Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

Identifieur interne : 000048 ( Pmc/Corpus ); précédent : 000047; suivant : 000049

Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

Auteurs : Jiali Dai ; Liang Zhu ; Li Yang ; Jun Qiu

Source :

RBID : PMC:4669986

Abstract

The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components.


Url:
PubMed: 26648809
PubMed Central: 4669986

Links to Exploration step

PMC:4669986

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata</title>
<author>
<name sortKey="Dai, Jiali" sort="Dai, Jiali" uniqKey="Dai J" first="Jiali" last="Dai">Jiali Dai</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Liang" sort="Zhu, Liang" uniqKey="Zhu L" first="Liang" last="Zhu">Liang Zhu</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Li" sort="Yang, Li" uniqKey="Yang L" first="Li" last="Yang">Li Yang</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jun" sort="Qiu, Jun" uniqKey="Qiu J" first="Jun" last="Qiu">Jun Qiu</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26648809</idno>
<idno type="pmc">4669986</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669986</idno>
<idno type="RBID">PMC:4669986</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata</title>
<author>
<name sortKey="Dai, Jiali" sort="Dai, Jiali" uniqKey="Dai J" first="Jiali" last="Dai">Jiali Dai</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Liang" sort="Zhu, Liang" uniqKey="Zhu L" first="Liang" last="Zhu">Liang Zhu</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Li" sort="Yang, Li" uniqKey="Yang L" first="Li" last="Yang">Li Yang</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jun" sort="Qiu, Jun" uniqKey="Qiu J" first="Jun" last="Qiu">Jun Qiu</name>
<affiliation>
<nlm:aff id="A1">Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">EXCLI Journal</title>
<idno type="eISSN">1611-2156</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of
<italic>Wedelia prostrata</italic>
and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. </p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bajpai, Vk" uniqKey="Bajpai V">VK Bajpai</name>
</author>
<author>
<name sortKey="Rahman, A" uniqKey="Rahman A">A Rahman</name>
</author>
<author>
<name sortKey="Dung, Nt" uniqKey="Dung N">NT Dung</name>
</author>
<author>
<name sortKey="Huh, Mk" uniqKey="Huh M">MK Huh</name>
</author>
<author>
<name sortKey="Kang, Sc" uniqKey="Kang S">SC Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakkali, F" uniqKey="Bakkali F">F Bakkali</name>
</author>
<author>
<name sortKey="Averbeck, S" uniqKey="Averbeck S">S Averbeck</name>
</author>
<author>
<name sortKey="Averbeck, D" uniqKey="Averbeck D">D Averbeck</name>
</author>
<author>
<name sortKey="Idaomar, M" uniqKey="Idaomar M">M Idaomar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burt, S" uniqKey="Burt S">S Burt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celiktas, Oy" uniqKey="Celiktas O">OY Celiktas</name>
</author>
<author>
<name sortKey="Kocabas, Eeh" uniqKey="Kocabas E">EEH Kocabas</name>
</author>
<author>
<name sortKey="Bedir, E" uniqKey="Bedir E">E Bedir</name>
</author>
<author>
<name sortKey="Sukan, Fv" uniqKey="Sukan F">FV Sukan</name>
</author>
<author>
<name sortKey="Ozek, T" uniqKey="Ozek T">T Ozek</name>
</author>
<author>
<name sortKey="Baser, Khc" uniqKey="Baser K">KHC Baser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conner, De" uniqKey="Conner D">DE Conner</name>
</author>
<author>
<name sortKey="Beuchat, Lr" uniqKey="Beuchat L">LR Beuchat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craveiro, Aa" uniqKey="Craveiro A">AA Craveiro</name>
</author>
<author>
<name sortKey="Matos, Fja" uniqKey="Matos F">FJA Matos</name>
</author>
<author>
<name sortKey="Alencar, Jw" uniqKey="Alencar J">JW Alencar</name>
</author>
<author>
<name sortKey="Machado, Mil" uniqKey="Machado M">MIL Machado</name>
</author>
<author>
<name sortKey="Krush, A" uniqKey="Krush A">A Krush</name>
</author>
<author>
<name sortKey="Silva, Mgv" uniqKey="Silva M">MGV Silva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donsi, F" uniqKey="Donsi F">F Donsì</name>
</author>
<author>
<name sortKey="Annunziata, M" uniqKey="Annunziata M">M Annunziata</name>
</author>
<author>
<name sortKey="Sessa, M" uniqKey="Sessa M">M Sessa</name>
</author>
<author>
<name sortKey="Ferrari, G" uniqKey="Ferrari G">G Ferrari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filipowicz, N" uniqKey="Filipowicz N">N Filipowicz</name>
</author>
<author>
<name sortKey="Kaminski, M" uniqKey="Kaminski M">M Kaminski</name>
</author>
<author>
<name sortKey="Kurlenda, J" uniqKey="Kurlenda J">J Kurlenda</name>
</author>
<author>
<name sortKey="Asztemborska, M" uniqKey="Asztemborska M">M Asztemborska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatano, T" uniqKey="Hatano T">T Hatano</name>
</author>
<author>
<name sortKey="Edamatsu, R" uniqKey="Edamatsu R">R Edamatsu</name>
</author>
<author>
<name sortKey="Hiramatsu, M" uniqKey="Hiramatsu M">M Hiramatsu</name>
</author>
<author>
<name sortKey="Mori, A" uniqKey="Mori A">A Mori</name>
</author>
<author>
<name sortKey="Fujita, Y" uniqKey="Fujita Y">Y Fujita</name>
</author>
<author>
<name sortKey="Yasuhara, T" uniqKey="Yasuhara T">T Yasuhara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, B" uniqKey="Hsu B">B Hsu</name>
</author>
<author>
<name sortKey="Coupar, Im" uniqKey="Coupar I">IM Coupar</name>
</author>
<author>
<name sortKey="Ng, K" uniqKey="Ng K">K Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Wu, N" uniqKey="Wu N">N Wu</name>
