Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review

Identifieur interne : 000396 ( Pmc/Checkpoint ); précédent : 000395; suivant : 000397

Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review

Auteurs : Piyush Mehta [Inde] ; Rishi Shah [Royaume-Uni] ; Sathiyanarayanan Lohidasan [Inde] ; K. R. Mahadik [Inde]

Source :

RBID : PMC:4624361

Abstract

Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward.


Url:
DOI: 10.1016/j.jtcme.2014.11.041
PubMed: 26587392
PubMed Central: 4624361


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4624361

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review</title>
<author>
<name sortKey="Mehta, Piyush" sort="Mehta, Piyush" uniqKey="Mehta P" first="Piyush" last="Mehta">Piyush Mehta</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shah, Rishi" sort="Shah, Rishi" uniqKey="Shah R" first="Rishi" last="Shah">Rishi Shah</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">School of Life Sciences, University of Bradford, Bradford, West Yorkshire, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Bradford, Bradford, West Yorkshire</wicri:regionArea>
<wicri:noRegion>West Yorkshire</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lohidasan, Sathiyanarayanan" sort="Lohidasan, Sathiyanarayanan" uniqKey="Lohidasan S" first="Sathiyanarayanan" last="Lohidasan">Sathiyanarayanan Lohidasan</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahadik, K R" sort="Mahadik, K R" uniqKey="Mahadik K" first="K. R." last="Mahadik">K. R. Mahadik</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26587392</idno>
<idno type="pmc">4624361</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624361</idno>
<idno type="RBID">PMC:4624361</idno>
<idno type="doi">10.1016/j.jtcme.2014.11.041</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">001394</idno>
<idno type="wicri:Area/Pmc/Curation">001392</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000396</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review</title>
<author>
<name sortKey="Mehta, Piyush" sort="Mehta, Piyush" uniqKey="Mehta P" first="Piyush" last="Mehta">Piyush Mehta</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shah, Rishi" sort="Shah, Rishi" uniqKey="Shah R" first="Rishi" last="Shah">Rishi Shah</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">School of Life Sciences, University of Bradford, Bradford, West Yorkshire, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Bradford, Bradford, West Yorkshire</wicri:regionArea>
<wicri:noRegion>West Yorkshire</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lohidasan, Sathiyanarayanan" sort="Lohidasan, Sathiyanarayanan" uniqKey="Lohidasan S" first="Sathiyanarayanan" last="Lohidasan">Sathiyanarayanan Lohidasan</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahadik, K R" sort="Mahadik, K R" uniqKey="Mahadik K" first="K. R." last="Mahadik">K. R. Mahadik</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra</wicri:regionArea>
<wicri:noRegion>Maharashtra</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Traditional and Complementary Medicine</title>
<idno type="eISSN">2225-4110</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, W C" uniqKey="Evans W">W.C. Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Smet, P A" uniqKey="De Smet P">P.A. De Smet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, M" uniqKey="Robinson M">M. Robinson</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivasankari, B" uniqKey="Sivasankari B">B. Sivasankari</name>
</author>
<author>
<name sortKey="Pitchaimani, S" uniqKey="Pitchaimani S">S. Pitchaimani</name>
</author>
<author>
<name sortKey="Anandharaj, M" uniqKey="Anandharaj M">M. Anandharaj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="World Health Organization" uniqKey="World Health Organization">World Health Organization</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanachayangkul, P" uniqKey="Vanachayangkul P">P. Vanachayangkul</name>
</author>
<author>
<name sortKey="Butterweck, V" uniqKey="Butterweck V">V. Butterweck</name>
</author>
<author>
<name sortKey="Frye, R" uniqKey="Frye R">R. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niu, Z" uniqKey="Niu Z">Z. Niu</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F. Chen</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diao, X" uniqKey="Diao X">X. Diao</name>
</author>
<author>
<name sortKey="Ma, Z" uniqKey="Ma Z">Z. Ma</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Tian, Y" uniqKey="Tian Y">Y. Tian</name>
</author>
<author>
<name sortKey="Chen, B" uniqKey="Chen B">B. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rath, K" uniqKey="Rath K">K. Rath</name>
</author>
<author>
<name sortKey="Taxis, K" uniqKey="Taxis K">K. Taxis</name>
</author>
<author>
<name sortKey="Walz, G" uniqKey="Walz G">G. Walz</name>
</author>
<author>
<name sortKey="Gleiter, C" uniqKey="Gleiter C">C. Gleiter</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Heide, L" uniqKey="Heide L">L. Heide</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, C" uniqKey="Kuo C">C. Kuo</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C. Lee</name>
</author>
<author>
<name sortKey="Lin, S" uniqKey="Lin S">S. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, L" uniqKey="Lai L">L. Lai</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J. Lin</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, X" uniqKey="Deng X">X. Deng</name>
</author>
<author>
<name sortKey="Zheng, S" uniqKey="Zheng S">S. Zheng</name>
</author>
<author>
<name sortKey="Gao, G" uniqKey="Gao G">G. Gao</name>
</author>
<author>
<name sortKey="Fan, G" uniqKey="Fan G">G. Fan</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pi, E" uniqKey="Pi E">E. Pi</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Hou, A" uniqKey="Hou A">A. Hou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S. Singh</name>
</author>
<author>
<name sortKey="Wahajuddin" uniqKey="Wahajuddin">Wahajuddin</name>
</author>
<author>
<name sortKey="Tewari, D" uniqKey="Tewari D">D. Tewari</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K. Patel</name>
</author>
<author>
<name sortKey="Jain, G" uniqKey="Jain G">G. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K. Yang</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Tseng, T" uniqKey="Tseng T">T. Tseng</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ireson, C" uniqKey="Ireson C">C. Ireson</name>
</author>
<author>
<name sortKey="Jones, D" uniqKey="Jones D">D. Jones</name>
</author>
<author>
<name sortKey="Orr, S" uniqKey="Orr S">S. Orr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Xin, N" uniqKey="Xin N">N. Xin</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Qi, L" uniqKey="Qi L">L. Qi</name>
</author>
<author>
<name sortKey="Yi, L" uniqKey="Yi L">L. Yi</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X. Wen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Pan, R" uniqKey="Pan R">R. Pan</name>
</author>
<author>
<name sortKey="Liao, Y" uniqKey="Liao Y">Y. Liao</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Chang, Q" uniqKey="Chang Q">Q. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Yuan, B" uniqKey="Yuan B">B. Yuan</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jun, H" uniqKey="Jun H">H. Jun</name>
</author>
<author>
<name sortKey="Yunan, Z" uniqKey="Yunan Z">Z. Yunan</name>
</author>
<author>
<name sortKey="Chao, M" uniqKey="Chao M">M. Chao</name>
</author>
<author>
<name sortKey="Weiyu, W" uniqKey="Weiyu W">W. Weiyu</name>
</author>
<author>
