Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock

Identifieur interne : 000312 ( Pmc/Corpus ); précédent : 000311; suivant : 000313

Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock

Auteurs : Geisa L. Mesquita ; Fernando C. B. Zambrosi ; Francisco A. O. Tanaka ; Rodrigo M. Boaretto ; José A. Quaggio ; Rafael V. Ribeiro ; Dirceu Mattos

Source :

RBID : PMC:4777737

Abstract

In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.


Url:
DOI: 10.3389/fpls.2016.00224
PubMed: 26973670
PubMed Central: 4777737

Links to Exploration step

PMC:4777737

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anatomical and Physiological Responses of
<italic>Citrus</italic>
Trees to Varying Boron Availability Are Dependent on Rootstock</title>
<author>
<name sortKey="Mesquita, Geisa L" sort="Mesquita, Geisa L" uniqKey="Mesquita G" first="Geisa L." last="Mesquita">Geisa L. Mesquita</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zambrosi, Fernando C B" sort="Zambrosi, Fernando C B" uniqKey="Zambrosi F" first="Fernando C. B." last="Zambrosi">Fernando C. B. Zambrosi</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Centro de Solos e Recursos Ambientais, Instituto Agronômico</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Francisco A O" sort="Tanaka, Francisco A O" uniqKey="Tanaka F" first="Francisco A. O." last="Tanaka">Francisco A. O. Tanaka</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo</institution>
<country>Piracicaba, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boaretto, Rodrigo M" sort="Boaretto, Rodrigo M" uniqKey="Boaretto R" first="Rodrigo M." last="Boaretto">Rodrigo M. Boaretto</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quaggio, Jose A" sort="Quaggio, Jose A" uniqKey="Quaggio J" first="José A." last="Quaggio">José A. Quaggio</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Centro de Solos e Recursos Ambientais, Instituto Agronômico</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, Rafael V" sort="Ribeiro, Rafael V" uniqKey="Ribeiro R" first="Rafael V." last="Ribeiro">Rafael V. Ribeiro</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Plant Biology, Institute of Biology, University of Campinas</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mattos, Dirceu" sort="Mattos, Dirceu" uniqKey="Mattos D" first="Dirceu" last="Mattos">Dirceu Mattos</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26973670</idno>
<idno type="pmc">4777737</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777737</idno>
<idno type="RBID">PMC:4777737</idno>
<idno type="doi">10.3389/fpls.2016.00224</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000312</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Anatomical and Physiological Responses of
<italic>Citrus</italic>
Trees to Varying Boron Availability Are Dependent on Rootstock</title>
<author>
<name sortKey="Mesquita, Geisa L" sort="Mesquita, Geisa L" uniqKey="Mesquita G" first="Geisa L." last="Mesquita">Geisa L. Mesquita</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zambrosi, Fernando C B" sort="Zambrosi, Fernando C B" uniqKey="Zambrosi F" first="Fernando C. B." last="Zambrosi">Fernando C. B. Zambrosi</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Centro de Solos e Recursos Ambientais, Instituto Agronômico</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Francisco A O" sort="Tanaka, Francisco A O" uniqKey="Tanaka F" first="Francisco A. O." last="Tanaka">Francisco A. O. Tanaka</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo</institution>
<country>Piracicaba, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boaretto, Rodrigo M" sort="Boaretto, Rodrigo M" uniqKey="Boaretto R" first="Rodrigo M." last="Boaretto">Rodrigo M. Boaretto</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quaggio, Jose A" sort="Quaggio, Jose A" uniqKey="Quaggio J" first="José A." last="Quaggio">José A. Quaggio</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Centro de Solos e Recursos Ambientais, Instituto Agronômico</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, Rafael V" sort="Ribeiro, Rafael V" uniqKey="Ribeiro R" first="Rafael V." last="Ribeiro">Rafael V. Ribeiro</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Plant Biology, Institute of Biology, University of Campinas</institution>
<country>Campinas, Brazil</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mattos, Dirceu" sort="Mattos, Dirceu" uniqKey="Mattos D" first="Dirceu" last="Mattos">Dirceu Mattos</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In
<italic>Citrus</italic>
, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO
<sub>2</sub>
assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Araujo, W L" uniqKey="Araujo W">W. L. Araújo</name>
</author>
<author>
<name sortKey="Fernie, A R" uniqKey="Fernie A">A. R. Fernie</name>
</author>
<author>
<name sortKey="Nunes Nesi, A" uniqKey="Nunes Nesi A">A. Nunes-Nesi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barry, G H" uniqKey="Barry G">G. H. Barry</name>
</author>
<author>
<name sortKey="Castle, W S" uniqKey="Castle W">W. S. Castle</name>
</author>
<author>
<name sortKey="Davies, F S" uniqKey="Davies F">F. S. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bell, R W" uniqKey="Bell R">R. W. Bell</name>
</author>
<author>
<name sortKey="Dell, B" uniqKey="Dell B">B. Dell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blevins, D G" uniqKey="Blevins D">D. G. Blevins</name>
</author>
<author>
<name sortKey="Lukaszewski, K M" uniqKey="Lukaszewski K">K. M. Lukaszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boaretto, R M" uniqKey="Boaretto R">R. M. Boaretto</name>
</author>
<author>
<name sortKey="Quaggio, J A" uniqKey="Quaggio J">J. A. Quaggio</name>
</author>
<author>
<name sortKey="Mattos, D" uniqKey="Mattos D">D. Mattos</name>
</author>
<author>
<name sortKey="Muraoka, T" uniqKey="Muraoka T">T. Muraoka</name>
</author>
<author>
<name sortKey="Boaretto, A E" uniqKey="Boaretto A">A. E. Boaretto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boaretto, R M" uniqKey="Boaretto R">R. M. Boaretto</name>
</author>
<author>
<name sortKey="Quaggio, J A" uniqKey="Quaggio J">J. A. Quaggio</name>
</author>
<author>
<name sortKey="Mourao Filho, F A A" uniqKey="Mourao Filho F">F. A. A. Mourao Filho</name>
</author>
<author>
<name sortKey="Gine, M F" uniqKey="Gine M">M. F. Gine</name>
</author>
<author>
<name sortKey="Boaretto, A E" uniqKey="Boaretto A">A. E. Boaretto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, P H" uniqKey="Brown P">P. H. Brown</name>
</author>
<author>
<name sortKey="Bellaloui, W M A" uniqKey="Bellaloui W">W. M. A. Bellaloui</name>
</author>
<author>
<name sortKey="Bassil, E" uniqKey="Bassil E">E. Bassil</name>
</author>
<author>
<name sortKey="Ruiz, J" uniqKey="Ruiz J">J. Ruiz</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H. Hu</name>
</author>
<author>
<name sortKey="Pfeffer, H" uniqKey="Pfeffer H">H. Pfeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castle, W S" uniqKey="Castle W">W. S. Castle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dannel, F" uniqKey="Dannel F">F. Dannel</name>
</author>
<author>
<name sortKey="Pfeffer, H" uniqKey="Pfeffer H">H. Pfeffer</name>
</author>
<author>
<name sortKey="Romheld, V" uniqKey="Romheld V">V. Römheld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dordas, C" uniqKey="Dordas C">C. Dordas</name>
</author>
<author>
<name sortKey="Chrispeels, M J" uniqKey="Chrispeels M">M. J. Chrispeels</name>
</author>
<author>
<name sortKey="Brown, P H" uniqKey="Brown P">P. H. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fassio, C" uniqKey="Fassio C">C. Fassio</name>
</author>
<author>
<name sortKey="Heath, R" uniqKey="Heath R">R. Heath</name>
</author>
<author>
<name sortKey="Arpaia, M L" uniqKey="Arpaia M">M. L. Arpaia</name>
</author>
<author>
<name sortKey="Castro, M" uniqKey="Castro M">M. Castro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldbach, H E" uniqKey="Goldbach H">H. E. Goldbach</name>
</author>
<author>
<name sortKey="Wimmer, M A" uniqKey="Wimmer M">M. A. Wimmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, S" uniqKey="Han S">S. Han</name>
</author>
<author>
<name sortKey="Tang, N" uniqKey="Tang N">N. Tang</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H. Jiang</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hans, S" uniqKey="Hans S">S. Hans</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Jiang, H X" uniqKey="Jiang H">H. X. Jiang</name>
</author>
<author>
<name sortKey="Smith, B R" uniqKey="Smith B">B. R. Smith</name>
</author>
<author>
<name sortKey="Yang, L T" uniqKey="Yang L">L. T. Yang</name>
</author>
<author>
<name sortKey="Sie, C Y" uniqKey="Sie C">C. Y. Sie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayes, J E" uniqKey="Hayes J">J. E. Hayes</name>
</author>
<author>
<name sortKey="Reid, R J" uniqKey="Reid R">R. J. Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karnovsky, M J" uniqKey="Karnovsky M">M. J. Karnovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kot, F S" uniqKey="Kot F">F. S. Kot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, G D" uniqKey="Liu G">G. D. Liu</name>
</author>
<author>
<name sortKey="Wang, R D" uniqKey="Wang R">R. D. Wang</name>
</author>
<author>
<name sortKey="Liu, L C" uniqKey="Liu L">L. C. Liu</name>
</author>
<author>
<name sortKey="Wu, L S" uniqKey="Wu L">L. S. Wu</name>
</author>
<author>
<name sortKey="Jiang, C C" uniqKey="Jiang C">C. C. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matoh, T" uniqKey="Matoh T">T. Matoh</name>
</author>
<author>
<name sortKey="Takasaki, M" uniqKey="Takasaki M">M. Takasaki</name>
</author>
<author>
<name sortKey="Takabe, K" uniqKey="Takabe K">K. Takabe</name>
</author>
<author>
<name sortKey="Kobayashi, M" uniqKey="Kobayashi M">M. Kobayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mesquita, G L" uniqKey="Mesquita G">G. L. Mesquita</name>
</author>
<author>
<name sortKey="Tanaka, F A O" uniqKey="Tanaka F">F. A. O. Tanaka</name>