</author>
<author>
<name sortKey="Fu, Yj" uniqKey="Fu Y">YJ Fu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Zhao, Cj" uniqKey="Zhao C">CJ Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koheil, Ma" uniqKey="Koheil M">MA Koheil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Dong, M" uniqKey="Dong M">M Dong</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Shi, Qw" uniqKey="Shi Q">QW Shi</name>
</author>
<author>
<name sortKey="Kiyota, H" uniqKey="Kiyota H">H Kiyota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mar Stica, Mr" uniqKey="Mar Stica M">MR Maróstica</name>
</author>
<author>
<name sortKey="Silva, Taare" uniqKey="Silva T">TAARE Silva</name>
</author>
<author>
<name sortKey="Franchi, Gc" uniqKey="Franchi G">GC Franchi</name>
</author>
<author>
<name sortKey="Nowill, A" uniqKey="Nowill A">A Nowill</name>
</author>
<author>
<name sortKey="Pastore, Gm" uniqKey="Pastore G">GM Pastore</name>
</author>
<author>
<name sortKey="Hyslop, S" uniqKey="Hyslop S">S Hyslop</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mau, Jl" uniqKey="Mau J">JL Mau</name>
</author>
<author>
<name sortKey="Huang, Pn" uniqKey="Huang P">PN Huang</name>
</author>
<author>
<name sortKey="Huang, Sj" uniqKey="Huang S">SJ Huang</name>
</author>
<author>
<name sortKey="Chen, Cc" uniqKey="Chen C">CC Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miles, Dh" uniqKey="Miles D">DH Miles</name>
</author>
<author>
<name sortKey="Chittawong, V" uniqKey="Chittawong V">V Chittawong</name>
</author>
<author>
<name sortKey="Payne, Am" uniqKey="Payne A">AM Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misra, G" uniqKey="Misra G">G Misra</name>
</author>
<author>
<name sortKey="Pavlostathis, Sg" uniqKey="Pavlostathis S">SG Pavlostathis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nirmal, Sa" uniqKey="Nirmal S">SA Nirmal</name>
</author>
<author>
<name sortKey="Chavan, Mj" uniqKey="Chavan M">MJ Chavan</name>
</author>
<author>
<name sortKey="Tambe, Vd" uniqKey="Tambe V">VD Tambe</name>
</author>
<author>
<name sortKey="Jadhav, Rs" uniqKey="Jadhav R">RS Jadhav</name>
</author>
<author>
<name sortKey="Ghogare, Pb" uniqKey="Ghogare P">PB Ghogare</name>
</author>
<author>
<name sortKey="Bhalke, Rd" uniqKey="Bhalke R">RD Bhalke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prasad, Nk" uniqKey="Prasad N">NK Prasad</name>
</author>
<author>
<name sortKey="Divakar, S" uniqKey="Divakar S">S Divakar</name>
</author>
<author>
<name sortKey="Shivamurthy, Gr" uniqKey="Shivamurthy G">GR Shivamurthy</name>
</author>
<author>
<name sortKey="Aradhya, Sm" uniqKey="Aradhya S">SM Aradhya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siddhuraju, P" uniqKey="Siddhuraju P">P Siddhuraju</name>
</author>
<author>
<name sortKey="Mohan, Ps" uniqKey="Mohan P">PS Mohan</name>
</author>
<author>
<name sortKey="Becker, K" uniqKey="Becker K">K Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simic, N" uniqKey="Simic N">N Simic</name>
</author>
<author>
<name sortKey="Palic, R" uniqKey="Palic R">R Palic</name>
</author>
<author>
<name sortKey="Vajs, V" uniqKey="Vajs V">V Vajs</name>
</author>
<author>
<name sortKey="Milosavljevic, S" uniqKey="Milosavljevic S">S Milosavljevic</name>
</author>
<author>
<name sortKey="Djokovic, D" uniqKey="Djokovic D">D Djokovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, P" uniqKey="Singh P">P Singh</name>
</author>
<author>
<name sortKey="Shukla, R" uniqKey="Shukla R">R Shukla</name>
</author>
<author>
<name sortKey="Prakash, B" uniqKey="Prakash B">B Prakash</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S Singh</name>
</author>
<author>
<name sortKey="Mishra, Pk" uniqKey="Mishra P">PK Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sokovic, M" uniqKey="Sokovic M">M Sokovic</name>
</author>
<author>
<name sortKey="Van Griensven, Ljld" uniqKey="Van Griensven L">LJLD van Griensven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sureshkumar, S" uniqKey="Sureshkumar S">S Sureshkumar</name>
</author>
<author>
<name sortKey="Kanagasabail, R" uniqKey="Kanagasabail R">R Kanagasabail</name>
</author>
<author>
<name sortKey="Sivakumar, T" uniqKey="Sivakumar T">T Sivakumar</name>
</author>
<author>
<name sortKey="Chandrasekar, Mjn" uniqKey="Chandrasekar M">MJN Chandrasekar</name>
</author>
<author>
<name sortKey="Thiruvenkatasubramaniam, R" uniqKey="Thiruvenkatasubramaniam R">R Thiruvenkatasubramaniam</name>
</author>
<author>
<name sortKey="Thenmozhi, S" uniqKey="Thenmozhi S">S Thenmozhi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tripathi, R" uniqKey="Tripathi R">R Tripathi</name>
</author>
<author>
<name sortKey="Mohan, H" uniqKey="Mohan H">H Mohan</name>
</author>
<author>
<name sortKey="Kamat, Jp" uniqKey="Kamat J">JP Kamat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uribe, S" uniqKey="Uribe S">S Uribe</name>
</author>
<author>
<name sortKey="Ramirez, J" uniqKey="Ramirez J">J Ramirez</name>
</author>
<author>
<name sortKey="Pe A, A" uniqKey="Pe A A">A Peña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vani, T" uniqKey="Vani T">T Vani</name>
</author>
<author>
<name sortKey="Rajani, M" uniqKey="Rajani M">M Rajani</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S Sarkar</name>
</author>
<author>
<name sortKey="Shishoo, Cj" uniqKey="Shishoo C">CJ Shishoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Wu, N" uniqKey="Wu N">N Wu</name>
</author>
<author>
<name sortKey="Zu, Yg" uniqKey="Zu Y">YG Zu</name>
</author>
<author>