<name sortKey="Dongming, X" uniqKey="Dongming X">X. Dongming</name>
</author>
<author>
<name sortKey="Lijun, D" uniqKey="Lijun D">D. Lijun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tseng, T" uniqKey="Tseng T">T. Tseng</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Bi, K" uniqKey="Bi K">K. Bi</name>
</author>
<author>
<name sortKey="Yu, Z" uniqKey="Yu Z">Z. Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, H" uniqKey="Xie H">H. Xie</name>
</author>
<author>
<name sortKey="Jia, Y" uniqKey="Jia Y">Y. Jia</name>
</author>
<author>
<name sortKey="Tan, Z" uniqKey="Tan Z">Z. Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, G" uniqKey="Ma G">G. Ma</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Ren, J" uniqKey="Ren J">J. Ren</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Cheung, M" uniqKey="Cheung M">M. Cheung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, Y" uniqKey="Du Y">Y. Du</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oufir, M" uniqKey="Oufir M">M. Oufir</name>
</author>
<author>
<name sortKey="Sampath, C" uniqKey="Sampath C">C. Sampath</name>
</author>
<author>
<name sortKey="Butterweck, V" uniqKey="Butterweck V">V. Butterweck</name>
</author>
<author>
<name sortKey="Hamburger, M" uniqKey="Hamburger M">M. Hamburger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, D" uniqKey="Han D">D. Han</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, X" uniqKey="Bai X">X. Bai</name>
</author>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Kano, Y" uniqKey="Kano Y">Y. Kano</name>
</author>
<author>
<name sortKey="Yuan, D" uniqKey="Yuan D">D. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J. Gao</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Makino, T" uniqKey="Makino T">T. Makino</name>
</author>
<author>
<name sortKey="Yuan, D" uniqKey="Yuan D">D. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y. Xie</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
<author>
<name sortKey="Wong, Y" uniqKey="Wong Y">Y. Wong</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Jiang, Z" uniqKey="Jiang Z">Z. Jiang</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoo, H" uniqKey="Yoo H">H. Yoo</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Lim, S" uniqKey="Lim S">S. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, H" uniqKey="Ma H">H. Ma</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="He, T" uniqKey="He T">T. He</name>
</author>
<author>
<name sortKey="Chang, X" uniqKey="Chang X">X. Chang</name>
</author>
<author>
<name sortKey="Pu, X" uniqKey="Pu X">X. Pu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, P" uniqKey="Ying P">P. Ying</name>
</author>
<author>
<name sortKey="Jian Guo, S" uniqKey="Jian Guo S">S. Jian-Guo</name>
</author>
<author>
<name sortKey="Guang Ji, W" uniqKey="Guang Ji W">W. Guang-Ji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, M" uniqKey="Liang M">M. Liang</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, R" uniqKey="Yan R">R. Yan</name>
</author>
<author>
<name sortKey="Ling Ko, N" uniqKey="Ling Ko N">N. Ling Ko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, J" uniqKey="Ge J">J. Ge</name>
</author>
<author>
<name sortKey="You Wei, W" uniqKey="You Wei W">W. You-Wei</name>
</author>
<author>
<name sortKey="Xiao Cong, L" uniqKey="Xiao Cong L">L. Xiao-Cong</name>
</author>
<author>
<name sortKey="Ji Yue, C" uniqKey="Ji Yue C">C. Ji-Yue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, J" uniqKey="Dai J">J. Dai</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Cheng, W" uniqKey="Cheng W">W. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X. Peng</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H L" uniqKey="Li H">H.L. Li</name>
</author>
<author>
<name sortKey="He, J C" uniqKey="He J">J.C. He</name>
</author>
<author>
<name sortKey="Bai, M" uniqKey="Bai M">M. Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
<author>
<name sortKey="Si, D" uniqKey="Si D">D. Si</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Lai, Y" uniqKey="Lai Y">Y. Lai</name>
</author>
<author>
<name sortKey="Cai, Z" uniqKey="Cai Z">Z. Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lou, Y" uniqKey="Lou Y">Y. Lou</name>
</author>
<author>
<name sortKey="Hu, H" uniqKey="Hu H">H. Hu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C. Yu</name>
</author>
<author>
<name sortKey="Sun, W" uniqKey="Sun W">W. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Akao, T" uniqKey="Akao T">T. Akao</name>
</author>
<author>
<name sortKey="Nakamura, N" uniqKey="Nakamura N">N. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, G" uniqKey="Ye G">G. Ye</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Li, Y Y" uniqKey="Li Y">Y.Y. Li</name>
</author>
<author>
<name sortKey="Ren, H" uniqKey="Ren H">H. Ren</name>
</author>
<author>
<name sortKey="Guo, D A" uniqKey="Guo D">D.A. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, N" uniqKey="Song N">N. Song</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Hung, S" uniqKey="Hung S">S. Hung</name>
</author>
<author>
<name sortKey="Chi, C" uniqKey="Chi C">C. Chi</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X. Zheng</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L. Xu</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Chae, Y" uniqKey="Chae Y">Y. Chae</name>
</author>
<author>
<name sortKey="Lee, K" uniqKey="Lee K">K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shao, F" uniqKey="Shao F">F. Shao</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Xie, H" uniqKey="Xie H">H. Xie</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
<author>
<name sortKey="Jiye, A" uniqKey="Jiye A">A. Jiye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shao, F" uniqKey="Shao F">F. Shao</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Tsai, T" uniqKey="Tsai T">T. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C. Li</name>
</author>
<author>
<name sortKey="Wen, X" uniqKey="Wen X">X. Wen</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Qi, L" uniqKey="Qi L">L. Qi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Tradit Complement Med</journal-id>
<journal-id journal-id-type="iso-abbrev">J Tradit Complement Med</journal-id>
<journal-title-group>
<journal-title>Journal of Traditional and Complementary Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub">2225-4110</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26587392</article-id>
<article-id pub-id-type="pmc">4624361</article-id>
<article-id pub-id-type="publisher-id">S2225-4110(14)00055-8</article-id>
<article-id pub-id-type="doi">10.1016/j.jtcme.2014.11.041</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mehta</surname>
<given-names>Piyush</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shah</surname>
<given-names>Rishi</given-names>
</name>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lohidasan</surname>
<given-names>Sathiyanarayanan</given-names>
</name>
<email>pharmsathiya@gmail.com</email>
<xref rid="aff3" ref-type="aff">c</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mahadik</surname>
<given-names>K.R.</given-names>
</name>
<xref rid="aff3" ref-type="aff">c</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra, India</aff>
<aff id="aff2">
<label>b</label>
School of Life Sciences, University of Bradford, Bradford, West Yorkshire, UK</aff>
<aff id="aff3">
<label>c</label>
Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author. Department of Pharmaceutical Chemistry, Bharati Vidyapeeth Deemed University Poona College of Pharmacy, Pune 411 038, Maharashtra, India.
