italic>dS</italic>
than NuCyRP (
<italic>P</italic>
< 0.001) but there was no significant difference between NuCpRP and NuCpOT. Among plastid-encoded genes, CpRP showed significantly higher
<italic>dS</italic>
than CpPS (
<italic>P</italic>
< 0.01) (
<xref ref-type="fig" rid="evw115-F3">fig. 3</xref>
). There was no significant difference in
<italic>dS</italic>
between nuclear-encoded genes and between plastid-encoded genes in outgroups.</p>
<p>The estimate of ω under the m2 model, which allows Geraniaceae and outgroups to have different ω values, was plotted for each gene (
<xref ref-type="fig" rid="evw115-F4">fig. 4</xref>
inset). Most points on the graph for NuCpRP and CpRP were above the diagonal dashed line showing that ω values were higher in Geraniaceae than outgroups. To test whether the deviation was significant, LRTs were conducted. The m2 model was tested against the null model (m0) where a single ω was shared across the entire phylogeny. The logarithmic
<italic>P</italic>
values of the LRTs were ranked, Bonferroni corrected and plotted (
<xref ref-type="fig" rid="evw115-F4">fig. 4</xref>
). At a cutoff of 5%, 36 genes had significantly higher ω in Geraniaceae than in outgroups (genes appearing to the left of the vertical dashed line in
<xref ref-type="fig" rid="evw115-F4">fig. 4</xref>
), including 24 NuCpRP, 10 CpRP, one NuCyRP, and one NuCpOT (
<xref ref-type="table" rid="evw115-T1">table 1</xref>
). The estimate of ω for CpRP and NuCpRP under the free-ratio model (m1), which allows branch-specific ω, was plotted on the phylogeny (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). The branch-specific ω values for CpRP were significantly different from each other (
<italic>P</italic>
< 0.001). The branch-specific ω values for NuCpRP were also significantly different from each other (
<italic>P</italic>
< 0.001).
<fig id="evw115-F4" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 4.—</label>
<caption>
<p>Plot of log
<italic>P</italic>
value for each gene from LRTs. Two models were compared to determine
<italic>P</italic>
value. The null model constrained a single value for ω across the entire phylogeny, and the alternative model relaxed the constraint by allowing Geraniaceae and outgroups to have different ω. The vertical dashed line shows the Bonferroni corrected 5% significance cutoff. Genes appearing to the left of the vertical dashed line have significantly higher ω in Geraniaceae compared to outgroups. The inset scatter plot shows the ω values in Geraniaceae versus outgroups. The dashed diagonal line is the 1:1 line showing ω is equal in Geraniaceae and outgroups. Gene group acronyms are the same as in
<xref ref-type="fig" rid="evw115-F3">figure 3</xref>
.</p>
</caption>
<graphic xlink:href="evw115f4p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Plastid-Encoded Ribosomal Protein Genes Show Positive Selection</title>
<p>The branch-site test, which allows detection of codon-specific positive selection (ω > 1) in prespecified lineages (
<xref rid="evw115-B81" ref-type="bibr">Zhang et al. 2005</xref>
), was applied to all genes included in the study using PAML (
<xref rid="evw115-B76" ref-type="bibr">Yang 2007</xref>
). The Geraniaceae and outgroup lineages were specified as “foreground” and “background,” respectively (
<xref ref-type="fig" rid="evw115-F1">fig. 1</xref>
). Positive selection was not detected among nuclear-encoded genes (NuCyRP, NuCpRP, and NuCpOT). For plastid-encoded genes (CpPS and CpRP), the branch-site test did not detect positive selection in CpPS, but five out of 20 CpRP showed evidence of sites under positive selection in Geraniaceae (
<xref ref-type="table" rid="evw115-T2">table 2</xref>
). Among the five genes,
<italic>rps2</italic>
had the largest number of sites showing positive selection with posterior probability greater than 0.9 (34 sites). Among all sites that showed positive selection, six (one, two, and three in
<italic>rps4</italic>
,
<italic>rps2</italic>
, and
<italic>rps7</italic>
, respectively) involved residues within 10Å of a residue in another ribosomal complex protein (asterisk labeled sites in
<xref ref-type="table" rid="evw115-T2">table 2</xref>
).
<table-wrap id="evw115-T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Candidate Sites under Positive Selection with ω > 1</p>
</caption>
<table frame="hsides" rules="groups">
<thead align="left">
<tr>
<th rowspan="2" colspan="1">Gene</th>
<th rowspan="2" colspan="1">Encoded genome</th>
<th rowspan="1" colspan="1">-lnL</th>
<th rowspan="1" colspan="1">-lnL</th>
<th rowspan="2" colspan="1">ω</th>
<th colspan="2" rowspan="2" align="center">Selected Sites
<xref ref-type="table-fn" rid="evw115-TF2">
<sup>a</sup>
</xref>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1">Model 2a</th>
<th rowspan="1" colspan="1">Model 2b</th>
</tr>
</thead>
<tbody align="left">
<tr>
<td rowspan="1" colspan="1">
<bold>
<italic>rpl32</italic>
</bold>
</td>
<td rowspan="1" colspan="1">Plastid</td>
<td rowspan="1" colspan="1">1520.600</td>
<td rowspan="1" colspan="1">1532.556</td>
<td rowspan="1" colspan="1">3.272</td>
<td rowspan="1" colspan="1">18I (0.931)</td>
<td rowspan="1" colspan="1">47V (1.00)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">25W (0.919)</td>
<td rowspan="1" colspan="1">49K (1.00)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">46F (0.997)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>
<italic>rps2</italic>
</bold>
</td>
<td rowspan="1" colspan="1">Plastid</td>
<td rowspan="1" colspan="1">4319.073</td>
<td rowspan="1" colspan="1">4339.983</td>
<td rowspan="1" colspan="1">2.193</td>
<td rowspan="1" colspan="1">5Y (0.973)</td>
<td rowspan="1" colspan="1">80A (0.974)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">9D (0.946</td>
<td rowspan="1" colspan="1">112E (0.967)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">13M (0.959)</td>
<td rowspan="1" colspan="1">114R (0.951)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">14 M (0.995)</td>
<td rowspan="1" colspan="1">116H (0.983)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">17G (0.974)</td>
<td rowspan="1" colspan="1">117K (0.924)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">20F (0.998)</td>
<td rowspan="1" colspan="1">118F (0.965)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">23G (1.00)</td>
<td rowspan="1" colspan="1">123T (0.986)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">37A (0.979)</td>
<td rowspan="1" colspan="1">124E (1.00)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">39G (1.00)</td>
<td rowspan="1" colspan="1">127G (0.983)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">41G (0.944)</td>
<td rowspan="1" colspan="1">141S (0.99)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">42I (1.00)</td>
<td rowspan="1" colspan="1">148G (0.972)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">45I (0.908)</td>