<name sortKey="Fu, Yj" uniqKey="Fu Y">YJ Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wickens, Ap" uniqKey="Wickens A">AP Wickens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Qt" uniqKey="Zhu Q">QT Zhu</name>
</author>
<author>
<name sortKey="Hackman, Rm" uniqKey="Hackman R">RM Hackman</name>
</author>
<author>
<name sortKey="Ensunsa, Jl" uniqKey="Ensunsa J">JL Ensunsa</name>
</author>
<author>
<name sortKey="Holt, Rr" uniqKey="Holt R">RR Holt</name>
</author>
<author>
<name sortKey="Keen, Cl" uniqKey="Keen C">CL Keen</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">EXCLI J</journal-id>
<journal-id journal-id-type="iso-abbrev">EXCLI J</journal-id>
<journal-id journal-id-type="publisher-id">EXCLI J</journal-id>
<journal-title-group>
<journal-title>EXCLI Journal</journal-title>
</journal-title-group>
<issn pub-type="epub">1611-2156</issn>
<publisher>
<publisher-name>Leibniz Research Centre for Working Environment and Human Factors</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26648809</article-id>
<article-id pub-id-type="pmc">4669986</article-id>
<article-id pub-id-type="publisher-id">2013-195</article-id>
<article-id pub-id-type="publisher-id">Doc479</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Dai</surname>
<given-names>Jiali</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhu</surname>
<given-names>Liang</given-names>
</name>
<xref ref-type="corresp" rid="COR1">*</xref>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Li</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qiu</surname>
<given-names>Jun</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China</aff>
<author-notes>
<corresp id="COR1">*To whom correspondence should be addressed: Liang Zhu, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China; Tel: +86-20-87113849; Fax: +86-20-8711384, E-mail:
<email>zhuliang@scut.edu.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>07</day>
<month>6</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<volume>12</volume>
<fpage>479</fpage>
<lpage>490</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>12</day>
<month>4</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013 Dai et al.</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://www.excli.de/documents/assignment_of_rights.pdf">
<license-p>This is an Open Access article distributed under the following Assignment of Rights http://www.excli.de/documents/assignment_of_rights.pdf. You are free to copy, distribute and transmit the work, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://www.excli.de/vol12/Zhu_07062013_proof.pdf">This article is available from http://www.excli.de/vol12/Zhu_07062013_proof.pdf</self-uri>
<abstract>
<p>The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of
<italic>Wedelia prostrata</italic>
and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. </p>
</abstract>
<kwd-group>
<kwd>Wedelia prostrata</kwd>
<kwd>chemical composition</kwd>
<kwd>essential oil</kwd>
<kwd>antioxidant activity</kwd>
<kwd>antimicrobial activity</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Microorganisms and oxidation are the major causes of food deterioration. In particular, lipid peroxidation of food lipid components produced during the manufacturing process and food storage is the main cause food quality deterioration, leading to rancidity and changes in the taste, smell, and colour, and eventually the loss of food quality (Mau et al., 2004[
<xref rid="R15" ref-type="bibr">15</xref>
]). The subsistence and growth of microorganisms in food may also lead to spoilage, toxin formation, and quality deterioration of food products (Celiktas et al., 2007[
<xref rid="R4" ref-type="bibr">4</xref>
]). Moreover, the consumption of spoiled food encompass a wide spectrum of illnesses and is a growing public health problem worldwide. </p>
<p>For many years, different synthetic preservatives have been widely used as antioxidants and antimicrobial agents in the food industry to increase the storage and marketing shelf life of food. However, although synthetic preservatives have been proven highly effective and less expensive than natural substances, these compounds exhibit mutagenic activity against non-target organisms (Tripathi et al., 2007[
<xref rid="R25" ref-type="bibr">25</xref>
]) and cause environmental pollution (Misra and Pavlostathis, 1997[
<xref rid="R17" ref-type="bibr">17</xref>
]). The growing interest in the substitution of synthetic food preservatives has fostered research on the screening of new antioxidants and antimicrobial preservatives from natural sources (Bajpai et al., 2008[
<xref rid="R1" ref-type="bibr">1</xref>
]). At present, interest in the effective use of essential oils from plants in food preservation has been increasing.</p>
<p>The genus
<italic>Wedelia</italic>
comprises approximately 60 species that are distributed in tropical and warm temperate regions, including India, Burma, Ceylon, China, and Japan (Li et al., 2007[
<xref rid="R13" ref-type="bibr">13</xref>
]). Several species are used as folk medicine in many countries to treat a variety of diseases, such as headaches, fevers, infections, and pathologies of the respiratory tract (Li et al., 2007[
<xref rid="R13" ref-type="bibr">13</xref>
]; Miles et al., 1990[
<xref rid="R16" ref-type="bibr">16</xref>
]). Five of these species, namely,
<italic>Wedelia biflora</italic>
,
<italic>W. urticifolia</italic>
,
<italic>W. wallichii</italic>
,
<italic>W. prostrata</italic>
, and
<italic>W. chinensis</italic>
, are found and used as folk medicines in the southern provinces of China.