<email>pharmsathiya@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>28</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="collection">
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>1</month>
<year>2015</year>
</pub-date>
<volume>5</volume>
<issue>4</issue>
<fpage>207</fpage>
<lpage>227</lpage>
<history>
<date date-type="received">
<day>26</day>
<month>9</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>12</day>
<month>10</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>11</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014, Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. All rights reserved.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Center for Food and Biomolecules, National Taiwan University</copyright-holder>
<license license-type="CC BY-NC-ND" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<license-p>This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).</license-p>
</license>
</permissions>
<abstract>
<p>Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward.</p>
</abstract>
<abstract abstract-type="graphical">
<title>Graphical abstract</title>
<fig id="undfig1" position="anchor">
<graphic xlink:href="fx1"></graphic>
</fig>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Pharmacokinetics</kwd>
<kwd>Phytoconstituents</kwd>
<kwd>Traditional Chinese medicines (TCM)</kwd>
<kwd>Traditional medicinal systems (TMS)</kwd>
<kwd>ADME</kwd>
</kwd-group>
</article-meta>
</front>
<floats-group>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Pharmacokinetic parameters after oral administration of visnagin.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak plasma concentration (C
<sub>max</sub>
) (ng/mL)</td>
<td align="char">2969</td>
</tr>
<tr>
<td>Time of peak plasma concentration (T
<sub>max</sub>
) (h)</td>
<td align="char">0.33</td>
</tr>
<tr>
<td>Area under the concentration-time curve) (trapezoidal rule) (h × mg/L)</td>
<td align="char">11.9</td>
</tr>
<tr>
<td>Apparent clearance (CL/F) (L/kg)</td>
<td align="char">0.84</td>
</tr>
<tr>
<td>The terminal elimination half-life (h)</td>
<td align="char">2.3</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Pharmacokinetic parameter of 3-
<italic>n</italic>
-butylphthalide after intravenous administration dose 5 mg/kg.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC
<sub>0-6h</sub>
(ng·h/mL)</td>
<td align="char">1140.16</td>
</tr>
<tr>
<td>Apparent volume of distribution (V
<sub>c</sub>
) (L/kg)</td>
<td align="char">1.22</td>
</tr>
<tr>
<td>Half-life (t
<sub>1/2</sub>
) (distribution) (h)</td>
<td align="char">0.098</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(elimination) (h)</td>
<td align="char">2.62</td>
</tr>
<tr>
<td>Clearance (Cl) (L/h kg)</td>
<td align="char">3.67</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl3" position="float">
<label>Table 3</label>
<caption>
<p>Pharmacokinetic parameters of atractylenolide I after oral administration of Atractylodis extract (20 g/kg) to rats (n = 6, mean ± standard deviation).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination rate constant (Ke) (/h)</td>
<td align="char">0.365 ± 0.06</td>
</tr>
<tr>
<td>AUC
<sub>0-T</sub>
(μg h/L)</td>
<td align="char">22.2 ± 1.9</td>
</tr>
<tr>
<td>AUC
<sub>0-∞</sub>
(μg h/L)</td>
<td align="char">22.6 ± 1.8</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.81 ± 0.11</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">7.99 ± 1.2</td>
</tr>
<tr>
<td>V
<sub>c</sub>
(l/kg)</td>
<td align="char">2768.6 ± 751.5</td>
</tr>
<tr>
<td>Cl (l/h/kg)</td>
<td align="char">978.2 ± 117.3</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">1.94 ± 0.27</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; Cl = clearance; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl4" position="float">
<label>Table 4</label>
<caption>
<p>Pharmacokinetic parameters of artemisinin.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD (ng/mL) (Maximum plasma concentration of artemisinin)</td>
<td align="char">240 ± 75</td>
</tr>
<tr>
<td>Mean ± SD (ng/mL × h) (Area under the plasma concentration-time curve)</td>
<td align="char">336 ± 71</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.6 ± 0.2</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">0.9 ± 0.2</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>SD = standard deviation; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl5" position="float">
<label>Table 5</label>
<caption>
<p>Pharmacokinetic parameters after single oral administration of 10 mg/kg standard in female Wister rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>AAI</th>
<th>AAII</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL
<sup>−1</sup>
)</td>
<td>7249.3</td>
<td>77.7</td>
</tr>
<tr>
<td>AUC (ng/mL
<sup>−1</sup>
 min)</td>
<td>716,936.3</td>
<td>31,344.8</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(min)</td>
<td>234.6</td>
<td>800.7</td>
</tr>
<tr>
<td>Rate constant (k) (min
<sup>−1</sup>
)</td>
<td>0.003</td>
<td>0.0009</td>
</tr>
<tr>
<td>Oral clearance (mL/min
<sup>−1</sup>
)</td>
<td>2.9</td>
<td>66.0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AA = aristolochic acid; AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl6" position="float">
<label>Table 6</label>
<caption>
<p>Pharmacokinetic parameters following mangiferin administration (10, 30, and 100 mg/kg, intravenously) (± = 6
<bold>)</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>10 mg/kg</th>
<th>30 mg/kg</th>
<th>100 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (min mg/mL)</td>
<td>122.9617.1</td>
<td>452.5639.8</td>
<td>2424.26196.7
<xref rid="tbl6fna" ref-type="table-fn">a</xref>
</td>
</tr>
<tr>
<td>Half-life of slow distribution phase (t
<sub>1/2β</sub>
) (min)</td>
<td>28.563.5</td>
<td>35.063.5</td>
<td>47.864.1* 1/2,b</td>
</tr>
<tr>
<td>Steady-state volume of distribution (V
<sub>ss</sub>
) (L/kg)</td>
<td>3.060.3</td>
<td>2.560.3</td>
<td>2.060.3 ss</td>
</tr>
<tr>
<td>Cl (mL/min/kg)</td>
<td>90.161 2.6</td>
<td>69.166.5</td>
<td>43.264.3*</td>
</tr>
<tr>
<td>Mean residence time (min)</td>
<td>35.062.52</td>
<td>35.962.8</td>
<td>45.864.8*</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0060">
<p>AUC = area under the concentration-time curve; Cl = clearance.</p>
</fn>
<fn id="tspara0060a">
<p>* Denotes the, significantly different (
<italic>p</italic>
 = 0.05) from the dose of 10 and 30 mg/kg (Student's
<italic>t</italic>
test) and SS denotes the steady-state.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl6fna">
<label>a</label>
<p>Significantly different (
<italic>p</italic>
 = 0.05) from the dose of 10 and 30 mg/kg (Student
<italic>t</italic>
test).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl7" position="float">
<label>Table 7</label>