<td rowspan="1" colspan="1">154T (0.985)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">52R (0.986)</td>
<td rowspan="1" colspan="1">166Q (0.951)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">53F (0.993)*</td>
<td rowspan="1" colspan="1">167E (1.00)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">67R (0.919)</td>
<td rowspan="1" colspan="1">168E (0.996)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">70Q (1.00)</td>
<td rowspan="1" colspan="1">169Y (0.994)*</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">79K (0.996)</td>
<td rowspan="1" colspan="1">222E (0.978)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>
<italic>rps4</italic>
</bold>
</td>
<td rowspan="1" colspan="1">Plastid</td>
<td rowspan="1" colspan="1">3789.815</td>
<td rowspan="1" colspan="1">3814.208</td>
<td rowspan="1" colspan="1">4.749</td>
<td rowspan="1" colspan="1">13R (1.00)</td>
<td rowspan="1" colspan="1">30S (0.999)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">15R (1.00)</td>
<td rowspan="1" colspan="1">149E (0.94)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">28S (0.988)</td>
<td rowspan="1" colspan="1">172C (0.951)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">29R (0.999) *</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>
<italic>rps7</italic>
</bold>
</td>
<td rowspan="1" colspan="1">Plastid</td>
<td rowspan="1" colspan="1">2368.431</td>
<td rowspan="1" colspan="1">2397.530</td>
<td rowspan="1" colspan="1">5.945</td>
<td rowspan="1" colspan="1">14S (1.00)*</td>
<td rowspan="1" colspan="1">112P (0.995)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">68G (0.962)</td>
<td rowspan="1" colspan="1">125V (0.999)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">81G (1.00)*</td>
<td rowspan="1" colspan="1">128A (0.999)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">85H (0.914)*</td>
<td rowspan="1" colspan="1">133D (0.902)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">93S (0.955)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<bold>
<italic>rps18</italic>
</bold>
</td>
<td rowspan="1" colspan="1">Plastid</td>
<td rowspan="1" colspan="1">3025.523</td>
<td rowspan="1" colspan="1">3048.144</td>
<td rowspan="1" colspan="1">4.296</td>
<td rowspan="1" colspan="1">5L (1.00)</td>
<td rowspan="1" colspan="1">14P (0.992)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">6T (1.00)</td>
<td rowspan="1" colspan="1">74Q (0.962)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">8S (0.972)</td>
<td rowspan="1" colspan="1">82S (0.949)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="evw115-TF2">
<label>a</label>
<p>Posterior probabilities of ω > 1 are shown in the parentheses. Sequence positions and amino acid residues are based on the spinach plastid ribosome structure (PDB ids: 3BBN and 3BBO). Residues lying within 10Å of a residue in another ribosomal protein are indicated with an asterisk.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec>
<title>Nuclear-Encoded Ribosomal Protein Genes Show Relaxed Purifying Selection</title>
<p>The selection intensity parameter (k) estimated by RELAX for NuCpRP ranged from 0.39 to 17.94 with mean of 4.47, whereas for CpRP it ranges from 0.22 to 13.99 with mean of 1.52 (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Twenty-one NuCpRP (72%) had k significantly lower than one, whereas ten CpRP (50%) had k significantly higher than one (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). The selection intensity parameter (k) was significantly lower in NuCpRP than CpRP (
<italic>P</italic>
< 0.01,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
<sec>
<title>Cytosol-Targeted Ribosomal Protein Genes Have Stronger Codon Usage Bias than Plastid-Targeted Genes</title>
<p>Overall the effective number of codons (Nc) was significantly higher in NuCpRP than NuCyRP indicating greater codon usage bias in NuCyRP. In Geraniaceae the mean Nc was 51.38 for NuCpRP and 46.98 for NuCyRP (
<italic>P</italic>
< 0.05). In outgroups, the mean Nc was 53.34 for NuCpRP and 48.97 for NuCyRP (
<italic>P</italic>
< 0.05).</p>
</sec>
<sec>
<title>Contact Residues in Plastid Ribosomal Proteins Did Not Show Higher Conservation</title>
<p>On average, 24.3% of the residues of CpRP and NuCpRP were within 10Å of a residue in another ribosomal complex protein, whereas 50.3% were within 10Å of a nucleotide in rRNAs (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Pair-wise amino acid sequence identities were computed for CpRP and NuCpRP (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). The pair-wise identity for CpRP ranged from 68.6% to 86.1% when the entire sequence was considered, from 53.8% to 92.0% for protein contact residues only and from 72.8% to 87.7% for protein and rRNA contact residues. The pair-wise identity for NuCpRP ranged from 72.3% to 92.7% for entire protein sequences, from 61.3% to 100% for protein contact residues, and from 73.4% to 93.5% for protein and rRNA contact residues. The protein contact residues did not show higher sequence identity than the entire sequence (
<italic>P</italic>
= 0.38). Also, the protein and rRNA contact residues combined did not show higher sequence identity than the entire sequence (
<italic>P</italic>
= 0.06).</p>
</sec>
<sec>
<title>Plastid-Encoded and Plastid-Targeted Ribosomal Protein Genes Are Coevolving</title>
<p>The type I coevolution statistic, defined as the number of codon pairs that share nonsynonymous substitutions along the same branch, was computed. To test whether these statistics were significantly larger than expected, the one-tail significance was computed against a null normal distribution generated through sequence simulation (see Materials and Methods). When analyzing the number of codon pairs that had nonsynonymous substitutions along one or two branches, none of the protein pairs showed significant results. When the threshold was increased to three branches, 17 CpRP-CpRP pairs, 9 NuCpRP-NuCpRP pairs, and 23 CpRP-NuCpRP pairs had significantly more nonsynonymous substitutions occurring along the same branches on the Geraniaceae lineages (
<xref ref-type="fig" rid="evw115-F5">fig. 5</xref>
,
<xref ref-type="table" rid="evw115-T3">table 3</xref>
, and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary data file S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Among the protein pairs that had significantly more nonsynonymous substitutions along three branches, the largest number (12) were within Rpl2; five other CpRP (Rpl16, Rpl32, Rps2, Rps4, Rps12) and two NuCpRP (RPL1 and RPL27) involved more than five protein pairs. The protein pairs that tend to have nonsynonymous substitutions at the same branches did not have residues within 10Å distance (
<xref ref-type="fig" rid="evw115-F5">fig. 5</xref>
, none of the blue open squares coincide with red squares).