<italic>W. prostrata </italic>
is mainly distributed in tropical and subtropical areas in Asia. In traditional Chinese medicine,
<italic>W. prostrata</italic>
is used for the treatment of inflammation and ulcer.</p>
<p>A series of studies has demonstrated the potential medicinal effect of essential oils from various
<italic>Wedelia </italic>
species. For example, essential oil from
<italic>W. trilobata</italic>
leaves exhibited antibacterial activity against
<italic>Bacillus subtilis</italic>
and
<italic>Staphylococcus aureus</italic>
(Nirmal et al., 2005[
<xref rid="R18" ref-type="bibr">18</xref>
]); essential oil from
<italic>W. chinensis</italic>
was found effective against gram positive bacteria and fungi; and essential oils from
<italic>W. chinensis</italic>
and
<italic>W. biflora</italic>
exhibited significant antibacterial and antifungal activities when compared to that of standard ciproflacin (Sureshkumar et al., 2007[
<xref rid="R24" ref-type="bibr">24</xref>
]).</p>
<p>To the best of our knowledge, no report on the phytochemical and biological studies of
<italic>W. prostrata</italic>
has been published so far
<italic>. </italic>
The aim of the current study is to determine the chemical composition of the essential oil of
<italic>W. prostrata</italic>
via gas chromatography-flame ionisation detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS), evaluate its antimicrobial activity against pathogens and the antioxidant activity.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Plant material</title>
<p>
<italic>W. prostrata</italic>
plants were collected in the Danxia Mountains, Guangdong Province, China on June 2009, and identified by Dr. Xun Gong. The plants were dried in the shade (at room temperature). The voucher specimen (No. 499993) was deposited in the Kuming Institute of Botany, Chinese Academy of Sciences. </p>
</sec>
<sec>
<title>Chemicals </title>
<p>2,2-Diphenyl-1-picrylhydrazyl (DPPH, 95 %), limonene, α-pinene, α-tocopherol, streptomycin, tetracycline, riboflavin, methionine, and nitro blue tetrazolium were purchased from Sigma-Aldrich (St. Louis, MI, USA). Potassium ferricyanide, trichloroacetic acid, methanol, and all other reagents were of analytical grade and were obtained from Jinhuada Chemical Reagent Co. (Guangzhou, China).</p>
</sec>
<sec>
<title>Isolation of the essential oil </title>
<p>The air-dried plant materials (500 g) of
<italic>W. prostrata</italic>
was chopped and subjected to hydrodistillation for 3 h using a Clevenger type apparatus. The obtained oils were dried over sodium sulphate for 24 h, filtered, and then stored at 4° C in sealed brown glass vials until tested.</p>
</sec>
<sec>
<title>GC-FID analysis </title>
<p>An Agilent HP-6890 gas chromatograph (Agilent Technologies, Palo Alto, CA, USA) with a HP-5 5 % phenylmethylsiloxane capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness) and equipped with an FID detector was used for the GC-FID analysis. Helium gas at a constant flow rate of 1 ml/min was used as the carrier gas. The injector and mass transfer line temperatures were set at 250 and 280 °C, respectively. The essential oil solution (1 μL) in hexane was injected and analysed under the following column conditions: initial column temperature at 40 °C for 1 min, which was then increased to 250 °C at a 3 °C/min heating ramp, and then subsequently kept at 250 °C for 20 min.</p>
</sec>
<sec>
<title>GC-MS analysis </title>
<p>Quantitative and qualitative analysis of the essential oil was performed using a GC-MS 6890-5975 system (Agilent Technologies, Palo Alto, CA, USA) equipped with a HP-5 MS fused silica capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness). For GC-MS detection, an electron ionisation system with a 70 eV ionisation energy was used. Helium gas was used as the carrier gas at a constant flow rate of 1 ml/min. The injector and mass transfer line temperatures were set at 250 and 280 °C, respectively. Essential oil solution (1 μL) in hexane was injected and then analysed under the following column conditions: initial column temperature at 40 °C for 1 min, which was then increased to 250 °C at a 3 °C/min heating ramp, and then subsequently kept at 250 °C for 20 min. The Kovats indices were calculated for all volatile components using a homologous series of n-alkanes (C
<sub>8</sub>
-C
<sub>25</sub>
) on the HP-5 MS column. The major oil components were identified via coinjection with standards (whenever possible) and confirmed through the Kovats indices using the Wiley (V.7.0) and National Institute of Standards and Technology (NIST) V.2.0 GC-MS library. The relative concentration of each compound in the essential oil was quantified based on the peak area integrated in the analysis program.</p>
</sec>
<sec>
<title>Antioxidant activity determination </title>
<sec>
<title>1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity</title>
<p>0.1 ml of 25, 50, 75 and 100 μg/ml essential oil and its main components (limonene and α-pinene) were each mixed with 1 ml of 0.2 mM DPPH (dissolved in methanol). The reaction mixture was incubated for 20 min at 28 °C in a dark environment. The control solution, which contained all the reagents except the sample, was used as a blank. The DPPH radical scavenging activity was determined by measuring the absorbance at 517 nm using a spectrophotometer and calculating using the following equation:</p>
<p>DPPH scavenging effect % = (
<italic>A</italic>
<sub>control</sub>
-
<italic>A</italic>
<sub>sample</sub>
/
<italic>A</italic>
<sub>control</sub>
)×100</p>
<p>where
<italic>A</italic>
<sub>control</sub>
and
<italic>A</italic>
<sub>sample</sub>
are the absorbance of the control sample and the test compound, respectively. The DPPH radical scavenging activity of α-tocopherol was also assayed for comparison.</p>
</sec>
<sec>
<title>Superoxide anion radical scavenging activity </title>
<p>All solutions were prepared in a 0.2 M phosphate buffer (pH 7.4). 0.1 ml of 25, 50, 75 and 100 μg/ml samples were each mixed with 3 ml of the reaction buffer solution (pH 7.4) containing 1.3 μM riboflavin, 0.02 M methionine, and 5.1 μM nitro blue tetrazolium. The reaction solution was illuminated by exposing them to two 30 W fluorescent lamps for 20 min, and the absorbance was measured at 560 nm. The reaction mixture without any test sample was used as the control. The superoxide anion radical scavenging activity (%) was calculated using the equation:</p>
<p>Superoxide anion radical scavenging activity %=(
<italic>A</italic>
<sub>control</sub>
-
<italic>A</italic>
<sub>sample</sub>
/
<italic>A</italic>
<sub>control</sub>
)×100</p>
<p>The superoxide anion radical scavenging activity of α-tocopherol was also assayed for comparison.</p>
</sec>
<sec>
<title>Determination of the reducing power </title>
<p>0.1 ml of 25, 50, 75 and 100 μg/ml samples were each mixed with a phosphate buffer (2.5 ml, 0.2 M, pH 6.6), and potassium ferricyanide (2.5 ml, 1 %), and the resulting mixtures were incubated at 50 °C for 20 min. Trichloroacetic acid (2.5 ml, 10 %) was added to each sample, and the mixtures were centrifuged at 3000 r/min for 10 min. A 5 ml aliquot of the upper layer was mixed with distilled water (5 ml), followed by the addition of ferric chloride (1 ml, 0.1 %). The absorbance was then measured at 700 nm against a control that consisted of all the reagents without the test sample. A higher absorbance would indicate higher reducing power. The reducing power of α-tocopherol was also determined for comparison.</p>