<caption>
<p>Mean pharmacokinetic parameters of indirubin after intravenous injections at doses of 5.6 and 2.8 mg/kg and intraperitoneal injections at dose of 5.6 mg/kg in rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="3">Doses
<hr></hr>
</th>
</tr>
<tr>
<th>5.6 mg/kg (i.v.)</th>
<th>2.8 mg/kg (i.v.)</th>
<th>5.6 mg/kg (i.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC
<sub>0–N</sub>
(ng h/mL)</td>
<td align="char">308 ± 750.0</td>
<td align="char">130 ± 748.3</td>
<td align="char">25.9 ± 74.9</td>
</tr>
<tr>
<td>AUC
<sub>0–t</sub>
(ng h/mL)</td>
<td align="char">295 ± 745.2</td>
<td align="char">124 ± 7 43.3</td>
<td align="char">22.6 ± 75.2</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">201 ± 723.7</td>
<td align="char">155 ± 717.7</td>
<td align="char">20.87 ± 7.6</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td>0.017</td>
<td>0.017</td>
<td>0.010</td>
</tr>
<tr>
<td>Ke (h
<sup>−1</sup>
)</td>
<td align="char">0.670 ± 70.2</td>
<td align="char">0.6837 ± 0.2</td>
<td align="char">0.6407 ± 0.5</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">1.0307 ± 0.2</td>
<td align="char">1.0207 ± 0.2</td>
<td align="char">1.08070 ± .4</td>
</tr>
<tr>
<td>MRT (h)</td>
<td align="char">1.7507 ± 0.3</td>
<td align="char">1.5107 ± 0 .3</td>
<td align="char">0.7777 ± 1.1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; i.p. = intraperitoneal; i.v. = intravenous; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl8" position="float">
<label>Table 8</label>
<caption>
<p>The main pharmacokinetic parameters of CXB after a single intravenous administration of 5.0 mg/kg CXB in six male rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vc (L/kg)</td>
<td align="char">2.60 ± 1.88</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
pi (h)</td>
<td align="char">0.109 ± 0.058</td>
</tr>
<tr>
<td>Half-life of rapid distribution phase (t
<sub>1/2 α</sub>
) (h)</td>
<td align="char">0.503 ± 0.173</td>
</tr>
<tr>
<td>t
<sub>1/2 β</sub>
(h)</td>
<td align="char">8.17 ± 0.99</td>
</tr>
<tr>
<td>K
<sub>12</sub>
(1/h)</td>
<td align="char">1.38 ± 1.36</td>
</tr>
<tr>
<td>k
<sub>21</sub>
(1/h)</td>
<td align="char">2.24 ± 1.77</td>
</tr>
<tr>
<td>k
<sub>13</sub>
(1/h)</td>
<td align="char">1.17 ± 0.178</td>
</tr>
<tr>
<td>k
<sub>31</sub>
(1/h)</td>
<td align="char">0.113 ± 0.021</td>
</tr>
<tr>
<td>k
<sub>10</sub>
(1/h)</td>
<td align="char">4.53 ± 1.65</td>
</tr>
<tr>
<td>Cl (L/kg/h)</td>
<td align="char">9.52 ± 1.73</td>
</tr>
<tr>
<td>AUC
<sub>0–t</sub>
(ng h/mL)</td>
<td align="char">566.0 ± 76.4</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(ng h/mL)</td>
<td align="char">583.1 ± 79.7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; Cl = clearance.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl9" position="float">
<label>Table 9</label>
<caption>
<p>Selected pharmacokinetics parameters of nobiletin in male Sprague Dawley rats following oral administration of nobiletin at 50 mg/kg (n = 3/time point
<bold>)</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Plasma</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC
<sub>(0–t)</sub>
(μg·h/mL)</td>
<td align="char">7.49</td>
<td align="char">20.66</td>
</tr>
<tr>
<td>AUC
<sub>(0–∞)</sub>
(μg·h/mL)</td>
<td align="char">7.84</td>
<td align="char">23.20</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg·h/mL)</td>
<td align="char">1.78</td>
<td align="char">4.20</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">1.00</td>
<td align="char">1. 00</td>
</tr>
<tr>
<td>Kel (1/h)</td>
<td align="char">0.39</td>
<td align="char">0.06</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">1.80</td>
<td align="char">11.42</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration; Kel = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl10" position="float">
<label>Table 10</label>
<caption>
<p>Pharmacokinetic parameters of catechin, epicatechin, and epicatechin gallate after oral administration of 15.25 g kg
<sup>−1</sup>
<italic>C. songaricum</italic>
extract (n = 8, mean ± standard deviation).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Catechin</th>
<th>Epicatechin</th>
<th>Epicatechin gallate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRT
<sub>0–12</sub>
(h)</td>
<td align="char">3.98 ± 0.33</td>
<td align="char">4.54 ± 0.66</td>
<td align="char">3.85 ± 0.78</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
2α(h)</td>
<td align="char">0.33 ± 0.12</td>
<td align="char">0.60 ± 0.34</td>
<td align="char">0.51 ± 0.36</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
2β(h)</td>
<td align="char">6.38 ± 4.20</td>
<td align="char">34.86 ± 25.30</td>
<td align="char">4.70 ± 4.24</td>
</tr>
<tr>
<td>AUC
<sub>0–12</sub>
(ng h/mL)</td>
<td align="char">109.7 ± 57.0</td>
<td align="char">67.66 ± 16.99</td>
<td align="char">72.44 ± 49.93</td>
</tr>
<tr>
<td>AUC
<sub>0-∞</sub>
(ng h/mL)</td>
<td align="char">154.0 ± 97.2</td>
<td align="char">214.0 ± 161.7</td>
<td align="char">91.01 ± 67.99</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; MRT = mean residence time.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl11" position="float">
<label>Table 11</label>
<caption>
<p>Pharmacokinetic data after curcumin administration (10 mg/kg intravenously and 500 mg/kg by mouth) in rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="2">Curcumin
<hr></hr>
</th>
</tr>
<tr>
<th>10 mg/kg, i.v.</th>
<th>500 mg/kg, p.o.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (min μg/mL)</td>
<td align="char">7.2 ± 1.2</td>
<td align="char">3.6 ± 0.6</td>
</tr>
<tr>
<td>t
<sub>1/2 β</sub>
(min)</td>
<td align="char">28.1 ± 5.6</td>
<td align="char">44.5 ± 7.5</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">0.36 ± 0.05</td>
<td align="char">0.06 ± 0.01</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td></td>
<td align="char">41.7 ± 5.4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; i.v. = intravenous; p.o. = by mouth; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl12" position="float">
<label>Table 12</label>
<caption>
<p>Pharmacokinetic parameters of loureirin B after oral administration of longxuejie (16 g/kg) to rats (
<italic>n</italic>
 = 6, mean ± standard deviation.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kel (/h)</td>
<td align="char">0.365 ± 0.06</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">1.94 ± 0.27</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.81 ± 0.11</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">7.99 ± 1.2</td>
</tr>
<tr>
<td>AUC
<sub>0–T</sub>
(μg h/L)</td>
<td align="char">22.2 ± 1.9</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(μg h/L)</td>
<td align="char">22.6 ± 1.8</td>
</tr>
<tr>
<td>Cl (l/h/kg)</td>
<td align="char">978.2 ± 117.3</td>
</tr>
<tr>
