Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0001640 ( Pmc/Corpus ); précédent : 0001639; suivant : 0001641 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Sap Flow Dynamics and Response of
<italic>Hedysarum scoparium</italic>
to Environmental Factors in Semiarid Northwestern China</title>
<author>
<name sortKey="Deng, Jifeng" sort="Deng, Jifeng" uniqKey="Deng J" first="Jifeng" last="Deng">Jifeng Deng</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ding, Guodong" sort="Ding, Guodong" uniqKey="Ding G" first="Guodong" last="Ding">Guodong Ding</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Guanglei" sort="Gao, Guanglei" uniqKey="Gao G" first="Guanglei" last="Gao">Guanglei Gao</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Bin" sort="Wu, Bin" uniqKey="Wu B" first="Bin" last="Wu">Bin Wu</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuqing" sort="Zhang, Yuqing" uniqKey="Zhang Y" first="Yuqing" last="Zhang">Yuqing Zhang</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qin, Shugao" sort="Qin, Shugao" uniqKey="Qin S" first="Shugao" last="Qin">Shugao Qin</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fan, Wenhui" sort="Fan, Wenhui" uniqKey="Fan W" first="Wenhui" last="Fan">Wenhui Fan</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26136229</idno>
<idno type="pmc">4489904</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489904</idno>
<idno type="RBID">PMC:4489904</idno>
<idno type="doi">10.1371/journal.pone.0131683</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000164</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Sap Flow Dynamics and Response of
<italic>Hedysarum scoparium</italic>
to Environmental Factors in Semiarid Northwestern China</title>
<author>
<name sortKey="Deng, Jifeng" sort="Deng, Jifeng" uniqKey="Deng J" first="Jifeng" last="Deng">Jifeng Deng</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ding, Guodong" sort="Ding, Guodong" uniqKey="Ding G" first="Guodong" last="Ding">Guodong Ding</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, Guanglei" sort="Gao, Guanglei" uniqKey="Gao G" first="Guanglei" last="Gao">Guanglei Gao</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Bin" sort="Wu, Bin" uniqKey="Wu B" first="Bin" last="Wu">Bin Wu</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuqing" sort="Zhang, Yuqing" uniqKey="Zhang Y" first="Yuqing" last="Zhang">Yuqing Zhang</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qin, Shugao" sort="Qin, Shugao" uniqKey="Qin S" first="Shugao" last="Qin">Shugao Qin</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fan, Wenhui" sort="Fan, Wenhui" uniqKey="Fan W" first="Wenhui" last="Fan">Wenhui Fan</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Hedysarum scoparium </italic>
is an important, fast-growing and drought-resistant shrub that has been extensively used for grassland restoration and preventing desertification in semiarid regions of northwestern China. The primary objective of this study was to investigate the diurnal and seasonal variations in stem sap flow (
<italic>J</italic>
<sub>s</sub>
) and its relation to environmental factors. The stem heat balance method was applied to plants that were approximately 17 years old (with diameters of 25, 16, 13, and 9 mm at ground level and heights of 3.1, 1.8, 1.7 and 1.4 m) and growing under natural conditions. The vertical soil temperature profile (ST), soil surface heat flux (SoilG), volumetric soil moisture content (SWC) and meteorological variables such as solar radiation (
<italic>R</italic>
<sub>n</sub>
), air temperature (
<italic>T</italic>
<sub>a</sub>
), vapour pressure deficit (VPD), wind speed (
<italic>W</italic>
<sub>s</sub>
) relative humidity (RH) and precipitation (P) were simultaneously measured at a meteorological station on site. Results indicated that
<italic>J</italic>
<sub>s</sub>
varied regularly during the diurnal and seasonal term. The nocturnal
<italic>J</italic>
<sub>s</sub>
was substantial, with a seasonal variation similar to the patterns of daytime
<italic>J</italic>
<sub>s</sub>
. The magnitude of
<italic>J</italic>
<sub>s</sub>
changed considerably between sunny and rainy days. Redundancy (RDA) and Kendall’s tau analysis suggested that daily
<italic>J</italic>
<sub>s</sub>
in large plants was more sensitive to environmental factors, and the variation in daily
<italic>J</italic>
<sub>s</sub>
during the growing season could be described by a multiple linear regression against environmental variables including
<italic>T</italic>
<sub>a</sub>
, VPD,
<italic>W</italic>
<sub>s</sub>
, RH, ST, and SoilG. While the nocturnal
<italic>J</italic>
<sub>s</sub>
in smaller plants was more sensitive to meteorological factors.
<italic>T</italic>
<sub>a</sub>
, VPD, and
<italic>W</italic>
<sub>s</sub>
were significantly correlated with nighttime
<italic>J</italic>
<sub>s</sub>
. The hourly nighttime sap flow rate of
<italic>H</italic>
.
<italic>scoparium</italic>
corresponded closely to
<italic>T</italic>
<sub>a</sub>
and VPD following a non-linear pattern. The results of this study can be used to estimate the transpiration of
<italic>H</italic>
.
<italic>scoparium</italic>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xp" uniqKey="Wang X">XP Wang</name>
</author>
<author>
<name sortKey="Zhang, Yf" uniqKey="Zhang Y">YF Zhang</name>
</author>
<author>
<name sortKey="Hua, R" uniqKey="Hua R">R Hua</name>
</author>
<author>
<name sortKey="Pan, Yx" uniqKey="Pan Y">YX Pan</name>
</author>
<author>
<name sortKey="Berndtsson, R" uniqKey="Berndtsson R">R Berndtsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Xy" uniqKey="Xu X">XY Xu</name>
</author>
<author>
<name sortKey="Zhang, Rd" uniqKey="Zhang R">RD Zhang</name>
</author>
<author>
<name sortKey="Xue, Xz" uniqKey="Xue X">XZ Xue</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, Wrn" uniqKey="Edwards W">WRN Edwards</name>
</author>
<author>
<name sortKey="Becker, P" uniqKey="Becker P">P Becker</name>
</author>
<author>
<name sortKey="Eermak, J" uniqKey="Eermak J">J Èermák</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ffolliott, Pf" uniqKey="Ffolliott P">PF Ffolliott</name>
</author>
<author>
<name sortKey="Gottfried, Gj" uniqKey="Gottfried G">GJ Gottfried</name>
</author>
<author>
<name sortKey="Cohen, Y" uniqKey="Cohen Y">Y Cohen</name>
</author>
<author>
<name sortKey="Schiller, G" uniqKey="Schiller G">G Schiller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kluitenberg, Gj" uniqKey="Kluitenberg G">GJ Kluitenberg</name>
</author>
<author>
<name sortKey="Ham, Jm" uniqKey="Ham J">JM Ham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macnish, Rd" uniqKey="Macnish R">RD MacNish</name>
</author>
<author>
<name sortKey="Unkrich, Cl" uniqKey="Unkrich C">CL Unkrich</name>
</author>
<author>
<name sortKey="Smythe, E" uniqKey="Smythe E">E Smythe</name>
</author>
<author>
<name sortKey="Goodrich, Dc" uniqKey="Goodrich D">DC Goodrich</name>
</author>
<author>
<name sortKey="Maddock, T Iii" uniqKey="Maddock T">T III Maddock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicolas, E" uniqKey="Nicolas E">E Nicolas</name>
</author>
<author>
<name sortKey="Torrecillas, A" uniqKey="Torrecillas A">A Torrecillas</name>
</author>
<author>
<name sortKey="Ortu Oa, Mf" uniqKey="Ortu Oa M">MF Ortuñoa</name>
</author>
<author>
<name sortKey="Domingo, R" uniqKey="Domingo R">R Domingo</name>
</author>
<author>
<name sortKey="Alarc N, Jj" uniqKey="Alarc N J">JJ Alarcón</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Dg" uniqKey="Williams D">DG Williams</name>
</author>
<author>
<name sortKey="Cable, W" uniqKey="Cable W">W Cable</name>
</author>
<author>
<name sortKey="Hultine, K" uniqKey="Hultine K">K Hultine</name>
</author>
<author>
<name sortKey="Hoedjes, Jcb" uniqKey="Hoedjes J">JCB Hoedjes</name>
</author>
<author>
<name sortKey="Yepez, Ea" uniqKey="Yepez E">EA Yepez</name>
</author>
<author>
<name sortKey="Simonneaux, V" uniqKey="Simonneaux V">V Simonneaux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdowell, Ng" uniqKey="Mcdowell N">NG McDowell</name>
</author>
<author>
<name sortKey="White, S" uniqKey="White S">S White</name>
</author>
<author>
<name sortKey="Pockman, Wt" uniqKey="Pockman W">WT Pockman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Zhao, Wz" uniqKey="Zhao W">WZ Zhao</name>
</author>
<author>
<name sortKey="Jin, Bw" uniqKey="Jin B">BW Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, Gm" uniqKey="Xia G">GM Xia</name>
</author>
<author>
<name sortKey="Kang, Sz" uniqKey="Kang S">SZ Kang</name>
</author>
<author>
<name sortKey="Li, Fs" uniqKey="Li F">FS Li</name>
</author>
<author>
<name sortKey="Zhang, Jh" uniqKey="Zhang J">JH Zhang</name>
</author>
<author>
<name sortKey="Zhou, Qy" uniqKey="Zhou Q">QY Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Gy" uniqKey="Yue G">GY Yue</name>
</author>
<author>
<name sortKey="Zhao, Hl" uniqKey="Zhao H">HL Zhao</name>
</author>
<author>
<name sortKey="Zhang, Th" uniqKey="Zhang T">TH Zhang</name>
</author>
<author>
<name sortKey="Zhao, Xy" uniqKey="Zhao X">XY Zhao</name>
</author>
<author>
<name sortKey="Niu, L" uniqKey="Niu L">L Niu</name>
</author>
<author>
<name sortKey="Drake, S" uniqKey="Drake S">S Drake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, R" uniqKey="Allen R">R Allen</name>
</author>
<author>
<name sortKey="Pereira, Ls" uniqKey="Pereira L">LS Pereira</name>
</author>
<author>
<name sortKey="Raes, D" uniqKey="Raes D">D Raes</name>
</author>
<author>
<name sortKey="Smith, M" uniqKey="Smith M">M Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dzikiti, S" uniqKey="Dzikiti S">S Dzikiti</name>
</author>
<author>
<name sortKey="Steppe, K" uniqKey="Steppe K">K Steppe</name>
</author>
<author>
<name sortKey="Lemeur, R" uniqKey="Lemeur R">R Lemeur</name>
</author>
<author>
<name sortKey="Milford, Jr" uniqKey="Milford J">JR Milford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chuang, Yl" uniqKey="Chuang Y">YL Chuang</name>
</author>
<author>
<name sortKey="Oren, R" uniqKey="Oren R">R Oren</name>
</author>
<author>
<name sortKey="Bertozzi, Al" uniqKey="Bertozzi A">AL Bertozzi</name>
</author>
<author>
<name sortKey="Phillipse, N" uniqKey="Phillipse N">N Phillipse</name>
</author>
<author>
<name sortKey="Katul, Gg" uniqKey="Katul G">GG Katul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novick, Ka" uniqKey="Novick K">KA Novick</name>
</author>
<author>
<name sortKey="Oren, R" uniqKey="Oren R">R Oren</name>
</author>
<author>
<name sortKey="Stoy, Pc" uniqKey="Stoy P">PC Stoy</name>
</author>
<author>
<name sortKey="Siqueira, Mbs" uniqKey="Siqueira M">MBS Siqueira</name>
</author>
<author>
<name sortKey="Katul, Gg" uniqKey="Katul G">GG Katul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawson, Te" uniqKey="Dawson T">TE Dawson</name>
</author>
<author>
<name sortKey="Burgess, Sso" uniqKey="Burgess S">SSO Burgess</name>
</author>
<author>
<name sortKey="Tu, Kp" uniqKey="Tu K">KP Tu</name>
</author>
<author>
<name sortKey="Oliveira, Rs" uniqKey="Oliveira R">RS Oliveira</name>
</author>
<author>
<name sortKey="Santiago, Ls" uniqKey="Santiago L">LS Santiago</name>
</author>
<author>
<name sortKey="Fisher, Jb" uniqKey="Fisher J">JB Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinberg, S" uniqKey="Steinberg S">S Steinberg</name>
</author>
<author>
<name sortKey="Van Bavel, Chm" uniqKey="Van Bavel C">CHM van Bavel</name>
</author>
<author>
<name sortKey="Mcfarland, Mj" uniqKey="Mcfarland M">MJ McFarland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kigalu, Jm" uniqKey="Kigalu J">JM Kigalu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berger, Bw" uniqKey="Berger B">BW Berger</name>
</author>
<author>
<name sortKey="Davis, Kj" uniqKey="Davis K">KJ Davis</name>
</author>
<author>
<name sortKey="Yi, Cx" uniqKey="Yi C">CX Yi</name>
</author>
<author>
<name sortKey="Bakwin, Ps" uniqKey="Bakwin P">PS Bakwin</name>
</author>
<author>
<name sortKey="Zhao, Cl" uniqKey="Zhao C">CL Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naithani, Kj" uniqKey="Naithani K">KJ Naithani</name>
</author>
<author>
<name sortKey="Ewers, Be" uniqKey="Ewers B">BE Ewers</name>
</author>
<author>
<name sortKey="Pendall, E" uniqKey="Pendall E">E Pendall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marks, Co" uniqKey="Marks C">CO Marks</name>
</author>
<author>
<name sortKey="Lechowicz, Mj" uniqKey="Lechowicz M">MJ Lechowicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mott, Ka" uniqKey="Mott K">KA Mott</name>
</author>
<author>
<name sortKey="Peak, D" uniqKey="Peak D">D Peak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daley, Mj" uniqKey="Daley M">MJ Daley</name>
</author>
<author>
<name sortKey="Phillips, Ng" uniqKey="Phillips N">NG Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snyder, Ka" uniqKey="Snyder K">KA Snyder</name>
</author>
<author>
<name sortKey="Richards, Jh" uniqKey="Richards J">JH Richards</name>
</author>
<author>
<name sortKey="Donovan, La" uniqKey="Donovan L">LA Donovan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Zhao, P" uniqKey="Zhao P">P Zhao</name>
</author>
<author>
<name sortKey="Holscher, D" uniqKey="Holscher D">D Hölscher</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P Lu</name>
</author>
<author>
<name sortKey="Cai, Xa" uniqKey="Cai X">XA Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
<author>
<name sortKey="Zhang, Zs" uniqKey="Zhang Z">ZS Zhang</name>
</author>
<author>
<name sortKey="Li, Xr" uniqKey="Li X">XR Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, Yp" uniqKey="Qu Y">YP Qu</name>
</author>
<author>
<name sortKey="Kang, Sz" uniqKey="Kang S">SZ Kang</name>
</author>
<author>
<name sortKey="Li, Fs" uniqKey="Li F">FS Li</name>
</author>
<author>
<name sortKey="Zhang, Jh" uniqKey="Zhang J">JH Zhang</name>
</author>
<author>
<name sortKey="Xia, Gm" uniqKey="Xia G">GM Xia</name>
</author>
<author>
<name sortKey="Li, Wc" uniqKey="Li W">WC Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldstein, G" uniqKey="Goldstein G">G Goldstein</name>
</author>
<author>
<name sortKey="Andrade, Jl" uniqKey="Andrade J">JL Andrade</name>