</author>
<author>
<name sortKey="Cantarella, H" uniqKey="Cantarella H">H. Cantarella</name>
</author>
<author>
<name sortKey="Mattos, D" uniqKey="Mattos D">D. Mattos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miwa, K" uniqKey="Miwa K">K. Miwa</name>
</author>
<author>
<name sortKey="Fujiwara, T" uniqKey="Fujiwara T">T. Fujiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nable, R O" uniqKey="Nable R">R. O. Nable</name>
</author>
<author>
<name sortKey="Ba Uelos, G S" uniqKey="Ba Uelos G">G. S. Bañuelos</name>
</author>
<author>
<name sortKey="Paull, J G" uniqKey="Paull J">J. G. Paull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, M A" uniqKey="O Eill M">M. A. O’Neill</name>
</author>
<author>
<name sortKey="Ishii, T" uniqKey="Ishii T">T. Ishii</name>
</author>
<author>
<name sortKey="Albersheim, P" uniqKey="Albersheim P">P. Albersheim</name>
</author>
<author>
<name sortKey="Darvill, A G" uniqKey="Darvill A">A. G. Darvill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papadakis, I E" uniqKey="Papadakis I">I. E. Papadakis</name>
</author>
<author>
<name sortKey="Dimassi, K N" uniqKey="Dimassi K">K. N. Dimassi</name>
</author>
<author>
<name sortKey="Bosabalidis, A M" uniqKey="Bosabalidis A">A. M. Bosabalidis</name>
</author>
<author>
<name sortKey="Theorios, I N" uniqKey="Theorios I">I. N. Theorios</name>
</author>
<author>
<name sortKey="Patakas, A" uniqKey="Patakas A">A. Patakas</name>
</author>
<author>
<name sortKey="Giannakoula, A" uniqKey="Giannakoula A">A. Giannakoula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papadakis, I E" uniqKey="Papadakis I">I. E. Papadakis</name>
</author>
<author>
<name sortKey="Dimassi, K N" uniqKey="Dimassi K">K. N. Dimassi</name>
</author>
<author>
<name sortKey="Therios, I N" uniqKey="Therios I">I. N. Therios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedroso, F K J V" uniqKey="Pedroso F">F. K. J. V. Pedroso</name>
</author>
<author>
<name sortKey="Prudente, D A" uniqKey="Prudente D">D. A. Prudente</name>
</author>
<author>
<name sortKey="Bueno, A C R" uniqKey="Bueno A">A. C. R. Bueno</name>
</author>
<author>
<name sortKey="Machado, E C" uniqKey="Machado E">E. C. Machado</name>
</author>
<author>
<name sortKey="Ribeiro, R V" uniqKey="Ribeiro R">R. V. Ribeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reynolds, E S" uniqKey="Reynolds E">E. S. Reynolds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribeiro, R V" uniqKey="Ribeiro R">R. V. Ribeiro</name>
</author>
<author>
<name sortKey="Espinoza Nu Ez, E" uniqKey="Espinoza Nu Ez E">E. Espinoza-Núñez</name>
</author>
<author>
<name sortKey="Pompeu, J" uniqKey="Pompeu J">J. Pompeu</name>
</author>
<author>
<name sortKey="Mourao Filho, F A" uniqKey="Mourao Filho F">F. A. Mourão Filho</name>
</author>
<author>
<name sortKey="Machado, E C" uniqKey="Machado E">E. C. Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribeiro, R V" uniqKey="Ribeiro R">R. V. Ribeiro</name>
</author>
<author>
<name sortKey="Machado, E C" uniqKey="Machado E">E. C. Machado</name>
</author>
<author>
<name sortKey="Habermann, G" uniqKey="Habermann G">G. Habermann</name>
</author>
<author>
<name sortKey="Santos, M G" uniqKey="Santos M">M. G. Santos</name>
</author>
<author>
<name sortKey="Oliveira, R F" uniqKey="Oliveira R">R. F. Oliveira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ribeiro, R V" uniqKey="Ribeiro R">R. V. Ribeiro</name>
</author>
<author>
<name sortKey="Machado, E C" uniqKey="Machado E">E. C. Machado</name>
</author>
<author>
<name sortKey="Santos, M G" uniqKey="Santos M">M. G. Santos</name>
</author>
<author>
<name sortKey="Oliveira, R F" uniqKey="Oliveira R">R. F. Oliveira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivero, R M" uniqKey="Rivero R">R. M. Rivero</name>
</author>
<author>
<name sortKey="Ruiz, J M" uniqKey="Ruiz J">J. M. Ruiz</name>
</author>
<author>
<name sortKey="Romero, L" uniqKey="Romero L">L. Romero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosolem, C A" uniqKey="Rosolem C">C. A. Rosolem</name>
</author>
<author>
<name sortKey="Leite, V M" uniqKey="Leite V">V. M. Leite</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruuhola, T" uniqKey="Ruuhola T">T. Ruuhola</name>
</author>
<author>
<name sortKey="Kein Nen, M" uniqKey="Kein Nen M">M. Keinänen</name>
</author>
<author>
<name sortKey="Keski Saari, S" uniqKey="Keski Saari S">S. Keski-Saari</name>
</author>
<author>
<name sortKey="Lehto, T" uniqKey="Lehto T">T. Lehto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sang, W" uniqKey="Sang W">W. Sang</name>
</author>
<author>
<name sortKey="Huangb, Z R" uniqKey="Huangb Z">Z.-R. Huangb</name>
</author>
<author>
<name sortKey="Qic, Y P" uniqKey="Qic Y">Y.-P. Qic</name>
</author>
<author>
<name sortKey="Yanga, L T" uniqKey="Yanga L">L.-T. Yanga</name>
</author>
<author>
<name sortKey="Guoa, P" uniqKey="Guoa P">P. Guoa</name>
</author>
<author>
<name sortKey="Chen, L S" uniqKey="Chen L">L.-S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shorrocks, V M" uniqKey="Shorrocks V">V. M. Shorrocks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, M" uniqKey="Tanaka M">M. Tanaka</name>
</author>
<author>
<name sortKey="Fujiwara, T" uniqKey="Fujiwara T">T. Fujiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voxeur, A" uniqKey="Voxeur A">A. Voxeur</name>
</author>
<author>
<name sortKey="Fry, S C" uniqKey="Fry S">S. C. Fry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
<author>
<name sortKey="Pan, Z" uniqKey="Pan Z">Z. Pan</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Peng, S" uniqKey="Peng S">S. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wimmer, M A" uniqKey="Wimmer M">M. A. Wimmer</name>
</author>
<author>
<name sortKey="Eichert, T" uniqKey="Eichert T">T. Eichert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, B" uniqKey="Wolf B">B. Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zambrosi, F C B" uniqKey="Zambrosi F">F. C. B. Zambrosi</name>
</author>
<author>
<name sortKey="Mattos, D" uniqKey="Mattos D">D. Mattos</name>
</author>
<author>
<name sortKey="Boaretto, R M" uniqKey="Boaretto R">R. M. Boaretto</name>
</author>
<author>
<name sortKey="Quaggio, J A" uniqKey="Quaggio J">J. A. Quaggio</name>
</author>
<author>
<name sortKey="Muraoka, T" uniqKey="Muraoka T">T. Muraoka</name>
</author>
<author>
<name sortKey="Syvertsen, J P" uniqKey="Syvertsen J">J. P. Syvertsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zambrosi, F C B" uniqKey="Zambrosi F">F. C. B. Zambrosi</name>
</author>
<author>
<name sortKey="Mattos, D" uniqKey="Mattos D">D. Mattos</name>
</author>
<author>
<name sortKey="Syvertsen, J P" uniqKey="Syvertsen J">J. P. Syvertsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, G F" uniqKey="Zhou G">G. F. Zhou</name>
</author>
<author>
<name sortKey="Peng, S A" uniqKey="Peng S">S. A. Peng</name>
</author>
<author>
<name sortKey="Liu, Y Z" uniqKey="Liu Y">Y. Z. Liu</name>
</author>
<author>
<name sortKey="Wei, Q J" uniqKey="Wei Q">Q. J. Wei</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J. Han</name>
</author>
<author>
<name sortKey="Islam, M Z" uniqKey="Islam M">M. Z. Islam</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26973670</article-id>
<article-id pub-id-type="pmc">4777737</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2016.00224</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Anatomical and Physiological Responses of
<italic>Citrus</italic>
Trees to Varying Boron Availability Are Dependent on Rootstock</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mesquita</surname>
<given-names>Geisa L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/214603/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zambrosi</surname>
<given-names>Fernando C. B.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/205198/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tanaka</surname>
<given-names>Francisco A. O.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Boaretto</surname>
<given-names>Rodrigo M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/320371/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Quaggio</surname>
<given-names>José A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ribeiro</surname>
<given-names>Rafael V.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/233596/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mattos</surname>
<given-names>Dirceu</given-names>
<suffix>-Jr.</suffix>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/36850/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Centro de Citricultura Sylvio Moreira, Instituto Agronômico</institution>
<country>Cordeirópolis, Brazil</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Centro de Solos e Recursos Ambientais, Instituto Agronômico</institution>
<country>Campinas, Brazil</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo</institution>
<country>Piracicaba, Brazil</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Department of Plant Biology, Institute of Biology, University of Campinas</institution>
<country>Campinas, Brazil</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Patrick Brown, University of California, Davis, USA</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Victoria Fernandez, Technical University of Madrid, Spain; Ana-Flor Lopez-Millan, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Spain; Nacer Bellaloui, United States Department of Agriculture, Agricultural Research Service, USA</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Dirceu Mattos-Jr.,
<email xlink:type="simple">ddm@centrodecitricultura.br</email>
</italic>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>3</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>224</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>2</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Mesquita, Zambrosi, Tanaka, Boaretto, Quaggio, Ribeiro and Mattos.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Mesquita, Zambrosi, Tanaka, Boaretto, Quaggio, Ribeiro and Mattos</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>In
