Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique

Identifieur interne : 000081 ( Pmc/Corpus ); précédent : 000080; suivant : 000082

Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique

Auteurs : Wu Li ; Fu'An Zhao ; Weiping Fang ; Deyi Xie ; Jianan Hou ; Xiaojie Yang ; Yuanming Zhao ; Zhongjie Tang ; Lihong Nie ; Shuping Lv

Source :

RBID : PMC:4566050

Abstract

Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCl stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.


Url:
DOI: 10.3389/fpls.2015.00732
PubMed: 26442045
PubMed Central: 4566050

Links to Exploration step

PMC:4566050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of early salt stress responsive proteins in seedling roots of upland cotton (
<italic>Gossypium hirsutum</italic>
L.) employing iTRAQ-based proteomic technique</title>
<author>
<name sortKey="Li, Wu" sort="Li, Wu" uniqKey="Li W" first="Wu" last="Li">Wu Li</name>
<affiliation>
<nlm:aff id="aff1">
<institution>College of Life Sciences, Henan University</institution>
<country>Kaifeng, China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Fu An" sort="Zhao, Fu An" uniqKey="Zhao F" first="Fu'An" last="Zhao">Fu'An Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Weiping" sort="Fang, Weiping" uniqKey="Fang W" first="Weiping" last="Fang">Weiping Fang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Deyi" sort="Xie, Deyi" uniqKey="Xie D" first="Deyi" last="Xie">Deyi Xie</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hou, Jianan" sort="Hou, Jianan" uniqKey="Hou J" first="Jianan" last="Hou">Jianan Hou</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaojie" sort="Yang, Xiaojie" uniqKey="Yang X" first="Xiaojie" last="Yang">Xiaojie Yang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yuanming" sort="Zhao, Yuanming" uniqKey="Zhao Y" first="Yuanming" last="Zhao">Yuanming Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tang, Zhongjie" sort="Tang, Zhongjie" uniqKey="Tang Z" first="Zhongjie" last="Tang">Zhongjie Tang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nie, Lihong" sort="Nie, Lihong" uniqKey="Nie L" first="Lihong" last="Nie">Lihong Nie</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lv, Shuping" sort="Lv, Shuping" uniqKey="Lv S" first="Shuping" last="Lv">Shuping Lv</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26442045</idno>
<idno type="pmc">4566050</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566050</idno>
<idno type="RBID">PMC:4566050</idno>
<idno type="doi">10.3389/fpls.2015.00732</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identification of early salt stress responsive proteins in seedling roots of upland cotton (
<italic>Gossypium hirsutum</italic>
L.) employing iTRAQ-based proteomic technique</title>
<author>
<name sortKey="Li, Wu" sort="Li, Wu" uniqKey="Li W" first="Wu" last="Li">Wu Li</name>
<affiliation>
<nlm:aff id="aff1">
<institution>College of Life Sciences, Henan University</institution>
<country>Kaifeng, China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Fu An" sort="Zhao, Fu An" uniqKey="Zhao F" first="Fu'An" last="Zhao">Fu'An Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Weiping" sort="Fang, Weiping" uniqKey="Fang W" first="Weiping" last="Fang">Weiping Fang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Deyi" sort="Xie, Deyi" uniqKey="Xie D" first="Deyi" last="Xie">Deyi Xie</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hou, Jianan" sort="Hou, Jianan" uniqKey="Hou J" first="Jianan" last="Hou">Jianan Hou</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaojie" sort="Yang, Xiaojie" uniqKey="Yang X" first="Xiaojie" last="Yang">Xiaojie Yang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yuanming" sort="Zhao, Yuanming" uniqKey="Zhao Y" first="Yuanming" last="Zhao">Yuanming Zhao</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tang, Zhongjie" sort="Tang, Zhongjie" uniqKey="Tang Z" first="Zhongjie" last="Tang">Zhongjie Tang</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nie, Lihong" sort="Nie, Lihong" uniqKey="Nie L" first="Lihong" last="Nie">Lihong Nie</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lv, Shuping" sort="Lv, Shuping" uniqKey="Lv S" first="Shuping" last="Lv">Shuping Lv</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (
<italic>Gossypium hirsutum</italic>
L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCl stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aghaei, K" uniqKey="Aghaei K">K. Aghaei</name>
</author>
<author>
<name sortKey="Ehsanpour, A A" uniqKey="Ehsanpour A">A. A. Ehsanpour</name>
</author>
<author>
<name sortKey="Shah, A H" uniqKey="Shah A">A. H. Shah</name>
</author>
<author>
<name sortKey="Komatsu, S" uniqKey="Komatsu S">S. Komatsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmad, S" uniqKey="Ahmad S">S. Ahmad</name>
</author>
<author>
<name sortKey="Khan, N" uniqKey="Khan N">N. Khan</name>
</author>
<author>
<name sortKey="Iqbal, M" uniqKey="Iqbal M">M. Iqbal</name>
</author>
<author>
<name sortKey="Hussain, A" uniqKey="Hussain A">A. Hussain</name>
</author>
<author>
<name sortKey="Hassan, M" uniqKey="Hassan M">M. Hassan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Askim, H S" uniqKey="Askim H">H. S. Askim</name>
</author>
<author>
<name sortKey="Rengin, O" uniqKey="Rengin O">O. Rengin</name>
</author>
<author>
<name sortKey="Baris, U" uniqKey="Baris U">U. Baris</name>
</author>
<author>
<name sortKey="Ismail, T" uniqKey="Ismail T">T. Ismail</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartels, D" uniqKey="Bartels D">D. Bartels</name>
</author>
<author>
<name sortKey="Schneider, K" uniqKey="Schneider K">K. Schneider</name>
</author>
<author>
<name sortKey="Terstappen, G" uniqKey="Terstappen G">G. Terstappen</name>
</author>
<author>
<name sortKey="Piatkowski, D" uniqKey="Piatkowski D">D. Piatkowski</name>
</author>
<author>
<name sortKey="Salamini, F" uniqKey="Salamini F">F. Salamini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Champion, A" uniqKey="Champion A">A. Champion</name>
</author>
<author>
<name sortKey="Hebrard, E" uniqKey="Hebrard E">E. Hebrard</name>
</author>
<author>
<name sortKey="Parra, B" uniqKey="Parra B">B. Parra</name>
</author>
<author>
<name sortKey="Bournaud, C" uniqKey="Bournaud C">C. Bournaud</name>
</author>
<author>
<name sortKey="Marmey, P" uniqKey="Marmey P">P. Marmey</name>
</author>
<author>
<name sortKey="Tranchant, C" uniqKey="Tranchant C">C. Tranchant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, F X" uniqKey="Chen F">F. X. Chen</name>
</author>
<author>
<name sortKey="Liu, X H" uniqKey="Liu X">X. H. Liu</name>
</author>
<author>
<name sortKey="Chen, L S" uniqKey="Chen L">L. S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L S" uniqKey="Chen L">L. S. Chen</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Cheng, L" uniqKey="Cheng L">L. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y. Cheng</name>
</author>
<author>
<name sortKey="Qi, Y" uniqKey="Qi Y">Y. Qi</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chinnusamy, V" uniqKey="Chinnusamy V">V. Chinnusamy</name>
</author>
<author>
<name sortKey="Jagendorf, A" uniqKey="Jagendorf A">A. Jagendorf</name>
</author>
<author>
<name sortKey="Zhu, J K" uniqKey="Zhu J">J. K. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chinnusamy, V" uniqKey="Chinnusamy V">V. Chinnusamy</name>
</author>
<author>
<name sortKey="Zhu, J H" uniqKey="Zhu J">J. H. Zhu</name>
</author>
<author>
<name sortKey="Zhu, J K" uniqKey="Zhu J">J. K. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chitteti, B R" uniqKey="Chitteti B">B. R. Chitteti</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z. Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coumans, J V" uniqKey="Coumans J">J. V. Coumans</name>
</author>
<author>
<name sortKey="Poljak, A" uniqKey="Poljak A">A. Poljak</name>
</author>
<author>
<name sortKey="Raftery, M J" uniqKey="Raftery M">M. J. Raftery</name>
</author>
<author>
<name sortKey="Backhouse, D" uniqKey="Backhouse D">D. Backhouse</name>
</author>
<author>
<name sortKey="Pereg Gerk, L" uniqKey="Pereg Gerk L">L. Pereg-Gerk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danielson, J A" uniqKey="Danielson J">J. A. Danielson</name>
</author>
<author>
<name sortKey="Johanson, U" uniqKey="Johanson U">U. Johanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, C X" uniqKey="Du C">C. X. Du</name>
</author>
<author>
<name sortKey="Fan, H F" uniqKey="Fan H">H. F. Fan</name>
</author>
<author>
<name sortKey="Guo, S R" uniqKey="Guo S">S. R. Guo</name>
</author>
<author>
<name sortKey="Tezuka, T" uniqKey="Tezuka T">T. Tezuka</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukao, Y" uniqKey="Fukao Y">Y. Fukao</name>
</author>
<author>
<name sortKey="Ferjani, A" uniqKey="Ferjani A">A. Ferjani</name>
</author>
<author>
<name sortKey="Tomioka, R" uniqKey="Tomioka R">R. Tomioka</name>
</author>
<author>
<name sortKey="Nagasaki, N" uniqKey="Nagasaki N">N. Nagasaki</name>
</author>
<author>
<name sortKey="Kurata, R" uniqKey="Kurata R">R. Kurata</name>
</author>
<author>
<name sortKey="Nishimori, Y" uniqKey="Nishimori Y">Y. Nishimori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, S Q" uniqKey="Gao S">S. Q. Gao</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M. Chen</name>
</author>
<author>
<name sortKey="Xia, L Q" uniqKey="Xia L">L. Q. Xia</name>
</author>
<author>
<name sortKey="Xiu, H J" uniqKey="Xiu H">H. J. Xiu</name>
</author>
<author>
<name sortKey="Xu, Z S" uniqKey="Xu Z">Z. S. Xu</name>
</author>
<author>
<name sortKey="Li, L C" uniqKey="Li L">L. C. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghosh, D" uniqKey="Ghosh D">D. Ghosh</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Tan, X F" uniqKey="Tan X">X. F. Tan</name>
</author>
<author>
<name sortKey="Lim, T K" uniqKey="Lim T">T. K. Lim</name>
</author>
<author>
<name sortKey="Mao, Y" uniqKey="Mao Y">Y. Mao</name>
</author>
<author>
<name sortKey="Lin, Q" uniqKey="Lin Q">Q. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gong, B" uniqKey="Gong B">B. Gong</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Wen, D" uniqKey="Wen D">D. Wen</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Shi, Q" uniqKey="Shi Q">Q. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gronwald, J W" uniqKey="Gronwald J">J. W. Gronwald</name>
</author>
<author>
<name sortKey="Fuerst, E P" uniqKey="Fuerst E">E. P. Fuerst</name>
</author>
<author>
<name sortKey="Eberlein, C V" uniqKey="Eberlein C">C. V. Eberlein</name>
</author>
<author>
<name sortKey="Egli, M A" uniqKey="Egli M">M. A. Egli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, G" uniqKey="Guo G">G. Guo</name>
</author>
<author>
<name sortKey="Ge, P" uniqKey="Ge P">P. Ge</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Lv, D" uniqKey="Lv D">D. Lv</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, J L" uniqKey="Guo J">J. L. Guo</name>
</author>
<author>
<name sortKey="Xu, L P" uniqKey="Xu L">L. P. Xu</name>
</author>
<author>
<name sortKey="Fang, J P" uniqKey="Fang J">J. P. Fang</name>
</author>
<author>
<name sortKey="Su, Y C" uniqKey="Su Y">Y. C. Su</name>
</author>
<author>
<name sortKey="Fu, H Y" uniqKey="Fu H">H. Y. Fu</name>
</author>
<author>
<name sortKey="Que, Y X" uniqKey="Que Y">Y. X. Que</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Y H" uniqKey="Guo Y">Y. H. Guo</name>
</author>
<author>
<name sortKey="Yu, Y P" uniqKey="Yu Y">Y. P. Yu</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Wu, C A" uniqKey="Wu C">C. A. Wu</name>
</author>
<author>
<name sortKey="Yang, G D" uniqKey="Yang G">G. D. Yang</name>
</author>
<author>
<name sortKey="Huang, J G" uniqKey="Huang J">J. G. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houston, N L" uniqKey="Houston N">N. L. Houston</name>
</author>
<author>
<name sortKey="Fan, C" uniqKey="Fan C">C. Fan</name>
</author>
<author>
<name sortKey="Xiang, J Q" uniqKey="Xiang J">J. Q. Xiang</name>
</author>
<author>
<name sortKey="Schulze, J M" uniqKey="Schulze J">J. M. Schulze</name>
</author>
<author>
<name sortKey="Jung, R" uniqKey="Jung R">R. Jung</name>
</author>
<author>
<name sortKey="Boston, R S" uniqKey="Boston R">R. S. Boston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hove, C A" uniqKey="Hove C">C. A. Hove</name>
</author>
<author>
<name sortKey="Bochdanovits, Z" uniqKey="Bochdanovits Z">Z. Bochdanovits</name>
</author>
<author>
<name sortKey="Jansweijer, V M" uniqKey="Jansweijer V">V. M. Jansweijer</name>
</author>
<author>
<name sortKey="Koning, F G" uniqKey="Koning F">F. G. Koning</name>
</author>
<author>
<name sortKey="Berke, L" uniqKey="Berke L">L. Berke</name>
</author>
<author>
<name sortKey="Sanchez Perez, G F" uniqKey="Sanchez Perez G">G. F. Sanchez-Perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Harris, N S" uniqKey="Harris N">N. S. Harris</name>
</author>
<author>
<name sortKey="Deyholos, M K" uniqKey="Deyholos M">M. K. Deyholos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, L G" uniqKey="Jin L">L. G. Jin</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Liu, J Y" uniqKey="Liu J">J. Y. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, K L" uniqKey="Johnson K">K. L. Johnson</name>
</author>
<author>
<name sortKey="Jones, B J" uniqKey="Jones B">B. J. Jones</name>
</author>
<author>
<name sortKey="Bacic, A" uniqKey="Bacic A">A. Bacic</name>
</author>
<author>
<name sortKey="Schultz, C J" uniqKey="Schultz C">C. J. Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katsuhara, M" uniqKey="Katsuhara M">M. Katsuhara</name>
</author>
<author>
<name sortKey="Koshio, K" uniqKey="Koshio K">K. Koshio</name>
</author>
<author>
<name sortKey="Shibasaka, M" uniqKey="Shibasaka M">M. Shibasaka</name>
</author>
<author>
<name sortKey="Hayashi, Y" uniqKey="Hayashi Y">Y. Hayashi</name>
</author>
<author>
<name sortKey="Hayakawa, T" uniqKey="Hayakawa T">T. Hayakawa</name>
</author>
<author>
<name sortKey="Kasamo, K" uniqKey="Kasamo K">K. Kasamo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerkeb, L" uniqKey="Kerkeb L">L. Kerkeb</name>
</author>
<author>
<name sortKey="Donaire, J P" uniqKey="Donaire J">J. P. Donaire</name>
</author>
<author>
<name sortKey="Rodriguez Rosales, M P" uniqKey="Rodriguez Rosales M">M. P. Rodríguez-Rosales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, J M" uniqKey="Kim J">J. M. Kim</name>
</author>
<author>
<name sortKey="To, T K" uniqKey="To T">T. K. To</name>
</author>
<author>
<name sortKey="Nishioka, T" uniqKey="Nishioka T">T. Nishioka</name>
</author>
<author>
<name sortKey="Seki, M" uniqKey="Seki M">M. Seki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konishi, H" uniqKey="Konishi H">H. Konishi</name>
</author>
<author>
<name sortKey="Kitano, H" uniqKey="Kitano H">H. Kitano</name>
</author>
<author>
<name sortKey="Komatsu, S" uniqKey="Komatsu S">S. Komatsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, E K" uniqKey="Lee E">E. K. Lee</name>
</author>
<author>
<name sortKey="Kwon, M" uniqKey="Kwon M">M. Kwon</name>
</author>
<author>
<name sortKey="Ko, J H" uniqKey="Ko J">J. H. Ko</name>
</author>
<author>
<name sortKey="Yi, H" uniqKey="Yi H">H. Yi</name>
</author>
<author>
<name sortKey="Hwang, M G" uniqKey="Hwang M">M. G. Hwang</name>
</author>
<author>
<name sortKey="Chang, S" uniqKey="Chang S">S. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X J" uniqKey="Li X">X. J. Li</name>
</author>
<author>
<name sortKey="Yang, M F" uniqKey="Yang M">M. F. Yang</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Qu, L Q" uniqKey="Qu L">L. Q. Qu</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F. Chen</name>
</author>
<author>
<name sortKey="Shen, S H" uniqKey="Shen S">S. H. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lisenbee, C S" uniqKey="Lisenbee C">C. S. Lisenbee</name>
</author>
<author>
<name sortKey="Lingard, M J" uniqKey="Lingard M">M. J. Lingard</name>