</author>
<author>
<name sortKey="Meinzer, Fc" uniqKey="Meinzer F">FC Meinzer</name>
</author>
<author>
<name sortKey="Holbrook, Nm" uniqKey="Holbrook N">NM Holbrook</name>
</author>
<author>
<name sortKey="Cavelier, J" uniqKey="Cavelier J">J Cavelier</name>
</author>
<author>
<name sortKey="Jackson, P" uniqKey="Jackson P">P Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giorio, P" uniqKey="Giorio P">P Giorio</name>
</author>
<author>
<name sortKey="Giorio, G" uniqKey="Giorio G">G Giorio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badalotti, A" uniqKey="Badalotti A">A Badalotti</name>
</author>
<author>
<name sortKey="Anfodillo, T" uniqKey="Anfodillo T">T Anfodillo</name>
</author>
<author>
<name sortKey="Grace, J" uniqKey="Grace J">J Grace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfautsch, S" uniqKey="Pfautsch S">S Pfautsch</name>
</author>
<author>
<name sortKey="Bleby, Tm" uniqKey="Bleby T">TM Bleby</name>
</author>
<author>
<name sortKey="Rennenberg, H" uniqKey="Rennenberg H">H Rennenberg</name>
</author>
<author>
<name sortKey="Adams, Ma" uniqKey="Adams M">MA Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benyon, Rg" uniqKey="Benyon R">RG Benyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heilman, Jl" uniqKey="Heilman J">JL Heilman</name>
</author>
<author>
<name sortKey="Ham, Jm" uniqKey="Ham J">JM Ham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daudet, Fa" uniqKey="Daudet F">FA Daudet</name>
</author>
<author>
<name sortKey="Le Roux, X" uniqKey="Le Roux X">X Le Roux</name>
</author>
<author>
<name sortKey="Sinoquet, H" uniqKey="Sinoquet H">H Sinoquet</name>
</author>
<author>
<name sortKey="Adam, B" uniqKey="Adam B">B Adam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, Jj" uniqKey="O Rien J">JJ O’Brien</name>
</author>
<author>
<name sortKey="Oberbauer, Sf" uniqKey="Oberbauer S">SF Oberbauer</name>
</author>
<author>
<name sortKey="Clark, Db" uniqKey="Clark D">DB Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nadezhdina, N" uniqKey="Nadezhdina N">N Nadezhdina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, Jb" uniqKey="Fisher J">JB Fisher</name>
</author>
<author>
<name sortKey="Baldocchi, Dd" uniqKey="Baldocchi D">DD Baldocchi</name>
</author>
<author>
<name sortKey="Misson, L" uniqKey="Misson L">L Misson</name>
</author>
<author>
<name sortKey="Dawson, Te" uniqKey="Dawson T">TE Dawson</name>
</author>
<author>
<name sortKey="Goldstein, Ah" uniqKey="Goldstein A">AH Goldstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hogg, Eh" uniqKey="Hogg E">EH Hogg</name>
</author>
<author>
<name sortKey="Hurdle, Pa" uniqKey="Hurdle P">PA Hurdle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, Sr" uniqKey="Green S">SR Green</name>
</author>
<author>
<name sortKey="Mcnaughton, Kg" uniqKey="Mcnaughton K">KG McNaughton</name>
</author>
<author>
<name sortKey="Clothier, Be" uniqKey="Clothier B">BE Clothier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iritz, Z" uniqKey="Iritz Z">Z Iritz</name>
</author>
<author>
<name sortKey="Lindroth, A" uniqKey="Lindroth A">A Lindroth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sellin, A" uniqKey="Sellin A">A Sellin</name>
</author>
<author>
<name sortKey="Lubenets, K" uniqKey="Lubenets K">K Lubenets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Gw" uniqKey="Moore G">GW Moore</name>
</author>
<author>
<name sortKey="Cleverly, Jr" uniqKey="Cleverly J">JR Cleverly</name>
</author>
<author>
<name sortKey="Owens, Mk" uniqKey="Owens M">MK Owens</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26136229</article-id>
<article-id pub-id-type="pmc">4489904</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0131683</article-id>
<article-id pub-id-type="publisher-id">PONE-D-14-56517</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Sap Flow Dynamics and Response of
<italic>Hedysarum scoparium</italic>
to Environmental Factors in Semiarid Northwestern China</article-title>
<alt-title alt-title-type="running-head">
<italic>Hedysarum scoparium</italic>
Sap Flow Dynamics in Semiarid Northwest China</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>Jifeng</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ding</surname>
<given-names>Guodong</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref rid="cor001" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gao</surname>
<given-names>Guanglei</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Bin</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhang</surname>
<given-names>Yuqing</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qin</surname>
<given-names>Shugao</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fan</surname>
<given-names>Wenhui</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Yanchi Research Station, School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, P. R. China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Reigosa</surname>
<given-names>Manuel</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Vigo, SPAIN</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: JD GD GG BW YZ SQ WF. Performed the experiments: JD GD GG SQ WF. Analyzed the data: JD GD GG. Contributed reagents/materials/analysis tools: GD BW YZ SQ. Wrote the paper: JD GD.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>dingguodong@bjfu.edu.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>2</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>7</issue>
<elocation-id>e0131683</elocation-id>
<history>
<date date-type="received">
<day>23</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>6</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-year>2015</copyright-year>
<copyright-holder>Deng et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0131683.pdf"></self-uri>
<abstract>
<p>
<italic>Hedysarum scoparium </italic>
is an important, fast-growing and drought-resistant shrub that has been extensively used for grassland restoration and preventing desertification in semiarid regions of northwestern China. The primary objective of this study was to investigate the diurnal and seasonal variations in stem sap flow (
<italic>J</italic>
<sub>s</sub>
) and its relation to environmental factors. The stem heat balance method was applied to plants that were approximately 17 years old (with diameters of 25, 16, 13, and 9 mm at ground level and heights of 3.1, 1.8, 1.7 and 1.4 m) and growing under natural conditions. The vertical soil temperature profile (ST), soil surface heat flux (SoilG), volumetric soil moisture content (SWC) and meteorological variables such as solar radiation (
<italic>R</italic>
<sub>n</sub>
), air temperature (
<italic>T</italic>
<sub>a</sub>
), vapour pressure deficit (VPD), wind speed (
<italic>W</italic>
<sub>s</sub>
) relative humidity (RH) and precipitation (P) were simultaneously measured at a meteorological station on site. Results indicated that
<italic>J</italic>
<sub>s</sub>
varied regularly during the diurnal and seasonal term. The nocturnal
<italic>J</italic>
<sub>s</sub>
was substantial, with a seasonal variation similar to the patterns of daytime
<italic>J</italic>
<sub>s</sub>
. The magnitude of
<italic>J</italic>
<sub>s</sub>
changed considerably between sunny and rainy days. Redundancy (RDA) and Kendall’s tau analysis suggested that daily
<italic>J</italic>
<sub>s</sub>
in large plants was more sensitive to environmental factors, and the variation in daily
<italic>J</italic>
<sub>s</sub>
during the growing season could be described by a multiple linear regression against environmental variables including
<italic>T</italic>
<sub>a</sub>
, VPD,
<italic>W</italic>
<sub>s</sub>
, RH, ST, and SoilG. While the nocturnal
<italic>J</italic>
<sub>s</sub>
in smaller plants was more sensitive to meteorological factors.
<italic>T</italic>
<sub>a</sub>
, VPD, and
<italic>W</italic>
<sub>s</sub>
were significantly correlated with nighttime
<italic>J</italic>
<sub>s</sub>
. The hourly nighttime sap flow rate of
<italic>H</italic>
.
<italic>scoparium</italic>
corresponded closely to
<italic>T</italic>
<sub>a</sub>
and VPD following a non-linear pattern. The results of this study can be used to estimate the transpiration of
<italic>H</italic>
.
<italic>scoparium</italic>
.</p>
</abstract>
<funding-group>
<funding-statement>This work was funded by one of National Basic Research Program of China (2013CB429906)(
<ext-link ext-link-type="uri" xlink:href="http://www.973.gov.cn/English/Index.aspx">http://www.973.gov.cn/English/Index.aspx</ext-link>
), the National Technology & Science Support Program of China (2012BAD16B02) and The Fundamental Research Funds for the Central Universities (BJFU-TD2011-04). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="15"></fig-count>
<table-count count="2"></table-count>
<page-count count="24"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>China is among the countries most severely affected by desertification. In the early 1950’s, more than 70 severe sandstorms occurred which led to topsoil losses, affecting the north central plain and northwestern China and eventually encroaching on the living environment of local people. In order to deal with problems associated with desertification and sandstorms, many ecological engineering projects have been established to minimize the impacts of desertification [
<xref rid="pone.0131683.ref001" ref-type="bibr">1</xref>
].</p>
<p>
<italic>Hedysarum scoparium</italic>
(Fisch. & C.A. May)
<italic>(H</italic>
.
<italic>scoparium</italic>
) is a vivacious leguminous and deciduous shrub growing in arid and semi-arid regions of northern China. The shrub can reach a height of 0.8–3.0 m. The extensive root system of the large shrub can spread to 10 m horizontally and penetrate soil to 5–8 m depth (15 m in some cases). The extensive root system allows
<italic>H</italic>
.
<italic>scoparium</italic>
to survive on sandy desert soils (water content below 3%) and tolerate extremely high temperatures (from 50–60°C) and dry climates (< 200 mm annual precipitation). Due to its high tolerance to drought and extreme temperatures,
<italic>H</italic>
.
<italic>scoparium</italic>
is an ideal xerophyte shrub for resisting desertification, and preventing soil, wind, and water erosion by providing sand dune stabilization.</p>
<p>In 1956 the
<italic>Hedysarum scoparium</italic>
shrub was used to establish a vegetation belt along rail lines from Lanzhou to Baotou, which runs along the edge of the Tengger Desert [
<xref rid="pone.0131683.ref001" ref-type="bibr">1</xref>
]. Designed purpose for the vegetation belt was to stabilize migrating desert dunes in the Shapotou area at the Tengger Desert southeastern edge. This project is viewed as a successful model for desertification control and ecological restoration along the railway infrastructure in the arid desert region in China.</p>
<p>Restoration of desert ecosystems using xerophyte shrubs produces a wide range of hydrological effects [
<xref rid="pone.0131683.ref001" ref-type="bibr">1</xref>
]. There are more apparent in semiarid regions due to the large temporal and spatial variability in precipitation. However, our understanding of the water relations and physiological responses to environmental factors of these desert-living shrubs is limited, and a better understanding of transpiration by desert plants is urgently required. At this time, few studies have been conducted to quantify the diurnal and seasonal transpiration of
<italic>H</italic>
.
<italic>scoparium</italic>
under natural conditions.</p>
<p>In recent years, various methods using dyes, radioisotope, tracers, lysimeters, a heat balance and thermal diffusion have been used to measure plant transpiration [
<xref rid="pone.0131683.ref002" ref-type="bibr">2</xref>
]. However, many of these measurement techniques are invasive and may damage the plant. The stem heat balance technique has been widely used for transpiration studies because it maintains the basic conditions of normal tree growth allows continuous monitoring over a period of time, is relatively easy, does not induce any modification of the environment, and is non-destructive to the shrub [
<xref rid="pone.0131683.ref003" ref-type="bibr">3</xref>
<xref rid="pone.0131683.ref008" ref-type="bibr">8</xref>
]. Many studies have used the stem heat balance method to measure the fluid-flow characteristics of various plants [
<xref rid="pone.0131683.ref002" ref-type="bibr">2</xref>
,
<xref rid="pone.0131683.ref003" ref-type="bibr">3</xref>
]. Moreover, shrubs with low stem porosity such as
<italic>H</italic>
.
<italic>scoparium</italic>
, are suitable for the application of the stem heat balance technique. For these reasons, we used the method in this study.</p>
<p>Eco-hydrological studies of transpiration indicate that plants regulate sap flow (
<italic>J</italic>
<sub>s</sub>
) by adjusting stomatal conductance in response to changes in environmental variables, such as radiation intensity, soil moisture, rainfall, air temperature (
<italic>T</italic>
<sub>a</sub>
), and wind speed (
<italic>W</italic>
<sub>s</sub>
) [
<xref rid="pone.0131683.ref009" ref-type="bibr">9</xref>
]. Previous studies have focused mainly on the effect of individual environmental factors on plant physiology [
<xref rid="pone.0131683.ref010" ref-type="bibr">10</xref>
]. However, the interaction of exterior environmental factors should not be neglected, as a certain combination of environmental factors likely play a role in determining plant respiration. For example, semiarid regions of northwestern China are characterized by summers with long water deficit periods and high solar radiation (
<italic>R</italic>
<sub>n</sub>
);
<italic>T</italic>
<sub>a</sub>
, and vapour pressure deficit (VPD). These variables are correlated with each other, potentially with a compensation effect that influences plant growth under adverse environmental conditions. Plants may have acquired certain genetic characteristics enabling them to dynamically respond to different combinations of environmental factors. As a dominant native species,
<italic>H</italic>
.