<fig id="evw115-F5" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 5.—</label>
<caption>
<p>Matrix of
<italic>P</italic>
values for the type I coevolution statistics. The type I coevolution statistic for a protein pair is defined as the number of codons that share nonsynonymous substitutions on three branches. False discovery rate-adjusted
<italic>P</italic>
values smaller than 5% are highlighted in red gradient. The nonsignificant
<italic>P</italic>
values are shown as gray squares. The blue open squares indicate the protein pairs that have residues within 10Å distance.</p>
</caption>
<graphic xlink:href="evw115f5p"></graphic>
</fig>
<table-wrap id="evw115-T3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Summary of Coevolution Analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead align="left">
<tr>
<th rowspan="1" colspan="1">Gene group</th>
<th rowspan="1" colspan="1">Gene</th>
<th rowspan="1" colspan="1">Intergenomic Protein Pair
<xref ref-type="table-fn" rid="evw115-TF4">
<sup>a</sup>
</xref>
</th>
<th rowspan="1" colspan="1">Intragenomic Protein Pair
<xref ref-type="table-fn" rid="evw115-TF5">
<sup>b</sup>
</xref>
</th>
<th rowspan="1" colspan="1">Total</th>
</tr>
</thead>
<tbody align="left">
<tr>
<td rowspan="12" colspan="1">CpRP</td>
<td align="left" rowspan="1" colspan="1">
<italic>rpl2*</italic>
</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps4*</italic>
</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps12*</italic>
</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rpl16</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rpl32</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps2*</italic>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rpl14*</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps7*</italic>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps16</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rpl36</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps8*</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>rps14</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="15" colspan="1">NuCpRP</td>
<td align="left" rowspan="1" colspan="1">
<italic>RPL1</italic>
</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL27</italic>
</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL3</italic>
</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPS1</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL5</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL13</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>PSRP-1</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL4</italic>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL17</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL18-2</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL29</italic>
</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL6</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL11</italic>
</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPL15</italic>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>RPS9</italic>
</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="2" rowspan="2">Total protein pair</td>
<td rowspan="2" colspan="1">23 (CpRP-NuCpRP)</td>
<td rowspan="1" colspan="1">17 (CpRP-CpRP)</td>
<td rowspan="2" colspan="1">49</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9 (NuCpRP-NuCpRP)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="evw115-TF3">
<p>
<sc>Note</sc>
.—The number of proteins that share significant type I coevolution statistics are shown.</p>
</fn>
<fn id="evw115-TF4">
<label>a</label>
<p>An intergenomic protein pair comprises one CpRP and one NuCpRP.</p>
</fn>
<fn id="evw115-TF5">
<label>b</label>
<p>An intragenomic protein pair comprises two proteins from the same genome. Asterisks indicate core plastid ribosomal protein genes identified in
<xref rid="evw115-B33" ref-type="bibr">Maier et al. (2013)</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>The estimated type I coevolution statistic based on alignments that only include contact residues are shown in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary figure S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online. Seven protein pairs had significantly more nonsynonymous substitutions occurring along the same branches when both protein and rRNA contact residues were included in the analysis (upper diagonal in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Six protein pairs had significantly more nonsynonymous substitutions at protein contact residues occurring along the same branches (lower diagonal in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online), and one of them (Rpl14-RPL29) has residues within 10Å distance.</p>
<p>The type II coevolution statistic, defined as the average number of branches separating consecutive nonsynonymous substitutions between two proteins in the same lineage, was computed (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). To test whether the calculated coevolution statistics were significantly smaller than expectation, one-tail significance was computed against a null normal distribution generated through sequence simulation (see Materials and Methods). None of the protein pairs showed significant type II coevolution statistics (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary data file S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). The analysis based on alignments that only include contact residues yielded no significant results (data not shown).</p>
</sec>
<sec>
<title>Indels Are Abundant in Geraniaceae Ribosomal RNA Genes</title>
<p>Indels in rRNA genes in Geraniaceae and outgroups were binned by length (
<xref ref-type="fig" rid="evw115-F6">fig. 6</xref>
). Indels longer than 11 bp were absent in the outgroups but abundant in Geraniaceae. There were a total of 206 indels in Geraniaceae compared to only six in the outgroups. Geraniaceae had many more indels in 23S and 16S rRNA genes than in outgroups. Indels in 4.5S rRNA were only present in Geraniaceae but absent from the outgroups. No indels were present in 5S rRNA gene in either group.
<fig id="evw115-F6" orientation="portrait" position="float">
<label>
<sc>Fig</sc>
. 6.—</label>
<caption>
<p>Indel distribution in plastid ribosomal RNA genes. Indels in rRNA genes were enumerated and plotted. Indels were identified using the simple indel coding algorithm (
<xref rid="evw115-B59" ref-type="bibr">Simmons and Ochoterena 2000</xref>
) and are binned by length.</p>
</caption>
<graphic xlink:href="evw115f6p"></graphic>
</fig>
</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<sec>
<title>A Nuclear-Encoded Cytosolic Copy Substitutes for the Plastid-Encoded Rpl23 in
<italic>G. m</italic>
<italic>aderense</italic>
</title>
<p>A pseudogene in the plastid could suggest a recent plastid-to-nucleus gene transfer (
<xref rid="evw115-B14" ref-type="bibr">Gantt et al. 1991</xref>
;
<xref rid="evw115-B8" ref-type="bibr">Cusack and Wolfe 2007</xref>
;
<xref rid="evw115-B66" ref-type="bibr">Ueda et al. 2007</xref>
;
<xref rid="evw115-B21" ref-type="bibr">Jansen et al. 2011</xref>
) or gene substitution event (
<xref rid="evw115-B6" ref-type="bibr">Bubunenko et al. 1994</xref>
). To investigate whether gene transfer or substitution was associated with the truncated plastid-encoded
<italic>rpl23</italic>
gene in
<italic>G. maderense</italic>
, we performed two BLAST searches against the translated
<italic>G. maderense</italic>
transcriptome. First, using the native truncated sequence as a query we did not find evidence for a plastid-to-nucleus gene transfer. Second, using the spinach Rpl23 amino acid sequence as the query we identified two transcripts. One of them contained a predicted plastid transit peptide suggesting the nuclear-encoded 60S Rpl23 has substituted for the plastid-encoded copy (
<xref ref-type="fig" rid="evw115-F2">fig. 2</xref>
). In the spinach plastid ribosome, the product of the eukaryotic cytosolic
<italic>rpl23</italic>
gene has also replaced the product of prokaryotic
<italic>rpl23</italic>
(
<xref rid="evw115-B6" ref-type="bibr">Bubunenko et al. 1994</xref>
). The protein substitution reported here is the second independent case of Rpl23 substitution. The substitution event provides a plausible explanation why the plastid-encoded ribosomal protein genes have been pseudogenized in
<italic>G. maderense</italic>
. Another published plastid genome from
<italic>Geranium</italic>
,
<italic>G. palmatum</italic>
, also has a truncated
<italic>rpl23</italic>
gene (