</author>
<author>
<name sortKey="Trelease, R N" uniqKey="Trelease R">R. N. Trelease</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W. Lu</name>
</author>
<author>
<name sortKey="Chu, X" uniqKey="Chu X">X. Chu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maas, E V" uniqKey="Maas E">E. V. Maas</name>
</author>
<author>
<name sortKey="Hoffman, G J" uniqKey="Hoffman G">G. J. Hoffman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manaa, A" uniqKey="Manaa A">A. Manaa</name>
</author>
<author>
<name sortKey="Ben Ahmed, H" uniqKey="Ben Ahmed H">H. Ben Ahmed</name>
</author>
<author>
<name sortKey="Valot, B" uniqKey="Valot B">B. Valot</name>
</author>
<author>
<name sortKey="Bouchet, J P" uniqKey="Bouchet J">J. P. Bouchet</name>
</author>
<author>
<name sortKey="Aschi Smiti, S" uniqKey="Aschi Smiti S">S. Aschi-Smiti</name>
</author>
<author>
<name sortKey="Causse, M" uniqKey="Causse M">M. Causse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maqbool, A" uniqKey="Maqbool A">A. Maqbool</name>
</author>
<author>
<name sortKey="Zahur, M" uniqKey="Zahur M">M. Zahur</name>
</author>
<author>
<name sortKey="Husnain, T" uniqKey="Husnain T">T. Husnain</name>
</author>
<author>
<name sortKey="Riazuddin, S" uniqKey="Riazuddin S">S. Riazuddin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, C M" uniqKey="Meng C">C. M. Meng</name>
</author>
<author>
<name sortKey="Cai, C P" uniqKey="Cai C">C. P. Cai</name>
</author>
<author>
<name sortKey="Zhang, T Z" uniqKey="Zhang T">T. Z. Zhang</name>
</author>
<author>
<name sortKey="Guo, W Z" uniqKey="Guo W">W. Z. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mousavi, A" uniqKey="Mousavi A">A. Mousavi</name>
</author>
<author>
<name sortKey="Hotta, Y" uniqKey="Hotta Y">Y. Hotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munis, F H" uniqKey="Munis F">F. H. Munis</name>
</author>
<author>
<name sortKey="Tu, L L" uniqKey="Tu L">L. L. Tu</name>
</author>
<author>
<name sortKey="Deng, F L" uniqKey="Deng F">F. L. Deng</name>
</author>
<author>
<name sortKey="Tan, J F" uniqKey="Tan J">J. F. Tan</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Xu, S C" uniqKey="Xu S">S. C. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, R" uniqKey="Munns R">R. Munns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nohzadeh Malakshah, S" uniqKey="Nohzadeh Malakshah S">S. Nohzadeh Malakshah</name>
</author>
<author>
<name sortKey="Habibi Rezaei, M" uniqKey="Habibi Rezaei M">M. Habibi Rezaei</name>
</author>
<author>
<name sortKey="Heidari, M" uniqKey="Heidari M">M. Heidari</name>
</author>
<author>
<name sortKey="Salekdeh, G H" uniqKey="Salekdeh G">G. H. Salekdeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y. Peng</name>
</author>
<author>
<name sortKey="Lin, W" uniqKey="Lin W">W. Lin</name>
</author>
<author>
<name sortKey="Cai, W" uniqKey="Cai W">W. Cai</name>
</author>
<author>
<name sortKey="Arora, R" uniqKey="Arora R">R. Arora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Z Y" uniqKey="Peng Z">Z. Y. Peng</name>
</author>
<author>
<name sortKey="Wang, M C" uniqKey="Wang M">M. C. Wang</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Lv, H J" uniqKey="Lv H">H. J. Lv</name>
</author>
<author>
<name sortKey="Li, C L" uniqKey="Li C">C. L. Li</name>
</author>
<author>
<name sortKey="Xia, G M" uniqKey="Xia G">G. M. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiao, J" uniqKey="Qiao J">J. Qiao</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Tian, X" uniqKey="Tian X">X. Tian</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Ren, X" uniqKey="Ren X">X. Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qin, L X" uniqKey="Qin L">L. X. Qin</name>
</author>
<author>
<name sortKey="Zhang, D J" uniqKey="Zhang D">D. J. Zhang</name>
</author>
<author>
<name sortKey="Huang, G Q" uniqKey="Huang G">G. Q. Huang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Gong, S Y" uniqKey="Gong S">S. Y. Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinbothe, C" uniqKey="Reinbothe C">C. Reinbothe</name>
</author>
<author>
<name sortKey="Pollmann, S" uniqKey="Pollmann S">S. Pollmann</name>
</author>
<author>
<name sortKey="Reinbothe, S" uniqKey="Reinbothe S">S. Reinbothe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Uribe, L" uniqKey="Rodriguez Uribe L">L. Rodriguez-Uribe</name>
</author>
<author>
<name sortKey="Higbie, S M" uniqKey="Higbie S">S. M. Higbie</name>
</author>
<author>
<name sortKey="Stewart, J M" uniqKey="Stewart J">J. M. Stewart</name>
</author>
<author>
<name sortKey="Wilkins, T" uniqKey="Wilkins T">T. Wilkins</name>
</author>
<author>
<name sortKey="Lindemann, W" uniqKey="Lindemann W">W. Lindemann</name>
</author>
<author>
<name sortKey="Sengupta Gopalan, C" uniqKey="Sengupta Gopalan C">C. Sengupta-Gopalan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schaeffer, G W" uniqKey="Schaeffer G">G. W. Schaeffer</name>
</author>
<author>
<name sortKey="Sharpe, F T" uniqKey="Sharpe F">F. T. Sharpe</name>
</author>
<author>
<name sortKey="Sicher, R C" uniqKey="Sicher R">R. C. Sicher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seong, E S" uniqKey="Seong E">E. S. Seong</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J. Guo</name>
</author>
<author>
<name sortKey="Kim, Y H" uniqKey="Kim Y">Y. H. Kim</name>
</author>
<author>
<name sortKey="Cho, J H" uniqKey="Cho J">J. H. Cho</name>
</author>
<author>
<name sortKey="Lim, C K" uniqKey="Lim C">C. K. Lim</name>
</author>
<author>
<name sortKey="Hyun Hur, J" uniqKey="Hyun Hur J">J. Hyun Hur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H. Jiang</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Xie, Q" uniqKey="Xie Q">Q. Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutka, M" uniqKey="Sutka M">M. Sutka</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Boudet, J" uniqKey="Boudet J">J. Boudet</name>
</author>
<author>
<name sortKey="Boursiac, Y" uniqKey="Boursiac Y">Y. Boursiac</name>
</author>
<author>
<name sortKey="Doumas, P" uniqKey="Doumas P">P. Doumas</name>
</author>
<author>
<name sortKey="Maurel, C" uniqKey="Maurel C">C. Maurel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theodoulou, F L" uniqKey="Theodoulou F">F. L. Theodoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, Q" uniqKey="Tian Q">Q. Tian</name>
</author>
<author>
<name sortKey="Stepaniants, S B" uniqKey="Stepaniants S">S. B. Stepaniants</name>
</author>
<author>
<name sortKey="Mao, M" uniqKey="Mao M">M. Mao</name>
</author>
<author>
<name sortKey="Weng, L" uniqKey="Weng L">L. Weng</name>
</author>
<author>
<name sortKey="Feetham, M C" uniqKey="Feetham M">M. C. Feetham</name>
</author>
<author>
<name sortKey="Doyle, M J" uniqKey="Doyle M">M. J. Doyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vierstra, R D" uniqKey="Vierstra R">R. D. Vierstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Zhu, Q G" uniqKey="Zhu Q">Q. G. Zhu</name>
</author>
<author>
<name sortKey="Meng, Q W" uniqKey="Meng Q">Q. W. Meng</name>
</author>
<author>
<name sortKey="Wu, C G" uniqKey="Wu C">C. G. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M C" uniqKey="Wang M">M. C. Wang</name>
</author>
<author>
<name sortKey="Peng, Z Y" uniqKey="Peng Z">Z. Y. Peng</name>
</author>
<author>
<name sortKey="Li, C L" uniqKey="Li C">C. L. Li</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Xia, G M" uniqKey="Xia G">G. M. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Tang, C" uniqKey="Tang C">C. Tang</name>
</author>
<author>
<name sortKey="Deng, L" uniqKey="Deng L">L. Deng</name>
</author>
<author>
<name sortKey="Cai, G" uniqKey="Cai G">G. Cai</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Ji, W" uniqKey="Ji W">W. Ji</name>
</author>
<author>
<name sortKey="Bai, X" uniqKey="Bai X">X. Bai</name>
</author>
<author>
<name sortKey="Cai, H" uniqKey="Cai H">H. Cai</name>
</author>
<author>
<name sortKey="Zhu, D" uniqKey="Zhu D">D. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z Q" uniqKey="Wang Z">Z. Q. Wang</name>
</author>
<author>
<name sortKey="Xu, X Y" uniqKey="Xu X">X. Y. Xu</name>
</author>
<author>
<name sortKey="Gong, Q Q" uniqKey="Gong Q">Q. Q. Gong</name>
</author>
<author>
<name sortKey="Wei, C X" uniqKey="Wei C">C. X. Wei</name>
</author>
<author>
<name sortKey="Li, F J" uniqKey="Li F">F. J. Li</name>
</author>
<author>
<name sortKey="Shan, Y Q" uniqKey="Shan Y">Y. Q. Shan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witzel, K" uniqKey="Witzel K">K. Witzel</name>
</author>
<author>
<name sortKey="Weidner, A" uniqKey="Weidner A">A. Weidner</name>
</author>
<author>
<name sortKey="Surabhi, G K" uniqKey="Surabhi G">G. K. Surabhi</name>
</author>
<author>
<name sortKey="Borner, A" uniqKey="Borner A">A. Börner</name>
</author>
<author>
<name sortKey="Mock, H P" uniqKey="Mock H">H. P. Mock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, C A" uniqKey="Wu C">C. A. Wu</name>
</author>
<author>
<name sortKey="Yang, G D" uniqKey="Yang G">G. D. Yang</name>
</author>
<author>
<name sortKey="Meng, Q W" uniqKey="Meng Q">Q. W. Meng</name>
</author>
<author>
<name sortKey="Zheng, C C" uniqKey="Zheng C">C. C. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, T" uniqKey="Wu T">T. Wu</name>
</author>
<author>
<name sortKey="Tian, Z" uniqKey="Tian Z">Z. Tian</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Xie, C" uniqKey="Xie C">C. Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiang, Y" uniqKey="Xiang Y">Y. Xiang</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X. Huang</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Liu, Q W" uniqKey="Liu Q">Q. W. Liu</name>
</author>
<author>
<name sortKey="Hussey, P J" uniqKey="Hussey P">P. J. Hussey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C. Xu</name>
</author>
<author>
<name sortKey="Sibicky, T" uniqKey="Sibicky T">T. Sibicky</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, P" uniqKey="Xu P">P. Xu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Fan, X" uniqKey="Fan X">X. Fan</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J. Gao</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, T" uniqKey="Xue T">T. Xue</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Zhu, W" uniqKey="Zhu W">W. Zhu</name>
</author>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G. Yang</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L T" uniqKey="Yang L">L. T. Yang</name>
</author>
<author>
<name sortKey="Qi, Y P" uniqKey="Qi Y">Y. P. Qi</name>
</author>
<author>
<name sortKey="Lu, Y B" uniqKey="Lu Y">Y. B. Lu</name>
</author>
<author>
<name sortKey="Guo, P" uniqKey="Guo P">P. Guo</name>
</author>
<author>
<name sortKey="Sang, W" uniqKey="Sang W">W. Sang</name>
</author>
<author>
<name sortKey="Feng, H" uniqKey="Feng H">H. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, D" uniqKey="Yao D">D. Yao</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Xi, D" uniqKey="Xi D">D. Xi</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Gao, Z" uniqKey="Gao Z">Z. Gao</name>
</author>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S. Zhao</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Lin, C" uniqKey="Lin C">C. Lin</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Qu, Z" uniqKey="Qu Z">Z. Qu</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q. Zhao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Dai, S" uniqKey="Dai S">S. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y J" uniqKey="Zhou Y">Y. J. Zhou</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Li, X F" uniqKey="Li X">X. F. Li</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Zhang, G F" uniqKey="Zhang G">G. F. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M. Zhu</name>
</author>
<author>
<name sortKey="Dai, S" uniqKey="Dai S">S. Dai</name>
</author>
<author>
<name sortKey="Mcclung, S" uniqKey="Mcclung S">S. McClung</name>
</author>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X. Yan</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zieske, L R" uniqKey="Zieske L">L. R. Zieske</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zorb, C" uniqKey="Zorb C">C. Zörb</name>
</author>
<author>
<name sortKey="Schmitt, S" uniqKey="Schmitt S">S. Schmitt</name>
</author>
<author>
<name sortKey="Muhling, K H" uniqKey="Muhling K">K. H. Mühling</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26442045</article-id>
<article-id pub-id-type="pmc">4566050</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2015.00732</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Identification of early salt stress responsive proteins in seedling roots of upland cotton (
<italic>Gossypium hirsutum</italic>
L.) employing iTRAQ-based proteomic technique</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Wu</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269525/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Fu'an</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn002">
<sup></sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269531/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fang</surname>
<given-names>Weiping</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/237120/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xie</surname>
<given-names>Deyi</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269534/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hou</surname>
<given-names>Jianan</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269541/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Xiaojie</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269543/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Yuanming</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269544/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tang</surname>
<given-names>Zhongjie</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nie</surname>
<given-names>Lihong</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269545/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lv</surname>
<given-names>Shuping</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/269547/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>College of Life Sciences, Henan University</institution>
<country>Kaifeng, China</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Economic Crop Research Institute, Henan Academy of Agricultural Sciences</institution>
<country>Zhengzhou, China</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Hans-Peter Mock, Institute of Plant Genetics and Crop Plant Reserach, Germany</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Keyvan Aghaei, The University of Zanjan, Iran; Giridara Kumar Surabhi, Regional Plant Resource Centre, India</p>
</fn>
<corresp id="fn001">*Correspondence: Weiping Fang, Economic Crop Research Institute, Henan Academy of Agricultural Sciences, NO. 115, Huayuan Road, Zhengzhou 450002, China
<email xlink:type="simple">fangweiping0425@126.com</email>
</corresp>
<fn fn-type="present-address" id="fn002">
<p>†These authors have contributed equally to this work.</p>
</fn>
<fn fn-type="other" id="fn003">
<p>This article was submitted to Plant Proteomics, a section of the journal Frontiers in Plant Science</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>6</volume>
<elocation-id>732</elocation-id>
<history>
<date date-type="received">
<day>12</day>
<month>5</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>8</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Li, Zhao, Fang, Xie, Hou, Yang, Zhao, Tang, Nie and Lv.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Li, Zhao, Fang, Xie, Hou, Yang, Zhao, Tang, Nie and Lv</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (
<italic>Gossypium hirsutum</italic>
L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCl stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Gossypium hirsutum</italic>
</kwd>
<kwd>salt stress</kwd>