<italic>scoparium</italic>
has adapted to survive in a variety of harsh environmental conditions by adjusting its transpiration [
<xref rid="pone.0131683.ref010" ref-type="bibr">10</xref>
,
<xref rid="pone.0131683.ref011" ref-type="bibr">11</xref>
].</p>
<p>The measurement of
<italic>J</italic>
<sub>s</sub>
can provide an accurate estimation of actual plant water consumption, but is often influenced by environmental factors. As a result, accurately estimating the sap flow rate and exploiting its relationships with various environmental factors or their interactions is important not only for physiological research but also for the appropriate management of this plant to combat desertification in arid regions. The objectives of this study are to i) determine the diurnal and seasonal sap flow dynamics; ii) analyze the characteristics of daytime and nighttime sap flow and their environment dependence by using regression and redundancy analysis (RDA) methods. Our results will provide the useful information for supporting the management of this ecologically important shrub in semiarid Northwestern China.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Materials and Methods</title>
<sec id="sec003">
<title>Experimental site and plant material</title>
<p>Beijing Forestry University is responsible for the study site. The study site does not contain any national park or other protected area of land or sea. Environment Protection and Forestry Bureau of Yanchi County supervised the protection of wildlife and environment. The location is not privately owned or protected, and the field studies did not involve endangered or protected species. No specific permits were required for the described field studies. For Yanchi Research Station was found by Beijing Forestry University and authorized by China government. The authorities and we authors confirm that the field studies did not involve endangered or protected species.</p>
<p>The experimental area was located in Ningxia Yanchi Research Station of State Forestry Administration (between 37°04´N and 38°10´N, and between 106°300´E and 107°410´E, with altitude 1354 m above sea level) (
<xref rid="pone.0131683.g001" ref-type="fig">Fig 1</xref>
), covering an area of approximately 8661.3 km
<sup>2</sup>
. The climate is dominated by a semiarid continental monsoon of the mid-temperate zone, with long winters, short summers, a late spring, and an early autumn. The annual precipitation averages 287 mm (1950~2010). About 70% of the total precipitation occurred from July to September. Mean annual potential evaporation is 1273 mm. A biologically active temperature accumulation (>0°C) is 2810°C, with a mean annual temperature of around 8.1°C, with lowest monthly mean temperatures being -24.2°C in January and high monthly temperature of 34.9°C in July. The prevailing wind is mainly from the northwest, and wind speed averages 2.6 m.s
<sup>-1</sup>
. The landscape is a typical transitional zone, the terrain changes from the Loess to the Ordos plateau. Soils are primarily dark loessial soil, eolian sandy soil and sierozem soil, with some loess deposits, saline soil, planosol, along with other soil types. Vegetation type varies from dry steppe to desert grassland.</p>
<fig id="pone.0131683.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g001</object-id>
<label>Fig 1</label>
<caption>
<title>A map of the study site and its location in China.</title>
</caption>
<graphic xlink:href="pone.0131683.g001"></graphic>
</fig>
<p>
<italic>H</italic>
.
<italic>scoparium</italic>
grows naturally in the study area. It is a deciduous desert shrub with small leaves, and has also been confirmed to be a C
<sub>3</sub>
plant. The phenological character of
<italic>H</italic>
.
<italic>scoparium</italic>
is clearly indicative of an adaptive function to the local environment.
<italic>H</italic>
.
<italic>scoparium</italic>
has bud-burst at the end of April, blooms in May, is fructified in June, becomes mature in June, and begins to wither and turn yellowish in the middle of October (
<xref rid="pone.0131683.s002" ref-type="supplementary-material">S1 Fig</xref>
).</p>
<p>During our research, a 5× 5 m plot was selected at the study site. Four plants within the plot were carefully selected for monitoring based on their stem diameter. The basic characters of the plant, such as height and coverage, were also investigated (The plant stem diameters were 26, 19, 15 and 11 mm; the plant heights were 3.1, 1.8, 1.7, and 1.4 m; and the crown projected areas were 1.5 × 2.0, 1.0 × 1.2, 0.8 × 1.2 and 0.8 × 0.8 m, respectively).</p>
</sec>
<sec id="sec004">
<title>Field set up of the sap flow measurement system</title>
<p>Model SGB25, SGB16, SGB13, and SGB9 gauges (Flow32 meters, Dynamax Inc., Houston, TX, USA) were mounted at the stems of 17 year old
<italic>H</italic>
.
<italic>scoparium</italic>
plants during the period from 1
<sup>st</sup>
May to 15
<sup>th</sup>
October, 2011 (due to the changing trend of the leave area index (LAI) we measured after DOY 290, but found the sap flow rate was very low, and had almost stopped). Each sensor was installed on stem of different individual plants (
<xref rid="pone.0131683.s003" ref-type="supplementary-material">S2 Fig</xref>
). Data was recorded at 10 second intervals and stored as 15 minute averages using a CR1000 data logger (Campbell Scientific, Logan, UT, USA). The gauges were strictly installed following the manufacturer’s instructions [
<xref rid="pone.0131683.ref012" ref-type="bibr">12</xref>
].</p>
<p>Unlike other methods, Dynagages require no calibration since sap flow is directly determined by the energy balance and rates of heat convection by the sap flux (see more details at ftp://ftp.dynamax.com/Manuals/Dynagage_Manual.pdf). For stem heat balance technique will continue to give off heat to plant stem for a continuous time, its sensors are not affected by external interferences as the most common sensor types (like Trunk Heat Balance THB, Thermal Dissipation TD, Heat field deformation HFD) do. And it is different from other sap flow systems, which can get "net" sap flow data, from subtract the baseline representing the "fictitious flow" due to heat loses from the heated space. The Dynagage system is accurate, and the sap flow computations are maintained during all conditions within reasonable limits. Since the additional heat is properly accounted for in the energy balance, the user does not need any special computation to compensate for these events [
<xref rid="pone.0131683.ref012" ref-type="bibr">12</xref>
].</p>
<p>In our research, we used Beijing time to illustrate the diurnal and seasonal variations of sap flow rates, because the Shanxi Astronomy Observatory in Shanxi province sets the standard time (Beijing time) (GMT+08:00) in China. In this context, the local time is suitable for use (Shanxi and Ningxia provinces are in the same time zone).</p>
</sec>
<sec id="sec005">
<title>Meteorological and soil moisture measurements</title>
<p>Meteorological data were obtained using an on-site meteorological monitoring station (Campbell Scientific Inc., Logan, UT, USA) that has both aboveground and underground units. The above ground unit contains one CR3000, one CNR4 net radiation sensor, two PAR-LITE; one CMP3 total radiation sensor, one 034B anemometer, one HMP155a, two ombrometer sensors, six si_111 Infrared temperature sensors, measuring solar radiation (
<italic>R</italic>
<sub>n</sub>
, W.m
<sup>-2</sup>
), photosynthetic active radiation (PAR, u.mol.s
<sup>-2</sup>
.m
<sup>-2</sup>
), vapour pressure deficit (VPD, KPa), net radiation (PAR_net, u.mol.s
<sup>-2</sup>
.m
<sup>-2</sup>
), relative humidity (RH, %), wind speed (
<italic>W</italic>
<sub>s</sub>
, m.s
<sup>-1</sup>
), rainfall (P, mm) and air temperature (
<italic>T</italic>
<sub>a</sub>
,°C), respectively. The underground units consisted of one ACC-SEN-SDI soil temperature humidity sensor, ten T109 and five hfp01 soil thermal throughput sensors in each pit (total of 5), which measured soil temperature (ST,°C) at depths of 10 and 30 cm and soil surface heat flux (SoilG, W.m
<sup>-2</sup>
), respectively. All variables were measured with a frequency of 10 Hz and recorded an average on every 15 minutes.</p>
<p>Soil moisture content (SWC, %) was obtained using a soil volumetric moisture detector (HH2 Soil Moisture Probe type ML2x and Meter type HH2) (Dynamax Inc., Houston, TX, USA) at soil depths between 0–100 cm. Soil profiles were dug every 15 days and extra measurement was taken after each rainfall event. Gaps in the data were filled using linear interpolation method. Data with obvious errors were carefully examined and removed.</p>
<p>The diurnal reference evapotranspiration (
<italic>ET</italic>
<sub>0</sub>
) was calculated using the FAO 56 Penman-Monteith equation [
<xref rid="pone.0131683.ref013" ref-type="bibr">13</xref>
] on the basis of the
<italic>R</italic>
<sub>n</sub>
,
<italic>T</italic>
<sub>a</sub>
,
<italic>W</italic>
<sub>s</sub>
, and RH measured by an automatic weather station over the experimental period as shown in
<xref rid="pone.0131683.g002" ref-type="fig">Fig 2</xref>
. The FAO 56 Penman-Monteith equation is as follows:
<italic>ET</italic>
<sub>0</sub>
equation:
<disp-formula id="pone.0131683.e001">
<alternatives>
<graphic xlink:href="pone.0131683.e001.jpg" id="pone.0131683.e001g" position="anchor" mimetype="image" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:mrow>
<mml:mi>E</mml:mi>
<mml:msub>
<mml:mi>T</mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>0.408</mml:mn>
<mml:mi>Δ</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mi>n</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:mi>G</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>ϒ</mml:mi>
<mml:mfrac>
<mml:mrow>
<mml:mn>900</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mi>T</mml:mi>
<mml:mtext>a</mml:mtext>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mn>273</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:msub>
<mml:mi>μ</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>e</mml:mi>
<mml:mi>s</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>e</mml:mi>
<mml:mi>a</mml:mi>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>Δ</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>ϒ</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mn>0.34</mml:mn>
<mml:mo stretchy="false">)</mml:mo>
<mml:msub>
<mml:mi>μ</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:math>
</alternatives>
<label>(1)</label>
</disp-formula>
Where:
<italic>ET</italic>
<sub>0</sub>
is reference evapotranspiration (mm.d
<sup>-1</sup>
);
<italic>R</italic>
<sub>n</sub>
is Net radiation (W.m
<sup>-2</sup>
);
<italic>G</italic>
= SoilG is Soil heat flux density (W.m
<sup>-2</sup>
);
<italic>T</italic>
<sub>a</sub>
is average temperature (°C);
<italic>μ</italic>
<sub>2</sub>
=
<italic>W</italic>
<sub>s</sub>
is wind speed at 2 m height (m.s
<sup>-1</sup>
),
<italic>e</italic>
<sub>
<italic>s</italic>
</sub>
is saturated vapour pressure (KPa);
<italic>e</italic>
<sub>a</sub>
is actual vapour pressure (KPa); △ is vapour pressure slope of curves (KPa.°C
<sup>-1</sup>
); γ is psychrometric constant (65.5 KPa.°C
<sup>-1</sup>
).</p>
<fig id="pone.0131683.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Diurnal variation of daily reference evapotranspiration rate and rainfall distribution in the whole growing season (1
<sup>st</sup>
May–15
<sup>th</sup>
October 2011).</title>
</caption>
<graphic xlink:href="pone.0131683.g002"></graphic>
</fig>
</sec>
<sec id="sec006">
<title>Leaf area index and leaf gas exchange measurements</title>
<p>A simple measurement of the amount of foliage by harvesting leaves (DOY 131, 150, 170, 178, 190, 210, 215, 230, 243, 250, 274, and 290) was performed. LAI (m
<sup>2</sup>
.m
<sup>-2</sup>
) was determined directly by taking a statistically significant sample of foliage from a plant canopy, measuring the leaf area per sample plot and dividing it by the plot land surface area.</p>
<p>Additionally leaf transpiration of the shrub with stem diameter of 25 mm within the experimental plot was measured with a gas exchange system (LI-6400; Li-cor, USA). The measurements were taken on an hourly basis from 18:00 to 08:00 (GMT +08:00) on 5
<sup>th</sup>
~ 6
<sup>th</sup>
July, 2011 (DOY 186–187). The purpose of this measurement was to confirm if there was obvious nighttime transpiration in
<italic>H</italic>
.
<italic>scoparium</italic>
.</p>
</sec>
<sec id="sec007">
<title>Statistical analysis</title>
<p>We analyzed the correlations between sap flow and meteorological variables by using version 21.0 of the SPSS software (IBM Inc. NC, USA). Software Canoco for Windows 4.5 was used for redundancy analysis (RDA) to explore the responses of sap flow and environmental factors. The Figs were drawn using CanoDraw (Canoco 4.5; University of South Bohemia, Ceske Budejovice, Czech Republic). Data processing and plotting were completed with software OriginPro 9.0 (OriginLab Inc., Northampton, MA, USA).</p>
<p>Sap flow, physiology characteristics and environmental variables data from the present study are presented in
<xref rid="pone.0131683.s001" ref-type="supplementary-material">S1 Dataset</xref>
.</p>
</sec>
</sec>
<sec sec-type="results" id="sec008">
<title>Results</title>
<sec id="sec009">
<title>Environmental characteristics of the study period</title>
<p>During the study period from May to October (DOY 131–290), 2011, the frost-free period was about 128 days.</p>
<p>Figs
<xref rid="pone.0131683.g002" ref-type="fig">2</xref>
and
<xref rid="pone.0131683.g003" ref-type="fig">3</xref>
illustrate the variations in the meteorological variables at the study site.
<xref rid="pone.0131683.g002" ref-type="fig">Fig 2</xref>
exhibits that total
<italic>ET</italic>
<sub>0</sub>
during the study period was 938.57 mm, while P ranged from 1.20 to 50.00 mm per event with averaged 17.52 mm per event. In general P was highest during the summer in the form of intensive storm with short period typically less than a day.
<italic>T</italic>
<sub>a</sub>
, VPD,
<italic>R</italic>
<sub>n</sub>
and PAR are shown in
<xref rid="pone.0131683.g003" ref-type="fig">Fig 3</xref>
with the minimum values occurring mostly after a rainfall event followed by increasing values and reaching the maximum values before the next rainfall during the summer time. On the contrary, the RH values were positively correlated with precipitation densities. Throughout the study, average values of
<italic>T</italic>
<sub>a</sub>
, VPD, RH,
<italic>R</italic>
<sub>n</sub>
and PAR were 13.95°C, 1.06 KPa, 66.63%, 81.48 W.m
<sup>-2</sup>
.day
<sup>-1</sup>
, and 323.90 μ.mol.s
<sup>-2</sup>
.m
<sup>-2</sup>
, respectively. In the study area, strong wind (>11 m.s
<sup>-1</sup>
) usually occurs in spring and winter. While during the study period,
<italic>W</italic>
<sub>s</sub>
values changed with time but extend of their changes was small, and the
<italic>W</italic>
<sub>s</sub>
averaged 2.42 m.s
<sup>-1</sup>
, with maximum and minimum values of 1.27 m.s
<sup>-1</sup>
and 6.18 m.s
<sup>-1</sup>
, respectively.</p>
<fig id="pone.0131683.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g003</object-id>
<label>Fig 3</label>
<caption>
<title>The patterns of variation in the meteorological variables during the measurement period.</title>
</caption>
<graphic xlink:href="pone.0131683.g003"></graphic>
</fig>
<p>SWC was higher after precipitation events, and particularly after large events. It generally ranged from 1.00 to 10.74% at soil depth of 0–100 cm. SWC was higher at a depth of 0–50 cm than at 60–100 cm and fluctuated markedly. It differed among months, with greater soil moisture in May, June, July, and August than in September and October (
<xref rid="pone.0131683.g004" ref-type="fig">Fig 4</xref>
). The SoilG is important in micrometeorology because it effectively couples energy transfer processes at the surface with energy transfer processes in the soil. The value and direction of the heat flux varied among the seasons due to the uneven rainfall distribution and intensive evaporation during the research period. During summer (June, July and early August), positive values of the SoilG (from atmosphere to soil) were observed as a result of the relatively unstable values of evapotranspiration and strong
<italic>R</italic>
<sub>n</sub>
(see Figs
<xref rid="pone.0131683.g002" ref-type="fig">2</xref>
and
<xref rid="pone.0131683.g003" ref-type="fig">3</xref>
), in addition moist soil absorbs more heat than does loose, dry soil in the wet season. However, negative SoilG values were obtained in the spring and fall indicating that the heat transfer process was from the soil surface to the atmosphere (
<xref rid="pone.0131683.g005" ref-type="fig">Fig 5a</xref>
). Soil temperatures responded well to changes in the SoilG. The values differed among the seasons, and were higher in June, July and August than in September and October (
<xref rid="pone.0131683.g005" ref-type="fig">Fig 5b and 5c</xref>
).</p>
<fig id="pone.0131683.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g004</object-id>
<label>Fig 4</label>
<caption>
<title>The seasonal variation of soil moisture contents measured in 0–100 cm soil layer during the measurement period.</title>
</caption>
<graphic xlink:href="pone.0131683.g004"></graphic>
</fig>
<fig id="pone.0131683.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Seasonal variation of soil heat flux and soil temperatures during the measurement period.</title>
</caption>
<graphic xlink:href="pone.0131683.g005"></graphic>
</fig>
</sec>
<sec id="sec010">
<title>Diurnal and seasonal sap flow patterns</title>
<sec id="sec011">
<title>Diurnal variations of sap flow rate</title>
<p>The
<italic>J</italic>
<sub>s</sub>
in the stems of
<italic>H</italic>
.