<xref rid="evw115-B19" ref-type="bibr">Guisinger et al. 2011</xref>
). The Rpl23 substitution event might be shared by
<italic>G. maderense</italic>
and
<italic>G. palmatum</italic>
given their close phylogenetic relationship (Park S, Park S, Choi KS, Aedo C, Jansen RK, unpublished data). Transcriptome or nuclear genomic data for
<italic>G. palmatum</italic>
is needed for further investigation.</p>
</sec>
<sec>
<title>The Plastid Ribosome Evolves Faster in Geraniaceae</title>
<p>Our analyses showed that in Geraniaceae both CpRP and NuCpRP have accelerated
<italic>dN</italic>
, relative to other plastid-encoded and nuclear-encoded genes, respectively (
<xref ref-type="fig" rid="evw115-F3">fig. 3</xref>
). The acceleration of
<italic>dN</italic>
but not
<italic>dS</italic>
in CpRP and NuCpRP indicates that the increased substitution rates are independent of background mutation rates in these genes. However, the observation that
<italic>dS</italic>
was consistently higher in nuclear-encoded genes than plastid-encoded genes is congruent with the higher mutation rates in the nuclear genomes of land plants (
<xref rid="evw115-B71" ref-type="bibr">Wolfe et al. 1987</xref>
;
<xref rid="evw115-B10" ref-type="bibr">Drouin et al. 2008</xref>
;
<xref rid="evw115-B80" ref-type="bibr">Zhang et al. 2016</xref>
). Other phenomena, such as positive selection or relaxation of functional constraints, could be responsible for the observed acceleration in
<italic>dN.</italic>
</p>
<p>Nonsynonymous substitutions could accumulate through strong positive selection or relaxed purifying selection. To detect positive selection, we used branch-site models that allowed ω to vary across sites in a protein and across branches in the phylogeny (
<xref rid="evw115-B77" ref-type="bibr">Yang et al. 2005</xref>
;
<xref rid="evw115-B81" ref-type="bibr">Zhang et al. 2005</xref>
). The ω is an estimate of the strength of selection; a value greater than one suggests positive selection and less than 1 indicates purifying selection (
<xref rid="evw115-B42" ref-type="bibr">Nielsen 2005</xref>
). The branch-site tests indicated that none of the NuCpRP genes were under positive selection, whereas six CpRP genes showed evidence of positive selection in some amino acid residues (
<xref ref-type="table" rid="evw115-T1">tables 1</xref>
and
<xref ref-type="table" rid="evw115-T2">2</xref>
). Further, ω values estimated by branch-models were significantly higher for CpRP and NuCpRP in Geraniaceae than in outgroups (
<xref ref-type="fig" rid="evw115-F4">fig. 4</xref>
inset) suggesting that the strength of purifying selection is relaxed for these genes in Geraniaceae. Accelerated
<italic>dN</italic>
has also been observed in plastid-encoded RNA polymerase genes in Geraniaceae (
<xref rid="evw115-B18" ref-type="bibr">Guisinger et al. 2008</xref>
;
<xref rid="evw115-B69" ref-type="bibr">Weng et al. 2012</xref>
;
<xref rid="evw115-B4" ref-type="bibr">Blazier et al. 2016</xref>
) and it was suggested that the acceleration was related to the relaxation of functional constraints.</p>
<p>Codon usage bias can affect ω estimates. Because it inversely correlates with synonymous substitution rates (
<xref rid="evw115-B58" ref-type="bibr">Sharp and Li 1987</xref>
;
<xref rid="evw115-B84" ref-type="bibr">Zhang et al. 2002</xref>
), strong codon usage bias would inflate the value of ω. However, this is opposite to the pattern observed in Geraniaceae, where NuCyRP genes have stronger codon usage bias and significantly lower ω than NuCpRP. The difference in ω between NuCyRP and NuCpRP would be larger if codon usage bias were taken into account.</p>
</sec>
<sec>
<title>Cytonuclear Coevolution in Plastid Ribosomes</title>
<p>Amino acid substitutions in proteins within a multisubunit complex might drive changes in other proteins that assemble in the same complex. Cytonuclear coevolution has been observed in multisubunit complexes that include proteins encoded by both nuclear and mitochondrial genomes (
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi 2012</xref>
;
<xref rid="evw115-B2" ref-type="bibr">Barreto and Burton 2013</xref>
;
<xref rid="evw115-B78" ref-type="bibr">Zhang and Broughton 2013</xref>
) and by both nuclear and plastid genomes (
<xref rid="evw115-B61" ref-type="bibr">Sloan et al. 2014</xref>
;
<xref rid="evw115-B83" ref-type="bibr">Zhang et al. 2015</xref>
). In animal cells,
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi (2012)</xref>
provided evidence for compensatory evolution between mitochondrial- and nuclear-encoded subunits in the cytochrome c oxidase (COX) complex in a phylogenetic context. They showed that the fixation of slightly deleterious mutations in mitochondrial-encoded subunits in the COX complex has driven compensatory changes in nuclear-encoded subunits. However, the driving forces for cytonuclear coevolution have not been well characterized in plants.</p>
<p>To investigate cytonuclear coevolution between plastid ribosomal subunits that are encoded in the nucleus and plastids, we used an ML method to reconstruct the ancestral sequences and tested whether the nonsynonymous substitutions of two interacting proteins occurred concurrently or sequentially in the phylogeny, as would be expected under a model of coevolution. Our analyses revealed that 49 protein pairs between plastid ribosome subunits tend to have nonsynonymous substitutions along the same branches in the Geraniaceae phylogeny (
<xref ref-type="fig" rid="evw115-F5">fig. 5</xref>
), a signal suggesting coevolution between these proteins. The three plastid encoded proteins (Rps4, Rps12 and Rpl2) that coevolved with the largest number of nuclear encoded proteins (
<xref ref-type="fig" rid="evw115-F5">fig. 5</xref>
and
<xref ref-type="table" rid="evw115-T3">table 3</xref>
) are included in the core set of plastid ribosomal protein genes identified in
<xref rid="evw115-B33" ref-type="bibr">Maier et al. (2013)</xref>
. This core set of ribosomal protein genes has been retained in plastids and mitochondria across multiple independent eukaryotic lineages. The constraint imposed by ribosome assembly was suggested as the selection pressure driving this conservation (
<xref rid="evw115-B33" ref-type="bibr">Maier et al. 2013</xref>
). The essential roles played by the core ribosomal proteins in ribosome assembly (
<xref rid="evw115-B24" ref-type="bibr">Kaczanowska and Ryden-Aulin 2007</xref>
) might explain the strong coevolution signals revealed by our analyses.</p>
<p>Although physical interaction between residues in a multisubunit protein structure has been predicted as a driver for coevolutionary changes (
<xref rid="evw115-B55" ref-type="bibr">Schmidt et al. 2001</xref>
;
<xref rid="evw115-B45" ref-type="bibr">Osada and Akashi 2012</xref>
), our analyses did not find evidence favoring this hypothesis. The coevolving plastid ribosomal protein pairs identified based on complete gene sequences did not share residues within 10Å distance (
<xref ref-type="fig" rid="evw115-F5">fig. 5</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). If the physical interaction between ribosomal proteins is driving coevolution, the number of protein pairs with significantly more nonsynonymous substitutions at contact residues occurring along the same branches should have increased. Instead, we found the number of significant protein pairs decreased when analyzing alignments that only include contact residues (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). In addition, the sequence identity between complete gene sequences and contact residues were not significantly different (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary table S6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online) suggesting the absence of biased selective constraints on residues at contact sites in plastid ribosomes in Geraniaceae. Compensatory coevolution may be occurring between residues that are not physically proximate, as has been demonstrated for noncontact residues in ribosomal proteins in bacteria (
<xref rid="evw115-B34" ref-type="bibr">Maisnier-Patin et al. 2007</xref>
). Given the complexity of the translation machinery in plastids (
<xref rid="evw115-B36" ref-type="bibr">Marín-Navarro et al. 2007</xref>
;
<xref rid="evw115-B48" ref-type="bibr">Peled-Zehavi and Danon 2007</xref>
), additional nuclear-encoded regulatory factors may coevolve with ribosomal proteins. Further studies that include nuclear genes encoding regulatory factors are needed.</p>