<kwd>iTRAQ</kwd>
<kwd>root</kwd>
<kwd>proteomics</kwd>
</kwd-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="1"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="78"></ref-count>
<page-count count="14"></page-count>
<word-count count="9794"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Soil salinity is one of the most important environmental factors limiting plant growth and productivity throughout the world (Munns,
<xref rid="B42" ref-type="bibr">2002</xref>
). Excessive Na
<sup>+</sup>
in the soil inhibits the absorption of mineral nutrients and moisture leading to the accumulation of toxic ions in plants. Plants employ several strategies to cope with salt stress. These include regulating the expression of specific proteins for the reestablishment of proper cellular ion and osmotic homeostasis with other concomitant processes of repair and detoxification (Chinnusamy et al.,
<xref rid="B9" ref-type="bibr">2005</xref>
). The salt signal is primarily perceived through roots, which rapidly respond to maintain function and transmit signals to the shoot for appropriate changes in function (Zhao et al.,
<xref rid="B74" ref-type="bibr">2013</xref>
). Salt-tolerance studies in plants provide insights into the molecular and biochemical basis of plant stress tolerance, which ultimately lead to crop improvement.</p>
<p>Upland Cotton (
<italic>Gossypium hirsutum</italic>
L.) is one of the most important textile fiber crops. Although cotton has a higher basal level of tolerance to NaCl compared with other major crops (Maas and Hoffman,
<xref rid="B36" ref-type="bibr">1977</xref>
), its growth, yield and fiber quality are adversely affected, especially at germination and at the young seedling stage (Ahmad et al.,
<xref rid="B2" ref-type="bibr">2002</xref>
). Understanding the molecular mechanism of salt tolerance can provide many candidate genes for genetic engineering. Many salt-resistant genes have been identified in model plants but only a few salt stress-inducible genes, e.g. Na
<sup>+</sup>
/H
<sup>+</sup>
antiporter (Wu et al.,
<xref rid="B63" ref-type="bibr">2004</xref>
),
<italic>DREB</italic>
(Gao et al.,
<xref rid="B16" ref-type="bibr">2009</xref>
),
<italic>ERF</italic>
(Champion et al.,
<xref rid="B5" ref-type="bibr">2009</xref>
; Jin et al.,
<xref rid="B26" ref-type="bibr">2010</xref>
),
<italic>NAC</italic>
(Meng et al.,
<xref rid="B39" ref-type="bibr">2009</xref>
),
<italic>GhMT3a</italic>
(Xue et al.,
<xref rid="B68" ref-type="bibr">2009</xref>
),
<italic>MPK</italic>
(Zhang et al.,
<xref rid="B72" ref-type="bibr">2011</xref>
),
<italic>MKK</italic>
(Lu et al.,
<xref rid="B35" ref-type="bibr">2013</xref>
), and
<italic>ZFP</italic>
(Guo et al.,
<xref rid="B22" ref-type="bibr">2009</xref>
), have been documented in cotton. Recently, with advances in transcriptome mapping (high-throughput sequencing), some salt-responsive genes and molecular regulatory pathways have been identified in cotton (Yao et al.,
<xref rid="B70" ref-type="bibr">2011</xref>
; Wang et al.,
<xref rid="B57" ref-type="bibr">2012</xref>
; Xu et al.,
<xref rid="B67" ref-type="bibr">2013</xref>
). These studies provide relevant information about the stress-responsive genes, but the transcriptome data may not correlate with results from proteomic analysis due to post-transcriptional and post-translational modifications. Therefore, it is necessary to investigate the change of proteins under salt stress conditions to be able to understand the adaptive mechanism of salt tolerance in cotton.</p>
<p>Proteomic analysis is a tool that facilitates the study of global protein expression and provides a large amount of information about the individual proteins involved in specific biological responses. It has been used to analyze salt stress induced alterations in the root proteome of plant species, such as
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
), rice (Chitteti and Peng,
<xref rid="B11" ref-type="bibr">2007</xref>
; Cheng et al.,
<xref rid="B8" ref-type="bibr">2009</xref>
), barley (Witzel et al.,
<xref rid="B62" ref-type="bibr">2009</xref>
), wheat (Peng et al.,
<xref rid="B45" ref-type="bibr">2009</xref>
; Guo et al.,
<xref rid="B20" ref-type="bibr">2012a</xref>
), maize (Zörb et al.,
<xref rid="B78" ref-type="bibr">2010</xref>
), soybean (Aghaei et al.,
<xref rid="B1" ref-type="bibr">2009</xref>
), tomato (Manaa et al.,
<xref rid="B37" ref-type="bibr">2011</xref>
; Gong et al.,
<xref rid="B18" ref-type="bibr">2014</xref>
), cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
), and salt cress (Zhou et al.,
<xref rid="B75" ref-type="bibr">2010</xref>
). Over 850 DEPs of salt-stressed roots have been identified in the above-mentioned studies. Many previous studies relied upon 2D gel electrophoresis data; however, it is difficult to identify low abundant proteins, proteins with low (< 15 kDa) or high (>150 kDa) molecular weights, proteins that are excessively acidic or basic as well as hydrophobic proteins (Zieske,
<xref rid="B77" ref-type="bibr">2006</xref>
). Non-gel-based quantitative proteomics techniques established in recent years have overcome some of the drawbacks of the above-mentioned method. iTRAQ is a mass spectrometry-based proteomics technique that can be used to evaluate cell metabolic differences. Zhu et al. (
<xref rid="B76" ref-type="bibr">2009</xref>
) employed iTRAQ to reveal functional differentiation of
<italic>Brassica napus</italic>
guard cells and mesophyll cells. iTRAQ can also be used to investigate plant responses to deficient or excess mineral nutrients. For example, Yang et al. (
<xref rid="B69" ref-type="bibr">2013</xref>
) successfully analyzed the protein profile of
<italic>Citrus sinensis</italic>
roots in response to long-term boron-deficiency with iTRAQ. In addition, Fukao et al. (
<xref rid="B15" ref-type="bibr">2011</xref>
) used iTRAQ analysis to reveal mechanisms of growth defects due to excess zinc in
<italic>Arabidopsis</italic>
. It can retain information on the post-translational modification (PTM), simultaneously analyze multiple samples, help to quantify proteins not amenable to the 2D gel approach (Wang et al.,
<xref rid="B61" ref-type="bibr">2014</xref>
) and relatively quantify peptides at a global level (Ghosh et al.,
<xref rid="B17" ref-type="bibr">2013</xref>
). Gong et al. (
<xref rid="B18" ref-type="bibr">2014</xref>
) used iTRAQ to identify a set of DEPs in tomato roots exposed to salt and alkali stress. However, large-scale proteomic data of cotton roots in response to salt stress has not been reported in previous studies. In this present study, an iTRAQ-based proteomic technique was used to identify the early DEPs in order to elucidate the effects of salt stress in cotton seedling roots treated with NaCl for 24 h.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Plant culture and salt treatments</title>
<p>Seeds of ZMS23, a salt-tolerant variety, were obtained from the Institute for Cotton Research of the Chinese Academy of Agriculture Science. Cotton seeds were sterilized with 10% H
<sub>2</sub>
O
<sub>2</sub>
for 30 min and rinsed with distilled water. The sterilized seeds were germinated on filter paper soaked in distilled water in Petri dishes at 26°C. After 7 days, 54 uniform germinated seedlings were transferred to six plastic containers (48 × 36 × 15 cm) and each contained nine seedlings, which were filled with Hoagland's solution (5 mM Ca(NO
<sub>3</sub>
), 3 mM KNO
<sub>3</sub>
, 2 mM MgSO
<sub>4</sub>
, 0.5 mM KH
<sub>2</sub>
PO
<sub>4</sub>
, 2.5 μM FeNa
<sub>2</sub>
(EDTA), 2.5 μM H
<sub>3</sub>
BO
<sub>3</sub>
, 5 μM MnC1
<sub>2</sub>
, 0.5 μM ZnSO
<sub>4</sub>
, 0.3 μM CuSO
<sub>4</sub>
, and 0.05 μM (NH
<sub>4</sub>
)
<sub>6</sub>
MoO
<sub>24</sub>
), and renewed every 2 days. The experiment was performed in a climate chamber under the following conditions: 28/23°C day/night temperature, relative humidity of 70–80% and a 14 h light period/day at an intensity of 600 μmol m
<sup>−2</sup>
s
<sup>−1</sup>
. When the plants grew to the trefoil stage, three plastic containers (including 27 seedlings) were renewed with Hoagland's solution and 200 mM NaCl was added, but no NaCl was added to the other three containers used as a control for 24 h, respectively. After treatment, the 1–5 cm portions of root tips were harvested and frozen at −80°C. In the same way, another biological repeat was carried out.</p>
</sec>
<sec>
<title>Protein extraction</title>
<p>Cotton roots (approximately 1 g) were immersed in liquid nitrogen and ground to a fine powder. Four milliliter of lysis buffer (5 mM Tris-HCl, pH 7.4, 1 mM PMSF, 2 mM EDTA, 10 mM DTT, and 1%TritonX-100) was added to the powder and subjected to ultrasonic vibrations for 15 min. The supernatant was transferred to a 50 mL tube after centrifugation at 25,000 g for 20 min; then, five volumes of cold acetone was added and incubated at −20°C for 2 h. Thereafter, the tubes were centrifuged at 16,000 g for 20 min and the supernatants discarded. The pellets were resuspended in the lysis buffer and centrifuged as described above. Finally, the protein pellets were washed twice with 30 ml of ice-cold acetone, lyophilized and stored at −80°C.</p>
</sec>
<sec>
<title>Protein digestion, iTRAQ labeling and strong cation exchange</title>
<p>iTRAQ analysis was performed at the Beijing Genomics Institute (BGI, Shenzhen, China). Protein samples (100 μg of each protein) were reduced with 10 mM DTT at 56°C for 2 h, alkylated with 55 mM iodoacetamide at room temperature in the dark for 45 min, digested with trypsin at 20:1 mass ratio at 37°C for 12 h, then labeled using the iTRAQ Reagents 8-plex kit according to the manufacturer's instructions (AB Sciex Inc., MA, USA). The salt-treated samples' replicates were labeled with iTRAQ tags 113, 114, and the untreated labeled with tags 115, 116, respectively. After labeling, the samples were mixed and lyophilized before dissolving in 4 mL of strong cation exchange (SCX) buffer A (25 mM NaH
<sub>2</sub>
PO
<sub>4</sub>
in 25% acetonitrile pH2.7). The peptides were fractionated on Ultremex SCX column (4.6 × 250 mm) using Shimadzu LC-20AB HPLC. The subsequent experiment was performed as described in Zhu et al. (
<xref rid="B76" ref-type="bibr">2009</xref>
).</p>
</sec>
<sec>
<title>Tandem mass spectrometry analysis</title>
<p>The fractionated samples were lyophilized to remove acetonitrile and resuspended in Solvent A (5% acetonitril, 0.1% formic acid). Peptide samples, 5 μL (2.5 μg) each were loaded onto a C18LC Packings PepMap trap column and separated on a PepMapC18 75 μm inner diameter (LC Packings) column at a flow rate of 300 nl/min using Shimadzu LC-20AD HPLC. Peptides were eluted from the HPLC column by a linear gradient from 2% buffer B (95% acetonitrile, 1% formic acid) to 35% for 40 min, followed by ramping up to 80% buffer B for 5 min, and then held on 80% buffer B for 4 min. Peptides separated by liquid chromatography were sprayed into the orifice of the Q-Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) and subsequently analyzed according to previously described methods (Qiao et al.,
<xref rid="B46" ref-type="bibr">2012</xref>
).</p>
</sec>
<sec>
<title>Data analysis and protein identification</title>
<p>The MS data were performed using Proteome Discoverer 1.3 software (Thermo Fisher Scientific, San Jose, CA, USA). Relative abundance quantitation and protein identification were processed using Mascot 2.3.02 (Matrix Science, London, United Kingdom). The analysis was carried out with cotton AD genome annotation database (81147 sequences) and the National Center for Biotechnology Information (NCBI) non-redundant fasta database (6833826 sequences). The search parameters were set as follows: Type of search: MS/MS Ion search; Enzyme: Trypsin with one missed cleavage; Monoisotopic mass; Tragment Mass Tolerance: 0.02Da; Peptide Mass Tolerance: 15 ppm; oxidation of methionine and tyrosine labeled by iTRAQ 8-plex as variable modifications, while carbamidomethylation on cysteine, iTRAQ 8-plex labeled N-term and lysine as fixed modifications. False discovery rate (FDR) correction was adopted with a threshold of 0.01 to reduce the false identification of peptide, and a Mascot probability of 95% was set for the identification and quantification of protein. Protein identification was considered if at least one unique peptide was identified for each protein.</p>
</sec>
<sec>
<title>Go and KEGG analysis</title>
<p>Differentially expressed proteins were classified according to Gene Ontology (
<ext-link ext-link-type="uri" xlink:href="http://www.geneontology.org">http://www.geneontology.org</ext-link>
). Kyoto Encyclopedia of Genes and Genomes (KEGG) (
<ext-link ext-link-type="uri" xlink:href="http://www.genome.jp/kegg/">http://www.genome.jp/kegg/</ext-link>
or
<ext-link ext-link-type="uri" xlink:href="http://www.kegg.jp/">http://www.kegg.jp/</ext-link>
) was used to predict molecular function, biological processes and significant pathways involved in response to salt stress.</p>
</sec>
<sec>
<title>Measurement of enzyme activities</title>
<p>The activities of SOD, POD and MDAR were assayed according to Chen et al. (
<xref rid="B7" ref-type="bibr">2008</xref>
). GST and MDH were extracted and assayed according to Gronwald et al. (
<xref rid="B19" ref-type="bibr">1987</xref>
) and Chen et al. (
<xref rid="B6" ref-type="bibr">2009</xref>
), respectively.</p>
</sec>
<sec>
<title>qRT-PCR analysis</title>
<p>Total RNA was extracted from salt-treated and control cotton roots by Trizol reagent (TaKaRa), and cDNA was reverse transcribed from 1 μg of to total RNA using a First Strand cDNA Synthesis Kit (Invitrogen). Gene-specific primers (GSPs) used for qRT-PCR were designed using primer3 (
<ext-link ext-link-type="uri" xlink:href="http://primer3.ut.ee/">http://primer3.ut.ee/</ext-link>
) according to cDNA sequences obtained from the cotton (Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). The cotton 18s-rRNA gene was used as an endogenous control for normalization. The PCR reaction was carried out in a 20 uL volume containing 10 μL 2 × SYBR Green Master Mix reagent (TaKaRa), 1 μL template cDNA and 0.5 μL of each GSPs with the following reaction conditions: 95°C for 30 s; followed by 40 cycles of 95°C for 10 s; 55°C for 10 s and 72°C for 15 s. Relative gene expression was calculated using the ddCt alogorithm (Zhang et al.,
<xref rid="B73" ref-type="bibr">2003</xref>
).</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Primary data analysis and protein detection</title>
<p>A total of 458,751 spectra were generated from the iTRAQ experiment using the proteins of salt-treated and untreated roots as materials. The data were analyzed using Mascot software (version 2.3.02). Mascot detected a total of 11,191 spectra matched to known spectra, 8022 spectra matched to unique spectra, 5603 peptides, 4339 unique peptides, and 1649 proteins (Figure
<xref ref-type="fig" rid="F1">1</xref>
). The distribution of the number of peptides defining each protein is shown in Figure
<xref ref-type="fig" rid="F2">2</xref>
and over 64.7% of the proteins included at least two peptides. These proteins were involved in multiple metabolic, regulatory and defense pathways (Figure
<xref ref-type="fig" rid="F3">3A</xref>
, Table
<xref ref-type="supplementary-material" rid="SM2">S2</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Spectra, peptides and proteins identified from iTRAQ proteomics after searching against the sequence databases</bold>
.</p>
</caption>
<graphic xlink:href="fpls-06-00732-g0001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Number of peptides that were matched to proteins using MASCOT</bold>
.</p>
</caption>
<graphic xlink:href="fpls-06-00732-g0002"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Functional classification of the identified proteins</bold>
.