<italic>scoparium</italic>
varied greatly during the measurement period because of natural heterogeneity and in response to environmental parameters. The experimental measurements also generated uncertainties due to the small sample sizes. In our study, the
<italic>J</italic>
<sub>s</sub>
values among the four plants were significantly correlated with each other during the entire growing season (the relations of the plant with a stem diameter of 25 mm with the other plants (16, 13, and 9 mm) (
<italic>R</italic>
<sup>2</sup>
= 0.675, 0.673, and 0.703)). As shown in
<xref rid="pone.0131683.s004" ref-type="supplementary-material">S3 Fig</xref>
, the average values of
<italic>J</italic>
<sub>s</sub>
had a high dependence on stem diameter (standard deviations were in a reasonable range).</p>
<p>Thus to illustrate the changing diurnal trend, two consecutive clear days in each month were selected (DOY 132 and 133, 153 and 154, 186 and 187, 213 and 214, 267 and 268, and 280 and 290).</p>
<p>Sap flow began at least 1 h before dawn and increased sharply during the first several hours of sunlight, increasing to midday (08:00–10:00 hours) as the
<italic>R</italic>
<sub>n</sub>
increased in intensity and the
<italic>T</italic>
<sub>a</sub>
increased. It reached a maximum between 10:00–12:00 hours (July, August, September and October), and then decreased after 16:00–17:00 hours (June)) before nightfall (
<xref rid="pone.0131683.g006" ref-type="fig">Fig 6c, 6d, 6e and 6f</xref>
).</p>
<fig id="pone.0131683.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g006</object-id>
<label>Fig 6</label>
<caption>
<title>Dynamic variation in hourly sap flow rate, (a) May, (b) June, (c) July, (d) August, (e) September and (f) October in the whole growing season</title>
</caption>
<graphic xlink:href="pone.0131683.g006"></graphic>
</fig>
<p>As shown in
<xref rid="pone.0131683.g006" ref-type="fig">Fig 6a and 6b</xref>
, in May, there was substantial
<italic>J</italic>
<sub>s</sub>
at night and before dawn, indicating that the transpiration rate was low during the early stages of plant growth due to the small number leaves and physiological inactivity. As the plants grew, the
<italic>J</italic>
<sub>s</sub>
increased gradually after 08:00 hours, to a peak at 12:00 hours, and lasted for 13 h, with a value of 0.6 L.h
<sup>-1</sup>
in June. Two factors contributed to this phenomenon. First, the vegetative shoots of
<italic>H</italic>
.
<italic>scoparium</italic>
continually produced leaves and lateral branches from late April. The photosynthetic rate of the leaves increased with the increase in leaf area, and the water uptake process developed from passive water absorption into transpiration pull. Second, a large amount of rainfall (about 135 mm) occurred in June. Soil water was saturated and provided the basic conditions for plants to grow, with a high transpiration rate meeting the growth needs during the day. The duration of water recharging at night was shortened, and during the night
<italic>J</italic>
<sub>s</sub>
almost stopped.</p>
<p>Unlike other desert shrubs [
<xref rid="pone.0131683.ref010" ref-type="bibr">10</xref>
,
<xref rid="pone.0131683.ref012" ref-type="bibr">12</xref>
],
<italic>H</italic>
.
<italic>scoparium</italic>
had no significant ‘noon depression’. It is possible that the stomata of
<italic>H</italic>
.
<italic>scoparium</italic>
are not completely closed and transpiration therefore continues. Transpiration is influenced indirectly by leaf water potential through its effect on the stomatal aperture of plants. Reductions in transpiration have been attributed to decreases in leaf conductance in response to decreasing RH, thereby protecting leaf tissues from turgor loss and desiccation. In the semiarid areas, the increasing intensity of
<italic>R</italic>
<sub>n</sub>
and increasing
<italic>T</italic>
<sub>a</sub>
during the morning may induce stomatal opening, thereby accelerating
<italic>J</italic>
<sub>s</sub>
due to the high evaporative demand from the canopy. Therefore the primary response to the drought conditions is not to close the stomata.</p>
<p>However, the
<italic>J</italic>
<sub>s</sub>
pattern differed among months, and continued more substantially in spring and early summer than in autumn (compare
<xref rid="pone.0131683.g006" ref-type="fig">Fig 6a and 6b</xref>
to
<xref rid="pone.0131683.g006" ref-type="fig">Fig 6e and 6f</xref>
). The diurnal variation in sap flow rates was best described using an evident wide and multimodal curve in June, July and August, a bimodal curve in September.</p>
</sec>
<sec id="sec012">
<title>Variations in the sap flow rate during the night</title>
<p>In this paper, the nighttime range was determined between 18:00 to 06:00 hours when
<italic>R</italic>
<sub>n</sub>
was less than 5 W.m
<sup>-2</sup>
. It could also be a result of actual nighttime transpiration of the canopy or of recharging the depleted internal water storage of trees. In our studies, there existed substantial nighttime leaf transpiration in the studied shrub (
<xref rid="pone.0131683.g007" ref-type="fig">Fig 7</xref>
) that decreased sharply after 18:00 hours, slightly increased around midnight (0:00 hours and 02:00 hours), and then remained steady after 02:00 hours. We made a comparison between temporal dynamics of nighttime
<italic>J</italic>
<sub>s</sub>
and possible nighttime transpiration rates of canopy leaves in July 2011 to provide a basis for estimating the amount of stored water. During the most nighttime, the nighttime
<italic>J</italic>
<sub>s</sub>
did not follow the changing trend of leaf transpiration. The total accumulated water loss by canopy leaves (
<italic>E</italic>
<sub>L</sub>
) was only 1.67% of the total nighttime sap flow (
<italic>SF</italic>
<sub>n</sub>
). The result showed that the leaf transpiration of canopy comprises inappreciable fraction of the nighttime
<italic>J</italic>
<sub>s</sub>
. The nighttime
<italic>J</italic>
<sub>s</sub>
is confirmed to be primarily used to recharge depleted internal water storages of trees.</p>
<fig id="pone.0131683.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g007</object-id>
<label>Fig 7</label>
<caption>
<title>Dynamics of nighttime sap flow rate and leaf transpiration rate of
<italic>H</italic>
.
<italic>scoparium</italic>
(25 mm) during the nights of 5
<sup>th</sup>
–6
<sup>th</sup>
July, 2011</title>
</caption>
<graphic xlink:href="pone.0131683.g007"></graphic>
</fig>
<p>As shown in the graph above (
<xref rid="pone.0131683.g006" ref-type="fig">Fig 6</xref>
), nighttime
<italic>J</italic>
<sub>s</sub>
fluctuated more significantly and was relatively higher before midnight, when it approached a steady state. The
<italic>J</italic>
<sub>s</sub>
after midnight was slightly higher in May, July, August, and September compared to that in June and October, which is consistent with the higher stem water recharge demand in summer. The nighttime
<italic>J</italic>
<sub>s</sub>
followed a seasonal trend similar to that in the daytime.</p>
<p>Our calculation showed that the contribution of daytime stem water recharge to the total transpiration of
<italic>H</italic>
.
<italic>scoparium</italic>
ranged from 51.53 to 80.41%, depending on the stem diameter and was considerably higher in the larger plants than the smaller plants. The contribution of nighttime stem water recharge to total transpiration was higher in plants with a smaller stem diameter. Over the whole growing season, the amount of nighttime
<italic>J</italic>
<sub>s</sub>
was considerable, reaching 19.59% (25 mm), 28.25% (16 mm), 21.76% (13 mm), and 48.47% (9 mm) of total daily
<italic>J</italic>
<sub>s</sub>
.</p>
</sec>
<sec id="sec013">
<title>Seasonal variations of sap flow rate</title>
<p>The
<italic>J</italic>
<sub>s</sub>
displayed different seasonal patterns. The
<italic>J</italic>
<sub>s</sub>
increased gradually from May and decreased gradually after August to a low and relatively steady value in October. The cumulative
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
from June to August increased progressively due to the high level of water consumption during the long flowing period, high evaporation and abundant rainfall. Plants were later shed their leaves during the course of the experiment (
<xref rid="pone.0131683.g008" ref-type="fig">Fig 8</xref>
and
<xref rid="pone.0131683.s005" ref-type="supplementary-material">S4 Fig</xref>
).</p>
<fig id="pone.0131683.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g008</object-id>
<label>Fig 8</label>
<caption>
<title>The seasonal variation of sap flow rate of
<italic>H</italic>
.
<italic>scoparium</italic>
(1
<sup>st</sup>
May–15
<sup>th</sup>
October 2011)</title>
</caption>
<graphic xlink:href="pone.0131683.g008"></graphic>
</fig>
<p>The cumulative
<italic>J</italic>
<sub>s</sub>
of the four plants (25, 16, 13, and 9 mm stem diameters) from May to August contributed the majority of the sap flow rate, which accounted for approximately 77–80% of the total
<italic>J</italic>
<sub>s</sub>
. The minimum monthly cumulative
<italic>J</italic>
<sub>s</sub>
occurred in October, whereas the maximum was in June (25 mm) or July (16, 13, and 9 mm). The total water transpiration values of the four plants in the growing season (25, 16, 13, and 9 mm) were 1045.4, 397.7, 311.1, and 159.7 L, with maximum and minimum sap flow rates of 12.80 (8
<sup>th</sup>
August) and 0.83 (18
<sup>th</sup>
August), 11.76 (29
<sup>th</sup>
July) and 0.95 (11
<sup>th</sup>
May), 7.40 (29
<sup>th</sup>
July) and 0.77 (22
<sup>th</sup>
May), 3.54 (30
<sup>th</sup>
July) and 0.62 L.d
<sup>-1</sup>
(11
<sup>th</sup>
May), respectively. The average water transpiration values per leaf area of the four plants during the growing season (25, 16, 13, and 9 mm) were 0.94, 0.92, 1.06, and 1.03 L.m
<sup>-2</sup>
.d
<sup>-1</sup>
, respectively.</p>
<p>Overall, the difference in
<italic>J</italic>
<sub>s</sub>
resulted mainly from the plant growth status. Among the four plants,
<italic>J</italic>
<sub>s</sub>
in the plants with a 25 mm stem diameter had the highest flow rates, with substantial fluctuations due to its physiological traits.</p>
</sec>
</sec>
<sec id="sec014">
<title>The dependence of sap flow on meteorological variables</title>
<sec id="sec015">
<title>Correlation between sap flow, reference evapotranspiration and soil moisture content</title>
<p>The diurnal variation of
<italic>ET</italic>
<sub>0</sub>
, was calculated by the Penman-Monteith model. At the daily time scale, there was a close relationship between the sap flow rate per leaf area and daily
<italic>ET</italic>
<sub>0</sub>
(
<xref rid="pone.0131683.g009" ref-type="fig">Fig 9</xref>
).</p>
<fig id="pone.0131683.g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g009</object-id>
<label>Fig 9</label>
<caption>
<title>The relationship between daily sap flow rate per leaf area of
<italic>H</italic>
.
<italic>scoparium</italic>
and daily reference evapotranspiration rate.</title>
</caption>
<graphic xlink:href="pone.0131683.g009"></graphic>
</fig>
<p>The daily sap flow (abbreviated
<italic>SF</italic>
<sub>d</sub>
in Figs and Table) in
<italic>H</italic>
.
<italic>scoparium</italic>
was greatly affected by P, which can lead to SWC fluctuations causing daily changes in
<italic>J</italic>
<sub>s</sub>
. However, because rain events were rare and the SWC rapidly declined after each rain event due to the high level of evaporation, the SWC was relatively low during the entire growing season, and had no direct relation with the daily
<italic>J</italic>
<sub>s</sub>
(
<xref rid="pone.0131683.g010" ref-type="fig">Fig 10</xref>
) Soil moisture levels increased during the rainy season (71% of annual precipitation occurs from June to August); however,
<italic>ET</italic>
<sub>0</sub>
was relatively high during these periods (especially in June). In contrast, in the early and late growing period,
<italic>ET</italic>
<sub>0</sub>
was relatively low, which led to a lower daily sap flow rate, indicating that the daily
<italic>J</italic>
<sub>s</sub>
was more closely coupled to changes in the
<italic>ET</italic>
<sub>0</sub>
(see
<xref rid="pone.0131683.g009" ref-type="fig">Fig 9</xref>
).</p>
<fig id="pone.0131683.g010" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g010</object-id>
<label>Fig 10</label>
<caption>
<title>The relationship between daily sap flow rate of
<italic>H</italic>
.