<italic>Citrus</italic>
, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO
<sub>2</sub>
assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.</p>
</abstract>
<kwd-group>
<kwd>leaf gas exchange</kwd>
<kwd>growth</kwd>
<kwd>micronutrient</kwd>
<kwd>nutritional stress</kwd>
<kwd>microscopy</kwd>
<kwd>water relations</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source id="cn001">Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
<named-content content-type="fundref-id">10.13039/501100001807</named-content>
</funding-source>
<award-id rid="cn001">#2010/52154-3</award-id>
<award-id rid="cn001">#2011/21226-1</award-id>
</award-group>
</funding-group>
<counts>
<fig-count count="8"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="44"></ref-count>
<page-count count="12"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Boron (B) deficiency is a widespread problem for many agricultural crops, including citrus (
<xref rid="B36" ref-type="bibr">Shorrocks, 1997</xref>
). This is mostly attributed to the fact that B is found as boric acid (H
<sub>3</sub>
BO
<sub>3</sub>
) in solution in acidic soils and is easily leached from the root zone (
<xref rid="B17" ref-type="bibr">Kot, 2009</xref>
). For this reason, B deficiency in citrus is commonly found under field conditions, where trees show stunted growth, death of stem apical meristems and consequent overgrowth of axillary buds. Additionally, malformation of vascular tissues has been reported as a long-term injury caused by severe B deficiency in fruit trees (
<xref rid="B4" ref-type="bibr">Blevins and Lukaszewski, 1998</xref>
).</p>
<p>On the other hand, B toxicity may occur in arid and semi-arid regions, where higher concentrations of B are expected either in ground water or arable soil layers (
<xref rid="B25" ref-type="bibr">Papadakis et al., 2003</xref>
;
<xref rid="B3" ref-type="bibr">Bell and Dell, 2008</xref>
). Under such conditions, trees show reduced vigor, delayed development and reduced fruit number and weight. Chlorotic and necrotic spots are found in older leaves under severe toxicity, with premature leaf abscision (
<xref rid="B22" ref-type="bibr">Nable et al., 1997</xref>
). In field-grown plants, crop losses arise as a consequence of excessive B uptake by plants due to non-homogenous distribution of B fertilizers (
<xref rid="B3" ref-type="bibr">Bell and Dell, 2008</xref>
;
<xref rid="B5" ref-type="bibr">Boaretto et al., 2011</xref>
).</p>
<p>As the permeability of the plasma membrane to B is relatively high compared with other mineral nutrients (
<xref rid="B10" ref-type="bibr">Dordas et al., 2000</xref>
;
<xref rid="B15" ref-type="bibr">Hayes and Reid, 2004</xref>
), root uptake is predominantely a non-metabolic process determined by (i) the gradient of B concentration between the soil solution and root cells, (ii) plant transpiration, (iii) formation of B complexes inside and outside of roots, and (iv) nutrient mobility in plant vessels when B in the soil solution is at adequate or excessive levels (
<xref rid="B7" ref-type="bibr">Brown et al., 2002</xref>
). Boron uptake is actively mediated when the B concentration in the soil solution is low (
<xref rid="B37" ref-type="bibr">Tanaka and Fujiwara, 2008</xref>
). Although both passive and active processes are likely present in
<italic>Citrus</italic>
(
<xref rid="B24" ref-type="bibr">Papadakis et al., 2004</xref>
;
<xref rid="B44" ref-type="bibr">Zhou et al., 2014</xref>
), the differential sensitivity of rootstocks to B stress has not been completely elucided (
<xref rid="B39" ref-type="bibr">Wang et al., 2015</xref>
).</p>
<p>Citrus rootstocks have been used to optimize plant growth and fruit yield and quality (
<xref rid="B25" ref-type="bibr">Papadakis et al., 2003</xref>
,
<xref rid="B24" ref-type="bibr">2004</xref>
), as they affect water relations, mineral nutrition and the overall plant metabolism (
<xref rid="B8" ref-type="bibr">Castle, 1995</xref>
). The differencial influence of rootstocks on plant growth and fruit production may be related to root distribution, water and nutrient uptake efficiency, conducting vessels anatomy and distribution, and differences in root hydraulic conductivity (
<xref rid="B2" ref-type="bibr">Barry et al., 2004</xref>
). Such understading is critical for citrus orchard management as scions can be grafted on selected rootstock varieties to improve tolerance to abiotic stresses, such as drought and nutritional disorders (
<xref rid="B31" ref-type="bibr">Rivero et al., 2003</xref>
;
<xref rid="B42" ref-type="bibr">Zambrosi et al., 2012</xref>
;
<xref rid="B26" ref-type="bibr">Pedroso et al., 2014</xref>
;
<xref rid="B28" ref-type="bibr">Ribeiro et al., 2014</xref>
). In addition, since adequate B supply favors root growth of citrus (
<xref rid="B6" ref-type="bibr">Boaretto et al., 2008</xref>
), and thus water uptake capability of trees, B fertilization is required to improve fruit yield of orchards, particularly where droughts frequently impair flower induction and differentiation of plants. Accordingly, allocation of more adaptated rootstocks to the occurrence of B stresses, and sound field management become practical strategies to achieve sustainability in rain-fed systems.</p>
<p>Boron nutrition and the structural roles of this element in cell wall integrity and other physiological processes have been investigated intensely in annual grain crops (
<xref rid="B12" ref-type="bibr">Goldbach and Wimmer, 2007</xref>
). When considering perennial crops, there are few data on plant tolerance to B stresses and its association with anatomical traits of root vessels and long distance water transport (
<xref rid="B32" ref-type="bibr">Rosolem and Leite, 2007</xref>
;
<xref rid="B11" ref-type="bibr">Fassio et al., 2009</xref>
). Indeed, more comprehensive information on B-related processes is needed to improve nutritional diagnostic of plants and to create a basis for fine tuning fertilizer recommendations for field-grown trees (
<xref rid="B40" ref-type="bibr">Wimmer and Eichert, 2013</xref>
). Accordingly, this study aimed to evaluate how B availability affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two rootstocks with contrasting horticultural performance in the field, discussing the bases of such differential performance of
<italic>Citrus</italic>
plants under B stresses.</p>
</sec>
<sec sec-type="materials|methods" id="s1">
<title>Materials and Methods</title>
<sec>
<title>Plants and Growing Conditions</title>
<p>The experiment was carried out over a single season under greenhouse conditions, where the average minimum and maximum air temperatures were 18 and 30°C, respectively, and air relative humidity varied from 30 to 100%. Young plants (18 months old) of sweet orange [
<italic>Citrus sinensis</italic>
(L.) Osbeck cv. Valência] grafted on Swingle citrumelo [
<italic>C. paradisi</italic>
Macf. ×
<italic>Poncirus trifoliata</italic>
(L.) Raf.] – SW or Sunki mandarin [
<italic>C. sunki</italic>
(Hayata) hort. ex Tanaka] – SK rootstocks were grown in nutrient solution with varying concentrations of B to simulate root environments from B deficiency to toxicity: deficient (0.01 mg L
<sup>-1</sup>
B), adequate (0.5 mg L
<sup>-1</sup>
B), and excessive (5.0 mg L
<sup>-1</sup>
B) as H
<sub>3</sub>
BO
<sub>3</sub>
.</p>
<p>Treatments were set up in a completely randomized design with four replications (four pots with one plant each), combining rootstocks and B concentrations. As previously reported (
<xref rid="B6" ref-type="bibr">Boaretto et al., 2008</xref>
), a B concentration of 0.5 mg L
<sup>-1</sup>
was the most suitable for growth of young citrus trees in nutrient solution.</p>
<p>The plants, initially grown in a pine bark type substrate, were washed thoroughly to remove residues adhered to the root surface and transplanted into plastic pots containing 6 L of nutrient solution. Additionally, a set of three plants of each scion/rootstock combination was destructively sampled and oven-dried at 65°C to a constant weight to obtain total dry mass (DM) at the beginning of the experiment. Plant samples were ashed in a muffle furnace at 550°C for 3 h; ashes were dissolved in 0.1 mol L
<sup>-1</sup>
hydrochloric acid (HCl) for total B determination using the colorimetric azomethine-H method (
<xref rid="B41" ref-type="bibr">Wolf, 1974</xref>
). Then, the total B content of plants was estimated considering the DM and B concentration (SW = 0.377 ± 0.004 mg plant
<sup>-1</sup>
of B and SK = 0.390 ± 0.008 mg plant
<sup>-1</sup>
of B).</p>
<p>Acclimation of plants to pots was achieved by growing them for 5 days in a nutrient solution without B and diluted to ¼ of ionic strength (
<xref rid="B43" ref-type="bibr">Zambrosi et al., 2011</xref>
). The ¼ strength nutrient solution was replaced by ½ of ionic strength for more 5 days and then by full-strength one [in mM: 9.6 N (11% as NH
<sub>4</sub>
<sup>+</sup>
), 3.0 K, 4.5 Ca, 1.2 Mg, 1.2 S; and, in μM, 41.6 B, 54.0 Fe, 8.2 Mn, 2.5 Zn, and 1.0 Mo] with varying B concentrations. The electrical conductivity (EC) of the full-strength nutrient solution was approximately 1.5 dS m
<sup>-1</sup>
. Each pot was equipped with a tube extending to the bottom through which air was continuously bubbled for aeration of the nutrient solution. The pH of nutrient solution was monitored and maintained between 5.0 and 6.0 during the experimental period; the EC was also monitored. Water lost through transpiration was replaced every day with distilled water and the nutrient solution was renewed every 2 weeks.</p>
</sec>
<sec>
<title>Leaf Gas Exchange and Plant Hydraulic Conductance</title>
<p>Leaf CO
<sub>2</sub>
assimilation (
<italic>A</italic>
), transpiration (
<italic>E</italic>
), stomatal conductance (
<italic>g</italic>
<sub>s</sub>
) and intercellular CO
<sub>2</sub>
concentration (
<italic>C</italic>
<sub>i</sub>