<bold>(A)</bold>
All 1649 proteins.
<bold>(B)</bold>
Differentially expressed proteins in salt stress cotton roots as compared to the control. The percentage for each class is shown and represented in the pie-chart.</p>
</caption>
<graphic xlink:href="fpls-06-00732-g0003"></graphic>
</fig>
</sec>
<sec>
<title>Identification and functional classification of DEPs</title>
<p>DEPs were selected based on the following criteria: (i) proteins in which the mean ratio {corresponding to the protein reporter ion intensity originating from salt-treated protein samples (113 and 114) with respect to fully control protein samples (115 and 116)} had a 1.5 fold change; (ii) a
<italic>p</italic>
< 0.05. Based on these criteria, 128 DEPs were identified in cotton roots, 76 (59.4%) of which displayed increased, and 52 (40.6%) decreased abundance under salt stress conditions. The main biological functions for the 128 DEPs were: carbohydrate and energy metabolism (13.3%), transcription related (4.7%), protein metabolism (15.6%), cell wall and cytoskeleton metabolism (12.5%), membrane, and transport (10.9%), signal transduction (3.1%), and stress and defense (23.4%). In addition, six proteins were involved in other metabolic processes (4.7%) and 15 in unknown biological processes (11.7%). Detailed information can be found in Figure
<xref ref-type="fig" rid="F3">3B</xref>
, Table
<xref ref-type="table" rid="T1">1</xref>
, Figure
<xref ref-type="supplementary-material" rid="SM4">S1</xref>
and Table
<xref ref-type="supplementary-material" rid="SM3">S3</xref>
.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Differentially expressed proteins in cotton roots subject to salt stress (200 mM NaCl)</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Accession</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Proteins</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Species</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Percent coverage</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>No. of unique peptide</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Mean ratio
<xref ref-type="table-fn" rid="TN1">
<sup>a</sup>
</xref>
</bold>
</th>
<th valign="top" align="center" rowspan="1" colspan="1">
<bold>Up/down
<xref ref-type="table-fn" rid="TN2">
<sup>b</sup>
</xref>
</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>CARBOHYDRATE AND ENERGY METABOLISM</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|377824753">gi|377824753</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pectin methylesterase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">11.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.666</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|211906490">gi|211906490</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Malate dehydrogenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">28.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.664</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|122216326">gi|122216326</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Perakine reductase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Rauwolffia serpentina</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">28.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.666</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|339265919">gi|339265919</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Phosphogluconate dehydrogenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Lotus grandiflorus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">17.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.521</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|225455555">gi|225455555</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Enolase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">38.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.679</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">6</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|55584187">gi|55584187</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Quinone oxidoreductase-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">20.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.623</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">7</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|117940179">gi|117940179</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Dihydrolipoyllysine-residue Acetyltransferase component 1 of pyruvate dehydrogenase complex, mitochondrial</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.625</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">8</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|225465847">gi|225465847</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">NADPH: quinone oxidoreductase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">25.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.570</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75262456">gi|75262456</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">ATP-citrate synthase beta chain protein 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">21.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.671</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">10</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|242129048">gi|242129048</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">ATP synthase delta subunit 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">21.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.566</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">11</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|91981275">gi|91981275</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Pectin methylesterase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Citrus bergamia</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.571</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|21431800">gi|21431800</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">NADP-dependent alkenal double bond reductase P2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.576</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">13</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75268018">gi|75268018</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Probable fructose-bisphosphate aldolase 3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.485</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">14</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|470127114">gi|470127114</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aldose 1-epimerase-like</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Fragaria vesca</italic>
subsp.
<italic>vesca</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.517</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">15</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|37193998">gi|37193998</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Phosphoenolpyruvate carboxykinase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mitella japonica</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.466</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">16</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224057577">gi|224057577</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glutathione reductase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.992</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">17</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|356532527">gi|356532527</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Dihydrolipoyl dehydrogenase-like</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.503</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" colspan="8" rowspan="1">
<bold>TRANSCRIPTION RELATED</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">18</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75262442">gi|75262442</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Nuclear transcription factor Y subunit B-2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">15.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.511</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">19</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|341958560">gi|341958560</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">CASP-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.605</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">20</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|356521678">gi|356521678</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative DNA repair protein RAD23-1-like isoform 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.750</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">21</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|55976204">gi|55976204</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Transcription factor HY5</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Solanum lycopersicum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.103</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">22</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224133758">gi|224133758</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Histone H1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.846</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">23</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75321585">gi|75321585</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Zinc finger CCCH domain-containing protein 40</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
subsp.
<italic>japonica</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.681</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>PROTEIN TRANSLATION, PROCESSING, AND DEGRADATION</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">24</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75266342">gi|75266342</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">40S ribosomal protein S20-2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">9.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.103</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">25</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|22096379">gi|22096379</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">40S ribosomal protein S30</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.674</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">26</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|17865566">gi|17865566</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">60S ribosomal protein L36-3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">21.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.743</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">27</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|24473796">gi|24473796</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">60s acidic ribosomal protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Prunus dulcis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">57.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.645</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">28</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|6015064">gi|6015064</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Elongation factor 1-delta</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pimpinella brachycarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">26.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.089</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">29</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|23503072">gi|23503072</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Eukaryotic translation initiation factor 3 subunit I</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">15.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.666</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">30</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|18803">gi|18803</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Polyubiquitin protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Helianthus annuus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">16.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.675</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">31</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|95116512">gi|95116512</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ubiquitin activating enzyme</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Theobroma cacao</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.564</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">32</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|356560787">gi|356560787</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ubiquitin-conjugating enzyme E2 5-like</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.543</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">33</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|117949833">gi|117949833</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">T-complex protein 1 subunit gamma</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.578</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">34</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75115360">gi|75115360</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Protein disulfide isomerase-like 1-6</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.911</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">35</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255541132">gi|255541132</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Structural constituent of nuclear pore</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.680</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">36</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255575861">gi|255575861</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glycolipid transfer protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.972</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">37</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|82581521">gi|82581521</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Proteasome subunit beta type-4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.526</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">38</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|211906494">gi|211906494</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Heat shock protein 70</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.654</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">39</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|211906504">gi|211906504</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Heat shock protein 70</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">37.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.675</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">40</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|289064666">gi|289064666</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">S-adenosylmethionine synthase-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Eperua falcata</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">34.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.536</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">41</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255543963">gi|255543963</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aspartic proteinase nepenthesin-1 precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.819</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">42</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|229830633">gi|229830633</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">L-idonate 5-dehydrogenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.601</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">43</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|308743337">gi|308743337</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Asparagine synthetase 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Solanum tuberosum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.537</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>CELL WALL AND CYTOSKELETON METABOLISM</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">44</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|89212812">gi|89212812</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Actin depolymerizing factor 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">44.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.524</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">45</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|117553550">gi|117553550</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Actin-binding protein ABP29</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">15.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.663</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">46</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|182627650">gi|182627650</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Actin-related protein4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
subsp.
<italic>indica</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.503</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">47</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273642">gi|157273642</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">28.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.603</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">48</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|150416583">gi|150416583</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 11</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">28.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.652</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">49</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273666">gi|157273666</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 16</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.563</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">50</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273646">gi|157273646</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 6</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">15.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.711</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">51</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273640">gi|157273640</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.574</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">52</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273638">gi|157273638</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">14.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.059</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">53</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|157273660">gi|157273660</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Fasciclin-like arabinogalactan protein 13</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.124</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">54</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|253509569">gi|253509569</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Caffeic acid O-methyltransferase 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">23.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.682</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">55</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224552010">gi|224552010</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hybrid proline-rich protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.507</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">56</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255547195">gi|255547195</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glycine-rich RNA-binding protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">27.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.502</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>MEMBRANE AND TRANSPORT</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">57</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|1336803">gi|1336803</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Vacuolar H(+)-ATPase subunit A</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">48.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.635</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">58</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|2493146">gi|2493146</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">V-type proton ATPase 16 kDa proteolipid subunit</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.155</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">59</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75273758">gi|75273758</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cysteine-rich repeat secretory protein 38</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">22.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.628</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">60</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|7105717">gi|7105717</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Plasma membrane proton ATPase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Kosteletzkya virginica</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">17.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.732</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">61</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224130846">gi|224130846</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Multidrug/pheromone exporter, MDR family, ABC transporter family</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.699</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">62</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|292653531">gi|292653531</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aquaporin TIP1;7</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.641</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">63</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|292653547">gi|292653547</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aquaporin TIP2;5</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.658</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">64</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|461929">gi|461929</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Probable aquaporin TIP-type</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Antirrhinum majus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.503</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">65</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|300793602">gi|300793602</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">TPA: TPA_inf: aquaporin TIP1;4</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.451</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">66</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|292653535">gi|292653535</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aquaporin TIP1;10</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.506</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">67</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|300793598">gi|300793598</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aquaporin PIP2;10</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">21.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.291</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">68</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|256568429">gi|256568429</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">PIP protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">20.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.541</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">69</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|164668308">gi|164668308</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">PIP2 protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.522</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">70</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|118132686">gi|118132686</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">PIP1 protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.270</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>SIGNAL TRANSDUCTION</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">71</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|363807628">gi|363807628</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Probable leucine-rich repeat receptor-like protein kinase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">9.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.454</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">72</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|1702983">gi|1702983</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Auxin-repressed 12.5 kDa protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Fragaria ananassa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">69.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.586</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">73</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|349504495">gi|349504495</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Leucine rich repeat-containing protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Corchorus capsularis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.572</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">74</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|1346675">gi|1346675</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Nucleoside diphosphate kinase B</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Flaveria bidentis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">16.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.523</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>STRESS AND DEFENSE</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">75</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|74229677">gi|74229677</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cytoplasmic Cu/ZnSOD</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">16.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.940</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">76</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|357470271">gi|357470271</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">29.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.751</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">77</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|115345276">gi|115345276</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus alba</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.667</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">78</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|73913500">gi|73913500</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Phaseolus lunatus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.673</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">79</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255551599">gi|255551599</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase 26 precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.981</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">80</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|32351452">gi|32351452</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Class III peroxidase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.805</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">81</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255581003">gi|255581003</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase 2 precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.643</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">82</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|25453205">gi|25453205</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase 12</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.700</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">83</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|225447324">gi|225447324</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxidase 27</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">20.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.674</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">84</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|220967704">gi|220967704</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Monodehydroascorbate reductase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Solanum lycopersicum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">14.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.667</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">85</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|195973264">gi|195973264</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glutathione S-transferase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">18.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.648</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">86</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|354620267">gi|354620267</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">pCPR10-16</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium barbadense</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">49.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.684</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">87</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|15811629">gi|15811629</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ribonuclease-like PR-10</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium arboreum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">30.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.797</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">88</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|33338347">gi|33338347</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Osmotin-like pathogenesis-related protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">15.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.546</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">89</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255537367">gi|255537367</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Osmotin precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.780</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">90</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|383932370">gi|383932370</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Nodulin-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">27.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.612</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">91</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|38258655">gi|38258655</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Monocopper oxidase-like protein SKU5</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">10.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.444</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">92</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|354620271">gi|354620271</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">MLP</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium barbadense</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.625</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">93</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|194321204">gi|194321204</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Laccase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.680</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">94</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|65998365">gi|65998365</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Dirigent-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium barbadense</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.788</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">95</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|66276977">gi|66276977</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Dirigent-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium barbadense</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.848</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">96</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|118926">gi|118926</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Desiccation-related protein PCC13-62</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Craterostigma plantagineum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">20.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.237</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">97</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|359480830">gi|359480830</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">L-ascorbate oxidase-like</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">11.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">4</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.565</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">98</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|166203457">gi|166203457</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Universal stress protein 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium arboreum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">11.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.947</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">99</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|94717590">gi|94717590</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">GDP-mannose 3,5-epimerase 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
subsp.