</sec>
</sec>
<sec>
<title>Antimicrobial activity</title>
<sec>
<title>Test microorganisms </title>
<p>The in vitro antimicrobial activities of the essential oil and its main components were evaluated against a panel that included laboratory control strains obtained from the China Centre for Type Culture Collection (CCTCC). These strains are </p>
<p>
<list list-type="bullet">
<list-item>
<p>two Gram-negative bacteria (
<italic>Pseudomonas aeruginosa</italic>
CCTCC AB93066 and
<italic>Escherichia coli</italic>
CCTCC AB91112),</p>
</list-item>
<list-item>
<p>two Gram-positive bacteria (
<italic>Bacillus subtilis</italic>
CCTCC AB92068 and
<italic>Staphylococcus aureus </italic>
CCTCC AB91053), </p>
</list-item>
<list-item>
<p>two yeast strains (
<italic>Hansenula anomala</italic>
CCTCC AY92046 and
<italic>Saccharomy cescerevisiae</italic>
CCTCC AY92042), and </p>
</list-item>
<list-item>
<p>four moulds (
<italic>Aspergillus niger</italic>
CCTCC AF91004,
<italic>Chaetomium globosum</italic>
CCTCC AF 200039,
<italic>Mucor racemosus</italic>
CCTCC AF 93209, and
<italic>Monascus anka</italic>
CCTCC AF93208).</p>
</list-item>
</list>
</p>
<p>All strains were maintained on an agar slant at 4 °C. The bacterial strains were cultured in a Muller-Hinton broth (MHB) at 37 °C for 24 h, whereas the yeast strains were cultured on a Sabouraud dextrose agar (SDA) at 28 °C for 48 h. The fungal strains were cultured on SDA at 28 °C for 120 h prior to testing. </p>
</sec>
</sec>
<sec>
<title>Inhibitory effect via the disc diffusion method</title>
<p>The disc diffusion method was used to determine the antimicrobial activities of the essential oils. Petri plates were prepared by pouring 20 ml MBH or SDA and allowing the solution to solidify. The plates were then dried, and 0.1 ml of the standardised inoculum containing 10
<sup>6</sup>
to 10
<sup>7</sup>
CFU/ml of the bacterial suspension was poured, uniformly spread, and allowed to dry for 5 min. A Whatman No. 1 sterile filter paper disc (6 mm diameter) was impregnated with 1000 μg/disc of the essential oils. Negative controls were prepared using the same solvent employed to dissolve the samples. The standard reference antibiotics, namely, streptomycin and tetracycline (10 μg/disc) were used as the positive controls for the test bacteria. The plates were incubated for bacteria at 37 °C for 24 h, for yeasts at 28 °C for 48 h, and for fungi at 28 °C for 120 h. The antimicrobial activity was evaluated by measuring the diameter of the zones of inhibition against the test organisms. The experiments were repeated in triplicate and the results are expressed as average values. </p>
</sec>
<sec>
<title>Determination of the minimuminhibitory concentration (MIC)</title>
<p>The MICs of the essential oils against the test microorganisms were determined using the broth microdilution method. Dilutions of the essential oils, ranging from 0.25 to 1000 µg/ml, were prepared in MHB or SDA. Exactly 0.5 MacFarland standard suspensions of the test microorganisms were inoculated in the tubes. A control test was also performed using inoculated broth or agar supplemented only with dimethyl sulphoxide under identical conditions, with streptomycin as the reference. The bacteria were incubated at 37 °C for 24 h, the yeast strains at 28 °C for 48 h, and fungi at 28 °C for 120 h. </p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>All tests were performed in triplicate, and the results were calculated as the mean ± SD.</p>
</sec>
</sec>
<sec>
<title>Results and Discussion</title>
<sec>
<title>Chemical composition of the essential oil</title>
<p>The steam distillation of 500 g dried plant material yielded 2.8 ml (0.56 % v/w) greenish oil with a distinct smell. The oil sample was analysed via GC-FID and GC-MS, and the components were identified on the basis of their RI values as well as by comparison of their mass spectra with those reported in literature. The GC-MS analysis of the essential oil of
<italic>W. prostrata</italic>
indicated 70 components representing 99.26 % of the oil (Table 1
<xref ref-type="fig" rid="T1">(Tab. 1)</xref>
). The composition of the essential oil was as follows: 49.03 % monoterpene hydrocarbon fraction, 26.52 % sesquiterpene hydrocarbon fraction, 4.77 % oxygenated monoterpene fraction, 6.15 % oxygenated sesquiterpenoid fraction, 7.20 % phenylpropanoids fraction and 5.59 % others. The main components in the oil were d-limonene (11.38 %) and α-pinene (10.74 %).</p>
<p>Previous reports (Craveiro et al., 1993[
<xref rid="R6" ref-type="bibr">6</xref>
]; Koheil, 2000[
<xref rid="R12" ref-type="bibr">12</xref>
]) on the
<italic>Wedelia </italic>
species showed that monoterpene hydrocarbons are the major compounds in their essential oils. The
<italic> W. paludosa</italic>
oils contain β-pinene (10.3 %), limonene (21.3 %), and γ-muurolene (11.8 %), whereas the major components of the
<italic> W. trilobata </italic>
oils are α-phellandrene (17.4 %) and limonene (16.3 %) (Craveiro et al., 1993[
<xref rid="R6" ref-type="bibr">6</xref>
]). The major components of the essential oils obtained from the flowerheads of
<italic>W. trilobata</italic>
are β-phellandrene (25.65 %), limonene (8.93 %), γ-terpinene (5.90 %), trans-β-caryophyllene (4.83 %) and α-pinene (4.72 %) (Koheil, 2000[
<xref rid="R12" ref-type="bibr">12</xref>
]). The current results indicate that the essential oil of
<italic> W. prostrata</italic>
contains components relatively similar to those of other
<italic>Wedelia</italic>
species
<italic>.</italic>
</p>
</sec>
<sec>
<title>Antioxidant activity </title>
<p>Free radical-scavenging is one of the known mechanisms by which antioxidants inhibit lipid oxidation (Hatano et al., 1989[
<xref rid="R9" ref-type="bibr">9</xref>
]). In addition, scavenging activity on DPPH radicals has been widely used to determine the free radical-scavenging activity. The DPPH radical scavenging activity can be reduced by the hydrogen donating ability (Prasad et al., 2005[
<xref rid="R19" ref-type="bibr">19</xref>
]). Under oxidative stress, the concentration of superoxide radical can dramatically increase in all cells, thereby inducing several pathophysiological processes, because of its transformation into a more reactive species (Wickens, 2001[
<xref rid="R29" ref-type="bibr">29</xref>
]). Therefore, the measurement of the comparative interceptive ability of antioxidant extracts by determining their ability to scavenge the superoxide radical has been proposed (Vani et al., 1997[
<xref rid="R27" ref-type="bibr">27</xref>
]). The superoxide anion scavenging activity may be due to the action of a free hydroxyl group (Siddhuraju et al., 2002[
<xref rid="R20" ref-type="bibr">20</xref>
]). The reducing power, which is associated with and may be a major indicator of antioxidant activity, is widely used to evaluate the antioxidant activity of polyphenols (Hsu et al., 2006[
<xref rid="R10" ref-type="bibr">10</xref>
]). Most nonenzymatic antioxidant activity, such as the scavenging of free radicals and the inhibition of peroxidation, is mediated by redox reactions (Zhu et al., 2002[