) were measured between 9:00 and 11:00 am, with an infrared gas analyzer (LI-6400, Li-Cor Biosciences, Lincoln, NE, USA) after 125 days of B treatment. The instantaneous carboxylation efficiency (
<italic>k</italic>
) was estimated as
<italic>A</italic>
/
<italic>C</italic>
<sub>i</sub>
. Measurements were conducted on fully expanded leaves at a photosynthetic photon flux density of 800 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
under natural variation of air temperature and humidity. Data were recorded when the total coefficient of variation was lower than 1% and there was temporal stability.</p>
<p>The water potential (ψ) in leaves of similar age to those used in measurements of gas exchange was measured using a pressure chamber (3005, Soil Moisture Equipment Corp., Goleta, CA, USA) at pre-dawn (6:00 am) and afternoon (2:00 pm), when
<italic>E</italic>
was also quantified using the infrared gas analyzer. Whole-plant leaf specific hydraulic conductance was estimated as
<italic>K</italic>
<sub>L</sub>
= E
<sub>2pm</sub>
/Δψ, with E
<sub>2pm</sub>
evaluated at 2:00 pm and Δψ = ψ
<sub>6am</sub>
<sub>2pm</sub>
(
<xref rid="B30" ref-type="bibr">Ribeiro et al., 2009</xref>
).</p>
</sec>
<sec>
<title>Microscopy Analyses</title>
<p>Anatomical characteristics of cells and vessels were evaluated in samples of mature leaves and roots after 130 days of B treatment. Tissue samples (20 mm
<sup>2</sup>
) observed under light microscopy were collected from the middle third of the leaf, between 8:00 and 9:00 am, fixed in Karnovsky solution (
<xref rid="B16" ref-type="bibr">Karnovsky, 1965</xref>
), dehydrated in increasing ethanol series [30, 50, 70, 90, and 100% (three times)] and then infiltrated with resin ethanol for polymerization [acrylic resin glycolmethacrylate (Leica
<sup>®</sup>
) and 100% ethanol at a ratio of 1:1 and then pure resin]. Then, blocks were cut on a microtome. Similarly, samples for SEM were fixed, dried to the critical point with CO
<sub>2</sub>
and gold sputtered prior to observation. Details about light microscopy and scanning electron microscopy (SEM) are described in
<xref rid="B20" ref-type="bibr">Mesquita et al. (2011)</xref>
.</p>
<p>The fixed leaf samples (Karnovsky solution) were post-fixed for 1 h with 1% osmium tetroxide, dehydrated in an increasing acetone concentration series [30, 50, 70, 90, and 100% (three times)], infiltrated and polymerized into Spurr low viscosity epoxy resin (EMS). The blocks were prepared for cutting in the ultramicrotome using a trimmer (EM Trim, Leica Microsystems Inc., Buffalo Grove, IL, USA). Sections (70 nm thick) were obtained using the ultramicrotome (Leica UC6, Leica Microsystems Inc., Buffalo Grove, IL, USA) and contrasted against uranyl acetate and lead citrate (
<xref rid="B27" ref-type="bibr">Reynolds, 1963</xref>
). Analyses were performed using a transmission electron microscope (EM900, Zeiss, Jena, Germany) equipped with a digital camera at 80 kV.</p>
<p>The thickness of leaf mesophyll (TLM) and root diameter (RD) were measured using the program available with the light microscope (Axiovision 4.8.3, Zeiss, Jena, Germany). Similarly, the diameter of xylem vessels (DXV) and xylem cell wall thickness (XCWT) were determined by SEM (LEO 435-VP, Cambridge Instruments, Cambridge, UK). A set of 50 cells randomly selected from 15 image slides of roots and leaves were used for each rootstock combination.</p>
</sec>
<sec>
<title>Plant Dry Mass and Boron Accumulation</title>
<p>Immediately after tissue sampling for anatomical analyses, plants were separated into leaves, stems, and roots. These parts were washed in tap water, then mild detergent solution (1 mL L
<sup>-1</sup>
), and rinsed three times in deionized water. The material was dried to obtain the dry mass of leaves (LDM), stem, and roots (RDM). Plant samples were ashed for total B determination as described previously. Boron accumulation by tree parts during the experimental period (mg tree
<sup>-1</sup>
) was estimated by subtracting the total B amounts measured in young trees (before transplanting to the nutrient solution) from the total amount of B accumulated by trees at the end of the experiment.</p>
</sec>
<sec>
<title>Data Analyses</title>
<p>Results were subjected to the analysis of variance in a complete factorial design with two rootstocks and three B levels. When significant effect was found (
<italic>p</italic>
< 0.05), mean values were compared by Tukey’s post test (
<italic>p</italic>
< 0.05) using the GLM procedure of the statistical package SAS
<sup>®</sup>
(
<xref rid="B35" ref-type="bibr">SAS Institute, 2005</xref>
).</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Dry Mass Production Under Varying Boron Supply</title>
<p>Rootstocks and B supply affected biomass production of Valencia orange trees (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
). For instance, trees grafted on SW were more vigorous and produced more biomass than those on SK across all B treatments (
<bold>Figures
<xref ref-type="fig" rid="F1">1A,B,C,E</xref>
</bold>
). The highest DM production in plants grafted on SK was found at 0.5 mg L
<sup>-1</sup>
, decreasing under either deficient (-42%) or excessive (-50%) B concentration conditions (
<bold>Figures
<xref ref-type="fig" rid="F1">1A,B,D,F</xref>
</bold>
). Non-significant changes in root growth due to B concentrations were observed in plants grafted on SW (
<bold>Figure
<xref ref-type="fig" rid="F1">1E</xref>
</bold>
).</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>Shoot dry mass (SDM, in A) and root dry mass (RDM, in B) of sweet orange trees grafted on Swingle (C,E) or Sunki (D,F) rootstocks grown in nutrient solution with varying concentrations of boron [C,D, in mg L
<sup>-1</sup>
, left (0.01), center (0.5), and right (5.0) columns] for 130 days.</bold>
Asterisks compare rootstocks in a given boron concentration, whereas lowercase letters indicate significant difference between boron concentrations in a given rootstock (Tukey test at
<italic>p</italic>
< 0.05).</p>
</caption>
<graphic xlink:href="fpls-07-00224-g001"></graphic>
</fig>
</sec>
<sec>
<title>Plant Nutritional Status and Boron Accumulation</title>
<p>Leaf B concentration varied with rootstock and B treatment (
<bold>Figure
<xref ref-type="fig" rid="F2">2A</xref>
</bold>
). Under excessive B conditions, plants grafted on SW had lower leaf B concentrations than those on SK, whereas no differences between rootstocks were found under adequate or deficient B treatments (
<bold>Figure
<xref ref-type="fig" rid="F2">2A</xref>
</bold>
). Root B concentration also increased with increasing B and there was no difference between rootstocks (
<bold>Figure
<xref ref-type="fig" rid="F2">2B</xref>
</bold>
). Furthermore, the concentration of B in roots was much lower (up to 35 mg kg
<sup>-1</sup>
of B) than in leaves (up to 320 mg kg
<sup>-1</sup>
of B).</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>
<bold>Leaf (A) and root (B) boron concentration in sweet orange trees grafted on Swingle or Sunki rootstocks grown in nutrient solution with varying concentrations of boron for 130 days.</bold>
Asterisks compare rootstocks in a given boron concentration, whereas lowercase letters indicate significant difference between boron concentrations in a given rootstock (Tukey test at
<italic>p</italic>
< 0.05).</p>
</caption>
<graphic xlink:href="fpls-07-00224-g002"></graphic>
</fig>
<p>Total B accumulation also varied with treatment conditions (
<bold>Figure
<xref ref-type="fig" rid="F3">3</xref>
</bold>
), with plants grafted on SW exhibiting up to threefold more of the nutrient than those on SK grown under either deficiency or excess of B (
<bold>Figure
<xref ref-type="fig" rid="F3">3C</xref>
</bold>
). Leaves accumulated greater amounts of B in response to increased B concentration in the nutrient solution. This B accumulation was also higher in plants grafted on SW when compared to those grafted on SK (
<bold>Figure
<xref ref-type="fig" rid="F3">3A</xref>
</bold>
). The B accumulation in roots differed only at the highest B supply, with SW showing more than 2.4-fold the amount of B accumulated in such plant part compared with SK (
<bold>Figure
<xref ref-type="fig" rid="F3">3B</xref>
</bold>
).</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>
<bold>Boron accumulation in leaves (A), roots (B), and whole plant (C) of sweet orange trees grafted on Swingle or Sunki rootstocks grown in nutrient solution with varying concentrations of boron for 130 days.</bold>
Asterisks compare rootstocks in a given boron concentration, whereas lowercase letters indicate significant difference between boron concentrations in a given rootstock (Tukey test at
<italic>p</italic>
< 0.05).</p>
</caption>
<graphic xlink:href="fpls-07-00224-g003"></graphic>
</fig>
</sec>
<sec>
<title>Physiological Traits</title>
<p>The pre-dawn leaf water potential (ψ
<sub>6am</sub>
) did not change with varying B concentration in trees grafted on SW. On the other hand, B supply increased ψ
<sub>6am</sub>
in plants grafted on SK (
<bold>Figure
<xref ref-type="fig" rid="F4">4A</xref>
</bold>
). Whole-plant leaf specific hydraulic conductance (
<italic>K</italic>
<sub>L</sub>
) increased from 0.01 to 5.0 mg L
<sup>-1</sup>
for trees grafted on SW (
<bold>Figure
<xref ref-type="fig" rid="F4">4B</xref>
</bold>
), with approximately 50% change comparing the lowest and the highest B concentrations. Such a response was not noted in trees on SK, in which the highest
<italic>K</italic>
<sub>L</sub>
occurred at 0.5 mg L
<sup>-1</sup>
of B (
<bold>Figure
<xref ref-type="fig" rid="F4">4B</xref>
</bold>
). Regardless of B supply, the
<italic>K</italic>
<sub>L</sub>
of plants grafted on SW was 40 to 70% lower than that of plants on SK.</p>
<fig id="F4" position="float">
<label>FIGURE 4</label>
<caption>
<p>
<bold>Leaf water potential (A), whole-plant leaf specific hydraulic conductance (B), stomatal conductance (C), transpiration (D), CO
<sub>2</sub>