<italic>Japonica</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.529</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">100</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|225455388">gi|225455388</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Germin-like protein 11-1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">14.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.603</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">101</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|470122858">gi|470122858</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Plant cadmium resistance 2-like isoform 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Fragaria vesca</italic>
subsp.
<italic>vesca</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.919</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">102</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|75099392">gi|75099392</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Subtilisin-like protease</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">4.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.832</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">103</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|68064400">gi|68064400</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Thaumatin-like protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Phaseolus vulgaris</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.714</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">104</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|319433441">gi|319433441</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Copper binding protein 3</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.551</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">105</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|259016223">gi|259016223</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glucan endo-1,3-beta-glucosidase 7</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.108</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">106</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255546283">gi|255546283</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glucan endo-1,3-beta-glucosidase precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">7.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.234</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">107</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255573702">gi|255573702</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glucan endo-1,3-beta-glucosidase precursor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.934</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>OTHER METABOLISM</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">108</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|89258498">gi|89258498</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Short chain alcohol dehydrogenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">39.1</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.664</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">109</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|7546402">gi|7546402</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Chain A, Structures of adenylosuccinate Synthetase from
<italic>Triticum aestivum</italic>
and
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis Thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.553</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">110</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|74273629">gi|74273629</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Gibberellin 20-oxidase 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.3</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.631</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">111</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|395406786">gi|395406786</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative inactive methylesterase 20</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">6.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.656</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">112</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|255554698">gi|255554698</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Homogentisate 1,2-dioxygenase</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ricinus communis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">9.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.629</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">113</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|3183454">gi|3183454</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Uncharacterized oxidoreductase ykwC</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Bacillus subtilis</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.9</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.067</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" style="background-color:#bbbdc0" colspan="8" rowspan="1">
<bold>UNKNOWN</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">114</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224137260">gi|224137260</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Predicted protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">23.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2.309</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">115</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|297736988">gi|297736988</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unnamed protein product</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.889</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">116</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224106732">gi|224106732</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Predicted protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">3.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.775</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">117</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|297736988">gi|297736988</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unnamed protein product</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">25.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.717</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">118</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|225458697">gi|225458697</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Uncharacterized protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.660</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">119</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|147767808">gi|147767808</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein VITISV_032830</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.0</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.596</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">120</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|224092318">gi|224092318</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Predicted protein</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus trichocarpa</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.521</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">121</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|147820236">gi|147820236</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein VITISV_010210</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">12.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">8</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.494</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">122</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|217073300">gi|217073300</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Medicago truncatula</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">14.7</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.667</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">123</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|359496362">gi|359496362</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Uncharacterized protein LOC100854560</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">5.6</td>
<td valign="top" align="center" rowspan="1" colspan="1">1</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.664</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">124</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|388499178">gi|388499178</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Lotus japonicus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.2</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.645</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">125</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|223943077">gi|223943077</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Zea mays</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">17.8</td>
<td valign="top" align="center" rowspan="1" colspan="1">5</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.644</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">126</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|388500070">gi|388500070</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Unknown known</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Lotus japonicus</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">29.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.582</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">127</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|84453208">gi|84453208</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Putative cytosolic factor</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Trifolium pratense</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">13.5</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.547</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">128</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="gi|147782603">gi|147782603</ext-link>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hypothetical protein VITISV_010455</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vitis vinifera</italic>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">19.4</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">0.447</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN1">
<label>a</label>
<p>Mean ratio corresponds to the protein reporter ion intensity originating from salt-treated protein samples (113 and 114) relative to fully control protein samples (115 and 116) with a 1.5 fold-changes and a p < 0.05.</p>
</fn>
<fn id="TN2">
<label>b</label>
<p>Proteins increased in abundance (↑) or decreased in abundance (↓).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Analysis of differentially expressed enzymes</title>
<p>Under the same conditions, the level of activity is positively correlated with the enzyme protein abundance (Yang et al.,
<xref rid="B69" ref-type="bibr">2013</xref>
). To validate the DEPs, five enzymes involved in ROS scavenging and organic acid metabolism were selected for activity analysis. The activities of SOD, POD, and GST were higher in NaCl-treated roots than in the control, whereas the activities of MDH and MDAR were lower (Figure
<xref ref-type="fig" rid="F4">4</xref>
). These results agree with the protein profiles of the iTRAQ analysis.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Activity of (A) superoxide dismutase (SOD), (B) peroxides (POD), (C) glutathione S-transferase (GST), (D) monodehydroascorbate reductase (MDAR), and (E) malate dehydrogenate (MDH) in salt stress and control roots</bold>
. Bars represented means ± SE (
<italic>n</italic>
= 3), Different letters above the bar indicate a significant difference at
<italic>P</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="fpls-06-00732-g0004"></graphic>
</fig>
</sec>
<sec>
<title>Transcriptional analysis of genes for some DEPs</title>
<p>In order to assess the correlation of expression levels between mRNA and protein, qRT-PCR was applied to five DEP genes (POD, SOD, GST, MDAR and MDH) as shown in Figure
<xref ref-type="fig" rid="F5">5</xref>
. The expression of the former four genes (POD, SOD, GST and MDAR) is consistent with the corresponding DEPs, indicating that the expression of these proteins is regulated at the transcriptional level, but this was not the case for MDH (Table
<xref ref-type="table" rid="T1">1</xref>
).</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Relative abundances of (A) superoxide dismutase (SOD), (B) peroxides (POD), (C) glutathione S-transferase (GST), (D) monodehydroascorbate reductase (MDAR), and (E) malate dehydrogenate (MDH) in salt stress and control roots revealed by qRT-PCR</bold>
. Bars represent mean ± SE (
<italic>n</italic>
= 3). Different letters above the bars indicate a significant difference at
<italic>P</italic>
< 0.05.</p>
</caption>
<graphic xlink:href="fpls-06-00732-g0005"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<sec>
<title>Carbohydrate and energy metabolism</title>
<p>Salt stress alters the abundance of many proteins involved in carbon and energy metabolism, including glycolysis, the tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP) in cotton roots. It was found that an FBP3 protein (gi|75268018) was increased. FBP aldolase, a key enzyme in the glycolytic pathways, plays an important role in the production of water-soluble carbohydrates, triose phosphates metabolism and signal transduction (Schaeffer et al.,
<xref rid="B50" ref-type="bibr">1997</xref>
). It was reported that overexpression of FBP could enhance salt tolerance in tobacco by increasing proline content (Konishi et al.,
<xref rid="B31" ref-type="bibr">2005</xref>
). In the present study, up-regulation of FBP3 aldolase increased levels of sugars and starch, and may improve the growth of cotton roots under stress. In our experiment, an enolase protein, which catalyzes the formation of a high-energy phosphoenol pyruvate from 2-phosphoglycerate in the glycolytic pathway, displayed a decrease in abundance after 24 h of salt stress treatment. This result disagreed with the expression profile of this same protein in wheat (Guo et al.,
<xref rid="B20" ref-type="bibr">2012a</xref>
) and cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
) under salt stress.</p>
<p>Three proteins related to TCA were identified. Pyruvate dehydrogenase E2 (gi|117940179) is an enzyme component of the multienzyme pyruvate dehydrogenase complex and is involved in the formation of cellular energy during the TCA cycle. In this study, the abundance of this enzyme increased under salt stress. However, MDH and ATP-citrate synthase beta chain protein 2 decreased. This suggests that the TCA cycle was inhibited in cotton roots after 24 h of salt stress treatment.</p>
<p>Some ROS-scavenging systems need the PPP pathway that produces NADPH under stress conditions. Phosphogluconate dehydrogenase (PGD, gi|339265919)—the key regulatory enzyme of the PPP pathway—was enhanced under salt stress conditions. Manaa et al. (
<xref rid="B37" ref-type="bibr">2011</xref>
) reported that the PGD activity increased under salt conditions in tomato roots.</p>
<p>The abundance of ATP synthase delta subunit 2 (gi|242129048) decreased under stress. This result supports the previous data on the expression profile of this protein in the roots of
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
), rice (Chitteti and Peng,
<xref rid="B11" ref-type="bibr">2007</xref>
), and cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
) under salt stress.</p>
<p>Thus, the flexibility of carbohydrate and energy metabolism may help cotton survive under salt stress conditions.</p>
</sec>
<sec>
<title>Proteins involved in transcription</title>
<p>Transcriptional regulation of salt-responsive genes is a crucial part of the plant response to various abiotic and biotic stresses (Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
). Previous studies showed that chromatin-mediated regulation of gene expression plays an important role in the response to abiotic stress and that histone H1 is involved in stress-induced reactions (Kim et al.,
<xref rid="B30" ref-type="bibr">2010</xref>
). In our data, the expression of histone H1 in salt-treated samples was nearly twice as high as that in the control samples, indicating its role in the salt stress response. Moreover, a zinc-finger transcription factor (gi|75321585) showed higher abundance in roots under salt stress conditions. Zinc finger proteins are well characterized in the regulation of stress responses (Chinnusamy et al.,
<xref rid="B10" ref-type="bibr">2006</xref>
), and the overexpression of CCCH-type zinc finger proteins AtSZF1 and AtSZF2 enhanced salt tolerance in
<italic>Arabidopsis</italic>
(Sun et al.,
<xref rid="B52" ref-type="bibr">2007</xref>
).</p>
</sec>
<sec>
<title>Protein metabolism</title>
<p>Protein turnover, the balance between synthesis and degradation, is one of the many forms of regulation that is employed to achieve a unified cellular response (Reinbothe et al.,
<xref rid="B48" ref-type="bibr">2010</xref>
). Several proteins, involved in protein translation, processing and degradation, were identified in these iTRAQ data. The abundance of two ribosomal proteins (gi|75266342 and gi|17865566) decreased, whereas two (gi|7526634 and gi|17865566) increased in the present study. Rodriguez-Uribe et al. (
<xref rid="B49" ref-type="bibr">2011</xref>
) has also reported that levels of some of the ribosomal proteins decreased while some specific ribosomal components increased under salt stress. Moreover, our data showed lower expression of a eukaryotic translation initiation factor 3 subunit I (eIF3I, gi|23503072) under salinity, which is consistent with a previous report on
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