<italic>scoparium</italic>
and soil moisture content.</title>
</caption>
<graphic xlink:href="pone.0131683.g010"></graphic>
</fig>
</sec>
<sec id="sec016">
<title>Variations of sap flow rate under different weather</title>
<p>Environmental variables influence
<italic>J</italic>
<sub>s</sub>
through their effects on the plants’ physiological characteristics. In the whole growing season, the hourly
<italic>J</italic>
<sub>s</sub>
in the stem diameter of 25 mm plant was compared under typical weather days, e. g. sunny, flouting dust, cloudy, sandstorm and light rain days (DOY were 180, 227, 192, 69, 164 and 209, respectively).
<xref rid="pone.0131683.g011" ref-type="fig">Fig 11</xref>
indicated that meteorological factors were the primary factors affecting the plants’ transpiration. The
<italic>J</italic>
<sub>s</sub>
reached the maximum in the sunny day of DOY 180, but the minimum in the rainy day of DOY 209. The
<italic>J</italic>
<sub>s</sub>
in the cloudy day were similar to those in the dust days. In sandstorm and dust days, high
<italic>W</italic>
<sub>s</sub>
can typically reduce water loss and cause the stomatal closure [
<xref rid="pone.0131683.ref011" ref-type="bibr">11</xref>
]. Rainy weather suppressed
<italic>J</italic>
<sub>s</sub>
due to the increased RH, reduced VPD and
<italic>R</italic>
<sub>n</sub>
. In contrast, high
<italic>J</italic>
<sub>s</sub>
was caused by high
<italic>R</italic>
<sub>n</sub>
,
<italic>T</italic>
<sub>a</sub>
, and VPD in sunny weather. The order of mean
<italic>J</italic>
<sub>s</sub>
under different weather conditions are: sunny > cloudy > sandstorm > flouting dust > light rain days.</p>
<fig id="pone.0131683.g011" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g011</object-id>
<label>Fig 11</label>
<caption>
<title>Fluctuation of hourly sap flow rate of
<italic>H</italic>
.
<italic>scoparium</italic>
(25 mm) under different weather conditions.</title>
</caption>
<graphic xlink:href="pone.0131683.g011"></graphic>
</fig>
</sec>
<sec id="sec017">
<title>The response of sap flow to environmental factors</title>
<p>The daily
<italic>J</italic>
<sub>s</sub>
in
<italic>H</italic>
.
<italic>Scoparium</italic>
(25, 16, 13, and 9 mm stem diameters) varied in response to environmental conditions (
<xref rid="pone.0131683.g012" ref-type="fig">Fig 12</xref>
). In
<xref rid="pone.0131683.g012" ref-type="fig">Fig 12</xref>
, the second, third, and fourth axes can explain most of the variation. The three RDA graphs indicated a strong correlation between the
<italic>J</italic>
<sub>s</sub>
values of
<italic>H</italic>
.
<italic>Scoparium</italic>
and natural environmental conditions, suggesting that most of the environmental variables are significant for plant transpiration (
<xref rid="pone.0131683.t001" ref-type="table">Table 1</xref>
). The correlation between the
<italic>J</italic>
<sub>s</sub>
and meteorological variables was high for the second and third canonical axes (
<italic>R</italic>
<sup>2</sup>
= 0.812 and 0.876 respectively) and the total cumulative variance (TCA) accounting for two axes totaled 43.7 and 57.5%, which suggests that
<italic>J</italic>
<sub>s</sub>
values in
<italic>H</italic>
.
<italic>Scoparium</italic>
(25, 16, 13, and 9 mm) were strongly correlated with these axes.</p>
<fig id="pone.0131683.g012" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g012</object-id>
<label>Fig 12</label>
<caption>
<title>Redundancy analysis for the relationship between daily sap flow rate and the environment variables.</title>
</caption>
<graphic xlink:href="pone.0131683.g012"></graphic>
</fig>
<table-wrap id="pone.0131683.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.t001</object-id>
<label>Table 1</label>
<caption>
<title>Kendall’s tau correlation matrix between sap flow and the meteorological variables
<xref rid="t001fn001" ref-type="table-fn">
<sup>a</sup>
</xref>
.</title>
</caption>
<alternatives>
<graphic id="pone.0131683.t001g" xlink:href="pone.0131683.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th colspan="2" align="center" rowspan="1">Diameter/Factors</th>
<th align="left" rowspan="1" colspan="1">
<italic>R</italic>
<sub>n</sub>
</th>
<th align="left" rowspan="1" colspan="1">PAR</th>
<th align="left" rowspan="1" colspan="1">
<italic>T</italic>
<sub>a</sub>
</th>
<th align="left" rowspan="1" colspan="1">VPD</th>
<th align="left" rowspan="1" colspan="1">
<italic>W</italic>
<sub>s</sub>
</th>
<th align="left" rowspan="1" colspan="1">RH</th>
<th align="left" rowspan="1" colspan="1">ST_10 cm</th>
<th align="left" rowspan="1" colspan="1">ST_30 cm</th>
<th align="left" rowspan="1" colspan="1">SoilG</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3" align="left" colspan="1">
<bold>25 mm</bold>
</td>
<td align="left" rowspan="1" colspan="1">Whole time</td>
<td align="char" char="." rowspan="1" colspan="1">0.135</td>
<td align="char" char="." rowspan="1" colspan="1">0.280**</td>
<td align="char" char="." rowspan="1" colspan="1">0.0690</td>
<td align="char" char="." rowspan="1" colspan="1">0.131</td>
<td align="char" char="." rowspan="1" colspan="1">0.222**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.301**</td>
<td align="char" char="." rowspan="1" colspan="1">0.0720</td>
<td align="char" char="." rowspan="1" colspan="1">0.0860</td>
<td align="char" char="." rowspan="1" colspan="1">0.0910</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Daytime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.439**</td>
<td align="char" char="." rowspan="1" colspan="1">0.463**</td>
<td align="char" char="." rowspan="1" colspan="1">0.234**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.147</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nighttime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.0930</td>
<td align="char" char="." rowspan="1" colspan="1">-0.004</td>
<td align="char" char="." rowspan="1" colspan="1">-0.151</td>
<td align="char" char="." rowspan="1" colspan="1">-0.0380</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td rowspan="3" align="left" colspan="1">
<bold>16 mm</bold>
</td>
<td align="left" rowspan="1" colspan="1">Whole time</td>
<td align="char" char="." rowspan="1" colspan="1">0.326**</td>
<td align="char" char="." rowspan="1" colspan="1">0.349**</td>
<td align="char" char="." rowspan="1" colspan="1">0.216**</td>
<td align="char" char="." rowspan="1" colspan="1">0.265**</td>
<td align="char" char="." rowspan="1" colspan="1">0.249**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.228**</td>
<td align="char" char="." rowspan="1" colspan="1">0.254**</td>
<td align="char" char="." rowspan="1" colspan="1">0.249**</td>
<td align="char" char="." rowspan="1" colspan="1">0.247**</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Daytime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.316**</td>
<td align="char" char="." rowspan="1" colspan="1">0.580**</td>
<td align="char" char="." rowspan="1" colspan="1">0.579**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.102</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nighttime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="char" char="." rowspan="1" colspan="1">0.0610</td>
<td align="char" char="." rowspan="1" colspan="1">0.0390</td>
<td align="char" char="." rowspan="1" colspan="1">-0.0210</td>
<td align="char" char="." rowspan="1" colspan="1">-0.0200</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="3" align="left" colspan="1">
<bold>13 mm</bold>
</td>
<td align="left" rowspan="1" colspan="1">Whole time</td>
<td align="char" char="." rowspan="1" colspan="1">0.280**</td>
<td align="char" char="." rowspan="1" colspan="1">0.332**</td>
<td align="char" char="." rowspan="1" colspan="1">0.156*</td>
<td align="char" char="." rowspan="1" colspan="1">0.248**</td>
<td align="char" char="." rowspan="1" colspan="1">0.188*</td>
<td align="char" char="." rowspan="1" colspan="1">-0.335**</td>
<td align="char" char="." rowspan="1" colspan="1">0.182*</td>
<td align="char" char="." rowspan="1" colspan="1">0.172*</td>
<td align="char" char="." rowspan="1" colspan="1">0.176*</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Daytime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.505**</td>
<td align="char" char="." rowspan="1" colspan="1">0.650**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.480**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.116</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nighttime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.111</td>
<td align="char" char="." rowspan="1" colspan="1">0.00800</td>
<td align="char" char="." rowspan="1" colspan="1">-0.086</td>
<td align="char" char="." rowspan="1" colspan="1">-0.0330</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td rowspan="3" align="left" colspan="1">
<bold>9 mm</bold>
</td>
<td align="left" rowspan="1" colspan="1">Whole time</td>
<td align="char" char="." rowspan="1" colspan="1">0.344**</td>
<td align="char" char="." rowspan="1" colspan="1">0.188*</td>
<td align="char" char="." rowspan="1" colspan="1">0.650**</td>
<td align="char" char="." rowspan="1" colspan="1">0.587**</td>
<td align="char" char="." rowspan="1" colspan="1">0.311**</td>
<td align="char" char="." rowspan="1" colspan="1">-0.005</td>
<td align="char" char="." rowspan="1" colspan="1">0.622**</td>
<td align="char" char="." rowspan="1" colspan="1">0.648**</td>
<td align="char" char="." rowspan="1" colspan="1">0.651**</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Daytime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.203</td>
<td align="char" char="." rowspan="1" colspan="1">0.230</td>
<td align="char" char="." rowspan="1" colspan="1">-0.101</td>
<td align="char" char="." rowspan="1" colspan="1">-0.173</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nighttime</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.231*</td>
<td align="char" char="." rowspan="1" colspan="1">0.256*</td>
<td align="char" char="." rowspan="1" colspan="1">0.231*</td>
<td align="char" char="." rowspan="1" colspan="1">-0.123</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>
<sup>a</sup>
*and**mean they are significant at
<italic>p</italic>
<0.05 and
<italic>p</italic>
<0.01, respectively</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>The RDA and Kendall’s tau values indicated that
<italic>R</italic>
<sub>n</sub>
and PAR had the strongest influence on daily
<italic>J</italic>
<sub>s</sub>
(25, 16, 13, and 9 mm),
<italic>R</italic>
<sup>2</sup>
= 0.135, 0.326, 0.280, 0.344 and 0.280, 0.349, 0.332, 0.188, respectively. RH had the least effect on
<italic>J</italic>
<sub>s</sub>
. The SoilG and ST were significantly positively correlated with
<italic>J</italic>
<sub>s</sub>
(
<italic>p</italic>
< 0.01), and
<italic>J</italic>
<sub>s</sub>
was more strongly affected by ST than by SoilG. In addition, VPD,
<italic>T</italic>
<sub>a</sub>
and
<italic>W</italic>
<sub>s</sub>
were significantly positively correlated with
<italic>J</italic>
<sub>s</sub>
(
<italic>p</italic>
< 0.01) (
<xref rid="pone.0131683.t001" ref-type="table">Table 1</xref>
).</p>
<p>We expressed the variation in daily
<italic>J</italic>
<sub>s</sub>
in plants with a stem diameter of 25 mm by means of a stepwise linear regression against the meteorological factors. The resulting model performed well, explaining 70.0–89.0% of the variation in sap flow rates (
<xref rid="pone.0131683.t002" ref-type="table">Table 2</xref>
). Taking into account the self-correlation of environmental factors, the optimal regression model indicated that the daily
<italic>J</italic>
<sub>s</sub>
was significantly correlated with
<italic>T</italic>
<sub>a</sub>
, VPD, and soil conditions, with a strong, but insignificant, correlation with RH over the whole growing season, which was in agreement with the RDA analysis.</p>
<table-wrap id="pone.0131683.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.t002</object-id>
<label>Table 2</label>
<caption>
<title>The stepwise linear correlation equations between daily sap flow and environment factors in different growth stages.</title>
</caption>
<alternatives>
<graphic id="pone.0131683.t002g" xlink:href="pone.0131683.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Month</th>
<th align="left" rowspan="1" colspan="1">Regression equations</th>
<th align="left" rowspan="1" colspan="1">Intercept</th>
<th align="left" rowspan="1" colspan="1">
<italic>T</italic>
<sub>a</sub>
</th>
<th align="left" rowspan="1" colspan="1">VPD</th>
<th align="left" rowspan="1" colspan="1">
<italic>W</italic>
<sub>s</sub>
</th>
<th align="left" rowspan="1" colspan="1">RH</th>
<th align="left" rowspan="1" colspan="1">ST_30</th>
<th align="left" rowspan="1" colspan="1">SoilG</th>
<th align="left" rowspan="1" colspan="1">
<italic>R</italic>
<sup>2</sup>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>F</italic>
</th>
<th align="left" rowspan="1" colspan="1">
<italic>n</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>May</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(RH)</td>
<td align="char" char="." rowspan="1" colspan="1">3.60</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">-0.024</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.73</td>
<td align="char" char="." rowspan="1" colspan="1">21.83**</td>
<td align="left" rowspan="1" colspan="1">20</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>June</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(RH)</td>
<td align="char" char="." rowspan="1" colspan="1">-0.39</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.87</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.76</td>
<td align="char" char="." rowspan="1" colspan="1">7.18**</td>
<td align="left" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>July</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(RH)</td>
<td align="char" char="." rowspan="1" colspan="1">12.38</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">-0.097</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.82</td>
<td align="char" char="." rowspan="1" colspan="1">12.34**</td>
<td align="left" rowspan="1" colspan="1">31</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>August</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(RH,
<italic>W</italic>
<sub>s</sub>
)</td>
<td align="char" char="." rowspan="1" colspan="1">46.65</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">10.60</td>
<td align="char" char="." rowspan="1" colspan="1">-0.16</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.86</td>
<td align="char" char="." rowspan="1" colspan="1">45.24**</td>
<td align="left" rowspan="1" colspan="1">31</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>September</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(VPD)</td>
<td align="char" char="." rowspan="1" colspan="1">-1.19</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">2.58</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.76</td>
<td align="char" char="." rowspan="1" colspan="1">22.34**</td>
<td align="left" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>October</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(ST_30, SoilG)</td>
<td align="char" char="." rowspan="1" colspan="1">28.97</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">-1.88</td>