<xref rid="R30" ref-type="bibr">30</xref>
]). </p>
<p>The essential oil of
<italic>W. prostrata</italic>
and its main components (limonene and α-pinene) were screened for possible antioxidant activities using three different test systems, namely, the DPPH, superoxide anion, and reducing power assays. The essential oil and its main components exhibited moderate antioxidant activity at all the concentrations tested (Figures 1-3
<xref ref-type="fig" rid="F1">(Fig. 1)</xref>
<xref ref-type="fig" rid="F2">(Fig. 2)</xref>
<xref ref-type="fig" rid="F3">(Fig. 3)</xref>
). The highest percentage of DPPH radical scavenging activity (88.1 %) and superoxide anion scavenging activity (86.2 %) and the highest absorbance of reducing power (0.92) were exhibited by the 100 μg/ml essential oil. The order of antioxidant activity was determined as α-tocopherol > limonene > essential oil > α-pinene. </p>
<p>Previous studies also revealed that α-pinene (Wang et al., 2008[
<xref rid="R28" ref-type="bibr">28</xref>
]) and limonene (Maróstica et al., 2009[
<xref rid="R14" ref-type="bibr">14</xref>
]) possess antioxidant activities, which were confirmed by our results. The current results further show that the antioxidant activity of essential oil can be attributed to the synergistic activities of multiform unsaturated compounds such as limonene and α-pinene.</p>
</sec>
<sec>
<title>Antimicrobial activity</title>
<p>The antimicrobial activity of
<italic>W. prostrata</italic>
essential oil and its main components were evaluated against a set of 10 microorganisms, and their potency were qualitatively and quantitatively assessed by the presence or absence of inhibition zones, zone diameters (Table 2
<xref ref-type="fig" rid="T2">(Tab. 2)</xref>
), and MIC values (Table 3
<xref ref-type="fig" rid="T3">(Tab. 3)</xref>
).</p>
<p>Table 2
<xref ref-type="fig" rid="T2">(Tab. 2)</xref>
shows that the oil has a definite antimicrobial activity against all the test organisms. Limonene and α-pinene also showed considerable antimicrobial activities. In each case, tetracycline showed the highest antimicrobial effect, whereas the essential oil, limonene, and α-pinene were more effective compared to streptomycin. As for the negative control, the concentration of the solvent used in the current study did not affect the growth of the sample strains. </p>
<p>As shown in Table 3
<xref ref-type="fig" rid="T3">(Tab. 3)</xref>
, the essential oil exhibited moderate to high antimicrobial effect against all test microorganisms, with MIC values ranging from 125 to 250 μg/ml. Limonene and α-pinene exhibited high antimicrobial effect, with MIC values ranging from 62.5 to 125 μg/ml.</p>
<p>Earlier papers on the analysis and antibacterial properties of the essential oils of
<italic>W. trilobata </italic>
have shown that they have varying degrees of growth inhibitory effects against some bacteria because of their chemical constituents, including limonene, β-phellandrene, α-phellandrene, γ-terpinene, β-caryophyllene, and α-pinene (Nirmal et al., 2005[
<xref rid="R18" ref-type="bibr">18</xref>
]; Craveiro et al., 1993[
<xref rid="R6" ref-type="bibr">6</xref>
]; Koheil, 2000[
<xref rid="R12" ref-type="bibr">12</xref>
]). The current study shows that the antimicrobial activity of the oils from
<italic>W. prostrata</italic>
could, in part, be associated with its major components (limonene, α-pinene, α-phellandrene, and β-caryophyllene). Limonene has been demonstrated to have bacteriostatic activity against several microorganisms (Bakkali et al., 2008[
<xref rid="R2" ref-type="bibr">2</xref>
]; Sokovic and van Griensven, 2006[
<xref rid="R23" ref-type="bibr">23</xref>
]; Donsì et al., 2011[
<xref rid="R7" ref-type="bibr">7</xref>
]; Singh et al., 2010[
<xref rid="R22" ref-type="bibr">22</xref>
]). Pinene has been previously shown active against many organisms (Bakkali et al., 2008[
<xref rid="R2" ref-type="bibr">2</xref>
]; Sokovic and van Griensven, 2006[
<xref rid="R23" ref-type="bibr">23</xref>
]; Jiang et al., 2011[
<xref rid="R11" ref-type="bibr">11</xref>
]). Pinene can destroy the cellular integrity, thereby inhibit the respiration and ion transport processes. Moreover, pinene can also increase the membrane permeability in yeast cells and isolated mitochondria (Uribe et al., 1985[
<xref rid="R26" ref-type="bibr">26</xref>
]). The antimicrobial activities of α-phellandrene and β-caryophyllene have also been reported (Simic et al., 2002[
<xref rid="R21" ref-type="bibr">21</xref>
]). Our results on the antimicrobial activity of limonene and α-pinene are similar to these reports.</p>
<p>In addition, the components with lower concentrations, such as γ-terpinene, β-phellandrene, β-pinene, camphene,
<italic>p</italic>
-cymene, o-cymene, longifolene, and γ-elemene, may also be contributing to the antimicrobial activity of the oil. Therefore, the synergistic effects of the diverse major and minor components of the essential oils should be taken into consideration to account for the oil biological activity (Burt, 2004[
<xref rid="R3" ref-type="bibr">3</xref>
]). </p>
<p>The mechanism of action of this class of compounds has not been completely elucidated to date; however, these chemical components may be exerting their toxic effects against these microorganisms through the disruption of bacterial or fungal membrane integrity (Filipowicz et al., 2003[
<xref rid="R8" ref-type="bibr">8</xref>
]). Conner and Beuchat (1984[
<xref rid="R5" ref-type="bibr">5</xref>
]) suggested that the antimicrobial activity of the essential oils of herbs and spices or their components could be the result of damage to or disturbance of several enzymatic cell systems, including energy production and synthesis of structural components. </p>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusion</title>
<p>The antioxidative and antimicrobial properties of the essential oils from many plants are of great interest to both the academe and the food, cosmetic, and pharmaceutical industries because of their possible use as natural additives to replace synthetic antimicrobial agents. For the first time, we demonstrate that the essential oil of
<italic>W. prostrata</italic>
exhibits antioxidant activity and successfully inhibits the growth of different pathogens that can cause food spoiling as well as health problems. The results obtained in this study show that the essential oil of
<italic>W. prostrata</italic>
may be a new potential source of natural antioxidants and antimicrobial agents for the food industry. However, further studies need to be conducted to understand the mechanism of the activity and obtain more information on the safety and toxicity of the oil.</p>
</sec>
<sec>
<title>Acknowledgements</title>
<p>The authors are grateful for financially supported by Open Project Program of Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety (201206) and Changshan Municipal Science and Technology Plan (K1203002-21). </p>
</sec>
</body>
<back>
<ref-list>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Bajpai</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dung</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Huh</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr</article-title>