). In addition, elongation factor gi|6015064 displayed higher abundance under salt stress conditions. The differential regulation of different components of the translation machinery indicates that complicated regulation mechanisms may govern protein synthesis in order to help plants cope with salt stress.</p>
<p>Proper protein folding and processing is important for normal cellular function under salt stress. Here, it was found that the expression of T-complex protein 1 (TCP1, gi|117949833) and protein disulfide isomerase-like 1-6 (PDIL1-6, gi|75115360) were enhanced. TCP1 is involved in proper folding and assembly of proteins to cope with salinity in wheat roots (Wang et al.,
<xref rid="B58" ref-type="bibr">2008</xref>
). PDIs are molecular chaperones that aid the formation of proper disulfide bonds during protein folding (Houston et al.,
<xref rid="B23" ref-type="bibr">2005</xref>
). Two isoforms of PDIs increased in rice roots under salt stress (Nohzadeh Malakshah et al.,
<xref rid="B43" ref-type="bibr">2007</xref>
). Hsp70 s assists in proper folding of newly synthesized polypeptides and import/translocation of precursor proteins. Two hsp70 members (gi|211906494, gi|211906504) showed lower abundance in NaCl-treated roots. This result is consistent with the expression profile of this protein in
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
). The ubiquitin/26S proteasome pathway selectively degrade key regulatory proteins and enzymes under salt stress conditions (Vierstra,
<xref rid="B56" ref-type="bibr">2003</xref>
). The abundance of some components of ubiquitin/26S proteasome system including ubiquitin-activating enzyme (gi|95116512) and polyubiquitin protein (gi|18803) decreased under salt stress conditions. These findings suggest that decreased protein degradation compensates for decreased protein biosynthesis in roots under salt stress.</p>
</sec>
<sec>
<title>Cell wall and cytoskeleton metabolism</title>
<p>The cytoskeleton is rapidly remodeled to allow cell size adjustment in order to maintain normal cell turgor pressure under salt stress conditions (Zhang et al.,
<xref rid="B71" ref-type="bibr">2012</xref>
). In salt-treated roots, it was found that three actin-binding proteins (ABPs), including actin depolymerizing factor (ADF), actin-related protein 2 (ARP2), and actin-binding protein 29 (ABP29), can bind to actin cytoskeletons and effect remodeling. In a previous study, ABP29 from
<italic>Lilium</italic>
pollen played an important role in the remodeling of the actin cytoskeleton during pollen germination and pollen tube growth (Xiang et al.,
<xref rid="B65" ref-type="bibr">2007</xref>
). Thus, depolymerization and subsequent reorganization of the actin cytoskeleton enhanced salt tolerance in cotton roots.</p>
<p>Some proteins, including glycine-rich proteins (GRPs), proline-rich protein (PRPs), and arabinogalactan proteins (AGPs), are essential structural protein components of the cell walls of many higher plants. We found that a GRP (gi|255547195) and a hybrid PRP (HyPRP gi|224552010) displayed higher abundance in roots under salt stress. Biosynthesis of GRPs and their accumulation in vascular tissues are part of the plant's defense mechanism (Mousavi and Hotta,
<xref rid="B40" ref-type="bibr">2005</xref>
). Overexpression of
<italic>HyPRP</italic>
(encoding a HyPRP) in
<italic>Arabidopsis</italic>
enhanced germination under cold and high salinity stress conditions (Qin et al.,
<xref rid="B47" ref-type="bibr">2013</xref>
). A sub-group of AGPs that include one or two AGP domains and one or two copies of the fasciclin domain are termed fasciclin-like arabinogalactan protein (FLAs). FLAs, which are located in the cell wall/plasma membrane and cell surface, have many developmental roles. Some FLAs are involved in microspore and lateral root/shoot development, maintaining proper cell expansion and/or keeping the integrity and elasticity of cell wall matrix in
<italic>Arabidopsis</italic>
(Johnson et al.,
<xref rid="B27" ref-type="bibr">2003</xref>
). In this present study, five FLAs (gi|157273666, gi|157273646, gi|157273640, gi|157273638, gi|157273660) displayed increased in abundance, but two (gi|157273642, gi|150416583) decreased. The diverse expression of FLAs suggests that these proteins may be involved in a wide range of biological process under salt stress conditions.</p>
</sec>
<sec>
<title>Membrane and transport</title>
<p>Under salinity conditions, Na
<sup>+</sup>
/K
<sup>+</sup>
ratios and Na
<sup>+</sup>
concentration increase in plant roots causing hyperosmotic stress, ion imbalance and toxicity (Zhao et al.,
<xref rid="B74" ref-type="bibr">2013</xref>
). H
<sup>+</sup>
-ATPase plays an essential role in the maintenance of ion homeostasis in plant cells. The plasma membrane H+-ATPase in tomato (Kerkeb et al.,
<xref rid="B29" ref-type="bibr">2001</xref>
) and the vacuolar H
<sup>+</sup>
-ATPase in the roots of
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
), rice (Cheng et al.,
<xref rid="B8" ref-type="bibr">2009</xref>
), wheat (Guo et al.,
<xref rid="B20" ref-type="bibr">2012a</xref>
), tomato (Manaa et al.,
<xref rid="B37" ref-type="bibr">2011</xref>
), and cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
) are induced under salt stress conditions. Here, increased abundance of one plasma membrane H
<sup>+</sup>
-ATPase (gi|7105717) and two vacuolar H
<sup>+</sup>
-ATPases (gi|1336803, gi|2493146) indicates that the increased activities of these enzymes are considered to be a cost-effective strategy for osmotic adjustment, which reduces the Na
<sup>+</sup>
concentration in the cytosol in plants under salt stress conditions.</p>
<p>ABC transporters transport stress-related secondary metabolites such as alkaloids, terpenoids, polyphenols and quinines (Theodoulou,
<xref rid="B54" ref-type="bibr">2000</xref>
). In
<italic>Arabidopsis</italic>
, ABC transporter affected Na
<sup>+</sup>
/K
<sup>+</sup>
homeostasis and elicited a salt stress response (Lee et al.,
<xref rid="B32" ref-type="bibr">2004</xref>
). The up-regulation of an ABC transporter (gi|224130846) in cotton roots suggests that it may play an important role in salt-stressed responses.</p>
<p>Aquaporins (AQPs)—channel proteins that facilitate the transport of water and/or small neutral solutes or gasses in the plasma and intracellular cell membranes—are associated with plant stress tolerance (Wang et al.,
<xref rid="B60" ref-type="bibr">2011</xref>
). PIPs and TIPs, two subfamilies of AQP, are most abundant in the plasma membrane and vacuolar membrane, respectively (Danielson and Johanson,
<xref rid="B13" ref-type="bibr">2008</xref>
). HvPIP2:1 was down-regulated in barley seedlings, and its overexpression enhanced salt sensitivity in transgenic rice under salt stress conditions (Katsuhara et al.,
<xref rid="B28" ref-type="bibr">2003</xref>
). Overexpression of the
<italic>Panax ginseng</italic>
TIP2:1 gene in
<italic>Arabidopsis</italic>
enhances tolerance to salt stress, but overexpression of
<italic>GsTIP</italic>
2:1 depresses salt tolerance and dehydration stress (Wang et al.,
<xref rid="B60" ref-type="bibr">2011</xref>
). Thus, the regulation mechanism of AQPs under salt stress conditions is complicated and requires further study (Peng et al.,
<xref rid="B44" ref-type="bibr">2007</xref>
). Here, four PIPs (gi|300793598, gi|256568429, gi|118132686, gi|118132686) and five TIPs (gi|29265353, gi|292653547, gi|461929, gi|300793602, gi|292653535) showed lower abundance in response to salt stress. This may be attributed to the reduced hydraulic conductivity of membranes to prevent water loss under salt stress conditions (Sutka et al.,
<xref rid="B53" ref-type="bibr">2011</xref>
).</p>
</sec>
<sec>
<title>Signal transduction</title>
<p>LRR-RLKs function in a wide variety of signal transduction pathways related to hormone and abiotic stress responses (Hove et al.,
<xref rid="B24" ref-type="bibr">2011</xref>
). Potato LRPK1 functions under diverse stress conditions, such as wounding, and high-, low-temperature, and salinity stress (Wu et al.,
<xref rid="B64" ref-type="bibr">2009</xref>
). In our present data, the up-regulation of LRR-RLKs (gi|363807628) imply it has a role in Na
<sup>+</sup>
and plant interactions, specific recognition, and signal transduction leading to an induced salt-stressed tolerance. Nucleoside diphosphate kinase B (NDPKB, gi|1346675) is an enzyme that converts GTP to ATP, and is involved in the H
<sub>2</sub>
O
<sub>2</sub>
mediated mitogen-activated protein kinase signaling pathway. NDPK increased tolerance in response to NaCl in
<italic>Arabidopsis</italic>
, creeping bentgrass and rice (Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
; Seong et al.,
<xref rid="B51" ref-type="bibr">2007</xref>
; Xu et al.,
<xref rid="B66" ref-type="bibr">2010</xref>
).</p>
</sec>
<sec>
<title>Stress and defense</title>
<p>Salt stress causes the production of excessive reactive oxygen species (ROS), which oxidize cellular components and irreversibly damage plant cells (Askim et al.,
<xref rid="B3" ref-type="bibr">2014</xref>
). ROS can be scavenged in plants by SOD, POD and GSTs. Ten of these proteins were identified in this study (Table
<xref ref-type="table" rid="T1">1</xref>
). In most cases, higher expression of these proteins was found in salt-treated samples than in the control. Increased accumulation of SOD was noted in the roots of
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
), wheat (Guo et al.,
<xref rid="B20" ref-type="bibr">2012a</xref>
), cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
), and salt cress (Zhou et al.,
<xref rid="B75" ref-type="bibr">2010</xref>
) under salt stress conditions. The up-regulation in abundance of Cu/ZnSOD (gi|74229677) also indicates that it helps cope with salt stress in cotton. PODs catalyze the reduction of H
<sub>2</sub>
O
<sub>2</sub>
using electron donors such as lignin precursors, phenolic compounds, auxins and secondary metabolites (Zhao et al.,
<xref rid="B74" ref-type="bibr">2013</xref>
). In the present study, the levels of seven POD isozymes (gi|357470271, gi|115345276, gi|73913500, gi|255551599, gi|32351452, gi|255581003, gi|25453205) increased in response to salt stress but POD 27 (gi|225447324) did not. The levels of POD increased in the salt-stressed roots of wheat (Peng et al.,
<xref rid="B45" ref-type="bibr">2009</xref>
), barley (Witzel et al.,
<xref rid="B62" ref-type="bibr">2009</xref>
), cucumber (Du et al.,
<xref rid="B14" ref-type="bibr">2010</xref>
), and rice (Cheng et al.,
<xref rid="B8" ref-type="bibr">2009</xref>
) but decreased in creeping bentgrass (Xu et al.,
<xref rid="B66" ref-type="bibr">2010</xref>
). GST increased in the salt-stressed roots of
<italic>Arabidopsis</italic>
(Jiang et al.,
<xref rid="B25" ref-type="bibr">2007</xref>
), rice (Chitteti and Peng,
<xref rid="B11" ref-type="bibr">2007</xref>
), barley (Witzel et al.,
<xref rid="B62" ref-type="bibr">2009</xref>
), and wheat (Peng et al.,
<xref rid="B45" ref-type="bibr">2009</xref>
). Here, higher levels of a GST (gi|195973264) were also observed in salt-stressed cotton roots. GSTs may play a pivotal role in preventing the degradation of organic hydroperoxides to cytotoxic aldehyde derivatives under salt stress conditions in cotton. Thus, it is demonstrated that antioxidant enzymes protect salt-stressed cotton roots from oxidative damage.</p>
<p>MDAR catalyzes the reduction of monodehydroascorbate to ascorbate (ASA) and is essential in order to maintain a reduced pool of ascorbate. Germin-like proteins (GLP) possess both oxalate activity and SOD activity. Here, the decreased expression of MDAR (gi|220967704) and GLP (gi|225455388) was identified in salt- stressed cotton roots. It is suggested that although plants require MDAR and GLP in order to eliminate ROS, the fine tuning of the levels of various antioxidants is also an important consideration in stress responses (Lisenbee et al.,
<xref rid="B34" ref-type="bibr">2005</xref>
).</p>
<p>In addition to the redox related proteins, plants have developed cross-tolerance mechanisms to be able to cope with different stresses (Zhang et al.,
<xref rid="B71" ref-type="bibr">2012</xref>
). Some biotic and abiotic stress-responsive proteins play important roles in salt tolerance (Table
<xref ref-type="table" rid="T1">1</xref>
). Some biotic stress-related proteins were induced under salt stress conditions, such as pCPR10-16 (gi|354620267), ribonuclease-like PR-10 (gi|15811629), osmotin-like pathogenesis-related proteins (gi|3333834), thaumatin-like protein (TLP, gi|68064400), USP (gi|166203457), and glucan endo-1,3-beta-glucosidases (gi|255546283, gi|259016223, gi|255573702). PR10 mediates tolerance to heavy metals (Wang et al.,
<xref rid="B61" ref-type="bibr">2014</xref>
) and pathogen attack (Coumans et al.,
<xref rid="B12" ref-type="bibr">2009</xref>
). TLP, a subgroup of pathogenesis-related proteins, is induced by phytohormones (SA, JA, and ABA) and stress stimuli (wounding, cold temperature and high salinity) (Wang et al.,
<xref rid="B59" ref-type="bibr">2010</xref>
). Overexpression of the
<italic>GbTLP</italic>
1 in tobacco enhances resistance to
<italic>Verticillium dahliae</italic>
, salinity and drought (Munis et al.,
<xref rid="B41" ref-type="bibr">2009</xref>
). USP helps cotton plants adapt to water stress (Maqbool et al.,
<xref rid="B38" ref-type="bibr">2009</xref>
). Glucan endo-1, 3-beta-glucosidase accumulates in rice in response to ABA and salt stress (Li et al.,
<xref rid="B33" ref-type="bibr">2010</xref>
). Moreover, some abiotic stress-related proteins, e.g. DIR (gi|65998365, gi|66276977), desiccation-related protein PCC13-62 (gi|118926) also respond to salt stress (Bartels et al.,
<xref rid="B4" ref-type="bibr">1990</xref>
; Guo et al.,
<xref rid="B21" ref-type="bibr">2012b</xref>
). DIR is involved in the response to drought, salts and oxidation (Guo et al.,
<xref rid="B21" ref-type="bibr">2012b</xref>
). Desiccation-related protein PCC13-62 promotes the plant's tolerance to extreme desiccation (Bartels et al.,
<xref rid="B4" ref-type="bibr">1990</xref>
). These proteins provide novel insights into the understanding of the cross-tolerance mechanisms in roots in response to biotic and abiotic stress.</p>
</sec>
<sec>
<title>The correlation of protein abundance and gene expression</title>
<p>There might be a weak correlation between the transcript levels of genes and their protein abundance (Yang et al.,
<xref rid="B69" ref-type="bibr">2013</xref>
). The discrepancy between protein and mRNA expression may be caused by the various levels of regulation, e.g., post-transcriptional, translational or post-translational regulation (Tian et al.,
<xref rid="B55" ref-type="bibr">2004</xref>
). A discrepancy between transcript levels of MDH and the abundance of the corresponding proteins (Figure
<xref ref-type="fig" rid="F5">5E</xref>
, Table
<xref ref-type="table" rid="T1">1</xref>
) highlights the effect of post-transcriptional modifications.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="s5">
<title>Conclusion</title>
<p>An iTRAQ-based proteomic technique was employed to compare the abundance of proteins in untreated and salt-treated roots for 24 h. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. These DEPs are mainly involved in the biological processes of carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction and stress and defense. The diverse array of proteins affected by salt stress conditions indicates that there is a remarkable flexibility in cotton root metabolism, which may contribute to its survival in salinity conditions. High positive correlation between the abundance of some altered proteins (SOD, POD, GST, MDAR, and MDH) and their enzyme activity demonstrates that the iTRAQ-based proteomic technique is sufficiently reliable for the identification and quantification of a large number of cotton root proteins. qRT-PCR results suggest that the expression of some proteins (e.g., MDH) can be regulated by post-transcriptional modifications. With this technology, many new salt-responsive proteins, such as ARP2, FLAs, TIPs, PIPs, LRR-RLKs, TLP, USP, DIR and the desiccation-related protein PCC13-62 were identified from cotton roots. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. These findings significantly improve the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>This work was supported by the National Special Key Program of Transgenic Species Breeding (No. 2015ZX08005-001-005) and the earmarked fund of Henan Academy of Agricultural Sciences (N0. 201412016).</p>
</ack>
<sec sec-type="supplementary-material" id="s6">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fpls.2015.00732">http://journal.frontiersin.org/article/10.3389/fpls.2015.00732</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Table1.XLS">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM2">
<media xlink:href="Table2.XLS">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM3">
<media xlink:href="Table3.XLS">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="SM4">
<media xlink:href="Image1.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aghaei</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ehsanpour</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Proteome analysis of soybean hypocotyl and root under salt stress</article-title>
.
<source>Amino Acids</source>
<volume>36</volume>
,
<fpage>91</fpage>
<lpage>98</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00726-008-0036-7</pub-id>
<pub-id pub-id-type="pmid">18264660</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmad</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Iqbal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hussain</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Salt tolerance of cotton (
<italic>Gossypium hirsutum</italic>
L.)</article-title>
.
<source>Asian J. Plant Sci.</source>
<volume>2</volume>
,
<fpage>715</fpage>
<lpage>719</lpage>
.