<td>Vc (l/kg)</td>
<td align="char">2768.6 ± 751.5.</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; Cl = clearance; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl13" position="float">
<label>Table 13</label>
<caption>
<p>Pharmacokinetic parameters of protodioscin in rats after intravenous administrations.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="3">Dose (mg/kg)
<hr></hr>
</th>
</tr>
<tr>
<th>0.5</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2</sub>
(min)</td>
<td align="char">78 ± 12</td>
<td align="char">58 ± 11</td>
<td align="char">27 ± 19</td>
</tr>
<tr>
<td>kel (1/min)</td>
<td align="char">0.0089 ± 0.0056</td>
<td align="char">0.012 ± 0.042</td>
<td align="char">0.029 ± 0.009</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">70 ± 9</td>
<td align="char">116 ± 15</td>
<td align="char">378 ± 10</td>
</tr>
<tr>
<td>Vss (mL/kg)</td>
<td align="char">71.6 ± 13</td>
<td align="char">49 ± 21</td>
<td align="char">23.5 ± 9</td>
</tr>
<tr>
<td>Cl (mL/min/kg)</td>
<td align="char">0.637 ± 0.19</td>
<td align="char">0.598 ± 0.05</td>
<td align="char">0.681 ± 0.06</td>
</tr>
<tr>
<td>AUC
<sub>0-t</sub>
(μg min/mL)</td>
<td align="char">732 ± 82</td>
<td align="char">1406 ± 107</td>
<td align="char">4196 ± 245</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(μg min/mL)</td>
<td align="char">785 ± 94</td>
<td align="char">1673 ± 195</td>
<td align="char">4406 ± 209</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; Cl = clearance; C
<sub>max</sub>
 = peak plasma concentration; Vss = volume of distribution at steady state.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl14" position="float">
<label>Table 14</label>
<caption>
<p>Pharmacokinetic parameters of the four saponins after oral administration of 2 g extraction/kg, each value represents the mean ± standard deviation (
<italic>n</italic>
 = 5).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Compound</th>
<th>C
<sub>max</sub>
<sup>−1</sup>
(μg/mL)</th>
<th>C
<sub>max</sub>
<sup>−2</sup>
(μg/mL)</th>
<th>T
<sub>max</sub>
<sup>−1</sup>
(h)</th>
<th>T
<sub>max</sub>
<sup>−2</sup>
(h)</th>
<th>AUC
<sub>0−t</sub>
(μg/h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macranthoidin B</td>
<td align="char">1.39</td>
<td align="char">1.30</td>
<td>5</td>
<td align="char">18</td>
<td align="char">22.79</td>
</tr>
<tr>
<td>Macranthoidin A</td>
<td align="char">1.88</td>
<td align="char">2.35</td>
<td>5</td>
<td align="char">18</td>
<td align="char">39.01</td>
</tr>
<tr>
<td>Dipsacoside B</td>
<td align="char">1.73</td>
<td align="char">2.20</td>
<td>5</td>
<td align="char">18</td>
<td align="char">39.62</td>
</tr>
<tr>
<td>Macranthoside B</td>
<td align="char">0.10</td>
<td align="char">0.64</td>
<td></td>
<td align="char">18</td>
<td align="char">19.52</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl15" position="float">
<label>Table 15</label>
<caption>
<p>Pharmacokinetic parameters of forsythiaside in rats following intravenous (20 mg/kg) and oral (100 mg/kg) administration.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="2">The route of dosing
<hr></hr>
</th>
</tr>
<tr>
<th>i.v.</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td></td>
<td>122.2 ± 45.4</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td>0.0</td>
<td>20.0 ± 0.0</td>
</tr>
<tr>
<td>Initial plasma concentration (C
<sub>0</sub>
) (μg/mL)</td>
<td>64.2 ± 36.1</td>
<td></td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
, λz (min) terminal elimination half-life</td>
<td>76.8 ± 26.5</td>
<td>74.7 ± 13.3</td>
</tr>
<tr>
<td>AUC
<sub>0–t</sub>
(μg min/mL)</td>
<td>570.5 ± 69.4</td>
<td>13.9 ± 5.2</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(μg min/mL)</td>
<td>570.8 ± 69.2</td>
<td>14.6 ± 5.7</td>
</tr>
<tr>
<td>CL/F (mL/(min kg)</td>
<td>35.5 ± 4.2</td>
<td>39.4 ± 15.9</td>
</tr>
<tr>
<td>Volume of distribution (Vd), λz/F (L/kg)</td>
<td>4.0 ± 1.8</td>
<td>4.2 ± 1.9</td>
</tr>
<tr>
<td>Absolute bioavailability (F) (%)</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0150">
<p>All data are expressed as mean ± standard deviation (n = 5).</p>
</fn>
<fn id="tspara0155">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; i.v. = intravenous; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent plasma clearance.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl16" position="float">
<label>Table 16</label>
<caption>
<p>Pharmacokinetic parameters obtained by analyzing plasma samples after administration of 10 mg/kg
<italic>Flos Lonicerae</italic>
extract to rabbits (
<italic>n</italic>
 = 4).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (μg min/mL)</td>
<td>140 ± 65.9</td>
</tr>
<tr>
<td>Area under first moment curve (AUMC) (μg min
<sup>2</sup>
/mL)</td>
<td>2.80 × 10
<sup>4</sup>
 ± 1.73 × 10
<sup>4</sup>
</td>
</tr>
<tr>
<td>MRT (min)</td>
<td>190 ± 38.3</td>
</tr>
<tr>
<td>Variance of the mean residence time (VRT) (min.min)</td>
<td>1.28 × 10
<sup>4</sup>
 ± 2.66 × 10
<sup>3</sup>
</td>
</tr>
<tr>
<td>Kel (L/min)</td>
<td>0.0130 ± 0.0023</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td>34.7 ± 1.09</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td>0.839 ± 0.350</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; Kel = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl17" position="float">
<label>Table 17</label>
<caption>
<p>The main pharmacokinetic parameters of isorhamnetin in rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>GBE</th>
<th>GBP</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ke (1/h)</td>
<td align="char">0.0321</td>
<td align="char">0.1135</td>
<td align="char">0.0644</td>
</tr>
<tr>
<td>Absorption rate constant (Ka) (1/h)</td>
<td align="char">0.2034</td>
<td align="char">1.0512</td>
<td align="char">0.6374</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">7.21</td>
<td align="char">4.32</td>
<td align="char">6.16</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">195.96</td>
<td align="char">672.29</td>
<td align="char">291.57</td>
</tr>
<tr>
<td>AUC (0∼T) (ng/h/mL)</td>
<td align="char">1153.66</td>
<td align="char">2722.37</td>
<td align="char">1738.889</td>
</tr>
<tr>
<td>MRT (0∼T) (h)</td>
<td align="char">6.3332</td>
<td align="char">5.1331</td>
<td align="char">5.3233</td>
</tr>
<tr>
<td>CL/F(s) (ng/h/(ng/mL))</td>
<td align="char">0.00022</td>
<td align="char">0.00037</td>
<td align="char">0.00041</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; GBE = 
<italic>Ginkgo biloba</italic>
extract; GBP = 
<italic>G. biloba</italic>
extract phospholipid complexes; GBS = 
<italic>G. biloba</italic>
extract solid dispersions; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = Apparent clearance; Ke = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl18" position="float">