<p>Unlike the observations of nuclear and mitochondrial genomes in animals, where it is argued that the fixation of deleterious mutations in the mitochondrion causes selective pressures that drive compensatory changes in nuclear genomes (
<xref rid="evw115-B13" ref-type="bibr">Gabriel et al. 1993</xref>
;
<xref rid="evw115-B32" ref-type="bibr">Lynch 1996</xref>
;
<xref rid="evw115-B40" ref-type="bibr">Neiman and Taylor 2009</xref>
), our analyses did not find evidence that nonsynonymous substitutions in CpRP tend to occur on branches subsequent to nonsynonymous substitutions in NuCpRp, or vice versa, in Geraniaceae (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary data file S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). This result suggests that the driving forces for the increased
<italic>dN</italic>
in plastid ribosomal protein genes might not come from plastid ribosomal subunits themselves. Ribosomal RNAs, which provide the foundation for ribosome assembly and structure, could drive changes in ribosome subunits. Geraniaceae ribosomal RNAs indeed had a large number of indels of different lengths (
<xref ref-type="fig" rid="evw115-F6">fig. 6</xref>
), which could cause substantial structural changes in the ribosome and consequently amino acid substitutions in CpRP and NuCpRP.</p>
<p>The cytonuclear coevolution in Geraniaceae plastid ribosomes could also be due to relaxation of purifying selection on the ribosome resulting in accelerated substitutions in ribosomal protein genes, and subsequent selective pressure for compensatory changes. Purifying selection in the majority of NuCpRP in Geraniaceae was relaxed (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">supplementary fig. S3 and table S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary Material</ext-link>
online). Relaxation of selection on nuclear genes often occurs after genome or gene duplication (
<xref rid="evw115-B44" ref-type="bibr">Ohno 1970</xref>
;
<xref rid="evw115-B79" ref-type="bibr">Zhang 2003</xref>
). Whole-genome duplication, either through auto- or allopolyploidy, has occurred numerous times across flowering plants (
<xref rid="evw115-B22" ref-type="bibr">Jiao et al. 2011</xref>
). Substantial variation in genome size, chromosome number, and size and ploidy level in Geraniaceae (
<xref rid="evw115-B1" ref-type="bibr">Bakker et al. 2004</xref>
;
<xref rid="evw115-B69" ref-type="bibr">Weng et al. 2012</xref>
) suggests that genome duplication has occurred in the family. After genome duplication, plastid-targeted genes have strong tendency to be retained as single copy genes suggesting gene losses among duplicated plastid-targeted genes (
<xref rid="evw115-B9" ref-type="bibr">De Smet et al. 2013</xref>
). Gene loss after genome duplication could lead to the retention of single copy genes that are divergent among species (reciprocal gene loss;
<xref rid="evw115-B54" ref-type="bibr">Scannell et al. 2006</xref>
), leading to the detection of highly accelerated substitution rates in plastid-targeted genes, and potentially to plastome-genome incompatibilities as proposed by
<xref rid="evw115-B83" ref-type="bibr">Zhang et al. (2015)</xref>
.</p>
<p>Studying the sequences of plastid ribosomal proteins in Geraniaceae showed strong coevolution signals between plastid- and nuclear-encoded subunits that have accelerated nonsynonymous substitution rates. Increased positive selection, relaxed purifying selection, and sequence variation in rRNA genes all contributed to the accelerated nonsynonymous rates in ribosome subunits.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw115/-/DC1">Supplementary figures S1–S4, tables S1–S6, and data files S1–S2</ext-link>
are available at
<italic>Genome Biology and Evolution</italic>
online (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/">http://www.gbe.oxfordjournals.org/</ext-link>
).</p>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_8_6_1824__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="supp_evw115_Supplementary_data_file_S2.xlsx"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_evw115_Supplementary_Materials.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>Support was provided by the National Science Foundation (
<award-id>IOS-1027259</award-id>
to R.J.K. and T.A.R.). The authors thank Jin Zhang for helpful discussions, the Texas Advanced Computing Center (TACC) at the University of Texas for access to supercomputers and TEX-LL for serving as a repository for voucher specimens.</p>
</ack>
<ref-list>
<title>Literature Cited</title>
<ref id="evw115-B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bakker</surname>
<given-names>FT</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hettiarachi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Touloumenidou</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gibby</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Phylogeny of
<italic>Pelargonium</italic>
(Geraniaceae) based on DNA sequences from three genomes</article-title>
.
<source>Taxon</source>
<volume>53</volume>
:
<fpage>17</fpage>
<lpage>28</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barreto</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>RS.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA</article-title>
.
<source>Mol Biol Evol.</source>
<volume>30</volume>
:
<fpage>310</fpage>
<lpage>314</lpage>
.
<pub-id pub-id-type="pmid">22993236</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhattacherjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mallik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kundu</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Compensatory mutations occur within the electrostatic interaction range of deleterious mutations in protein structure</article-title>
.
<source>J Mol Evol.</source>
<volume>80</volume>
:
<fpage>10</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="pmid">25399321</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blazier</surname>
<given-names>JC</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2016</year>
<article-title>Divergence of RNA polymeraseα subunits in angiosperm plastid genomes is mediated by genomic rearrangement</article-title>
.
<source>Sci Rep</source>
.
<volume>6</volume>
(
<issue>24595</issue>
):
<fpage>1</fpage>
<lpage>15</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandvain</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wade</surname>
<given-names>MJ.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization</article-title>
.
<source>Genetics</source>
<volume>182</volume>
(
<issue>4</issue>
):
<fpage>129</fpage>
<lpage>1139</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bubunenko</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>AR.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Protein substitution in chloroplast ribosome evolution: a eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach</article-title>
.
<source>J Mol Biol.</source>
<volume>240</volume>
:
<fpage>28</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="pmid">8021938</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Budar</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Cytonuclear adaptation in plants</article-title>
.
<source>Adv Bot Res.</source>
<volume>63</volume>
:
<fpage>99</fpage>
<lpage>126</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cusack</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>KH.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>When gene marriages don’t work out: divorce by subfunctionalization</article-title>
.
<source>Trends Genet.</source>
<volume>23</volume>
:
<fpage>270</fpage>
<lpage>272</lpage>
.
<pub-id pub-id-type="pmid">17418444</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Smet</surname>
<given-names>R</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2013</year>
<article-title>Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants</article-title>
.
<source>Proc Natl Acad Sci U S A.</source>
<volume>110</volume>
:
<fpage>2898</fpage>
<lpage>2903</lpage>
.
<pub-id pub-id-type="pmid">23382190</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drouin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Daoud</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants</article-title>
.
<source>Mol Phylogenet Evol.</source>
<volume>49</volume>
:
<fpage>827</fpage>
<lpage>831</lpage>
.
<pub-id pub-id-type="pmid">18838124</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emanuelsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Predicting subcellular localization of proteins based on their N-terminal amino acid sequence</article-title>
.