<pub-id pub-id-type="doi">10.3923/ajps.2002.715.719</pub-id>
<pub-id pub-id-type="pmid">26259172</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Askim</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Rengin</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Baris</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Ismail</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Reactive oxygen species scavenging capacities of cotton (
<italic>Gossypium hirsutum</italic>
) cultivars under combined drought and heat induced oxidative stress</article-title>
.
<source>Environ. Exp.Bot</source>
.
<volume>99</volume>
,
<fpage>141</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2013.11.010</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartels</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Terstappen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piatkowski</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Salamini</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant
<italic>Craterostigma plantagineum</italic>
</article-title>
.
<source>Planta</source>
<volume>181</volume>
,
<fpage>27</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00202321</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Champion</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hebrard</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Parra</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bournaud</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Marmey</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tranchant</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas</article-title>
.
<source>Mol. Plant Pathol</source>
.
<volume>10</volume>
,
<fpage>471</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1364-3703.2009.00549.x</pub-id>
<pub-id pub-id-type="pmid">19523101</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>F. X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X. H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L. S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (
<italic>Eriobotrya japonicaLindl.</italic>
) cultivars differing in fruit acidit</article-title>
.
<source>Food Chem.</source>
<volume>114</volume>
,
<fpage>657</fpage>
<lpage>664</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.foodchem.2008.10.003</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L. S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple</article-title>
.
<source>Planta</source>
<volume>228</volume>
,
<fpage>745</fpage>
<lpage>756</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-008-0776-3</pub-id>
<pub-id pub-id-type="pmid">18607627</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>New changes in the plasma-membrane-associated proteome of rice roots under salt stress</article-title>
.
<source>Proteomics</source>
<volume>9</volume>
,
<fpage>3100</fpage>
<lpage>3114</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200800340</pub-id>
<pub-id pub-id-type="pmid">19526560</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chinnusamy</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Jagendorf</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J. K.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Understanding and improving salt tolerance in plants</article-title>
.
<source>Crop Sci.</source>
<volume>45</volume>
,
<fpage>437</fpage>
<lpage>448</lpage>
.
<pub-id pub-id-type="doi">10.2135/cropsci2005.0437</pub-id>
<pub-id pub-id-type="pmid">26071212</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chinnusamy</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J. K.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Gene regulation during cold acclimation in plants</article-title>
.
<source>Physiol. Plant.</source>
<volume>126</volume>
,
<fpage>52</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2006.00596.x</pub-id>
<pub-id pub-id-type="pmid">26311645</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chitteti</surname>
<given-names>B. R.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Proteome and phosphoproteome differential expression under salinity stress in rice (
<italic>Oryza sativa</italic>
) roots</article-title>
.
<source>J. Proteome Res.</source>
<volume>6</volume>
,
<fpage>1718</fpage>
<lpage>1727</lpage>
.
<pub-id pub-id-type="doi">10.1021/pr060678z</pub-id>
<pub-id pub-id-type="pmid">17385905</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coumans</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Poljak</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Raftery</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Backhouse</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pereg-Gerk</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Analysis of cotton (
<italic>Gossypium hirsutum</italic>
) root proteomes during a compatible interaction with the black root rot fungus
<italic>Thielaviopsis basicola</italic>
</article-title>
.
<source>Proteomics</source>
<volume>9</volume>
,
<fpage>335</fpage>
<lpage>349</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200800251</pub-id>
<pub-id pub-id-type="pmid">19105169</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danielson</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Johanson</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Unexpected complexity of the aquaporin gene family in the moss
<italic>Physcomitrella patens</italic>
</article-title>
.
<source>BMC Plant Biol.</source>
<volume>8</volume>
:
<fpage>45</fpage>
.
<pub-id pub-id-type="doi">10.1186/1471-2229-8-45</pub-id>
<pub-id pub-id-type="pmid">18430224</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>C. X.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>H. F.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Tezuka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Proteomic analysis of cucumber seedling roots subjected to salt stress</article-title>
.
<source>Phytochemistry</source>
<volume>71</volume>
,
<fpage>1450</fpage>
<lpage>1459</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.phytochem.2010.05.020</pub-id>
<pub-id pub-id-type="pmid">20580043</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ferjani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tomioka</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nagasaki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kurata</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Nishimori</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in
<italic>Arabidopsis</italic>
</article-title>
.
<source>Plant Physiol.</source>
<volume>155</volume>
,
<fpage>1893</fpage>
<lpage>1907</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.110.169730</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>S. Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>L. Q.</given-names>
</name>
<name>
<surname>Xiu</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Z. S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Cotton (
<italic>Gossypium hirsutum</italic>
) DRE-binding transcription factor gene,
<italic>GhDREB</italic>
, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat</article-title>
.
<source>Plant Cell Rep.</source>
<volume>28</volume>
,
<fpage>301</fpage>
<lpage>311</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-008-0623-9</pub-id>
<pub-id pub-id-type="pmid">19005655</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghosh</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>X. F.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>T. K.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>ITRAQ based quantitative proteomics approach validated the role of calcyclin binding protein (CacyBP) in promoting colorectal cancer metastasis</article-title>
.
<source>Mol. Cell. Proteomics</source>
<volume>12</volume>
,
<fpage>1865</fpage>
<lpage>1880</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M112.023085</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Identification of NaCl and NaHCO3 stress-responsive proteins in tomato roots using iTRAQ-based analysis</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>446</volume>
,
<fpage>417</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2014.03.005</pub-id>
<pub-id pub-id-type="pmid">24613841</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gronwald</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Fuerst</surname>
<given-names>E. P.</given-names>
</name>
<name>
<surname>Eberlein</surname>
<given-names>C. V.</given-names>
</name>
<name>
<surname>Egli</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
(
<year>1987</year>
).
<article-title>Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots</article-title>
.
<source>Pestic. Biochem. Phys.</source>
<volume>29</volume>
,
<fpage>66</fpage>
<lpage>76</lpage>
.
<pub-id pub-id-type="doi">10.1016/0048-3575(87)90085-X</pub-id>
<pub-id pub-id-type="pmid">16667299</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012a</year>
).
<article-title>Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties</article-title>
.
<source>J. Proteomics</source>
<volume>75</volume>
,
<fpage>1867</fpage>
<lpage>1885</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2011.12.032</pub-id>
<pub-id pub-id-type="pmid">22245046</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L. P.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>H. Y.</given-names>
</name>
<name>
<surname>Que</surname>
<given-names>Y. X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012b</year>
).
<article-title>A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses</article-title>
.
<source>Plant Cell Rep.</source>
<volume>31</volume>
,
<fpage>1801</fpage>
<lpage>1812</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-012-1293-1</pub-id>
<pub-id pub-id-type="pmid">22696141</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>Y. H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y. P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J. G.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5</article-title>
.
<source>New Phytol</source>
.
<volume>183</volume>
,
<fpage>62</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.02838.x</pub-id>
<pub-id pub-id-type="pmid">19402879</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houston</surname>
<given-names>N. L.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>J. Q.</given-names>
</name>
<name>
<surname>Schulze</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Boston</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins</article-title>
.
<source>Plant Physiol.</source>
<volume>137</volume>
,
<fpage>762</fpage>
<lpage>778</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.104.056507</pub-id>
<pub-id pub-id-type="pmid">15684019</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hove</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Bochdanovits</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Jansweijer</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Koning</surname>
<given-names>F. G.</given-names>
</name>
<name>
<surname>Berke</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sanchez-Perez</surname>
<given-names>G. F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Probing the roles of
<italic>LRR RLK</italic>
genes in
<italic>Arabidopsis thaliana</italic>
roots using a custom T-DNA insertion set</article-title>
.
<source>Plant Mol. Biol.</source>
<volume>76</volume>
,
<fpage>69</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11103-011-9769-x</pub-id>
<pub-id pub-id-type="pmid">21431781</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>N. S.</given-names>
</name>
<name>
<surname>Deyholos</surname>
<given-names>M. K.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Comparative proteomic analysis of NaCl stress-responsive proteins in
<italic>Arabidopsis</italic>
roots</article-title>
.
<source>J. Exp. Bot.</source>
<volume>58</volume>
,
<fpage>3591</fpage>
<lpage>3607</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erm207</pub-id>
<pub-id pub-id-type="pmid">17916636</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>L. G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J. Y.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Molecular characterization of three ethylene responsive element binding factor genes from cotton</article-title>
.
<source>J. Integr. Plant Biol.</source>
<volume>52</volume>
,
<fpage>485</fpage>
<lpage>495</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1744-7909.2010.00914.x</pub-id>
<pub-id pub-id-type="pmid">20537044</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Bacic</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>C. J.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The fasciclin-like arabinogalactan proteins of
<italic>Arabidopsis.</italic>
A multigene family of putative cell adhesion molecules</article-title>
.
<source>Plant Physiol.</source>
<volume>133</volume>
,
<fpage>1911</fpage>
<lpage>1925</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.103.031237</pub-id>
<pub-id pub-id-type="pmid">14645732</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katsuhara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Koshio</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shibasaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hayakawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kasamo</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants</article-title>
.
<source>Plant Cell Physiol.</source>
<volume>44</volume>
,
<fpage>1378</fpage>
<lpage>1383</lpage>
.
<pub-id pub-id-type="doi">10.1093/pcp/pcg167</pub-id>
<pub-id pub-id-type="pmid">14701933</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerkeb</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Donaire</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Rodríguez-Rosales</surname>
<given-names>M. P.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Plasma membrane H
<sup>+</sup>
-ATPase activity is involved in adaptation of tomato calli to NaCl</article-title>
.
<source>Physiol Plant.</source>
<volume>111</volume>
,
<fpage>483</fpage>
<lpage>490</lpage>
.
<pub-id pub-id-type="doi">10.1034/j.1399-3054.2001.1110408.x</pub-id>
<pub-id pub-id-type="pmid">11299013</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>To</surname>
<given-names>T. K.</given-names>
</name>
<name>
<surname>Nishioka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Seki</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Chromatin regulation functions in plant abiotic stress responses</article-title>
.
<source>Plant Cell Environ.</source>
<volume>33</volume>
,
<fpage>604</fpage>
<lpage>611</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2009.02076.x</pub-id>
<pub-id pub-id-type="pmid">19930132</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konishi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kitano</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Identification of rice root proteins regulated by gibberellins using proteome analysis</article-title>
.
<source>Plant Cell Environ.</source>
<volume>28</volume>
,
<fpage>328</fpage>
<lpage>339</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2005.01269.x</pub-id>
<pub-id pub-id-type="pmid">16487079</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>E. K.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Binding of sulfonylurea by AtMRP5, an
<italic>Arabidopsis</italic>
multidrug resistance-related protein that functions in salt tolerance</article-title>
.
<source>Plant Physiol.</source>
<volume>134</volume>
,
<fpage>528</fpage>
<lpage>538</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.103.027045</pub-id>
<pub-id pub-id-type="pmid">14684837</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X. J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>L. Q.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>S. H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence</article-title>
.
<source>Biochim. Biophys. Acta.</source>
<volume>1804</volume>
,
<fpage>929</fpage>
<lpage>940</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbapap.2010.01.004</pub-id>
<pub-id pub-id-type="pmid">20079886</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lisenbee</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Lingard</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Trelease</surname>
<given-names>R. N.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>
<italic>Arabidopsis</italic>
peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase</article-title>
.
<source>Planta</source>
<volume>43</volume>
,
<fpage>900</fpage>
<lpage>914</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2005.02503.x</pub-id>
<pub-id pub-id-type="pmid">16146528</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Cotton
<italic>GhMKK1</italic>
induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic
<italic>Nicotiana benthamiana</italic>
</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>e68503</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0068503</pub-id>
<pub-id pub-id-type="pmid">23844212</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maas</surname>
<given-names>E. V.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>G. J.</given-names>
</name>
</person-group>
(
<year>1977</year>
).
<article-title>Crop salt tolerance-current assessment</article-title>
.
<source>J. Irrig. Drain. Div</source>
.
<volume>103</volume>
,
<fpage>115</fpage>
<lpage>134</lpage>
.</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manaa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ben Ahmed</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Valot</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bouchet</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Aschi-Smiti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Causse</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Salt and genotype impact on plant physiology and root proteome variations in tomato</article-title>
.
<source>J. Exp. Bot.</source>
<volume>62</volume>
,
<fpage>2797</fpage>
<lpage>2813</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erq460</pub-id>
<pub-id pub-id-type="pmid">21330356</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maqbool</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zahur</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Husnain</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Riazuddin</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>GUSP1 and GUSP2, two drought-responsive genes in
<italic>Gossypium arboretum</italic>
have homology to universal stress proteins</article-title>
.
<source>Plant Mol. Biol. Rep.</source>
<volume>27</volume>
,
<fpage>109</fpage>
<lpage>114</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11105-008-0049-0</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>C. P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>T. Z.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>W. Z.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Characterization of six novel NAC genes and their responses to abiotic stresses in
<italic>Gossypium hirsutum</italic>
L</article-title>
.
<source>Plant Sci.</source>
<volume>176</volume>
,
<fpage>352</fpage>
<lpage>359</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2008.12.003</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mousavi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hotta</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Glycine-rich proteins</article-title>
.
<source>Appl. Biochem. Biotech.</source>
<volume>120</volume>
,
<fpage>169</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="doi">10.1385/ABAB:120:3:169</pub-id>
<pub-id pub-id-type="pmid">15767691</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munis</surname>
<given-names>F. H.</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>L. L.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>F. L.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against
<italic>Verticillium dahliaeand</italic>
other stresses in transgenic tobacco</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>39</volume>
,
<fpage>38</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2010.01.069</pub-id>
<pub-id pub-id-type="pmid">20097164</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munns</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Comparative physiology of salt and water stress</article-title>
.
<source>Plant Cell Environ.</source>
<volume>25</volume>
,
<fpage>239</fpage>
<lpage>250</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.0016-8025.2001.00808.x</pub-id>
<pub-id pub-id-type="pmid">11841667</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nohzadeh Malakshah</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Habibi Rezaei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Heidari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Salekdeh</surname>
<given-names>G. H.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Proteomics reveals new salt responsive proteins associated with rice plasma membrane</article-title>
.
<source>Biosci. Biotechnol. Biochem.</source>
<volume>71</volume>
,
<fpage>2144</fpage>
<lpage>2154</lpage>
.
<pub-id pub-id-type="doi">10.1271/bbb.70027</pub-id>
<pub-id pub-id-type="pmid">17827676</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Arora</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Overexpression of a
<italic>Panax ginseng</italic>
tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic
<italic>Arabidopsis</italic>
plants</article-title>
.
<source>Planta</source>
<volume>226</volume>
,
<fpage>729</fpage>
<lpage>740</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-007-0520-4</pub-id>
<pub-id pub-id-type="pmid">17443343</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Z. Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat</article-title>
.