<source>J Food Sci</source>
<year>2008</year>
<volume>73</volume>
<fpage>M314</fpage>
<lpage>M320</lpage>
<pub-id pub-id-type="pmid">19241564</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Bakkali</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Averbeck</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Averbeck</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Idaomar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Biological effects of essential oils – A review</article-title>
<source>Food Chem Toxicol</source>
<year>2008</year>
<volume>46</volume>
<fpage>446</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="pmid">17996351</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Burt</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Essential oil: their antibacterial properties and potential applications in foods-a review</article-title>
<source>Int J Food Microbiol</source>
<year>2004</year>
<volume>94</volume>
<fpage>223</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="pmid">15246235</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Celiktas</surname>
<given-names>OY</given-names>
</name>
<name>
<surname>Kocabas</surname>
<given-names>EEH</given-names>
</name>
<name>
<surname>Bedir</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sukan</surname>
<given-names>FV</given-names>
</name>
<name>
<surname>Ozek</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Baser</surname>
<given-names>KHC</given-names>
</name>
</person-group>
<article-title>Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations</article-title>
<source>Food Chem</source>
<year>2007</year>
<volume>100</volume>
<fpage>553</fpage>
<lpage>559</lpage>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Conner</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Beuchat</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>Effects of essential oils from plants on growth of food spoilage yeasts</article-title>
<source>J Food Sci</source>
<year>1984</year>
<volume>49</volume>
<fpage>429</fpage>
<lpage>434</lpage>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Craveiro</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Matos</surname>
<given-names>FJA</given-names>
</name>
<name>
<surname>Alencar</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>MIL</given-names>
</name>
<name>
<surname>Krush</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>MGV</given-names>
</name>
</person-group>
<article-title>Volatile constituents of two Wedelia species</article-title>
<source>J Essent Oil Res</source>
<year>1993</year>
<volume>5</volume>
<fpage>439–41</fpage>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Donsì</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Annunziata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sessa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods</article-title>
<source>LWT - Food Sci Technol</source>
<year>2011</year>
<volume>44</volume>
<fpage>1908</fpage>
<lpage>1914</lpage>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Filipowicz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kaminski</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kurlenda</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Asztemborska</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Antibacterial and antifungal activity of juniper berry oil and its selected components</article-title>
<source>Phytother Res</source>
<year>2003</year>
<volume>17</volume>
<fpage>227</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">12672151</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Hatano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Edamatsu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hiramatsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yasuhara</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of the interaction of tannins with coexisting substances. VI. Effect of tannins and related polyphenols on superoxide anion radicals and on DPPH</article-title>
<source>Chem Pharm Bull</source>
<year>1989</year>
<volume>37</volume>
<fpage>2016</fpage>
<lpage>2021</lpage>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Hsu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Coupar</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica</article-title>
<source>Food Chem</source>
<year>2006</year>
<volume>98</volume>
<fpage>317</fpage>
<lpage>328</lpage>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical composition and antimicrobial activity of the essential oil of Rosemary</article-title>
<source>Environ Toxicol Pharmacol</source>
<year>2011</year>
<volume>32</volume>
<fpage>63</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">21787731</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Koheil</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Study of the essential oil of the flower-heads of Wedelia trilobata (L.) Hitch</article-title>
<source>J Pharm Sci</source>
<year>2000</year>
<volume>26</volume>
<fpage>288</fpage>
<lpage>293</lpage>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>QW</given-names>
</name>
<name>
<surname>Kiyota</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Structures and biological properties of the chemical constituents from the genus Wedelia</article-title>
<source>Chem Biodivers</source>
<year>2007</year>
<volume>4</volume>
<fpage>823</fpage>
<lpage>836</lpage>
<pub-id pub-id-type="pmid">17510998</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Maróstica</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>TAARE</given-names>
</name>
<name>
<surname>Franchi</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Nowill</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pastore</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Hyslop</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil</article-title>
<source>Food Chem</source>
<year>2009</year>
<volume>116</volume>
<fpage>8</fpage>
<lpage>12</lpage>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Mau</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia</article-title>
<source>Food Chem</source>
<year>2004</year>
<volume>86</volume>
<fpage>25</fpage>
<lpage>31</lpage>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Miles</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Chittawong</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Cotton boll weevil antifeedant activity and antifungal activity (Rhizoctonia solani and Pythium ultimum) of extracts of the stems of Wedelia biflora</article-title>
<source>J Agr Food Chem</source>
<year>1990</year>
<volume>38</volume>
<fpage>1591</fpage>
<lpage>1594</lpage>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Misra</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pavlostathis</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems</article-title>
<source>Appl Microbiol Biot</source>
<year>1997</year>
<volume>47</volume>
<fpage>572</fpage>
<lpage>577</lpage>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Nirmal</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Chavan</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Tambe</surname>
<given-names>VD</given-names>
</name>
<name>