assimilation (E) and instantaneous carboxylation efficiency (F) in sweet orange trees grafted on Swingle or Sunki rootstocks grown in nutrient solution with varying concentrations of boron for 130 days.</bold>
Asterisks compare rootstocks in a given boron concentration, whereas lowercase letters indicate significant difference between boron concentrations in a given rootstock (Tukey test at
<italic>p</italic>
< 0.05).</p>
</caption>
<graphic xlink:href="fpls-07-00224-g004"></graphic>
</fig>
<p>Boron treatments negatively affected
<italic>g</italic>
<sub>s</sub>
on both rootstocks, with plants grafted on SK appearing more sensitive to increasing B supply (
<bold>Figure
<xref ref-type="fig" rid="F4">4C</xref>
</bold>
). SK presented higher
<italic>g</italic>
<sub>s</sub>
than SW at both 0.01 and 0.5 mg L
<sup>-1</sup>
. In addition to decreasing
<italic>g</italic>
<sub>s</sub>
, B concentrations up to 5.0 mg L
<sup>-1</sup>
increased
<italic>E</italic>
in both rootstocks (
<bold>Figure
<xref ref-type="fig" rid="F4">4D</xref>
</bold>
). While leaf CO
<sub>2</sub>
assimilation (
<italic>A</italic>
) of trees on SW was not affected by increasing B from 0.01 to 0.5 mg L
<sup>-1</sup>
, it was increased by approximately 20% in plants grafted on SK (
<bold>Figure
<xref ref-type="fig" rid="F4">4E</xref>
</bold>
). Plants grafted on SW showed lower
<italic>A</italic>
than those grafted on SK at both 0.01 and 0.5 mg L
<sup>-1</sup>
of B, and the excess of B caused a reduction in
<italic>A</italic>
on both rootstocks (
<bold>Figure
<xref ref-type="fig" rid="F4">4E</xref>
</bold>
). The highest B concentration decreased the instantaneous carboxylation efficiency (
<italic>k</italic>
), with plants grafted on SW presenting lower
<italic>k</italic>
as compared with those on SK, regardless of B treatment (
<bold>Figure
<xref ref-type="fig" rid="F4">4F</xref>
</bold>
).</p>
</sec>
<sec>
<title>Structural and Ultrastructural Changes in Leaves and Roots</title>
<p>Under adequate B supply (0.5 mg L
<sup>-1</sup>
), the palisade parenchyma of leaves was thinner and the spongy parenchyma cells were more regularly shaped and less spaced in trees grafted on SW than those on SK (
<bold>Figures
<xref ref-type="fig" rid="F5">5B,E</xref>
</bold>
). These characteristics affected the TLM, which plants grafted on SK showing significant reductions in TLM under the lowest and highest B supply (
<bold>Figures
<xref ref-type="fig" rid="F5">5D,F</xref>
</bold>
and
<bold>
<xref ref-type="fig" rid="F6">6</xref>
</bold>
), compared with those grafted on SW (
<bold>Figures
<xref ref-type="fig" rid="F5">5A,C</xref>
</bold>
and
<bold>
<xref ref-type="fig" rid="F6">6</xref>
</bold>
). Excessive B also caused a disturbance in compounds that form the secondary wall in SK, causing the gelatinous fibers located beneath the vascular bundle to collapse (
<bold>Figures
<xref ref-type="fig" rid="F5">5D,F</xref>
</bold>
). On the other hand, trees grafted on SW did not show variation in TLM when grown under either under 0.5 or 5.0 mg L
<sup>-1</sup>
of B (
<bold>Figure
<xref ref-type="fig" rid="F6">6A</xref>
</bold>
).</p>
<fig id="F5" position="float">
<label>FIGURE 5</label>
<caption>
<p>
<bold>Cross sections of leaves under light microscopy (LM) and scanning electron microscopy (SEM) of sweet orange trees grafted on Swingle (LM: A–C; SEM: G–I) or Sunki (LM: D–F; SEM: J–L) rootstocks grown in nutrient solution with varying concentrations of B for 130 days.</bold>
Concentration of nutrient solution, in mg L
<sup>-1</sup>
of boron: left (0.01), center (0.5), and right (5.0) columns. Legend: PP, palisade parenchyma; SP, spongy parenchyma; XL, xylem; PL, phloem; GF, gelatinous fibers; LW, leaf wax; GC, guard cell; arrowhead: ostiole.</p>
</caption>
<graphic xlink:href="fpls-07-00224-g005"></graphic>
</fig>
<fig id="F6" position="float">
<label>FIGURE 6</label>
<caption>
<p>
<bold>Thickness of leaf mesophyll (TLM) (A), root diameter (RD) (B), diameter of xylem vessels (DXV) (C) and xylem cell wall thickness (TXCW) (D) in sweet orange trees grafted on Swingle or Sunki rootstocks grown in nutrient solution with varying concentrations of boron for 130 days.</bold>
Asterisks compare rootstocks in a given boron concentration, whereas lowercase letters indicate significant difference between boron concentrations in a given rootstock (Tukey test at
<italic>p</italic>
< 0.05).</p>
</caption>
<graphic xlink:href="fpls-07-00224-g006"></graphic>
</fig>
<p>An irregular deposition of waxes in the leaf cuticle of plants grafted on SK was apparent under 0.01 and 5.0 mg L
<sup>-1</sup>
of B, with non-uniform covering of the leaf surface (
<bold>Figures
<xref ref-type="fig" rid="F5">5J,L</xref>
</bold>
): what was less evident with adequate B supply (
<bold>Figure
<xref ref-type="fig" rid="F5">5K</xref>
</bold>
). Structural damages in guard cells caused by varying levels of B were minimal in trees grafted on SW (
<bold>Figures
<xref ref-type="fig" rid="F5">5G,H,I</xref>
</bold>
) when compared with those on SK (
<bold>Figures
<xref ref-type="fig" rid="F5">5J,K,L</xref>
</bold>
), especially with excess B supply.</p>
<p>Injuries to roots were characterized by decreases in RD and in the DXV when trees were grown under low B (
<bold>Figures
<xref ref-type="fig" rid="F6">6B,C</xref>
</bold>
). Xylem in roots appeared spongy because of cell wall thickening (
<bold>Figures
<xref ref-type="fig" rid="F7">7G,J</xref>
</bold>
). Excess B did not cause significant damage to RD or DXV for plants grafted on SW (
<bold>Figures
<xref ref-type="fig" rid="F6">6B,C</xref>
</bold>
), whereas plants grafted on SK exhibited decreases of 20% in RD and 30% in TXCW and increase of 25% in DXV in the presence of excessive B when compared to control conditions. Furthermore, root cell walls were more curved and irregularly shaped in SK rootstock, with damaged middle lamella compromising cell linkages (
<bold>Figure
<xref ref-type="fig" rid="F7">7L</xref>
</bold>
).</p>
<fig id="F7" position="float">
<label>FIGURE 7</label>
<caption>
<p>
<bold>Cross sections of roots under light microscopy (LM) and scanning electron microscopy (SEM) of sweet orange trees grafted on Swingle (LM: A–C; SEM: G–I) or Sunki (LM: D–F; SEM: J–L) rootstocks grown in nutrient solution with varying concentrations of B for 130 days.</bold>
Concentration of nutrient solution, in mg L
<sup>-1</sup>
of boron: left (0.01), center (0.5), and right (5.0) columns. Legend: PR, parenchyma; XL, xylem; PL, phloem.</p>
</caption>
<graphic xlink:href="fpls-07-00224-g007"></graphic>
</fig>
<p>Transmission microscopy revealed that trees grafted on SK also showed significant injury to chloroplasts with disruption of thylakoids under excessive B supply (
<bold>Figure
<xref ref-type="fig" rid="F8">8F</xref>
</bold>
). This response was not observed in plants grafted on SW (
<bold>Figure
<xref ref-type="fig" rid="F8">8C</xref>
</bold>
). No clear damage was found under B deficiency (
<bold>Figures
<xref ref-type="fig" rid="F8">8A,D</xref>
</bold>
) or adequate supply (
<bold>Figures
<xref ref-type="fig" rid="F8">8B,E</xref>
</bold>
) in trees on both rootstocks.</p>
<fig id="F8" position="float">
<label>FIGURE 8</label>
<caption>
<p>
<bold>Transmission electron microscopy of leaves of sweet orange trees grafted on Swingle (A–C) or Sunki (D–F) rootstocks grown in nutrient solution with varying concentrations of B for 130 days.</bold>
Concentration of nutrient solution, in mg L
<sup>-1</sup>
of boron: left (0.01), center (0.5), and right (5.0) columns. Legend: SG, starch grains; Ch, chloroplast; arrow, unstructured chloroplast.</p>
</caption>
<graphic xlink:href="fpls-07-00224-g008"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>As our study was carried out to evaluate the nutritional, anatomical and physiological bases of differential sensitivity of citrus rootstocks to B stress, plants were grown under B availability varying from deficiency to toxicity, conditions commonly found in many citrus growing regions around the world. Our results revealed the early responses of
<italic>Citrus</italic>
to B deficiency or toxicity before any typical plant symptoms were visible, and shed light on how rootstocks change plant sensitivity to B availability in the rooting medium. For instance, it was clearly demonstrated that plants grafted on SW exhibited greater tolerance to the B stresses conditions than those on SK, since the former rootstock was able to maintain root and shoot biomass production, even with inadequate levels of B supply (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
).</p>
<sec>
<title>Physiological and Anatomical Sensitivity to Boron Deficiency</title>
<p>The inferior performance of plants grafted on SK under B deficiency was associated to the limited ability of this rootstock on maintaining B absorption from the nutrient solution and consequently to accumulate the nutrient (
<bold>Figure
<xref ref-type="fig" rid="F3">3C</xref>
</bold>
). Growth maintenance of plants depends on the continuous B supply for formation, extension, and function of meristems due to the ubiquitous role of B-rhamnogalacturonan (RG) linkages in the cell wall as well as the glycosylinositol phosphorylceramide (GIPC)-B-RG II complexes in cell membranes (
<xref rid="B19" ref-type="bibr">Matoh et al., 1998</xref>
;
<xref rid="B23" ref-type="bibr">O’Neill et al., 2004</xref>
;
<xref rid="B14" ref-type="bibr">Hans et al., 2008</xref>
;
<xref rid="B38" ref-type="bibr">Voxeur and Fry, 2014</xref>
). The argument on the influence of B absorption on the diferential ability of rooststocks to tolerate B deficiency is also supported by the fact that both rootstock varieties showed similar capacity to take up B under the adequate nutrient supply condition (0.5 mg L
<sup>-1</sup>
;
<bold>Figure
<xref ref-type="fig" rid="F3">3C</xref>
</bold>
). Then, the greater B accumulation seen in trees grafted on SW relative to those on SK under B deficiency was most likely favored by the combination of greater root growth (