<source>J Mol Biol.</source>
<volume>300</volume>
:
<fpage>1005</fpage>
<lpage>1016</lpage>
.
<pub-id pub-id-type="pmid">10891285</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fleischmann</surname>
<given-names>TT</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2011</year>
<article-title>Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution</article-title>
.
<source>Plant Cell</source>
<volume>23</volume>
:
<fpage>3137</fpage>
<lpage>3155</lpage>
.
<pub-id pub-id-type="pmid">21934145</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gabriel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Burger</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Muller’s ratchet and mutational meltdowns</article-title>
.
<source>Evolution</source>
<volume>47</volume>
:
<fpage>1744</fpage>
<lpage>1757</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gantt</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Baldauf</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Calie</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Weeden</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>JD.</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Transfer of
<italic>rpl22</italic>
to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron</article-title>
.
<source>Embo J.</source>
<volume>10</volume>
:
<fpage>3073.</fpage>
<pub-id pub-id-type="pmid">1915281</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodstein</surname>
<given-names>DM</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2012</year>
<article-title>Phytozome: a comparative platform for green plant genomics</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>40</volume>
(
<issue>D1</issue>
):
<fpage>D1178</fpage>
<lpage>D1186</lpage>
.
<pub-id pub-id-type="pmid">22110026</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gray</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Burger</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>BF.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>The origin and early evolution of mitochondria</article-title>
.
<source>Genome Biol.</source>
<volume>2</volume>
:1018–1011.</mixed-citation>
</ref>
<ref id="evw115-B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greiner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bock</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants</article-title>
.
<source>BioEssays</source>
<volume>35</volume>
:
<fpage>354</fpage>
<lpage>365</lpage>
.
<pub-id pub-id-type="pmid">23361615</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guisinger</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Kuehl</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Boore</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions</article-title>
.
<source>Proc Natl Acad Sci U S A.</source>
<volume>105</volume>
:
<fpage>18424</fpage>
<lpage>18429</lpage>
.
<pub-id pub-id-type="pmid">19011103</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guisinger</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Kuehl</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Boore</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage</article-title>
.
<source>Mol Biol Evol.</source>
<volume>28</volume>
:
<fpage>583</fpage>
<lpage>600</lpage>
.
<pub-id pub-id-type="pmid">20805190</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2007</year>
<article-title>Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns</article-title>
.
<source>Proc Natl Acad Sci U S A.</source>
<volume>104</volume>
:
<fpage>19369.</fpage>
<pub-id pub-id-type="pmid">18048330</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Saski</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S-B</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Daniell</surname>
<given-names>H.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Complete plastid genome sequences of three rosids (
<italic>Castanea</italic>
,
<italic>Prunus</italic>
,
<italic>Theobroma</italic>
): evidence for at least two independent transfers of rpl22 to the nucleus</article-title>
.
<source>Mol Biol Evol.</source>
<volume>28</volume>
:
<fpage>835</fpage>
<lpage>847</lpage>
.
<pub-id pub-id-type="pmid">20935065</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2011</year>
<article-title>Ancestral polyploidy in seed plants and angiosperms</article-title>
.
<source>Nature</source>
<volume>473</volume>
:
<fpage>97</fpage>
<lpage>100</lpage>
.
<pub-id pub-id-type="pmid">21478875</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonson</surname>
<given-names>NA.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Hybrid incompatibility genes: remnants of a genomic battlefield?</article-title>
<source>Trends Genet.</source>
<volume>26</volume>
(
<issue>7</issue>
):
<fpage>317</fpage>
<lpage>325</lpage>
.
<pub-id pub-id-type="pmid">20621759</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaczanowska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ryden-Aulin</surname>
<given-names>MR.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Ribosome biogenesis and the translation process in
<italic>Escherichia coli.</italic>
</article-title>
<source>Microbiol Mol Biol Rev</source>
.
<volume>71</volume>
:
<fpage>477</fpage>
<lpage>494</lpage>
.
<pub-id pub-id-type="pmid">17804668</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katoh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Misawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuma</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyata</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>30</volume>
:
<fpage>3059</fpage>
<lpage>3066</lpage>
.
<pub-id pub-id-type="pmid">12136088</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kearse</surname>
<given-names>M</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2012</year>
<article-title>Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data</article-title>
.
<source>Bioinformatics</source>
<volume>28</volume>
:
<fpage>1647</fpage>
<lpage>1649</lpage>
.
<pub-id pub-id-type="pmid">22543367</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleine</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>UG</given-names>
</name>
<name>
<surname>Leister</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis</article-title>
.
<source>Annu Rev Plant Biol.</source>
<volume>60</volume>
:
<fpage>115</fpage>
<lpage>138</lpage>
.
<pub-id pub-id-type="pmid">19014347</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B28">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kosakovsky Pond</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Muse</surname>
<given-names>SV.</given-names>
</name>
</person-group>
<year>2005</year>
<chapter-title>HyPhy: hypothesis testing using phylogenies</chapter-title>
In:
<person-group person-group-type="editor">
<name>
<surname>Nielsen</surname>
<given-names>R</given-names>
</name>
</person-group>
, editor.
<source>Statistical methods in molecular evolution. (Statistics for biology and health)</source>
.
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Springer</publisher-name>
p.
<fpage>125</fpage>
<lpage>181</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kryazhimskiy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dushoff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bazykin</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Plotkin</surname>
<given-names>JB.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Prevalence of epistasis in the evolution of influenza a surface proteins</article-title>
.
<source>PLoS Genet.</source>
<volume>7</volume>
:
<fpage>e1001301.</fpage>
<pub-id pub-id-type="pmid">21390205</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levin</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>The cytoplasmic factor in plant speciation</article-title>
.
<source>Syst Bot</source>
.
<volume>28</volume>
:
<fpage>5</fpage>
<lpage>11</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovell</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>DL.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>An integrated view of molecular coevolution in protein-protein interactions</article-title>
.
<source>Mol Biol Evol.</source>
<volume>27</volume>
:
<fpage>2567</fpage>
<lpage>2575</lpage>
.
<pub-id pub-id-type="pmid">20551042</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Mutation accumulation in transfer RNAs: molecular evidence for Muller’s ratchet in mitochondrial genomes</article-title>
.
<source>Mol Biol Evol.</source>
<volume>13</volume>
:
<fpage>209</fpage>
<lpage>220</lpage>
.
<pub-id pub-id-type="pmid">8583893</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maier</surname>
<given-names>U-G</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2013</year>
<article-title>Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes</article-title>
.
<source>Genome Biol Evol.</source>
<volume>5</volume>
:
<fpage>2318</fpage>
<lpage>2329</lpage>
.
<pub-id pub-id-type="pmid">24259312</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maisnier-Patin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Paulander</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Pennhag</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>DI.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19</article-title>
.
<source>J Mol Biol.</source>
<volume>366</volume>
:
<fpage>207</fpage>
<lpage>215</lpage>
.
<pub-id pub-id-type="pmid">17157877</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchler-Bauer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Derbyshire</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Gonzales</surname>
<given-names>NR</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2015</year>
<article-title>CDD: NCBI’s conserved domain database</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>43</volume>
:
<fpage>D222</fpage>
<lpage>D226</lpage>
.