<td align="char" char="." rowspan="1" colspan="1">0.16</td>
<td align="char" char="." rowspan="1" colspan="1">0.70</td>
<td align="char" char="." rowspan="1" colspan="1">18.42**</td>
<td align="left" rowspan="1" colspan="1">20</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Whole season</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>SF</italic>
<sub>d</sub>
=
<italic>f</italic>
(
<italic>T</italic>
<sub>a</sub>
, VPD, ST_30, SoilG)</td>
<td align="char" char="." rowspan="1" colspan="1">-1.38</td>
<td align="char" char="." rowspan="1" colspan="1">-0.099</td>
<td align="char" char="." rowspan="1" colspan="1">0.76</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="left" rowspan="1" colspan="1">-</td>
<td align="char" char="." rowspan="1" colspan="1">0.19</td>
<td align="char" char="." rowspan="1" colspan="1">0.024</td>
<td align="char" char="." rowspan="1" colspan="1">0.89</td>
<td align="char" char="." rowspan="1" colspan="1">133.89**</td>
<td align="left" rowspan="1" colspan="1">162</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="sec018">
<title>Daytime and nighttime sap flow driving force</title>
<p>A comparison of the day and nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
(25, 16, 13, and 9 mm stem diameters) in response to climate conditions is shown separately in
<xref rid="pone.0131683.g013" ref-type="fig">Fig 13</xref>
. Because radiation is absent during the nighttime, the interaction of environmental driving factors is different from that during the daytime. To eliminate the side effects of soil conditions (ST and SoilG),
<italic>J</italic>
<sub>s</sub>
data for rainy days were not applied and
<italic>R</italic>
<sub>n</sub>
and PAR factors were also excluded. Correlation analyses of both the daytime and nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
and
<italic>T</italic>
<sub>a</sub>
, VPD,
<italic>W</italic>
<sub>s</sub>
, and RH in the growing season of 2011 were conducted.</p>
<fig id="pone.0131683.g013" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g013</object-id>
<label>Fig 13</label>
<caption>
<title>Redundancy analysis for the relationship between (a) daytime and (b) nighttime sap flow rate and the meteorological variables.</title>
</caption>
<graphic xlink:href="pone.0131683.g013"></graphic>
</fig>
<p>The results showed that nighttime
<italic>J</italic>
<sub>s</sub>
had different meteorological driving patterns from daytime
<italic>J</italic>
<sub>s</sub>
, and sap flow rates responded to meteorological factors differently depending on the stem diameter. According to the RDA analysis, the
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
(25, 16, 13 and 9 mm) and environmental variables were more clustered in daytime than in nighttime (e.g., compare
<xref rid="pone.0131683.g013" ref-type="fig">Fig 13a and 13b</xref>
). While during the nighttime, there was a higher correlation between the
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
and meteorological variables in the plants with a 9 mm than those of the 13, 16, and 25 mm diameter plants, suggesting that the nighttime transpiration in small plants was more sensitive to meteorological variables.</p>
<p>The RDA and Kendall’s tau values indicated that both daytime and nighttime
<italic>J</italic>
<sub>s</sub>
were significantly correlated with
<italic>T</italic>
<sub>a</sub>
and VPD, but were negatively correlated with
<italic>W</italic>
<sub>s</sub>
and RH (
<xref rid="pone.0131683.t001" ref-type="table">Table 1</xref>
). The correlation between the
<italic>J</italic>
<sub>s</sub>
and meteorological variables was high for the fourth canonical axes and the TCA that accounted for this axe in daytime and nighttime totaled 95.8 and 93.4%, respectively (data not shown).</p>
<p>Regression analysis showed that there was a significant correlation between
<italic>J</italic>
<sub>s</sub>
and
<italic>T</italic>
<sub>a</sub>
and VPD, but neither
<italic>T</italic>
<sub>a</sub>
nor VPD did not adequately explained the variation in the nighttime
<italic>J</italic>
<sub>s</sub>
. The sensitivity of nighttime
<italic>J</italic>
<sub>s</sub>
to
<italic>T</italic>
<sub>a</sub>
and VPD differed significantly from the sensitivity of daytime
<italic>J</italic>
<sub>s</sub>
to
<italic>T</italic>
<sub>a</sub>
and VPD. The regressions describing the relationship of the two variables were significant in the daytime, but not the nighttime. However, the sensitivity of nighttime sap flow rates to
<italic>T</italic>
<sub>a</sub>
in the 25, 16, and 13 mm stem diameter plants were much lower than in the 9 mm stem diameter plants, while for VPD the highest
<italic>R</italic>
<sup>2</sup>
in the daytime was for intermediate sized plants and in the nighttime for the 25 mm stem diameter plant (
<xref rid="pone.0131683.g014" ref-type="fig">Fig 14</xref>
).</p>
<fig id="pone.0131683.g014" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g014</object-id>
<label>Fig 14</label>
<caption>
<title>Sensitivity of daily sap flow rate to air temperature at (a) day and (c) night.</title>
<p>Sensitivity of daily sap flow rate to vapour pressure deficit at (b) day and (d) night during the day in 2011.</p>
</caption>
<graphic xlink:href="pone.0131683.g014"></graphic>
</fig>
<p>In previous studies, a significant linear correlation between the nighttime
<italic>J</italic>
<sub>s</sub>
and both
<italic>T</italic>
<sub>a</sub>
and VPD was identified [
<xref rid="pone.0131683.ref014" ref-type="bibr">14</xref>
<xref rid="pone.0131683.ref017" ref-type="bibr">17</xref>
]. During our research, the interactions between the nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
and climatic factors in this region were more complex. This may imply that the nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
was influenced by the combined effect of both
<italic>T</italic>
<sub>a</sub>
and VPD. Thus, we analyzed the relationship between the hourly
<italic>J</italic>
<sub>s</sub>
(L.h
<sup>-1</sup>
) of
<italic>H</italic>
.
<italic>scoparium</italic>
(9 mm) and both
<italic>T</italic>
<sub>a</sub>
and VPD. The results revealed that high
<italic>T</italic>
<sub>a</sub>
and VPD values could lead to high plant transpiration. The
<italic>J</italic>
<sub>s</sub>
varied greatly when
<italic>T</italic>
<sub>a</sub>
and VPD increased. From
<xref rid="pone.0131683.g015" ref-type="fig">Fig 15</xref>
, the minimum threshold of VPD driving force can be seen to be around 1.5 KPa and the optimal
<italic>T</italic>
<sub>a</sub>
was about 20°C. The nighttime driving force was maximized when
<italic>T</italic>
<sub>a</sub>
was high and an elevated VPD was observed on many nights (usually from nightfall to midnight during summer) during the study.</p>
<fig id="pone.0131683.g015" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131683.g015</object-id>
<label>Fig 15</label>
<caption>
<title>Hourly sap flow rate response to instantaneous values of vapour pressure deficit and air temperature for
<italic>H</italic>
.
<italic>scoparium</italic>
(9 mm) Z axis units are hourly integrated estimations.</title>
</caption>
<graphic xlink:href="pone.0131683.g015"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec sec-type="conclusions" id="sec019">
<title>Discussion</title>
<p>Measurements of
<italic>J</italic>
<sub>s</sub>
have been widely used to study plant responses to environmental factors. In our experiment, the diurnal stem
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
varied regularly and displayed consistent patterns of day and night cycles in plants with different stem diameters. In semi-arid regions, because of the large daily transpiration, tree roots passively absorb water, resulting in a large
<italic>J</italic>
<sub>s</sub>
with a bimodal or multimodal curve. This behavior is universal among similar desert plant species, such as
<italic>Haloxylon ammodendron</italic>
[
<xref rid="pone.0131683.ref018" ref-type="bibr">18</xref>
],
<italic>Salix gordejevii</italic>
[
<xref rid="pone.0131683.ref019" ref-type="bibr">19</xref>
],
<italic>Caragana microphylla</italic>
[
<xref rid="pone.0131683.ref015" ref-type="bibr">15</xref>
],
<italic>Nitraria sphaerocarpa</italic>
and
<italic>Elaeagnus angustifolia</italic>
[
<xref rid="pone.0131683.ref010" ref-type="bibr">10</xref>
]. During nighttime,
<italic>J</italic>
<sub>s</sub>
still occurs and becomes constant to alleviate water stress and achieve a water balance in the plant body. In this study, the nocturnal
<italic>J</italic>
<sub>s</sub>
was very stable than the daytime
<italic>J</italic>
<sub>s</sub>
and reveals that there were minor turbulence changes in nighttime environmental variables with the
<italic>J</italic>
<sub>s</sub>
responding to atmospheric drivers [
<xref rid="pone.0131683.ref020" ref-type="bibr">20</xref>
<xref rid="pone.0131683.ref023" ref-type="bibr">23</xref>
].</p>
<p>It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the absence of light [
<xref rid="pone.0131683.ref017" ref-type="bibr">17</xref>
]. However, there is considerable evidence that the stomata of some species do not close completely during the night which allows for transpiration in the presence of sufficient environmental driving forces [
<xref rid="pone.0131683.ref024" ref-type="bibr">24</xref>
]. Our study revealed that the nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
was substantial and varied according to the time of year and at different times of the night. Nighttime
<italic>J</italic>
<sub>s</sub>
was correlated with the daytime
<italic>J</italic>
<sub>s</sub>
of the previous day. This is consistent with the results of Snyder’s study which revealed that higher nighttime stomatal conductance and transpiration associated with higher daytime values across species and habitats, implying that quite an amount of nighttime
<italic>J</italic>
<sub>s</sub>
was used to refill the stem water deficit as a result of high water loss during previous daytime [
<xref rid="pone.0131683.ref025" ref-type="bibr">25</xref>
].</p>
<p>Leaf gas exchange and stem heat balance measurements were conducted in order to investigate the partition of nighttime
<italic>J</italic>
<sub>s</sub>
. It was found that the
<italic>E</italic>
<sub>L</sub>
was only 1.67% of the
<italic>SF</italic>
<sub>n</sub>
(see
<xref rid="pone.0131683.g007" ref-type="fig">Fig 7</xref>
). Therefore, it is likely that the nighttime
<italic>J</italic>
<sub>s</sub>
we observed was mainly used for refilling water in the trunk. Same to our results, nocturnal
<italic>J</italic>
<sub>s</sub>
was found to be primarily a function of refilling of stem storage rather than transpiration from the canopy with canopy transpiration accounting for 2.6–8.5% of nocturnal flows in
<italic>Acacia mangium</italic>
in the hilly lands of subtropical South China [
<xref rid="pone.0131683.ref026" ref-type="bibr">26</xref>
].</p>
<p>Plant size is often the major parameter determining the water storage capacity [
<xref rid="pone.0131683.ref026" ref-type="bibr">26</xref>
]. During our studies, the nighttime water recharge of
<italic>H</italic>
.
<italic>scoparium</italic>
was strongly dependent on stem diameter. Our estimates of the contribution of nighttime water recharge to the total transpiration ranged from 19.59 to 48.7% depending on the stem diameter of the plant. The contribution of nighttime stem water recharge in
<italic>H</italic>
.
<italic>scoparium</italic>
was higher in summer than other seasons.</p>
<p>During the entire experimental period, the total sap flow rates of
<italic>H</italic>
.
<italic>scoparium</italic>
were 1045.4 (25 mm), 397.7 (16 mm), 311.1 (13 mm) and 159.7 L (9 mm). Sap flow rates increased from May to August, and then decreased from September to October due to changes in the local natural environment. There was a significant exponential relationship between
<italic>J</italic>
<sub>s</sub>
and the
<italic>ET</italic>
<sub>0</sub>
on a daily time scale. On an hourly time scale, the relationship was influenced by P [
<xref rid="pone.0131683.ref027" ref-type="bibr">27</xref>
]. Usually, a small amount of P would increase the
<italic>J</italic>
<sub>s</sub>
and the
<italic>ET</italic>
<sub>0</sub>
, but when the P was large, the
<italic>J</italic>
<sub>s</sub>
and the
<italic>ET</italic>
<sub>0</sub>
decreased sharply. The reason for this was that a small amount of rainfall would increase the leaf water potential and leaf conductance to the water VPD, gas exchange and photosynthesis, but when the rainfall was large, the
<italic>R</italic>
<sub>n</sub>
,
<italic>T</italic>
<sub>a</sub>
, and VPD would decline over a long period (see Figs
<xref rid="pone.0131683.g002" ref-type="fig">2</xref>
and
<xref rid="pone.0131683.g003" ref-type="fig">3</xref>
), and hence the
<italic>J</italic>
<sub>s</sub>
and
<italic>ET</italic>
<sub>0</sub>
decreased [
<xref rid="pone.0131683.ref027" ref-type="bibr">27</xref>
]. In the experimental period, 25 individual rainfall events were observed, with over 70% occurring in summer. The rainfall occurred as strong and short-term events, and afterwards long-term drought stress occurred on the soil surface. Thus, in our research,
<italic>J</italic>
<sub>s</sub>
data during rainy days was not used in the correlation analysis because the duration and amount of P were crucial for determining the
<italic>J</italic>
<sub>s</sub>
values, which was dependent on the resulting variations in meteorological factors, SWC and soil water limitations can cause a decreased
<italic>J</italic>
<sub>s</sub>
and high evaporative demand may result in data errors and inaccuracy [
<xref rid="pone.0131683.ref011" ref-type="bibr">11</xref>
].</p>
<p>SWC in the 0–100 cm layer, with P mainly accumulated at this infiltration depth. In the previous studies, the relationship between the SWC and
<italic>J</italic>
<sub>s</sub>
was shown to be complex. Xia et al. (2008) reported that SWC had no direct relationship with the daily
<italic>J</italic>
<sub>s</sub>
[
<xref rid="pone.0131683.ref011" ref-type="bibr">11</xref>
], but contrary results have also been reported [
<xref rid="pone.0131683.ref027" ref-type="bibr">27</xref>
<xref rid="pone.0131683.ref029" ref-type="bibr">29</xref>
]. In our study, no obvious evidence of strong close correlations between
<italic>J</italic>
<sub>s</sub>
and the shallow SWC levels (0–100 cm) was found, but the close relationship between
<italic>J</italic>
<sub>s</sub>
and the
<italic>ET</italic>
<sub>0</sub>
, indicated that the transpiration rate of
<italic>H</italic>
.
<italic>scoparium</italic>
was more responsive to the changes of
<italic>ET</italic>
<sub>0</sub>
. In northwestern China, regional climate change is likely to increase the variability in P patterns. Consequently, desert shrubs will be forced to endure repetitive cycles of water scarcity followed by uneven rainfall. As a high water consumption plant, in
<italic>H</italic>
.
<italic>scoparium</italic>
, natural rainfall in the shallow soil layer is not fully utilized. It is therefore possible that
<italic>H</italic>
.
<italic>scoparium</italic>
may consume underground water (in the region the typical underground water depth is below 15 m) to maintain growth and drought resistance. In some locations,
<italic>H</italic>
.