<bold>Figure
<xref ref-type="fig" rid="F1">1B,E,F</xref>
</bold>
) and higher nutrient acquisition per unit of root length of the former to sustain shoot demand (
<xref rid="B44" ref-type="bibr">Zhou et al., 2014</xref>
), since trees on SW maintained higher shoot-to-root ratio (from
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
;
<italic>p</italic>
< 0.05). These findings agree with the highest B uptake ability of trees grafted on SW grown in nutrient solution labeled with
<sup>10</sup>
B (
<xref rid="B6" ref-type="bibr">Boaretto et al., 2008</xref>
). Analysis of the expression of genes encoding B transporters will contribute to elucidate the underlying mechanisms associated with such ability of the SW root system to coordinate the expression of B transporters and channels from the external solution toward xylem vessels under varying nutrient supply (
<xref rid="B37" ref-type="bibr">Tanaka and Fujiwara, 2008</xref>
). This approach will likely provide new insights and reveal aspects of B uptake under nutrient stress conditions that have not been studied in depth in tree crops (
<xref rid="B9" ref-type="bibr">Dannel et al., 2000</xref>
;
<xref rid="B21" ref-type="bibr">Miwa and Fujiwara, 2010</xref>
).</p>
<p>Additionally, a better structured vascular system and greater vessel diameter found in the root system of trees grafted on SW as compared with those on SK (
<bold>Figures
<xref ref-type="fig" rid="F6">6</xref>
</bold>
and
<bold>
<xref ref-type="fig" rid="F7">7</xref>
</bold>
) probably facilitated water transport and thereby B accumulation in the plant canopy on the former rootstock variety. Considering that root B concentration did not vary between rootstocks (
<bold>Figure
<xref ref-type="fig" rid="F2">2B</xref>
</bold>
), trees on SW were better able to use B in root tissues and maintain the well-structured xylem vessels, which would be expected if a large proportion of B could be ionically bound to pectic polysaccharides (
<xref rid="B18" ref-type="bibr">Liu et al., 2013</xref>
).</p>
<p>Despite the fact that SK presented a larger reduction on plant hydraulic conductance and leaf transpiration when plants were subjected to B deficiency, their values were still higher than those found on SW and no difference was detected in leaf water potential between rootstocks (
<bold>Figure
<xref ref-type="fig" rid="F4">4A</xref>
</bold>
). Interestingly, both rootstocks exhibited higher stomatal conductance under B deficiency compared to the adequate B supply, which was likely caused by impairment of opening and closing regulatory mechanism of guard cells under B deficiency. However, we lack clear information linking direct effects of B deficiency on stomatal apparatus, such as is known for other environmental signals (
<xref rid="B1" ref-type="bibr">Araújo et al., 2011</xref>
).</p>
<p>Furthermore, the observed higher B accumulation by trees grafted on SW resulted from their ability to maintain canopy development through leaf production rather than leaf transpiration per unit of leaf area under varying B concentrations (
<bold>Figures
<xref ref-type="fig" rid="F1">1A,C,D</xref>
</bold>
), which in turn triggered high whole canopy transpiration. Taking into account plant leaf area (assuming an average specific leaf mass of 150 g m
<sup>-2</sup>
) and leaf transpiration values, we were able to estimate canopy transpiration. Such estimates revealed that the transpiration rate of trees on SW was almost 1.8-fold higher than that of trees on SK under B deficiency, i.e., 0.86 vs. 0.48 mmol s
<sup>-1</sup>
. This contribution of whole canopy transpiration to the B content in the plants is also supported by the fact that, despite the approximately 20% increase in DM of trees on SW with increasing B supply (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
), total B accumulation in the same plants increased more than eightfold over the same supply range (
<bold>Figure
<xref ref-type="fig" rid="F3">3A</xref>
</bold>
). Accordingly, our preliminary results have shown that water transport in trees grafted on SW is higher than that of trees grafted on SK (unpublished data).</p>
<p>Plants grafted on SW presented lower photosynthetic rates per unit leaf area compared to those on SK under B deficiency (
<bold>Figure
<xref ref-type="fig" rid="F4">4E</xref>
</bold>
). However, the maintenance of leaf area likely compensated low photosynthetic rates of the former, promoting higher canopy photosynthesis.</p>
<p>As the stomata were open (
<bold>Figure
<xref ref-type="fig" rid="F4">4E</xref>
</bold>
), the carboxylation efficiency was not changed (
<bold>Figure
<xref ref-type="fig" rid="F4">4F</xref>
</bold>
) and there were no signals of damage to thylakoids (
<bold>Figures
<xref ref-type="fig" rid="F8">8A,D</xref>
</bold>
), we may argue that photosynthesis was down regulated by reduction of plant growth (sink activity) in plants grafted on SK and subjected to B deficiency. We already know that B-deficient citrus plants can accumulate carbohydrates in leaves (
<xref rid="B13" ref-type="bibr">Han et al., 2009</xref>
), which in turn can down-regulate photosynthesis (
<xref rid="B14" ref-type="bibr">Hans et al., 2008</xref>
;
<xref rid="B33" ref-type="bibr">Ruuhola et al., 2011</xref>
;
<xref rid="B29" ref-type="bibr">Ribeiro et al., 2012</xref>
).</p>
</sec>
<sec>
<title>Excess of Boron and Citrus Performance as Affected by Rootstock</title>
<p>Boron excess limited plant growth of trees grafted on SK (
<bold>Figures
<xref ref-type="fig" rid="F1">1A,B,D,F</xref>
</bold>
). Such sensitivity was also found in
<italic>g</italic>
<sub>s,</sub>
<italic>A</italic>
, and
<italic>k</italic>
(
<bold>Figures
<xref ref-type="fig" rid="F4">4C,E,F</xref>
</bold>
) and it is in accordance with the ultrastructural damage observed in stomata (
<bold>Figure
<xref ref-type="fig" rid="F5">5L</xref>
</bold>
) and chloroplasts (
<bold>Figure
<xref ref-type="fig" rid="F8">8F</xref>
</bold>
). Increased production of reactive oxygen species, thereby altering the structure and function of choroplasts (
<xref rid="B14" ref-type="bibr">Hans et al., 2008</xref>
), could explain the reduction of photosynthesis and plant growth on SK at 5.0 mg L
<sup>-1</sup>
of B. Oxidative damage caused by excessive B supply has already been reported in less adaptive B-tolerant
<italic>Citrus</italic>
species, as characterized by a differential profile of proteins involved in antioxidant and detoxification systems in the leaves of plants under B excess (
<xref rid="B34" ref-type="bibr">Sang et al., 2015</xref>
). Plants grafted on SW showed little anatomical and ultrastructural damage and had leaf gas exchange and water relations less responsive to deficiency or excess of B when compared with those on SK. In addition, plants grafted on SW maintained higher growth, even when leaf B levels were considered high or excessive (
<xref rid="B24" ref-type="bibr">Papadakis et al., 2004</xref>
), which did not occur for those on SK. These results suggest that the interpretation of leaf chemical analysis in citrus plants should be revised and consider the rootstock, as our data indicate that the toxic B level in the leaves of trees grafted on SW might be higher than that of trees on SK. The underlying mechanisms of interaction and reciprocal signaling between scion and rootstock are complex and still poorly understood. In fact, the nutritional status of scions is significantly changed by rootstocks and the mechanisms related to compartmentalization and immobilization of nutrients in excess should be investigated, taking into account the scion/rootstock combination. The choose of SW as rootstock is a useful strategy for high- yielding orchards, which require improved management of B nutrition, as plants have shown enhanced ability to adjust their growth under changing B availability in rooting medium. Such variability in B supply is frequently found under field conditions due to nutrient leaching in tropical soils or accumulation in the solution of saline soils.</p>
</sec>
</sec>
<sec>
<title>Conclusion</title>
<p>Our results reveal that rootstocks influence citrus tree performance under varying B supply. The performance of Swingle rootstock under low B supply was characterized by greater accumulation of B in plants. This response was associated with the maintenance of a well-structured xylem system, which sustained water and B transport to the plant canopy and then leaf photosynthesis. Under high B supply, Swingle rootstock was still able to limit anatomical and ultrastructural damages and maintain water transport, preventing the negative impact of excessive B on plant growth.</p>
</sec>
<sec>
<title>Author Contributions</title>
<p>GM, JQ, RB, FZ, and DM designed and performed the experiment, collected and analysed data; FT supervised microscopy analyses; RR supervised assessment of plant physiological traits; GM, RR, FZ, and DM critically revised and edited the final manuscript version. All authors discussed the results and commented on the manuscript.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>This study was supported by the São Paulo Research Foundation (FAPESP, Brazil, grants #2010/52154-3 and #2011/21226-1). DM Jr. and RR acknowledge the National Council for Scientific and Technological Development (CNPq, Brazil) for fellowships granted. The authors also thank Dr. Monika Wimmer (University of Bonn, Institute of Crop Science and Resource Conservation) for critical comments and helpful suggestions on the first draft of this paper.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Araújo</surname>
<given-names>W. L.</given-names>
</name>
<name>
<surname>Fernie</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Nunes-Nesi</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Control of stomatal aperture: a renaissance of the old guard.</article-title>
<source>
<italic>Plant Signal. Behav.</italic>
</source>
<volume>6</volume>
<fpage>1305</fpage>
<lpage>1311</lpage>
.