<pub-id pub-id-type="pmid">25414356</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marín-Navarro</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Manuell</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mayfield</surname>
<given-names>SP.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Chloroplast translation regulation</article-title>
.
<source>Photosynth Res.</source>
<volume>94</volume>
:
<fpage>359</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="pmid">17661159</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamauchi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Obokata</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux</article-title>
.
<source>Plant Cell</source>
<volume>17</volume>
:
<fpage>665</fpage>
<lpage>675</lpage>
.
<pub-id pub-id-type="pmid">15705954</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McFadden</surname>
<given-names>GI.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Primary and secondary endosymbiosis and the origin of plastids</article-title>
.
<source>J Phycol</source>
.
<volume>37</volume>
:
<fpage>951</fpage>
<lpage>959</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Müller</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>SeqState–primer design and sequence statistics for phylogenetic DNA data sets</article-title>
.
<source>Appl Bioinformatics</source>
.
<volume>4</volume>
:
<fpage>65</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="pmid">16000015</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neiman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>DR.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The causes of mutation accumulation in mitochondrial genomes</article-title>
.
<source>Proc Biol Sci.</source>
<volume>276</volume>
:
<fpage>1201</fpage>
<lpage>1209</lpage>
.
<pub-id pub-id-type="pmid">19203921</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Engelbrecht</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites</article-title>
.
<source>Protein Eng</source>
.
<volume>10</volume>
:
<fpage>1</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">9051728</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nielsen</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Molecular signatures of natural selection</article-title>
.
<source>Annu Rev Genet.</source>
<volume>36</volume>
:
<fpage>197</fpage>
<lpage>218</lpage>
.
<pub-id pub-id-type="pmid">16285858</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noutsos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Richly</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Leister</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants</article-title>
.
<source>Genome Res.</source>
<volume>15</volume>
:
<fpage>616</fpage>
<lpage>628</lpage>
.
<pub-id pub-id-type="pmid">15867426</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B44">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ohno</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>1970</year>
<source>Evolution by gene duplication</source>
.
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Springer</publisher-name>
p.
<fpage>160</fpage>
.</mixed-citation>
</ref>
<ref id="evw115-B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Osada</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Akashi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Mitochondrial–nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome c oxidase complex</article-title>
.
<source>Mol Biol Evol.</source>
<volume>29</volume>
:
<fpage>337</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="pmid">21890478</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Complete plastome sequence of
<italic>Thalictrum coreanum</italic>
(Ranunculaceae) and transfer of the
<italic>rpl32</italic>
gene to the nucleus in the ancestor of the subfamily Thalictroideae</article-title>
.
<source>BMC Plant Biol.</source>
<volume>15</volume>
:
<fpage>40.</fpage>
<pub-id pub-id-type="pmid">25652741</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B47">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Peden</surname>
<given-names>JF.</given-names>
</name>
</person-group>
<year>1999</year>
Analysis of codon usage. [PhD thesis]. University of Nottingham. [cited 2016 May 18]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://codonw.sourceforge.net">http://codonw.sourceforge.net</ext-link>
.</mixed-citation>
</ref>
<ref id="evw115-B48">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Peled-Zehavi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Danon</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2007</year>
<chapter-title>Translation and translational regulation in chloroplasts</chapter-title>
In:
<person-group person-group-type="editor">
<name>
<surname>Bock</surname>
<given-names>R</given-names>
</name>
</person-group>
, editor.
<source>Cell and molecular biology of plastids. Vol. 19. Topics in current genetics</source>
.
<publisher-loc>Berlin/Heidelberg</publisher-loc>
:
<publisher-name>Springer</publisher-name>
p.
<fpage>249</fpage>
<lpage>281</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B49">
<mixed-citation publication-type="other">
<collab>R Core Team</collab>
.
<year>2015</year>
R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [cited 2016 May 18]. Available from:
<ext-link ext-link-type="uri" xlink:href="https://www.R-project.org">https://www.R-project.org</ext-link>
.</mixed-citation>
</ref>
<ref id="evw115-B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rand</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Haney</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Fry</surname>
<given-names>AJ.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Cytonuclear coevolution: the genomics of cooperation</article-title>
.
<source>Trends Ecol Evol.</source>
<volume>19</volume>
:
<fpage>645</fpage>
<lpage>653</lpage>
.
<pub-id pub-id-type="pmid">16701327</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruhlman</surname>
<given-names>TA</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2015</year>
<article-title>NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss</article-title>
.
<source>BMC Plant Biol.</source>
<volume>15</volume>
:
<fpage>100.</fpage>
<pub-id pub-id-type="pmid">25886915</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B52">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ruhlman</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2014</year>
<chapter-title>The plastid genomes of flowering plants</chapter-title>
In:
<person-group person-group-type="editor">
<name>
<surname>Maliga</surname>
<given-names>P</given-names>
</name>
</person-group>
, editor.
<source>Chloroplast biotechnology</source>
. Vol.
<volume>1132</volume>
<publisher-loc>Totowa, NJ</publisher-loc>
:
<publisher-name>Humana Press</publisher-name>
p.
<fpage>3</fpage>
<lpage>38</lpage>
. [cited 2016 May 18]. Available from:
<ext-link ext-link-type="uri" xlink:href="http://link.springer.com/10.1007/978-1-62703-995-6_1">http://link.springer.com/10.1007/978-1-62703-995-6_1</ext-link>
.</mixed-citation>
</ref>
<ref id="evw115-B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saitou</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>The neighbor-joining method: a new method for reconstructing phylogenetic trees</article-title>
.
<source>Mol Biol Evol.</source>
<volume>4</volume>
:
<fpage>406</fpage>
<lpage>425</lpage>
.
<pub-id pub-id-type="pmid">3447015</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scannell</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Byrne</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>KH.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts</article-title>
.
<source>Nature</source>
<volume>440</volume>
:
<fpage>341</fpage>
<lpage>345</lpage>
.
<pub-id pub-id-type="pmid">16541074</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grossman</surname>
<given-names>LI.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase</article-title>
.
<source>Mol Biol Evol.</source>
<volume>18</volume>
:
<fpage>563</fpage>
<lpage>569</lpage>
.
<pub-id pub-id-type="pmid">11264408</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shapiro</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pybus</surname>
<given-names>OG</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>EC.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution</article-title>
.
<source>Mol Biol Evol.</source>
<volume>23</volume>
:
<fpage>1724</fpage>
<lpage>1730</lpage>
.
<pub-id pub-id-type="pmid">16774976</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>MR</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2007</year>
<article-title>Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins</article-title>
.
<source>Proc Natl Acad Sci U S A.</source>
<volume>104</volume>
:
<fpage>19315</fpage>
<lpage>19320</lpage>
.
<pub-id pub-id-type="pmid">18042701</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharp</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>WH.</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias</article-title>
.
<source>Mol Biol Evol.</source>
<volume>4</volume>
:
<fpage>222</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="pmid">3328816</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simmons</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Ochoterena</surname>
<given-names>H.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Gaps as characters in sequence-based phylogenetic analysis</article-title>
.