<italic>scoparium</italic>
may have a negative impact on the water equilibrium due to its deep root system and potential water consuming capacity, which requires further investigation.</p>
<p>The variation of
<italic>J</italic>
<sub>s</sub>
in tree species was related not only to their biological and physiological characteristics, such as canopy structure, stomatal closure and root hydraulic conductance, but also to environmental factors [
<xref rid="pone.0131683.ref009" ref-type="bibr">9</xref>
,
<xref rid="pone.0131683.ref027" ref-type="bibr">27</xref>
,
<xref rid="pone.0131683.ref028" ref-type="bibr">28</xref>
]. In the whole growing season due to rapidly changing weather, there were many outliers data points in the
<italic>J</italic>
<sub>s</sub>
data values which were very sporadic, jumpy and inconsistent, most of which were observed in the 25 mm stem diameter plant. Indicate that larger plant was more sensitive to climatic factors. Because of its broad transpiration leaf area, the stem diameter of 25 mm plant had the largest flow rate and a great fluctuating variation.</p>
<p>In our study,
<italic>J</italic>
<sub>s</sub>
varied under different weather, agreeing with a Giorio and Giorio (2003) who reported that the magnitude of
<italic>J</italic>
<sub>s</sub>
for olive trees during sunny days was greater than during rainy days due to low
<italic>T</italic>
<sub>a</sub>
, low
<italic>R</italic>
<sub>n</sub>
and a low VPD [
<xref rid="pone.0131683.ref030" ref-type="bibr">30</xref>
]. Similar trends were also found in
<italic>Larix decidua</italic>
[
<xref rid="pone.0131683.ref031" ref-type="bibr">31</xref>
],
<italic>Eucalyptus grandis</italic>
[
<xref rid="pone.0131683.ref032" ref-type="bibr">32</xref>
,
<xref rid="pone.0131683.ref033" ref-type="bibr">33</xref>
],
<italic>Ligustrum japonicum</italic>
[
<xref rid="pone.0131683.ref034" ref-type="bibr">34</xref>
] and
<italic>Tamarix elongata</italic>
[
<xref rid="pone.0131683.ref028" ref-type="bibr">28</xref>
] that low
<italic>J</italic>
<sub>s</sub>
can be caused by low VPD in windy weather; increasing intensity of
<italic>R</italic>
<sub>n</sub>
and increasing
<italic>T</italic>
<sub>a</sub>
on sunny days induce stomatal opening in a certain time, thereby accelerating
<italic>J</italic>
<sub>s</sub>
.</p>
<p>RDA and Kendall’s tau values suggested that daily
<italic>J</italic>
<sub>s</sub>
of plants was correlated positively with
<italic>R</italic>
<sub>n</sub>
,
<italic>T</italic>
<sub>a</sub>
, and
<italic>W</italic>
<sub>s</sub>
, and negatively with RH (
<italic>p</italic>
< 0.01). The daily
<italic>J</italic>
<sub>s</sub>
(25 mm) in
<italic>H</italic>
.
<italic>scoparium</italic>
was found to be a function of six environmental factors (
<italic>T</italic>
<sub>a</sub>
, VPD,
<italic>W</italic>
<sub>s</sub>
, RH, soil temperature at 30 cm, and SoilG) but all varied throughout the year. The same methods were applied in
<italic>Juglans regia</italic>
L [
<xref rid="pone.0131683.ref028" ref-type="bibr">28</xref>
],
<italic>Malus domestica Borkh</italic>
[
<xref rid="pone.0131683.ref035" ref-type="bibr">35</xref>
],
<italic>Caragana korshinskii</italic>
[
<xref rid="pone.0131683.ref011" ref-type="bibr">11</xref>
],
<italic>Caragana microphylla</italic>
[
<xref rid="pone.0131683.ref012" ref-type="bibr">12</xref>
] and
<italic>Populus euphratica</italic>
[
<xref rid="pone.0131683.ref024" ref-type="bibr">24</xref>
], and it was found that
<italic>T</italic>
<sub>a</sub>
, VPD, and RH were the three major factors affecting sap flow rate on clear days, but the role of the three factors varied according to the growth stage
<strike>s</strike>
.</p>
<p>It has previously been suggested that environmental factors, such as
<italic>T</italic>
<sub>a</sub>
and VPD, significantly affect nighttime
<italic>J</italic>
<sub>s</sub>
[
<xref rid="pone.0131683.ref022" ref-type="bibr">22</xref>
,
<xref rid="pone.0131683.ref024" ref-type="bibr">24</xref>
,
<xref rid="pone.0131683.ref026" ref-type="bibr">26</xref>
,
<xref rid="pone.0131683.ref033" ref-type="bibr">33</xref>
,
<xref rid="pone.0131683.ref036" ref-type="bibr">36</xref>
<xref rid="pone.0131683.ref041" ref-type="bibr">41</xref>
]. The significant correlation between some environmental factors and the nighttime
<italic>J</italic>
<sub>s</sub>
of
<italic>H</italic>
.
<italic>scoparium</italic>
observed in this study supports this assertion (see
<xref rid="pone.0131683.t001" ref-type="table">Table 1</xref>
). In addition, the nighttime
<italic>J</italic>
<sub>s</sub>
was more affected by tree features, especially in the plants with a smaller diameter. The nocturnal
<italic>J</italic>
<sub>s</sub>
of small plants corresponded to
<italic>T</italic>
<sub>a</sub>
and VPD at the study site, which can be approximated by a non-linear relationship based on the minimum threshold for nighttime
<italic>J</italic>
<sub>s</sub>
. The obtained minimum threshold of VPD driving force was consistent with results reported by Moore GW (2008) and Sellin A (2010) [
<xref rid="pone.0131683.ref042" ref-type="bibr">42</xref>
<xref rid="pone.0131683.ref043" ref-type="bibr">43</xref>
]. Both researchers suggested nighttime sap flow was elevated under relatively high
<italic>T</italic>
<sub>a</sub>
and VPD. There studies were carried out on
<italic>Tamarix elongata</italic>
, and
<italic>Juniperus scopulorum</italic>
in the semiarid regions where optimal VPD values reached 1.5 KPa and 2.5 KPa, respectively.</p>
</sec>
<sec sec-type="conclusions" id="sec020">
<title>Conclusions</title>
<p>Sap flow drives the physiological responses of desert plants which also respond to changes in the environmental variables. The sap flow of
<italic>Hedysarum scoparium</italic>
accelerated significantly under increasing evaporative demand, and refill water during the nighttime. The daily sap flow rate had more close correlation with reference evapotranspiration than with soil moisture content. Between day and night time, the sap flow rate responded to meteorological factors differently, and the intrinsic differences in physiology between different stems of
<italic>Hedysarum scoparium</italic>
may lead to differences in responding to meteorological factors. By using Redundancy analysis and the optimal regression model of the daily sap flow rate with the meteorological factors during the growing season that could be used to estimate the transpiration of
<italic>Hedysarum scoparium</italic>
.</p>
</sec>
<sec sec-type="supplementary-material" id="sec021">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0131683.s001">
<label>S1 Dataset</label>
<caption>
<title>The excel “S3” has showed all the data we used in this paper, including sap flow, environmental variables and physiology characteristics related to this paper.</title>
<p>Worksheets are arranged in the order of the corresponding Figs appears. Every worksheet has been named clearly and label in each rank is marked.</p>
<p>(XLSX)</p>
</caption>
<media xlink:href="pone.0131683.s001.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0131683.s002">
<label>S1 Fig</label>
<caption>
<title>The phenological change of
<italic>H</italic>
.
<italic>scoparium</italic>
(1
<sup>st</sup>
May–15
<sup>th</sup>
October 2011) (a represents new leaves appearing period; b represents flowers blooming period; c represents leaves withering period).</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0131683.s002.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0131683.s003">
<label>S2 Fig</label>
<caption>
<title>Installation of the sap flow gauge on the stem of
<italic>H</italic>
.
<italic>scoparium</italic>
(a), and data logger description (b).</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0131683.s003.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0131683.s004">
<label>S3 Fig</label>
<caption>
<title>The seasonal variation of sap flow rate on diameter of sample shrubs (1
<sup>st</sup>
May–15
<sup>th</sup>
October 2011).</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0131683.s004.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0131683.s005">
<label>S4 Fig</label>
<caption>
<title>The seasonal variation of leaf area index between different stems of
<italic>H</italic>
.
<italic>scoparium</italic>
(1
<sup>st</sup>
May–15
<sup>th</sup>
October 2011).</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0131683.s005.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We gratefully thank our colleague Yue Guo, Bao Wei, and Rina Wu (Beijing Forestry University) for their generous help in the field experiment as well as the great cooperation with the Environment Protection and Forestry Bureau of Yanchi County, Ningxia Hui Autonomous Region, P. R. China.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0131683.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>XP</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>YF</given-names>
</name>
,
<name>
<surname>Hua</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pan</surname>
<given-names>YX</given-names>
</name>
,
<name>
<surname>Berndtsson</surname>
<given-names>R</given-names>
</name>
.
<article-title>Canopy storage capacity of xerophytic shrubs in Northwestern China</article-title>
.
<source>J Hydro</source>
.
<year>2012</year>
;
<volume>454–455</volume>
:
<fpage>152</fpage>
<lpage>159</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jhydrol.2012.06.003">10.1016/j.jhydrol.2012.06.003</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Xue</surname>
<given-names>XZ</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
.
<article-title>Determination of evapotranspiration in the desert area using lysimeters</article-title>
.
<source>Commun Soil Sci Plant Anal</source>
.
<year>1998</year>
;
<volume>29</volume>
:
<fpage>1</fpage>
<lpage>13</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/00103629809369924">10.1080/00103629809369924</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Edwards</surname>
<given-names>WRN</given-names>
</name>
,
<name>
<surname>Becker</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Èermák</surname>
<given-names>J</given-names>
</name>
.
<article-title>A unified nomenclature for sap flow measurements</article-title>
.
<year>1996</year>
;
<source>Tree Physiol</source>
<volume>17</volume>
:
<fpage>65</fpage>
<lpage>67</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/17.1.65">10.1093/treephys/17.1.65</ext-link>
</comment>
<pub-id pub-id-type="pmid">14759916</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ffolliott</surname>
<given-names>PF</given-names>
</name>
,
<name>
<surname>Gottfried</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Schiller</surname>
<given-names>G</given-names>
</name>
.
<article-title>Transpiration by dryland oaks: studies in the south-western United States and Northern Israel</article-title>
.
<source>J Arid Environ</source>
.
<year>2003</year>
;
<volume>55</volume>
:
<fpage>595</fpage>
<lpage>605</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0140-1963(02)00290-2">10.1016/S0140-1963(02)00290-2</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kluitenberg</surname>
<given-names>GJ</given-names>
</name>
,
<name>
<surname>Ham</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Improved theory for calculating sap flow with the heat pulse method</article-title>
.
<source>Agric For Meteorol</source>
.
<year>2004</year>
;
<volume>126</volume>
:
<fpage>169</fpage>
<lpage>173</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agrformet.2004.05.008">10.1016/j.agrformet.2004.05.008</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>MacNish</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Unkrich</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Smythe</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Goodrich</surname>
<given-names>DC</given-names>
</name>
,
<name>
<surname>Maddock</surname>
<given-names>T III</given-names>
</name>
.
<article-title>Comparison of riparian evapotranspiration estimates based on a water balance approach and sap flow measurements</article-title>
.
<source>Agric For Meteorol</source>
.
<year>2000</year>
;
<volume>105</volume>
:
<fpage>271</fpage>
<lpage>279</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0168-1923(00)00196-9">10.1016/S0168-1923(00)00196-9</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nicolas</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Torrecillas</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ortuñoa</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Alarcón</surname>
<given-names>JJ</given-names>
</name>
.
<article-title>Evaluation of transpiration in adult apricot trees from sap measurements</article-title>
.
<source>Agr Water Manage</source>
.
<year>2005</year>
;
<volume>72</volume>
:
<fpage>131</fpage>
<lpage>145</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agwat.2004.09.008">10.1016/j.agwat.2004.09.008</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Williams</surname>
<given-names>DG</given-names>
</name>
,
<name>
<surname>Cable</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Hultine</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Hoedjes</surname>
<given-names>JCB</given-names>
</name>
,
<name>
<surname>Yepez</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Simonneaux</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
<article-title>Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques</article-title>
.
<source>Agric For Meteorol</source>
.
<year>2004</year>
;
<volume>125</volume>
:
<fpage>241</fpage>
<lpage>258</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agrformet.2004.04.008">10.1016/j.agrformet.2004.04.008</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>McDowell</surname>
<given-names>NG</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Pockman</surname>
<given-names>WT</given-names>
</name>
.
<article-title>Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains</article-title>
.
<source>Ecohydrol</source>
.
<year>2008</year>
;
<volume>1</volume>
:
<fpage>193</fpage>
<lpage>204</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/eco.20">10.1002/eco.20</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>WZ</given-names>
</name>
,
<name>
<surname>Jin</surname>
<given-names>BW</given-names>
</name>
.
<article-title>The response of sap flow in desert shrubs to environmental variables in an arid region of China</article-title>
.
<source>Ecohydrol</source>
.
<year>2011</year>
;
<volume>4</volume>
:
<fpage>448</fpage>
<lpage>457</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/eco.151">10.1002/eco.151</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Xia</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>SZ</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>FS</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Zhou</surname>
<given-names>QY</given-names>
</name>
.
<article-title>Diurnal and seasonal variations of sap flow of
<italic>Caragana korshinskii</italic>
in the arid desert region of north-west China</article-title>
.
<source>Hydrol Process</source>
.
<year>2008</year>
;
<volume>22</volume>
:
<fpage>1197</fpage>
<lpage>1205</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/hyp.6690">10.1002/hyp.6690</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yue</surname>
<given-names>GY</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>XY</given-names>
</name>
,
<name>
<surname>Niu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Drake</surname>
<given-names>S</given-names>
</name>
.
<article-title>Evaluation of water use of
<italic>Caragana microphylla</italic>
with the stem heat-balance method in Horqin Sandy Land, Inner Mongolia, China</article-title>
.
<source>Agric For Meteorol</source>
.
<year>2008</year>
;
<volume>148</volume>
:
<fpage>1668</fpage>
<lpage>1678</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agrformet.2008.05.019">10.1016/j.agrformet.2008.05.019</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref013">
<label>13</label>
<mixed-citation publication-type="book">
<name>
<surname>Allen</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Pereira</surname>
<given-names>LS</given-names>
</name>
,
<name>
<surname>Raes</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>M</given-names>
</name>
.
<source>Crop evapotranspiration: guidelines for computing crop water requirements</source>
.
<publisher-loc>Rome</publisher-loc>
:
<publisher-name>FAO. FAO Irrigation and Drainage Paper 56</publisher-name>
;
<year>1998</year>
pp.