<label>Table 18</label>
<caption>
<p>The main pharmacokinetic parameters of quercetin in rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>GBE</th>
<th>GBP</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ke (1/h)</td>
<td align="char">0.0541</td>
<td align="char">0.1909</td>
<td align="char">0.1124</td>
</tr>
<tr>
<td>Ka (1/h)</td>
<td align="char">0.6376</td>
<td align="char">1.4162</td>
<td align="char">1.3592</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">1.21</td>
<td align="char">1.02</td>
<td align="char">0.63</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">179.21</td>
<td align="char">724.89</td>
<td align="char">419.02</td>
</tr>
<tr>
<td>AUC (0∼T) (ng/h/mL)</td>
<td align="char">1368.26</td>
<td align="char">3321.05</td>
<td align="char">2841.63</td>
</tr>
<tr>
<td>MRT (0∼T) (h)</td>
<td align="char">5.4791</td>
<td align="char">4.1442</td>
<td align="char">4.6633</td>
</tr>
<tr>
<td>CL/F(s) (ng/h/(ng/mL))</td>
<td align="char">0.0015</td>
<td align="char">0.0033</td>
<td align="char">0.0038</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; GBE = 
<italic>Ginkgo biloba</italic>
extract; GBP = 
<italic>G. biloba</italic>
extract phospholipid complexes; GBS = 
<italic>G. biloba</italic>
extract solid dispersions; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = Apparent clearance; Ke = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl19" position="float">
<label>Table 19</label>
<caption>
<p>The main pharmacokinetic parameters of kaempferol in rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>GBE</th>
<th>GBP</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ke (1/h)</td>
<td align="char">0.1641</td>
<td align="char">0.3412</td>
<td align="char">0.2875</td>
</tr>
<tr>
<td>Ka (1/h)</td>
<td align="char">0.2029</td>
<td align="char">0.8891</td>
<td align="char">0.5570</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">6.32</td>
<td align="char">5.83</td>
<td align="char">1.33</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">180.23</td>
<td align="char">323.56</td>
<td align="char">280.54</td>
</tr>
<tr>
<td>AUC (0∼T) (ng/h/mL)</td>
<td align="char">1139.59</td>
<td align="char">2228.21</td>
<td align="char">1630.94</td>
</tr>
<tr>
<td>MRT (0∼T) (h)</td>
<td align="char">6.1712</td>
<td align="char">5.5662</td>
<td align="char">5.3033</td>
</tr>
<tr>
<td>CL/F(s) (ng/h/(ng/mL))</td>
<td align="char">0.0013</td>
<td align="char">0.0028</td>
<td align="char">0.0017</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; GBE = 
<italic>Ginkgo biloba</italic>
extract; GBP = 
<italic>G. biloba</italic>
extract phospholipid complexes; GBS = 
<italic>G. biloba</italic>
extract solid dispersions; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent clearance; Ka = absorption rate constant and Ke = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl20" position="float">
<label>Table 20</label>
<caption>
<p>Estimated pharmacokinetic data on geniposide in rat blood following geniposide administration (10, 30, and 100 mg kg
<sup>−1</sup>
, intravenously).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="2">Geniposide 10 mg/kg
<sup>−1</sup>
<hr></hr>
</th>
<th colspan="2">Geniposide 30 mg/kg
<sup>−1</sup>
<hr></hr>
</th>
<th colspan="2">Geniposide 100 mg/kg
<sup>−1</sup>
<hr></hr>
</th>
</tr>
<tr>
<th>With out acupuncture</th>
<th>With acupuncture</th>
<th>Without acupuncture</th>
<th>With acupuncture</th>
<th>Without acupuncture</th>
<th>With acupuncture</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7">A. Blood</td>
</tr>
<tr>
<td>AUC (min μgml
<sup>−1</sup>
)</td>
<td align="char">417 ± 17</td>
<td align="char">486 ± 59</td>
<td>1102 ± 32</td>
<td>1235 ± 128</td>
<td>4759 ± 601</td>
<td>4233 ± 411</td>
</tr>
<tr>
<td>MRT (min)</td>
<td align="char">15 ± 1</td>
<td align="char">15 ± 1</td>
<td>18 ± 1</td>
<td>17 ± 2</td>
<td>17 ± 2</td>
<td>17 ± 2</td>
</tr>
<tr>
<td>Cl (ml min
<sup>−1</sup>
 kg
<sup>−1</sup>
)</td>
<td align="char">24 ± 1</td>
<td align="char">22 ± 2</td>
<td>27 ± 1</td>
<td>26 ± 3</td>
<td>23 ± 3</td>
<td>25 ± 2</td>
</tr>
<tr>
<td colspan="7">B. Liver</td>
</tr>
<tr>
<td>AUC (min μgml
<sup>−1</sup>
)</td>
<td align="char">550 ± 107</td>
<td align="char">637 ± 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT (min)</td>
<td align="char">16 ± 2</td>
<td align="char">19 ± 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="7">C. Bile</td>
</tr>
<tr>
<td>AUC (min μgml
<sup>−1</sup>
)</td>
<td align="char">1039 ± 136</td>
<td align="char">1001 ± 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT (min)</td>
<td align="char">37 ± 2</td>
<td align="char">39 ± 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC liver/AUC blood</td>
<td align="char">1.34 ± 0.27</td>
<td align="char">1.41 ± 0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC bile/AUC blood</td>
<td align="char">2.50 ± 0.33</td>
<td align="char">2.10 ± 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0205">
<p>Data are expressed as mean ± standard error of the mean from six individual micro-dialysis experiments at each dose treatment.</p>
</fn>
<fn id="tspara0210">
<p>AUC = area under the concentration-time curve; Cl = clearance; MRT = mean residence time.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl21" position="float">
<label>Table 21</label>
<caption>
<p>Pharmacokinetic parameters of HEDT-Glu Following after intravenous administration 13.2 mg·kg
<sup>−1</sup>
HEDT-Glu in rats (
<italic>n</italic>
 = 6).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td align="char">16.04 ± 3.19 μ g·h·mL
<sup>−1</sup>
.</td>
</tr>
<tr>
<td>Elimination half-life at the α phases (t
<sub>1/2</sub>
,a)</td>
<td align="char">0.06 ± 0.01 h</td>
</tr>
<tr>
<td>Elimination half-life at the β phase (t
<sub>1/2</sub>
,b) phases</td>
<td align="char">1.27 ± 0.31 h</td>
</tr>
<tr>
<td>Ke</td>
<td align="char">9.78 ± 1.61 h
<sup>−1</sup>
</td>
</tr>
<tr>
<td>CL</td>
<td align="char">0.85 ± 0.17 l·kg
<sup>−1</sup>
·h
<sup>−1</sup>
.</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; CL = clearance; Ke = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl22" position="float">
<label>Table 22</label>
<caption>
<p>Pharmacokinetic parameter of helicid after oral administration of a single dose of 100 mg.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
(μ g/L)</td>
<td>10.6 ± 3.11</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td>1.08 ± 0.47</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td>5.27 ± 0.89</td>
</tr>
<tr>
<td>AUC
<sub>0−24</sub>
(μ g h/L)</td>
<td>37.25 ± 5.33</td>
</tr>
<tr>
<td>AUC
<sub>0−∞</sub>
(μ g h/L)</td>
<td>40.34 ± 6.04</td>
</tr>
<tr>
<td>F (%)</td>
<td>48.34 in rats and 22.85 in dogs</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration; t