<source>Mol. Cell Proteomics</source>
<volume>8</volume>
,
<fpage>2676</fpage>
<lpage>2686</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M900052-MCP200</pub-id>
<pub-id pub-id-type="pmid">19734139</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Quantitative iTRAQ LC–MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial
<italic>Synechocystis sp</italic>
. PCC 6803</article-title>
.
<source>J. Proteome Res.</source>
<volume>11</volume>
,
<fpage>5286</fpage>
<lpage>5300</lpage>
.
<pub-id pub-id-type="doi">10.1021/pr300504w</pub-id>
<pub-id pub-id-type="pmid">23062023</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>L. X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>G. Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>S. Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Cotton
<italic>GhHyPRP3</italic>
encoding a hybrid proline-rich protein is stress inducible and its overexpression in
<italic>Arabidopsis</italic>
enhances germination under cold temperature and high salinity stress conditions</article-title>
.
<source>Acta. Physiol. Plant.</source>
<volume>35</volume>
,
<fpage>1531</fpage>
<lpage>1542</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11738-012-1194-5</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reinbothe</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pollmann</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Reinbothe</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Singlet oxygen signaling links photosynthesis to translation and plant growth</article-title>
.
<source>Trends Plant Sci.</source>
<volume>15</volume>
,
<fpage>499</fpage>
<lpage>506</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2010.05.011</pub-id>
<pub-id pub-id-type="pmid">20580304</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodriguez-Uribe</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Higbie</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Wilkins</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lindemann</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sengupta-Gopalan</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Identification of salt responsive genes using comparative microarray analysis in Upland cotton (
<italic>Gossypium hirsutum</italic>
L.)</article-title>
.
<source>Plant Sci.</source>
<volume>180</volume>
,
<fpage>461</fpage>
<lpage>469</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2010.10.009</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schaeffer</surname>
<given-names>G. W.</given-names>
</name>
<name>
<surname>Sharpe</surname>
<given-names>F. T.</given-names>
</name>
<name>
<surname>Sicher</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Fructose 1,6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine</article-title>
.
<source>Phytochemistry</source>
<volume>46</volume>
,
<fpage>1335</fpage>
<lpage>1338</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0031-9422(97)00470-6</pub-id>
<pub-id pub-id-type="pmid">9419899</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seong</surname>
<given-names>E. S.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y. H.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>J. H.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Hyun Hur</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Regulations of marker genes involved in biotic and abiotic stress by overexpression of the
<italic>AtNDPK2</italic>
gene in rice</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>363</volume>
,
<fpage>126</fpage>
<lpage>132</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbrc.2007.08.147</pub-id>
<pub-id pub-id-type="pmid">17826739</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis</article-title>
.
<source>Plant Cell Physiol.</source>
<volume>8</volume>
,
<fpage>1148</fpage>
<lpage>1158</lpage>
.
<pub-id pub-id-type="doi">10.1093/pcp/pcm088</pub-id>
<pub-id pub-id-type="pmid">17609218</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Boudet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Boursiac</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Doumas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Maurel</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Natural variation of root hydraulics in
<italic>Arabidopsis</italic>
grown in normal and salt-stressed conditions</article-title>
.
<source>Plant Physiol.</source>
<volume>155</volume>
,
<fpage>1264</fpage>
<lpage>1276</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.110.163113</pub-id>
<pub-id pub-id-type="pmid">21212301</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theodoulou</surname>
<given-names>F. L.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Plant ABC transporters</article-title>
.
<source>Biochim. Biophys. Acta.</source>
<volume>1465</volume>
,
<fpage>79</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0005-2736(00)00132-2</pub-id>
<pub-id pub-id-type="pmid">10748248</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Stepaniants</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Feetham</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>M. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Integrated genomic and proteomic analyses of gene expression in mammalian cells</article-title>
.
<source>Mol. Cell Proteomics</source>
<volume>3</volume>
,
<fpage>960</fpage>
<lpage>969</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M400055-MCP200</pub-id>
<pub-id pub-id-type="pmid">15238602</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vierstra</surname>
<given-names>R. D.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins</article-title>
.
<source>Trends Plant Sci.</source>
<volume>8</volume>
,
<fpage>135</fpage>
<lpage>142</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1360-1385(03)00014-1</pub-id>
<pub-id pub-id-type="pmid">12663224</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q. G.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q. W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C. G.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Transcript profiling during salt stress of young cotton (
<italic>Gossypium hirsutum</italic>
) seedlings via Solexa sequencing</article-title>
.
<source>Acta Physiol. Plant</source>
.
<volume>34</volume>
,
<fpage>107</fpage>
<lpage>115</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11738-011-0809-6</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Z. Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum</article-title>
.
<source>Proteomics</source>
<volume>8</volume>
,
<fpage>1470</fpage>
<lpage>1489</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200700569</pub-id>
<pub-id pub-id-type="pmid">18383010</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Characterization of a pathogenesis-related thaumatin-like protein gene
<italic>TaPR5</italic>
from wheat induced by stripe rust fungus</article-title>
.
<source>Physiol. Plantarum</source>
<volume>139</volume>
,
<fpage>27</fpage>
<lpage>38</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2009.01338.x</pub-id>
<pub-id pub-id-type="pmid">20059734</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>A novel
<italic>Glycine soja</italic>
tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>J. Plant Physiol.</source>
<volume>168</volume>
,
<fpage>1241</fpage>
<lpage>1248</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2011.01.016</pub-id>
<pub-id pub-id-type="pmid">21397356</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z. Q.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X. Y.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>Q. Q.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>C. X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Shan</surname>
<given-names>Y. Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants</article-title>
.
<source>J. Proteomics</source>
<volume>98</volume>
,
<fpage>189</fpage>
<lpage>205</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2013.12.023</pub-id>
<pub-id pub-id-type="pmid">24412201</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witzel</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Weidner</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Surabhi</surname>
<given-names>G. K.</given-names>
</name>
<name>
<surname>Börner</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mock</surname>
<given-names>H. P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity</article-title>
.
<source>J. Exp. Bot.</source>
<volume>60</volume>
,
<fpage>3545</fpage>
<lpage>3557</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erp198</pub-id>
<pub-id pub-id-type="pmid">19671579</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G. D.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q. W.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>C. C.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The cotton
<italic>GhNHX</italic>
gene encoding a novel putative tonoplast Na
<sup>+</sup>
/H
<sup>+</sup>
antiporter plays an important role in salt stress</article-title>
.
<source>Plant Cell Physiol.</source>
<volume>45</volume>
,
<fpage>600</fpage>
<lpage>607</lpage>
.
<pub-id pub-id-type="doi">10.1093/pcp/pch071</pub-id>
<pub-id pub-id-type="pmid">15169942</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>A novel leucine-rich repeat receptor-like kinase gene in potato,
<italic>StLRPK1</italic>
, is involved in response to diverse stresses</article-title>
.
<source>Mol. Biol. Rep.</source>
<volume>36</volume>
,
<fpage>2365</fpage>
<lpage>2374</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11033-009-9459-9</pub-id>
<pub-id pub-id-type="pmid">19214776</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q. W.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>P. J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Actin binding protein29 from lilium pollen plays an important role in dynamic actin remodeling</article-title>
.
<source>Plant Cell</source>
<volume>19</volume>
,
<fpage>1930</fpage>
<lpage>1946</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.106.048413</pub-id>
<pub-id pub-id-type="pmid">17586658</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sibicky</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance</article-title>
.
<source>Plant Cell Rep.</source>
<volume>29</volume>
,
<fpage>595</fpage>
<lpage>615</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-010-0847-3</pub-id>
<pub-id pub-id-type="pmid">20361191</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>De novo transcriptome sequencing and comparative analysis of differentially expressed genes in
<italic>Gossypium aridum</italic>
under salt stress</article-title>
.
<source>Gene</source>
<volume>525</volume>
,
<fpage>26</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.gene.2013.04.066</pub-id>
<pub-id pub-id-type="pmid">23651590</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast</article-title>
.
<source>J. Exp. Biol.</source>
<volume>60</volume>
,
<fpage>339</fpage>
<lpage>349</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/ern291</pub-id>
<pub-id pub-id-type="pmid">19033550</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>L. T.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>Y. P.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y. B.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>iTRAQ protein profile analysis of
<italic>Citrus sinensis</italic>
roots in response to long-term boron-deficiency</article-title>
.
<source>J. Proteomics</source>
<volume>93</volume>
,
<fpage>197</fpage>
<lpage>206</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2013.04.025</pub-id>
<pub-id pub-id-type="pmid">23628855</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (
<italic>Gossypium hirsutum</italic>
L.)</article-title>
.
<source>Genomics</source>
<volume>98</volume>
,
<fpage>47</fpage>
<lpage>55</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ygeno.2011.04.007</pub-id>
<pub-id pub-id-type="pmid">21569837</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Mechanisms of plant salt response: insights from proteomics</article-title>
.
<source>J. Proteome Res.</source>
<volume>11</volume>
,
<fpage>49</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="doi">10.1021/pr200861w</pub-id>
<pub-id pub-id-type="pmid">22017755</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>A cotton group C MAP kinase gene,
<italic>GhMPK2</italic>
, positively regulates salt and drought tolerance in tobacco</article-title>
.
<source>Plant Mol. Biol</source>
.
<volume>77</volume>
,
<fpage>17</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11103-011-9788-7</pub-id>
<pub-id pub-id-type="pmid">21590508</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2003</year>
).
<article-title>Cloning of a NaCl-induced fructose-1,6-diphosphate aldolase cDNA from
<italic>Dualiella salinaand</italic>
its expression in tobacco</article-title>
.
<source>Sci. China Life Sci.</source>
<volume>46</volume>
,
<fpage>49</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF03182684</pub-id>
<pub-id pub-id-type="pmid">20213361</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Proteomics-based investigation of Salt-responsive mechanisms in plant roots</article-title>
.
<source>J. Proteomics</source>
<volume>82</volume>
,
<fpage>230</fpage>
<lpage>253</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jprot.2013.01.024</pub-id>
<pub-id pub-id-type="pmid">23385356</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X. F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G. F.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Alterations in phosphoproteome under salt stress in
<italic>Thellungiella</italic>
roots</article-title>
.
<source>Chinese Sci. Bull.</source>
<volume>32</volume>
,
<fpage>3673</fpage>
<lpage>3679</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11434-010-4116-1</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>McClung</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Functional differentiation of
<italic>brassica napus</italic>
guard cells and mesophyll cells revealed by comparative proteomics</article-title>
.
<source>Mol. Cell Proteomics</source>
<volume>8</volume>
,
<fpage>752</fpage>
<lpage>766</lpage>
.
<pub-id pub-id-type="doi">10.1074/mcp.M800343-MCP200</pub-id>
<pub-id pub-id-type="pmid">19106087</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zieske</surname>
<given-names>L. R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies</article-title>
.
<source>J. Exp. Bot.</source>
<volume>57</volume>
,
<fpage>1501</fpage>
<lpage>1508</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erj168</pub-id>
<pub-id pub-id-type="pmid">16574745</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zörb</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Schmitt</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mühling</surname>
<given-names>K. H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Proteomic changes in maize roots after short-term adjustment to saline growth conditions</article-title>
.
<source>Proteomics</source>
<volume>10</volume>
,
<fpage>4441</fpage>
<lpage>4419</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.201000231</pub-id>
<pub-id pub-id-type="pmid">21136597</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>ABPs</term>
<def>
<p>actin-binding proteins</p>
</def>
</def-item>
<def-item>
<term>ADF</term>
<def>
<p>actin depolymerizing factor</p>
</def>
</def-item>
<def-item>
<term>ARP2</term>
<def>
<p>actin-related protein 2</p>
</def>
</def-item>
<def-item>
<term>AGPs</term>
<def>
<p>arabinogalactan proteins</p>
</def>
</def-item>
<def-item>
<term>AQPs</term>
<def>
<p>Aquaporins</p>
</def>
</def-item>
<def-item>
<term>DEPs</term>
<def>
<p>differentially expressed proteins</p>
</def>
</def-item>
<def-item>
<term>DIR</term>
<def>
<p>dirigent-like protein</p>
</def>
</def-item>
<def-item>
<term>FBP3</term>
<def>
<p>fructose-bisphosphate aldolase 3</p>
</def>
</def-item>
<def-item>
<term>FLAs</term>
<def>
<p>fasciclin-like arabinogalactan proteins</p>
</def>
</def-item>
<def-item>
<term>GST</term>
<def>
<p>glutathione S-transferase</p>
</def>
</def-item>
<def-item>
<term>GRPs</term>
<def>
<p>glycine-rich proteins</p>
</def>
</def-item>
<def-item>
<term>iTRAQ</term>
<def>
<p>isobaric tag for relative and absolute quantitation</p>
</def>
</def-item>
<def-item>
<term>LRR-RLKs</term>
<def>
<p>leucine-rich repeat receptor-like kinase-encoding genes</p>
</def>
</def-item>
<def-item>
<term>MDAR</term>
<def>
<p>monodehydroascorbate reductase</p>
</def>
</def-item>
<def-item>
<term>MDH</term>
<def>
<p>malate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>NDPK</term>
<def>
<p>nucleoside diphosphate kinase</p>
</def>
</def-item>
<def-item>
<term>PPP</term>
<def>
<p>pentose phosphate pathway</p>
</def>
</def-item>
<def-item>
<term>PGD</term>
<def>
<p>phosphogluconate dehydrogenase</p>
</def>
</def-item>
<def-item>
<term>POD</term>
<def>
<p>peroxidase</p>
</def>
</def-item>
<def-item>
<term>PDIL1-6</term>
<def>
<p>protein disulfide isomerase-like 1-6</p>
</def>
</def-item>
<def-item>
<term>PRPs</term>
<def>
<p>proline-rich proteins</p>
</def>
</def-item>
<def-item>
<term>PIPs</term>
<def>
<p>plasma membrane intrinsic proteins</p>
</def>
</def-item>
<def-item>
<term>SOD</term>
<def>
<p>superoxide dismutase</p>
</def>
</def-item>
<def-item>
<term>TCA</term>
<def>
<p>tricarboxylic acid cycle</p>
</def>
</def-item>
<def-item>
<term>TCP1</term>
<def>
<p>T-complex protein 1</p>
</def>
</def-item>
<def-item>
<term>TIPs</term>
<def>
<p>tonoplast intrinsic proteins</p>
</def>
</def-item>
<def-item>
<term>TLP</term>
<def>
<p>thaumatin-like protein</p>
</def>
</def-item>
<def-item>
<term>USP</term>
<def>
<p>universal stress protein.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000081 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000081 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4566050
   |texte=   Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26442045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024