<pub-id pub-id-type="doi">10.4161/psb.6.9.16425</pub-id>
<pub-id pub-id-type="pmid">21847028</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barry</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Castle</surname>
<given-names>W. S.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>F. S.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Rootstocks and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment.</article-title>
<source>
<italic>J. Amer. Soc. Hort. Sci.</italic>
</source>
<volume>129</volume>
<fpage>881</fpage>
<lpage>889</lpage>
.</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bell</surname>
<given-names>R. W.</given-names>
</name>
<name>
<surname>Dell</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<source>
<italic>Micronutrients for Sustainable Food, Feed, Fibre and Bioenergy Production</italic>
.</source>
<publisher-loc>Paris</publisher-loc>
:
<publisher-name>International Fertilizer Industry Association</publisher-name>
.</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blevins</surname>
<given-names>D. G.</given-names>
</name>
<name>
<surname>Lukaszewski</surname>
<given-names>K. M.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Boron in plants structure and function.</article-title>
<source>
<italic>Annu. Rev. Plant Physiol. Plant Mol. Biol.</italic>
</source>
<volume>49</volume>
<fpage>481</fpage>
<lpage>500</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.49.1.481</pub-id>
<pub-id pub-id-type="pmid">15012243</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boaretto</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Quaggio</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Mattos</surname>
<given-names>D.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Muraoka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Boaretto</surname>
<given-names>A. E.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Boron uptake and distribution in field grown citrus trees.</article-title>
<source>
<italic>J. Plant Nutr.</italic>
</source>
<volume>34</volume>
<fpage>839</fpage>
<lpage>849</lpage>
.
<pub-id pub-id-type="doi">10.1080/01904167.2011.544353</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boaretto</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Quaggio</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Mourao Filho</surname>
<given-names>F. A. A.</given-names>
</name>
<name>
<surname>Gine</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Boaretto</surname>
<given-names>A. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Absorption and mobility of boron in young citrus plants.</article-title>
<source>
<italic>Comm. Soil Sci. Plant Anal.</italic>
</source>
<volume>39</volume>
<fpage>2501</fpage>
<lpage>2514</lpage>
.
<pub-id pub-id-type="doi">10.1080/00103620802358383</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>P. H.</given-names>
</name>
<name>
<surname>Bellaloui</surname>
<given-names>W. M. A.</given-names>
</name>
<name>
<surname>Bassil</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Pfeffer</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2002</year>
).
<article-title>Boron in plant biology.</article-title>
<source>
<italic>Plant Biol.</italic>
</source>
<volume>4</volume>
<fpage>205</fpage>
<lpage>223</lpage>
.
<pub-id pub-id-type="doi">10.1055/s-2002-25740</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castle</surname>
<given-names>W. S.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Rootstock as a fruit quality factor in citrus and deciduous fruit crops.</article-title>
<source>
<italic>New Z. J. Crop Hort. Sci.</italic>
</source>
<volume>23</volume>
<fpage>383</fpage>
<lpage>394</lpage>
.
<pub-id pub-id-type="doi">10.1080/01140671.1995.9513914</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dannel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pfeffer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Römheld</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes B-10 and B-11.</article-title>
<source>
<italic>Funct. Plant Biol.</italic>
</source>
<volume>27</volume>
<fpage>397</fpage>
<lpage>405</lpage>
.
<pub-id pub-id-type="doi">10.1071/PP99086</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dordas</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chrispeels</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>P. H.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Permeability and channel mediated transport of boric acid across membrane vesicles isolated from squash roots.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>124</volume>
<fpage>1349</fpage>
<lpage>1361</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.124.3.1349</pub-id>
<pub-id pub-id-type="pmid">11080310</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fassio</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Arpaia</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Castro</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Sap flow in ‘Hass’ avocado trees on two clonal rootstocks in relation to xylem anatomy.</article-title>
<source>
<italic>Sci. Hortic.</italic>
</source>
<volume>120</volume>
<fpage>8</fpage>
<lpage>13</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.scienta.2008.09.012</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldbach</surname>
<given-names>H. E.</given-names>
</name>
<name>
<surname>Wimmer</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Boron in plants and animals: Is there a role beyond cell-wall structure?</article-title>
<source>
<italic>J. Plant Nutr. Soil Sci.</italic>
</source>
<volume>170</volume>
<fpage>39</fpage>
<lpage>48</lpage>
.
<pub-id pub-id-type="doi">10.1002/jpln.200625161</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>CO
<sub>2</sub>
assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress.</article-title>
<source>
<italic>Plant Sci.</italic>
</source>
<volume>176</volume>
<fpage>143</fpage>
<lpage>153</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2008.10.004</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hans</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H. X.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>B. R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Sie</surname>
<given-names>C. Y.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings.</article-title>
<source>
<italic>J. Plant Physiol.</italic>
</source>
<volume>165</volume>
<fpage>1331</fpage>
<lpage>1341</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2007.11.002</pub-id>
<pub-id pub-id-type="pmid">18191499</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayes</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Boron tolerance in barley is mediated by efflux of boron from the roots.</article-title>
<source>
<italic>Plant Physiol.</italic>
</source>
<volume>136</volume>
<fpage>3379</fpage>
<lpage>3382</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.103</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karnovsky</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>1965</year>
).
<article-title>A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy.</article-title>
<source>
<italic>J. Cell Biol.</italic>
</source>
<volume>27</volume>
<fpage>137</fpage>
<lpage>138</lpage>
.</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kot</surname>
<given-names>F. S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Boron sources, speciation ant its potential impact on health.</article-title>
<source>
<italic>Rev. Environ. Sci. Biot.</italic>
</source>
<volume>8</volume>
<fpage>3</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11157-008-9140-0</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R. D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L. S.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>C. C.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficientcy response.</article-title>
<source>
<italic>Plant Soil</italic>
</source>
<volume>370</volume>
<fpage>555</fpage>
<lpage>565</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11104-013-1659-3</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matoh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Takasaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takabe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Immunocytochemistry of rhamnogalcturonan II in cell walls of higher plants.</article-title>
<source>
<italic>Plant Cell Biol.</italic>
</source>
<volume>39</volume>
<fpage>483</fpage>
<lpage>491</lpage>
.</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mesquita</surname>
<given-names>G. L.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>F. A. O.</given-names>
</name>
<name>
<surname>Cantarella</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Mattos</surname>
<given-names>D.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Atmospheric absorption of fluoride by cultivated species. leaf structural changes and plant growth.</article-title>
<source>
<italic>Water Air Soil Pollut.</italic>
</source>
<volume>9</volume>
<fpage>143</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11270-010-0694-4</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miwa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Boron transport in plants: co-ordinated regulation of transporters.</article-title>
<source>
<italic>Ann. Bot.</italic>
</source>
<volume>105</volume>
<fpage>1103</fpage>
<lpage>1108</lpage>
.
<pub-id pub-id-type="doi">10.1093/aob/mcq044</pub-id>
<pub-id pub-id-type="pmid">20228086</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nable</surname>
<given-names>R. O.</given-names>
</name>
<name>
<surname>Bañuelos</surname>
<given-names>G. S.</given-names>
</name>
<name>
<surname>Paull</surname>
<given-names>J. G.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Boron toxicity.</article-title>
<source>
<italic>Plant Soil</italic>
</source>
<volume>193</volume>
<fpage>181</fpage>
<lpage>198</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1004272227886</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Albersheim</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Darvill</surname>
<given-names>A. G.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide.</article-title>
<source>
<italic>Annu. Rev. Plant Biol.</italic>
</source>
<volume>55</volume>
<fpage>109</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.55.031903.141750</pub-id>
<pub-id pub-id-type="pmid">15377216</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papadakis</surname>
<given-names>I. E.</given-names>
</name>
<name>
<surname>Dimassi</surname>
<given-names>K. N.</given-names>
</name>
<name>
<surname>Bosabalidis</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Theorios</surname>
<given-names>I. N.</given-names>
</name>
<name>
<surname>Patakas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Giannakoula</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks.</article-title>
<source>
<italic>Environ. Exp. Bot.</italic>
</source>
<volume>51</volume>
<fpage>247</fpage>
<lpage>257</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2003.11.004</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papadakis</surname>
<given-names>I. E.</given-names>
</name>
<name>
<surname>Dimassi</surname>
<given-names>K. N.</given-names>
</name>
<name>
<surname>Therios</surname>
<given-names>I. N.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Response of two citrus genotypes to six boron concentrations: concentration and distribution of nutrients, total absorption, and nutrient use efficiency.</article-title>
<source>
<italic>Aust. J. Agric. Res.</italic>
</source>
<volume>54</volume>
<fpage>571</fpage>
<lpage>580</lpage>
.