<sub>1/2</sub>
 = half life; F = absolute bioavailability.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl23" position="float">
<label>Table 23</label>
<caption>
<p>Pharmacokinetic parameters for VGL and VRH in SD rats (mean ± standard deviation,
<italic>n</italic>
 = 6) after a single intravenous administration of Hawthorn leaves flavonoids.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pharmacokinetic parameter</th>
<th colspan="3">VGL
<hr></hr>
</th>
<th colspan="3">VRH
<hr></hr>
</th>
</tr>
<tr>
<th>0.61 mg/kg</th>
<th>1.22 mg/kg</th>
<th>2.45 mg/kg</th>
<th>1.40 mg/kg</th>
<th>2.80 mg/kg</th>
<th>5.60 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2</sub>
α (h)</td>
<td align="char">0.028 ± 0.002</td>
<td align="char">0.029 ± 0.006</td>
<td align="char">0.031 ± 0.003</td>
<td align="char">0.029 ± 0.002</td>
<td align="char">0.03 ± 0.005</td>
<td align="char">0.033 ± 0.004</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
β (h)</td>
<td align="char">0.251 ± 0.004</td>
<td align="char">0.25 ± 0.037</td>
<td align="char">0.265 ± 0.006</td>
<td align="char">0.25 ± 0.01</td>
<td align="char">0.246 ± 0.035</td>
<td align="char">0.26 ± 0.006</td>
</tr>
<tr>
<td>Half-life of elimination phase (t
<sub>1/2</sub>
γ) (h)</td>
<td align="char">2.671 ± 0.087</td>
<td align="char">2.416 ± 0.137</td>
<td align="char">2.373 ± 0.068</td>
<td align="char">2.325 ± 0.163</td>
<td align="char">2.273 ± 0.095</td>
<td align="char">2.176 ± 0.051</td>
</tr>
<tr>
<td>Apparent volumes of distribution of the central compartments (V1) (L/kg)</td>
<td align="char">0.021 ± 0.004</td>
<td align="char">0.024 ± 0.01</td>
<td align="char">0.024 ± 0.005</td>
<td align="char">0.020 ± 0.006</td>
<td align="char">0.022 ± 0.008</td>
<td align="char">0.022 ± 0.003</td>
</tr>
<tr>
<td>CL (L/h/kg)</td>
<td align="char">0.096 ± 0.013</td>
<td align="char">0.101 ± 0.014</td>
<td align="char">0.097 ± 0.010</td>
<td align="char">0.094 ± 0.01</td>
<td align="char">0.0932 ± 0.013</td>
<td align="char">0.089 ± 0.01</td>
</tr>
<tr>
<td>AUC
<sub>(0−t)</sub>
(mg h/L)</td>
<td align="char">4.492 ± 0.54</td>
<td align="char">9.337 ± 1.215</td>
<td align="char">20.891 ± 2.489</td>
<td align="char">10.892 ± 1.168</td>
<td align="char">23.766 ± 3.447</td>
<td align="char">51.71 ± 6.504</td>
</tr>
<tr>
<td>AUC
<sub>(0−∞)</sub>
(mg h/L)</td>
<td align="char">5.60 ± 0.778</td>
<td align="char">10.578 ± 1.507</td>
<td align="char">21.605 ± 2.459</td>
<td align="char">12.664 ± 1.387</td>
<td align="char">26.324 ± 4.238</td>
<td align="char">53.984 ± 6.615</td>
</tr>
<tr>
<td>MRT
<sub>(0−t)</sub>
(h)</td>
<td align="char">1.268 ± 0.</td>
<td align="char">1.478 ± 0.032</td>
<td align="char">1.73 ± 0.018</td>
<td align="char">1.212 ± 0.016</td>
<td align="char">1.45 ± 0.05</td>
<td align="char">1.668 ± 0.012</td>
</tr>
<tr>
<td>MRT
<sub>(0−∞)</sub>
(h)</td>
<td align="char">2.543 ± 0.225 013</td>
<td align="char">2.269 ± 0.096</td>
<td align="char">2.18 ± 0.054</td>
<td align="char">2.123 ± 0.215</td>
<td align="char">2.142 ± 0.108</td>
<td align="char">2.11 ± 0.071</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; MRT = mean residence time.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl24" position="float">
<label>Table 24</label>
<caption>
<p>Pharmacokinetic parameters were calculated with two-compartmental and/or noncompartmental approach. Absolute bioavailability (
<italic>F</italic>
) was calculated as the ratio of the dose-normalized
<italic>AUC</italic>
<sub>0→∞</sub>
after i.p. injection (10 or 20 mg/kg) to that after bolus intravenous injection (5 mg/kg) of B12H.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pharmacokinetic parameters</th>
<th colspan="3">Route of administration
<hr></hr>
</th>
</tr>
<tr>
<th colspan="2">Intravenous
<hr></hr>
</th>
<th>Intraperitoneal
<hr></hr>
</th>
</tr>
<tr>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
<th>20 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ z (L/min)</td>
<td align="char">0.0050 ± 0.0005</td>
<td align="char">0.0045 ± 0.0009</td>
<td align="char">0.0059 ± 0.0008</td>
</tr>
<tr>
<td>AUC
<sub>0→t</sub>
(min μg/mL)</td>
<td align="char">62.62 ± 5.47</td>
<td align="char">96.15 ± 20.67</td>
<td align="char">219.92 ± 8.78</td>
</tr>
<tr>
<td>AUC
<sub>0→∞</sub>
(min μg/mL)</td>
<td align="char">82.50 ± 8.55</td>
<td align="char">125.73 ± 28.92</td>
<td align="char">266.12 ± 13.14</td>
</tr>
<tr>
<td>MRT (h)</td>
<td align="char">2.67 ± 0.18</td>
<td align="char">3.84 ± 0.37</td>
<td align="char">3.14 ± 0.37</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td></td>
<td align="char">0.93 ± 0.23</td>
<td align="char">1.91 ± 0.29</td>
</tr>
<tr>
<td>t
<sub>max</sub>
(min)</td>
<td></td>
<td align="char">9.33 ± 6.25</td>
<td align="char">4.75 ± 2.36</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">2.35 ± 0.29</td>
<td align="char">2.63 ± 0.49</td>
<td align="char">1.99 ± 0.29</td>
</tr>
<tr>
<td>CL (L/(min kg))</td>
<td align="char">0.061 ± 0.006</td>
<td align="char">0.055 ± 0.016</td>
<td align="char">0.093 ± 0.005</td>
</tr>
<tr>
<td>Vd (L/kg)</td>
<td align="char">12.35 ± 1.24</td>
<td align="char">12.09 ± 1.72</td>
<td align="char">16.06 ± 1.86</td>
</tr>
<tr>
<td>F (%)</td>
<td></td>
<td>76.2</td>
<td>80.7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; MRT = mean residence time; C
<sub>max</sub>
 = maximum blood concentration; t
<sub>max</sub>
 = time to peak concentration; t
<sub>1/2</sub>
 = elimination half-life; Vd = the volume of distribution; CL = total blood clearance; F = absolute bioavailability.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl25" position="float">
<label>Table 25</label>
<caption>
<p>Pharmacokinetic parameters of the four diterpenoids in six rats plasma after single oral administration of
<italic>I. rubescens</italic>
extract 10 mL/kg (n = 6).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pharmacokinetic parameter</th>
<th colspan="4">Compound
<hr></hr>
</th>
</tr>
<tr>
<th>Lasiodonin</th>
<th>Oridonin</th>
<th>Ponicidin</th>
<th>Rabdoternin A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
(ng/mL) (means ± SD)</td>
<td align="char">1300.717 ± 365.53</td>
<td align="char">1916.333 ± 307.20</td>
<td align="char">1582.383 ± 307.20</td>
<td align="char">385.011 ± 58.35</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td>105</td>
<td>105</td>
<td>120</td>
<td>105</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(min) (means ± SD)</td>
<td align="char">40.984 ± 9.12</td>
<td align="char">45.147 ± 11.42</td>
<td align="char">40.269 ± 9.05</td>
<td align="char">58.04 ± 12.02</td>
</tr>
<tr>
<td>K (1/min) (means ± SD)</td>
<td align="char">0.0177 ± 0.0045</td>
<td align="char">0.0161 ± 0.0037</td>
<td align="char">0.0179 ± 0.0035</td>