<fpage>299</fpage>
.</mixed-citation>
</ref>
<ref id="pone.0131683.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dzikiti</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Steppe</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Lemeur</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Milford</surname>
<given-names>JR</given-names>
</name>
.
<article-title>Whole-tree level water balance and its implications on stomatal oscillations in orange trees [
<italic>Citrus sinensis</italic>
(L.) Osbeck] under natural climatic conditions</article-title>
.
<source>J Exp Bot</source>
.
<year>2007</year>
;
<volume>58</volume>
:
<fpage>1893</fpage>
<lpage>1901</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erm023">10.1093/jxb/erm023</ext-link>
</comment>
<pub-id pub-id-type="pmid">17443016</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chuang</surname>
<given-names>YL</given-names>
</name>
,
<name>
<surname>Oren</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Bertozzi</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Phillipse</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Katul</surname>
<given-names>GG</given-names>
</name>
.
<article-title>The porousmedia model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate</article-title>
.
<source>Ecol Model</source>
.
<year>2006</year>
;
<volume>191</volume>
:
<fpage>447</fpage>
<lpage>468</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.ecolmodel.2005.03.027">10.1016/j.ecolmodel.2005.03.027</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Novick</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Oren</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Stoy</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Siqueira</surname>
<given-names>MBS</given-names>
</name>
,
<name>
<surname>Katul</surname>
<given-names>GG</given-names>
</name>
.
<article-title>Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: implications for annual fluxes</article-title>
.
<source>Agric For Meteorol</source>
.
<year>2009</year>
;
<volume>149</volume>
:
<fpage>1491</fpage>
<lpage>1504</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agrformet.2009.04.005">10.1016/j.agrformet.2009.04.005</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dawson</surname>
<given-names>TE</given-names>
</name>
,
<name>
<surname>Burgess</surname>
<given-names>SSO</given-names>
</name>
,
<name>
<surname>Tu</surname>
<given-names>KP</given-names>
</name>
,
<name>
<surname>Oliveira</surname>
<given-names>RS</given-names>
</name>
,
<name>
<surname>Santiago</surname>
<given-names>LS</given-names>
</name>
,
<name>
<surname>Fisher</surname>
<given-names>JB</given-names>
</name>
,
<etal>et al</etal>
<article-title>Nighttime transpiration in woody plants from contrasting ecosystems</article-title>
.
<source>Tree Physiol</source>
.
<year>2007</year>
;
<volume>27</volume>
:
<fpage>561</fpage>
<lpage>575</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/27.4.561">10.1093/treephys/27.4.561</ext-link>
</comment>
<pub-id pub-id-type="pmid">17241998</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Steinberg</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>van Bavel</surname>
<given-names>CHM</given-names>
</name>
,
<name>
<surname>McFarland</surname>
<given-names>MJ</given-names>
</name>
.
<article-title>A gauge to measure mass flow rate of sap in stems and trunks of woody plants</article-title>
.
<source>Am Soc Hortic Sci</source>
.
<year>1989</year>
;
<volume>114</volume>
:
<fpage>466</fpage>
<lpage>472</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131683.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kigalu</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Effects of planting density on the productivity and water use of tea (
<italic>Camellia sinensis L</italic>
.) clones I. Measurement of water use in young tea using sap flow meters with a stem heat balance method</article-title>
.
<source>Agr Water Manage</source>
.
<year>2007</year>
;
<volume>90</volume>
:
<fpage>224</fpage>
<lpage>232</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.agwat.2007.03.005">10.1016/j.agwat.2007.03.005</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Berger</surname>
<given-names>BW</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Yi</surname>
<given-names>CX</given-names>
</name>
,
<name>
<surname>Bakwin</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>CL</given-names>
</name>
.
<article-title>Long-term carbon dioxide fluxes from a very tall tower in a northern forest: Flux measurement methodology</article-title>
.
<source>J Geophys Res</source>
.
<year>2001</year>
;
<volume>18</volume>
:
<fpage>529</fpage>
<lpage>542</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1175/1520-0426(2001)018<0529:LTCDFF>2.0.CO;2">10.1175/1520-0426(2001)018<0529:LTCDFF>2.0.CO;2</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Naithani</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Ewers</surname>
<given-names>BE</given-names>
</name>
,
<name>
<surname>Pendall</surname>
<given-names>E</given-names>
</name>
.
<article-title>Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem</article-title>
.
<source>J Hydro</source>
.
<year>2012</year>
;
<volume>464–465</volume>
:
<fpage>176</fpage>
<lpage>185</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jhydrol.2012.07.008">10.1016/j.jhydrol.2012.07.008</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Marks</surname>
<given-names>CO</given-names>
</name>
,
<name>
<surname>Lechowicz</surname>
<given-names>MJ</given-names>
</name>
.
<article-title>The ecological and functional correlates of nocturnal transpiration</article-title>
.
<source>Tree Physiol</source>
.
<year>2007</year>
;
<volume>27</volume>
:
<fpage>577</fpage>
<lpage>584</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/27.4.577">10.1093/treephys/27.4.577</ext-link>
</comment>
<pub-id pub-id-type="pmid">17241999</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mott</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Peak</surname>
<given-names>D</given-names>
</name>
.
<article-title>Stomatal responses to humidity and temperature in darkness</article-title>
.
<source>Plant Cell Environ</source>
.
<year>2010</year>
;
<volume>33</volume>
:
<fpage>1084</fpage>
<lpage>1090</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-3040.2010.02129.x">10.1111/j.1365-3040.2010.02129.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">20199627</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Daley</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Phillips</surname>
<given-names>NG</given-names>
</name>
.
<article-title>Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest</article-title>
.
<source>Tree Physiol</source>
.
<year>2006</year>
;
<volume>26</volume>
:
<fpage>411</fpage>
<lpage>419</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/26.4.411">10.1093/treephys/26.4.411</ext-link>
</comment>
<pub-id pub-id-type="pmid">16414920</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Snyder</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Richards</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Donovan</surname>
<given-names>LA</given-names>
</name>
.
<article-title>Night-time conductance in C
<sub>3</sub>
and C
<sub>4</sub>
species: do plants lose water at night?</article-title>
<source>J Exp Bot</source>
.
<year>2003</year>
;
<volume>54</volume>
:
<fpage>861</fpage>
<lpage>865</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jxb/erg082">10.1093/jxb/erg082</ext-link>
</comment>
<pub-id pub-id-type="pmid">12554729</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Hölscher</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Cai</surname>
<given-names>XA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Nighttime sap flow of
<italic>Acacia mangium</italic>
and its implications for nighttime transpiration and stem water storage</article-title>
.
<source>J Plant Ecol</source>
.
<year>2011</year>
;
<volume>5</volume>
:
<fpage>294</fpage>
<lpage>304</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/jpe/rtr025">10.1093/jpe/rtr025</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>ZS</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>XR</given-names>
</name>
.
<article-title>Sap flow of
<italic>Artemisia ordosica</italic>
and the influence of environmental factors in a revegetated desert area: Tengger Desert, China</article-title>
.
<source>Hydrol Process</source>
.
<year>2010</year>
;
<volume>24</volume>
:
<fpage>1248</fpage>
<lpage>1253</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/hyp.7584">10.1002/hyp.7584</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Qu</surname>
<given-names>YP</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>SZ</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>FS</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>WC</given-names>
</name>
.
<article-title>Xylem sap flows of irrigated
<italic>Tamarix elongata Ledeb</italic>
and the influence of environmental factors in the desert region of Northwest China</article-title>
.
<source>Hydrol Process</source>
.
<year>2007</year>
;
<volume>21</volume>
:
<fpage>1363</fpage>
<lpage>1369</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/hyp.6314">10.1002/hyp.6314</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goldstein</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Andrade</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Meinzer</surname>
<given-names>FC</given-names>
</name>
,
<name>
<surname>Holbrook</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Cavelier</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jackson</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
<article-title>Stem water storage and diurnal patterns of water use in tropical forest canopy trees</article-title>
.
<source>Plant Cell Environ</source>
.
<year>1998</year>
;
<volume>21</volume>
:
<fpage>397</fpage>
<lpage>406</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1046/j.1365-3040.1998.00273.x">10.1046/j.1365-3040.1998.00273.x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Giorio</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Giorio</surname>
<given-names>G</given-names>
</name>
.
<article-title>Sap flow of several olive trees estimated with heat-pulse technique by continuous monitoring of a single gauge</article-title>
.
<source>Environ Exp Bot</source>
.
<year>2003</year>
;
<volume>49</volume>
:
<fpage>9</fpage>
<lpage>20</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0098-8472(02)00044-8">10.1016/S0098-8472(02)00044-8</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Badalotti</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Anfodillo</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Grace</surname>
<given-names>J</given-names>
</name>
.
<article-title>Evidence of osmoregulation in
<italic>Larix decidua</italic>
at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species</article-title>
.
<source>Ann For Sci</source>
.
<year>2000</year>
;
<volume>57</volume>
:
<fpage>623</fpage>
<lpage>633</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1051/forest:2000146">10.1051/forest:2000146</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pfautsch</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bleby</surname>
<given-names>TM</given-names>
</name>
,
<name>
<surname>Rennenberg</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Adams</surname>
<given-names>MA</given-names>
</name>
.
<article-title>Sap flow measurements reveal influence of temperature and stand structure on water use of
<italic>Eucalyptus regnans</italic>
forests</article-title>
.
<source>For Ecol Manage</source>
.
<year>2010</year>
;
<volume>259</volume>
:
<fpage>1190</fpage>
<lpage>1199</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.foreco.2010.01.006">10.1016/j.foreco.2010.01.006</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Benyon</surname>
<given-names>RG</given-names>
</name>
.
<article-title>Nighttime water use in an irrigated
<italic>Eucalyptus grandis</italic>
plantation</article-title>
.
<source>Tree Physiol</source>
.
<year>1999</year>
;
<volume>19</volume>
:
<fpage>853</fpage>
<lpage>859</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/19.13.853">10.1093/treephys/19.13.853</ext-link>
</comment>
<pub-id pub-id-type="pmid">10562402</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Heilman</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Ham</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Measurement of mass flow rate of sap in
<italic>Ligustrum japonicum</italic>
</article-title>
.
<source>Hortscience</source>
.
<year>1990</year>
;
<volume>25</volume>
:
<fpage>465</fpage>
<lpage>467</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131683.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Daudet</surname>
<given-names>FA</given-names>
</name>
,
<name>
<surname>Le Roux</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Sinoquet</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Adam</surname>
<given-names>B</given-names>
</name>
.
<article-title>Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions</article-title>
.
<source>Agric For Meteorol</source>
.
<year>1999</year>
;
<volume>97</volume>
:
<fpage>171</fpage>
<lpage>185</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0168-1923(99)00079-9">10.1016/S0168-1923(99)00079-9</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>O’Brien</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Oberbauer</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Clark</surname>
<given-names>DB</given-names>
</name>
.
<article-title>Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest</article-title>
.
<source>Plant Cell Environ</source>
.
<year>2004</year>
;
<volume>27</volume>
:
<fpage>551</fpage>
<lpage>567</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-3040.2003.01160.x">10.1111/j.1365-3040.2003.01160.x</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nadezhdina</surname>
<given-names>N</given-names>
</name>
.
<article-title>Sap flow index as an indicator of plant water status</article-title>
.
<source>Tree Physiol</source>
.
<year>1999</year>
;
<volume>19</volume>
:
<fpage>885</fpage>
<lpage>891</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/19.13.885">10.1093/treephys/19.13.885</ext-link>
</comment>
<pub-id pub-id-type="pmid">10562406</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fisher</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Baldocchi</surname>
<given-names>DD</given-names>
</name>
,
<name>
<surname>Misson</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Dawson</surname>
<given-names>TE</given-names>
</name>
,
<name>
<surname>Goldstein</surname>
<given-names>AH</given-names>
</name>
.
<article-title>What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California</article-title>
.
<source>Tree Physiol</source>
.
<year>2007</year>
;
<volume>27</volume>
:
<fpage>597</fpage>
<lpage>610</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/27.4.597">10.1093/treephys/27.4.597</ext-link>
</comment>
<pub-id pub-id-type="pmid">17242001</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hogg</surname>
<given-names>EH</given-names>
</name>
,
<name>
<surname>Hurdle</surname>
<given-names>PA</given-names>
</name>
.
<article-title>Sap flow in trembling aspen: implications for stomatal responses to vapour pressure deficit</article-title>
.
<source>Tree Physiol</source>
.
<year>1997</year>
;
<volume>17</volume>
:
<fpage>501</fpage>
<lpage>509</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/17.8-9.501">10.1093/treephys/17.8-9.501</ext-link>
</comment>
<pub-id pub-id-type="pmid">14759823</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Green</surname>
<given-names>SR</given-names>
</name>
,
<name>
<surname>McNaughton</surname>
<given-names>KG</given-names>
</name>
,
<name>
<surname>Clothier</surname>
<given-names>BE</given-names>
</name>
.
<article-title>Observations of night-time water use in kiwifruit vines and apple trees</article-title>
.
<source>Agric For Meteorol</source>
.
<year>1989</year>
;
<volume>48</volume>
:
<fpage>251</fpage>
<lpage>261</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0168-1923(89)90072-5">10.1016/0168-1923(89)90072-5</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Iritz</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Lindroth</surname>
<given-names>A</given-names>
</name>
.
<article-title>Night-time evapouration from a short-rotation willow stand</article-title>
.
<source>J Hydro</source>
.
<year>1994</year>
;
<volume>157</volume>
:
<fpage>235</fpage>
<lpage>245</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0022-1694(94)90107-4">10.1016/0022-1694(94)90107-4</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sellin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lubenets</surname>
<given-names>K</given-names>
</name>
.
<article-title>Variation of transpiration within a canopy of silver birch: effect of canopy position and daily versus nightly water loss</article-title>
.
<source>Ecohydrol</source>
.
<year>2010</year>
;
<volume>3</volume>
:
<fpage>467</fpage>
<lpage>477</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/eco.133">10.1002/eco.133</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131683.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moore</surname>
<given-names>GW</given-names>
</name>
,
<name>
<surname>Cleverly</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Owens</surname>
<given-names>MK</given-names>
</name>
.
<article-title>Nocturnal transpiration in riparian
<italic>Tamarix</italic>
thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements</article-title>
.
<source>Tree Physiol</source>
.
<year>2008</year>
;
<volume>28</volume>
:
<fpage>521</fpage>
<lpage>528</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/treephys/28.4.521">10.1093/treephys/28.4.521</ext-link>
</comment>
<pub-id pub-id-type="pmid">18244939</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0001640 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0001640 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024