<pub-id pub-id-type="doi">10.1071/AR02163</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedroso</surname>
<given-names>F. K. J. V.</given-names>
</name>
<name>
<surname>Prudente</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Bueno</surname>
<given-names>A. C. R.</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>R. V.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability.</article-title>
<source>
<italic>Environ. Exp. Bot.</italic>
</source>
<volume>101</volume>
<fpage>26</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2013.12.024</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reynolds</surname>
<given-names>E. S.</given-names>
</name>
</person-group>
(
<year>1963</year>
).
<article-title>The use of lead citrate at high pH an electron opaque stain in electron.</article-title>
<source>
<italic>J. Cell Biol.</italic>
</source>
<volume>17</volume>
<fpage>208</fpage>
<lpage>212</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.17.1.208</pub-id>
<pub-id pub-id-type="pmid">13986422</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ribeiro</surname>
<given-names>R. V.</given-names>
</name>
<name>
<surname>Espinoza-Núñez</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pompeu</surname>
<given-names>J.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Mourão Filho</surname>
<given-names>F. A.</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>E. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
). “
<article-title>Citrus rootstocks for improving the horticultural performance and physiological responses under constraining environments</article-title>
,” in
<source>
<italic>Improvement of Crops in the Era of Climatic Changes</italic>
</source>
,
<role>eds</role>
<person-group person-group-type="editor">
<name>
<surname>Ahmad</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wani</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Azooz</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>L.-S. P.</given-names>
</name>
</person-group>
(
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Springer-Verlag</publisher-name>
),
<fpage>1</fpage>
<lpage>37</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-4614-8830-9_1</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribeiro</surname>
<given-names>R. V.</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Habermann</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Seasonal effects on the relationship between photosynthesis and leaf carbohydrates in orange trees.</article-title>
<source>
<italic>Funct. Plant Biol.</italic>
</source>
<volume>39</volume>
<fpage>471</fpage>
<lpage>480</lpage>
.
<pub-id pub-id-type="doi">10.1071/FP11277</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ribeiro</surname>
<given-names>R. V.</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>R. F.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions.</article-title>
<source>
<italic>Photosynthetica</italic>
</source>
<volume>47</volume>
<fpage>215</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11099-009-0035-2</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rivero</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Role of grafting in horticultural plants under stress conditions.</article-title>
<source>
<italic>Food. Agric. Environ.</italic>
</source>
<volume>1</volume>
<fpage>70</fpage>
<lpage>74</lpage>
.</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosolem</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Leite</surname>
<given-names>V. M.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Coffee leaf and stem anatomy under boron deficiency.</article-title>
<source>
<italic>Rev. Bras. Ci. Solo</italic>
</source>
<volume>31</volume>
<fpage>477</fpage>
<lpage>483</lpage>
.
<pub-id pub-id-type="doi">10.1590/S0100-06832007000300007</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruuhola</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Keinänen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Keski-Saari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lehto</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Boron nutrition affects the carbon metabolism of silver birch seedlings.</article-title>
<source>
<italic>Tree Physiol.</italic>
</source>
<volume>31</volume>
<fpage>1251</fpage>
<lpage>1261</lpage>
.
<pub-id pub-id-type="doi">10.1093/treephys/tpr109</pub-id>
<pub-id pub-id-type="pmid">22084021</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Huangb</surname>
<given-names>Z.-R.</given-names>
</name>
<name>
<surname>Qic</surname>
<given-names>Y.-P.</given-names>
</name>
<name>
<surname>Yanga</surname>
<given-names>L.-T.</given-names>
</name>
<name>
<surname>Guoa</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.-S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics.</article-title>
<source>
<italic>J. Proteomics</italic>
</source>
<volume>123</volume>
<fpage>128</fpage>
<lpage>146</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2015.04.007</pub-id>
<pub-id pub-id-type="pmid">25892131</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="book">
<collab>SAS Institute</collab>
(
<year>2005</year>
).
<source>
<italic>SAS/STAT User’s Guide, Version 9.1</italic>
.</source>
<publisher-loc>Cary, NC</publisher-loc>
:
<publisher-name>SAS Institute</publisher-name>
.</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shorrocks</surname>
<given-names>V. M.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>The occurrence and correction of boron deficiency.</article-title>
<source>
<italic>Plant Soil</italic>
</source>
<volume>193</volume>
<fpage>121</fpage>
<lpage>148</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1004216126069</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Physiological roles and transport mechanisms of boron: perspectives from plants.</article-title>
<source>
<italic>Eur. J. Physiol.</italic>
</source>
<volume>456</volume>
<fpage>671</fpage>
<lpage>677</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00424-007-0370-8</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voxeur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fry</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Glycosylinositol phosphorylceramides (GIPCs) from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan-II.</article-title>
<source>
<italic>Plant J.</italic>
</source>
<volume>79</volume>
<fpage>139</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="doi">10.1111/tpj.12547</pub-id>
<pub-id pub-id-type="pmid">24804932</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Boron deficiency in woody plants: various responses and tolerance mechanisms.</article-title>
<source>
<italic>Front. Plant Sci.</italic>
</source>
<volume>6</volume>
:
<issue>916</issue>
<pub-id pub-id-type="doi">10.3389/fpls.2015.00916</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wimmer</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Eichert</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Review: mechanisms for boron deficiency-mediated changes in plant water relations.</article-title>
<source>
<italic>Plant Sci.</italic>
</source>
<fpage>203</fpage>
<lpage>204</lpage>
,
<fpage>25</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2012.12.012</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolf</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>1974</year>
).
<article-title>Improvements in the azomethine-H method for the determination of boron.</article-title>
<source>
<italic>Comm. Soil Sci. Plant Anal.</italic>
</source>
<volume>5</volume>
<fpage>39</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1080/00103627409366478</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zambrosi</surname>
<given-names>F. C. B.</given-names>
</name>
<name>
<surname>Mattos</surname>
<given-names>D.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Boaretto</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Quaggio</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Muraoka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Syvertsen</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Contribution of phosphorus (32P) absorption and remobilization for citrus growth.</article-title>
<source>
<italic>Plant Soil</italic>
</source>
<volume>355</volume>
<fpage>353</fpage>
<lpage>362</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11104-011-1107-1</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zambrosi</surname>
<given-names>F. C. B.</given-names>
</name>
<name>
<surname>Mattos</surname>
<given-names>D.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Syvertsen</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Plant growth, leaf photosynthesis, and nutrient-use efficiency of citrus rootstocks decrease with phosphate supply.</article-title>
<source>
<italic>J. Plant Nutr. Soil Sci.</italic>
</source>
<volume>174</volume>
<fpage>487</fpage>
<lpage>495</lpage>
.
<pub-id pub-id-type="doi">10.1002/jpln.201000320</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>G. F.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>S. A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y. Z.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Q. J.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>M. Z.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency.</article-title>
<source>
<italic>Trees</italic>
</source>
<volume>28</volume>
<fpage>295</fpage>
<lpage>307</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00468-013-0949-y</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<title>Abbreviations</title>
<def-list id="DL1">
<def-item>
<term>
<italic>A</italic>
</term>
<def>
<p>CO
<sub>2</sub>
assimilation</p>
</def>
</def-item>
<def-item>
<term>
<italic>Ci</italic>
</term>
<def>
<p>intercellular CO
<sub>2</sub>
concentration</p>
</def>
</def-item>
<def-item>
<term>DM</term>
<def>
<p>dry mass</p>
</def>
</def-item>
<def-item>
<term>DXV</term>
<def>
<p>diameter of xylem vessels</p>
</def>
</def-item>
<def-item>
<term>
<italic>E</italic>
</term>
<def>
<p>transpiration</p>
</def>
</def-item>
<def-item>
<term>g
<italic>
<sub>s</sub>
</italic>
</term>
<def>
<p>stomatal conductance</p>
</def>
</def-item>
<def-item>
<term>
<italic>k</italic>
</term>
<def>
<p>instantaneous carboxylation efficiency</p>
</def>
</def-item>
<def-item>
<term>
<italic>K</italic>
<sub>L</sub>
</term>
<def>
<p>whole-plant leaf specific hydraulic conductance</p>
</def>
</def-item>
<def-item>
<term>LDM</term>
<def>
<p>dry mass of leaves</p>
</def>
</def-item>
<def-item>
<term>RD</term>
<def>
<p>root diameter</p>
</def>
</def-item>
<def-item>
<term>RDM</term>
<def>
<p>dry mass of roots</p>
</def>
</def-item>
<def-item>
<term>SDM</term>
<def>
<p>dry mass of shoots</p>
</def>
</def-item>
<def-item>
<term>SEM</term>
<def>
<p>scanning electron microscopy</p>
</def>
</def-item>
<def-item>
<term>SK</term>
<def>
<p>Sunki mandarin rootstock [
<italic>Citrus sunki</italic>
(Hayata) hort. ex Tanaka]</p>
</def>
</def-item>
<def-item>
<term>SW</term>
<def>
<p>Swingle citrumelo rootstock [
<italic>Citrus paradisi</italic>
Macf. ×
<italic>Poncirus trifoliata</italic>
(L.) Raf.]</p>
</def>
</def-item>
<def-item>
<term>TEM</term>
<def>
<p>transmission electron microscopy</p>
</def>
</def-item>
<def-item>
<term>TLM</term>
<def>
<p>thickness of leaf mesophyll</p>
</def>
</def-item>
<def-item>
<term>TXCW</term>
<def>
<p>thickness of xylem cell wall</p>
</def>
</def-item>
<def-item>
<term>Ψ</term>
<def>
<p>leaf water potential</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4777737
   |texte=   Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26973670" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024