<surname>Jadhav</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Ghogare</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Bhalke</surname>
<given-names>RD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical composition and antimicrobial activity of essential oil of Wedelia trilobata leaves</article-title>
<source>Indian J Nat Prod</source>
<year>2005</year>
<volume>21</volume>
<issue>3</issue>
<fpage>33</fpage>
<lpage>35</lpage>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Prasad</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Divakar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shivamurthy</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Aradhya</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk)</article-title>
<source>J Sci Food Agr</source>
<year>2005</year>
<volume>85</volume>
<fpage>1461</fpage>
<lpage>1468</lpage>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Siddhuraju</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp</article-title>
<source>Food Chem</source>
<year>2002</year>
<volume>79</volume>
<fpage>61</fpage>
<lpage>67</lpage>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Simic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Palic</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Vajs</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Milosavljevic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Djokovic</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Composition and antibacterial activity of Achillea asplenifolia essential oil</article-title>
<source>J Essent Oil Res</source>
<year>2002</year>
<volume>14</volume>
<fpage>76</fpage>
<lpage>78</lpage>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Singh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>PK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene</article-title>
<source>Food Chem Toxicol</source>
<year>2010</year>
<volume>48</volume>
<fpage>1734</fpage>
<lpage>1740</lpage>
<pub-id pub-id-type="pmid">20385194</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Sokovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van Griensven</surname>
<given-names>LJLD</given-names>
</name>
</person-group>
<article-title>Antimicrobial activity of essential oils and their components against the three major pathogens of cultivated button mushroom, Agaricus bisporus</article-title>
<source>Eur J Plant Pathol</source>
<year>2006</year>
<volume>116</volume>
<fpage>211–24</fpage>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Sureshkumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kanagasabail</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sivakumar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chandrasekar</surname>
<given-names>MJN</given-names>
</name>
<name>
<surname>Thiruvenkatasubramaniam</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Thenmozhi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Antimicrobiological studies on different essential oils of Wedelia species (W. chinensis, W. trilobata and W. biflora) and Eclipta alba (Asteraceae)</article-title>
<source>Asian J Chem</source>
<year>2007</year>
<volume>19</volume>
<fpage>4674</fpage>
<lpage>4678</lpage>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Tripathi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kamat</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Modulation of oxidative damage by natural products</article-title>
<source>Food Chem</source>
<year>2007</year>
<volume>100</volume>
<fpage>81–90</fpage>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Uribe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ramirez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Peña</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Effects beta-pinene on yeast membrane functions</article-title>
<source>J Bacteriol</source>
<year>1985</year>
<volume>161</volume>
<fpage>1195–200</fpage>
<pub-id pub-id-type="pmid">3156123</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Vani</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rajani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shishoo</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Antioxidant properties of the ayurvedic formulation triphala and its constituents</article-title>
<source>Int J Pharmacog</source>
<year>1997</year>
<volume>35</volume>
<fpage>313</fpage>
<lpage>317</lpage>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zu</surname>
<given-names>YG</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>YJ</given-names>
</name>
</person-group>
<article-title>Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components</article-title>
<source>Food Chem</source>
<year>2008</year>
<volume>108</volume>
<fpage>1019</fpage>
<lpage>1022</lpage>
<pub-id pub-id-type="pmid">26065766</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Wickens</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Aging and the free radical theory</article-title>
<source>Respir Physiol</source>
<year>2001</year>
<volume>128</volume>
<fpage>379</fpage>
<lpage>391</lpage>
<pub-id pub-id-type="pmid">11718765</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group>
<name>
<surname>Zhu</surname>
<given-names>QT</given-names>
</name>
<name>
<surname>Hackman</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Ensunsa</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Keen</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Antioxidative activities of oolong tea</article-title>
<source>J Agric Food Chem</source>
<year>2002</year>
<volume>50</volume>
<fpage>6929</fpage>
<lpage>6934</lpage>
<pub-id pub-id-type="pmid">12405799</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="T1" position="float">
<label>Table 1</label>
<caption>
<title>Chemical composition of the essential oil of
<italic>Wedelia prostrata</italic>
</title>
</caption>
<graphic xlink:href="EXCLI-12-479-t-001"></graphic>
</fig>
<fig id="T2" position="float">
<label>Table 2</label>
<caption>
<title>Zones of growth inhibition (mm) showing antimicrobial activity for
<italic>W. prostrata</italic>
essential oil and its main components</title>
</caption>
<graphic xlink:href="EXCLI-12-479-t-002"></graphic>
</fig>
<fig id="T3" position="float">
<label>Table 3</label>
<caption>
<title>Minimum inhibitory concentrations (MIC) of the
<italic>W. prostrata</italic>
essential oil and its main components against the growth of microorganisms</title>
</caption>
<graphic xlink:href="EXCLI-12-479-t-003"></graphic>
</fig>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<title>DPPH radical scavenging activity of
<italic>W. prostrata</italic>
essential oil and its main components</title>
</caption>
<graphic xlink:href="EXCLI-12-479-g-001"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<title>Superoxide radical scavenging activity of
<italic>W. prostrata</italic>
essential oil and its main components</title>
</caption>
<graphic xlink:href="EXCLI-12-479-g-002"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<title>Reducing power of
<italic>W. prostrata</italic>
essential oil and its main components</title>
</caption>
<graphic xlink:href="EXCLI-12-479-g-003"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4669986
   |texte=   Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26648809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024