<source>Syst Biol.</source>
<volume>49</volume>
:
<fpage>369</fpage>
<lpage>381</lpage>
.
<pub-id pub-id-type="pmid">12118412</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sloan</surname>
<given-names>DB.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Using plants to elucidate the mechanisms of cytonuclear co-evolution</article-title>
.
<source>New Phytol</source>
.
<volume>205</volume>
:
<fpage>1040</fpage>
<lpage>1046</lpage>
.
<pub-id pub-id-type="pmid">25729802</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sloan</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Triant</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>DR.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes</article-title>
.
<source>Mol Biol Evol.</source>
<volume>31</volume>
:
<fpage>673</fpage>
<lpage>682</lpage>
.
<pub-id pub-id-type="pmid">24336923</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hoover</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rougemont</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>A rapid bootstrap algorithm for the RAxML web-servers</article-title>
.
<source>Syst Biol.</source>
<volume>75</volume>
:
<fpage>758</fpage>
<lpage>771</lpage>
.
<pub-id pub-id-type="pmid">18853362</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stegemann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bock</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus</article-title>
.
<source>Plant Cell</source>
<volume>18</volume>
:
<fpage>2869</fpage>
<lpage>2878</lpage>
.
<pub-id pub-id-type="pmid">17085684</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2009</year>
<article-title>PPDB, the plant proteomics database at Cornell</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>37(Suppl 1)</volume>
:
<fpage>D969</fpage>
<lpage>D974</lpage>
.
<pub-id pub-id-type="pmid">18832363</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmis</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Ayliffe</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>W.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes</article-title>
.
<source>Nat Rev Genet.</source>
<volume>5</volume>
(
<issue>2</issue>
):
<fpage>123</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">14735123</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ueda</surname>
<given-names>M</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2007</year>
<article-title>Loss of the
<italic>rpl32</italic>
gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in
<italic>Populus.</italic>
</article-title>
<source>Gene</source>
<volume>402</volume>
:
<fpage>51</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="pmid">17728076</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ueda</surname>
<given-names>M</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2008</year>
<article-title>Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal</article-title>
.
<source>Mol Biol Evol.</source>
<volume>25</volume>
:
<fpage>1566</fpage>
<lpage>1575</lpage>
.
<pub-id pub-id-type="pmid">18453549</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weng</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Blazier</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Govindu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates</article-title>
.
<source>Mol Biol Evol.</source>
<volume>31</volume>
:
<fpage>645</fpage>
<lpage>659</lpage>
.
<pub-id pub-id-type="pmid">24336877</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weng</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Ruhlman</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Gibby</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Phylogeny, rate variation, and genome size evolution of
<italic>Pelargonium</italic>
(Geraniaceae)</article-title>
.
<source>Mol Phylogenet Evol.</source>
<volume>64</volume>
:
<fpage>654</fpage>
<lpage>670</lpage>
.
<pub-id pub-id-type="pmid">22677167</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wertheim</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Murrell</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Kosakovsky Pond</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Scheffler</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>RELAX: detecting relaxed selection in a phylogenetic framework</article-title>
.
<source>Mol Biol Evol.</source>
<volume>32</volume>
:
<fpage>820</fpage>
<lpage>832</lpage>
.
<pub-id pub-id-type="pmid">25540451</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfe</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Sharp</surname>
<given-names>PM.</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs</article-title>
.
<source>Proc Natl Acad Sci U S A.</source>
<volume>84</volume>
:
<fpage>9054</fpage>
<lpage>9058</lpage>
.
<pub-id pub-id-type="pmid">3480529</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wright</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>The effective number of codons used in a gene</article-title>
.
<source>Gene</source>
<volume>87</volume>
:
<fpage>23</fpage>
<lpage>29</lpage>
.
<pub-id pub-id-type="pmid">2110097</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wyman</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Boore</surname>
<given-names>JL.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Automatic annotation of organellar genomes with DOGMA</article-title>
.
<source>Bioinformatics</source>
<volume>20</volume>
:
<fpage>3235</fpage>
<lpage>3255</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamaguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>AR.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast)</article-title>
.
<source>J Biol Chem.</source>
<volume>275</volume>
:
<fpage>28466</fpage>
<lpage>28482</lpage>
.
<pub-id pub-id-type="pmid">10874046</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamaguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>von Knoblauch</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>AR.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast)</article-title>
.
<source>J Biol Chem.</source>
<volume>275</volume>
:
<fpage>28455</fpage>
<lpage>28465</lpage>
.
<pub-id pub-id-type="pmid">10874039</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>PAML 4: Phylogenetic analysis by maximum likelihood</article-title>
.
<source>Mol Biol Evol.</source>
<volume>24</volume>
:
<fpage>1586</fpage>
<lpage>1591</lpage>
.
<pub-id pub-id-type="pmid">17483113</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>WSW</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Bayes empirical Bayes inference of amino acid sites under positive selection</article-title>
.
<source>Mol Biol Evol.</source>
<volume>22</volume>
:
<fpage>1107</fpage>
<lpage>1118</lpage>
.
<pub-id pub-id-type="pmid">15689528</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Broughton</surname>
<given-names>RE.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Mitochondrial–nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?</article-title>
<source>Genome Biol Evol.</source>
<volume>5</volume>
:
<fpage>1781</fpage>
<lpage>1791</lpage>
.
<pub-id pub-id-type="pmid">23995460</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Evolution by gene duplication: an update</article-title>
.
<source>Trends Ecol Evol.</source>
<volume>18</volume>
:
<fpage>292</fpage>
<lpage>298</lpage>
.</mixed-citation>
</ref>
<ref id="evw115-B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
,
<etal></etal>
<year>2016</year>
<article-title>Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity</article-title>
.
<source>Genome Biol Evol.</source>
<volume>8</volume>
:
<fpage>622</fpage>
<lpage>634</lpage>
.
<pub-id pub-id-type="pmid">26893456</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level</article-title>
.
<source>Mol Biol Evol.</source>
<volume>22</volume>
:
<fpage>2472</fpage>
<lpage>2479</lpage>
.
<pub-id pub-id-type="pmid">16107592</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ruhlman</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Mower</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing</article-title>
.
<source>BMC Plant Biol.</source>
<volume>13</volume>
:
<fpage>228.</fpage>
<pub-id pub-id-type="pmid">24373163</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ruhlman</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Sabir</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Blazier</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>RK.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae</article-title>
.
<source>Plant Cell</source>
<volume>27</volume>
:
<fpage>563</fpage>
<lpage>573</lpage>
.
<pub-id pub-id-type="pmid">25724640</pub-id>
</mixed-citation>
</ref>
<ref id="evw115-B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vision</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Gaut</surname>
<given-names>BS.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Patterns of nucleotide substitution among simultaneously duplicated gene pairs in
<italic>Arabidopsis thaliana.</italic>
</article-title>
<source>Mol Biol Evol.</source>
<volume>19</volume>
:
<fpage>1464</fpage>
<lpage>1473</lpage>
.
<pub-id pub-id-type="pmid">12200474</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000336  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000336  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024