<td align="char">0.0124 ± 0.0024</td>
</tr>
<tr>
<td>AUC
<sub>0–t</sub>
(ng/min/mL) (means ± SD)</td>
<td align="char">96990.82 ± 26493.23</td>
<td align="char">142768.30 ± 34344.80</td>
<td align="char">115004.70 ± 15237.04</td>
<td align="char">28958.63 ± 5530.37</td>
</tr>
<tr>
<td>AUC
<sub>0–1</sub>
(ng/min/mL)
<break></break>
(means ± SD)</td>
<td align="char">97916.68 ± 5348.35</td>
<td align="char">144527.30 ± 33606.69</td>
<td align="char">116425.80 ± 15969.54</td>
<td align="char">29522.15 ± 5348.35</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; SD = standard deviation; Cmax = maximum blood concentration; Tmax = time to peak concentration; t1/2 = half-life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl26" position="float">
<label>Table 26</label>
<caption>
<p>Lower limit of quantification and limit of detection for given diterpenoids compounds.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Compound</th>
<th>LLOQ (ng/mL)</th>
<th>LOD (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasiodonin</td>
<td align="char">2.24</td>
<td align="char">0.540</td>
</tr>
<tr>
<td>Oridonin</td>
<td align="char">4.92</td>
<td align="char">0.826</td>
</tr>
<tr>
<td>Ponicidin</td>
<td align="char">5.32</td>
<td align="char">0.736</td>
</tr>
<tr>
<td>Rabdotemin A</td>
<td align="char">1.36</td>
<td align="char">0.432</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tbl27" position="float">
<label>Table 27</label>
<caption>
<p>Pharmacokinetic parameters after a single intravenous dose of 2 mg/kg indolinone in rats (n = 4).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>0</sub>
(ng/mL)</td>
<td align="char">5205</td>
<td align="char">2232</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(min)</td>
<td align="char">4.30</td>
<td align="char">0.14</td>
</tr>
<tr>
<td>Ke (1/h)</td>
<td align="char">9.53</td>
<td align="char">0.21</td>
</tr>
<tr>
<td>AUC
<sub>0–last</sub>
(ng h/mL)</td>
<td align="char">561</td>
<td align="char">166</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(ng h/mL)</td>
<td align="char">568</td>
<td align="char">162</td>
</tr>
<tr>
<td>MRT (min)</td>
<td align="char">5.16</td>
<td align="char">0.59</td>
</tr>
<tr>
<td>Vz (L/kg)</td>
<td align="char">0.39</td>
<td align="char">0.15</td>
</tr>
<tr>
<td>CL (L/h/kg)</td>
<td align="char">3.38</td>
<td align="char">1.46</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0275">
<p>Data were calculated using noncompartmental analysis.</p>
</fn>
<fn id="tspara0280">
<p>AUC = area under the concentration-time curve; MRT = mean residence time; SE = standard error; C
<sub>0</sub>
 = Initial plasma concentration; t
<sub>1/2</sub>
 = half-life; CL = total blood clearance and Ke = elimination rate constant.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl28" position="float">
<label>Table 28</label>
<caption>
<p>Pharmacokinetic parameters of mangiferin after oral and intravenous administration to rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Oral administration (
<italic>n</italic>
 = 6)</th>
<th>Intravenous administration (
<italic>n</italic>
 = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC
<sub>(0–t)</sub>
(μg/L h)</td>
<td align="char">1855.0 ± 887.7</td>
<td align="char">61184.1 ± 22471.4</td>
</tr>
<tr>
<td>AUC
<sub>(0–∞)</sub>
(μg/L h)</td>
<td align="char">2036.2 ± 942.2</td>
<td align="char">62065.2 ± 23013.2</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
(h)</td>
<td align="char">3.2 ± 0.6</td>
<td align="char">0.9 ± 0.4</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">2.5 ± 0.8</td>
<td>0.083</td>
</tr>
<tr>
<td>MRT
<sub>0–t</sub>
(h)</td>
<td align="char">4.3 ± 0.5</td>
<td align="char">1.3 ± 0.2</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">301.3 ± 133.0</td>
<td align="char">67798.3 ± 31235.9</td>
</tr>
<tr>
<td>CLz (L/h kg)</td>
<td align="char">(13.95 ± 4.64) × F</td>
<td align="char">0.15 ± 0.04</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
– peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl29" position="float">
<label>Table 29</label>
<caption>
<p>Pharmacokinetic parameters for kakkalide (oral 200 mg/kg
<sup>−1</sup>
) and its metabolites in rat plasma.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>KA</th>
<th>Ir-7G</th>
<th>Te-7G</th>
<th>6-OH BiA-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.25 ± 0.00</td>
<td align="char">34.0 ± 11.8</td>
<td align="char">38.0 ± 9.0</td>
<td align="char">36.0 ± 7.6</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">0.26 ± 0.17</td>
<td align="char">2.73 ± 0.74</td>
<td align="char">0.55 ± 0.22</td>
<td align="char">2.33 ± 1.29</td>
</tr>
<tr>
<td>AUC
<sub>(0−t)</sub>
(μg·h/mL)</td>
<td align="char">0.24 ± 0.16</td>
<td align="char">65.2 ± 11.7</td>
<td align="char">17.0 ± 4.7</td>
<td align="char">54.9 ± 26.7</td>
</tr>
<tr>
<td>AUC
<sub>(0−∞)</sub>
(μg·h/mL)</td>
<td align="char">0.25 ± 0.16</td>
<td align="char">104.3 ± 38.2</td>
<td align="char">27.2 ± 13.9</td>
<td align="char">56.7 ± 25.7</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">0.95 ± 0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT
<sub>(0−t)</sub>
(h)</td>
<td align="char">1.22 ± 0.58</td>
<td align="char">31.3 ± 6.0</td>
<td align="char">40.5 ± 4.1</td>
<td align="char">37.1 ± 4.6</td>
</tr>
<tr>
<td>MRT
<sub>(0−∞)</sub>
(h)</td>
<td align="char">1.55 ± 0.72</td>
<td align="char">46.1 ± 13.6</td>
<td align="char">102 .3 ± 125.1</td>
<td align="char">40.1 ± 6.4</td>
</tr>
<tr>
<td>CLz/F (L/h/kg)</td>
<td align="char">1021.7 ± 486.5</td>
<td align="char">2.18 ± 0.93</td>
<td align="char">8.46 ± 2.81</td>
<td align="char">4.21 ± 1.95</td>
</tr>
<tr>
<td>Vz/F (L/kg)</td>
<td align="char">1388.3 ± 1061.0</td>
<td align="char">55.6 ± 33.4</td>
<td align="char">472.9 ± 442.0</td>
<td align="char">91.0 ± 120.4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent plasma clearance; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl30" position="float">
<label>Table 30</label>
<caption>
<p>Pharmacokinetic parameters for metabolites in rat plasma after oral administration of 200 mg/kg tectoridin.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Te-7G-4′S</th>
<th>Te-7G</th>
<th>Te-7S</th>
<th>Tectorigenin</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">3.50 ± 1.87</td>
<td align="char">3.17 ± 1.81</td>
<td align="char">5.58 ± 3.07</td>
<td align="char">4.92 ± 2.87</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μmol/L)</td>
<td align="char">21.4 ± 13.8</td>
<td align="char">20.5 ± 9.70</td>
<td align="char">14.3 ± 3.30</td>
<td align="char">8.67 ± 3.07</td>
</tr>
<tr>
<td>AUC
<sub>(0–t)</sub>
(μmol/L)</td>
<td align="char">164 ± 52</td>
<td align="char">184 ± 73</td>
<td align="char">123 ± 63</td>
<td align="char">72.0 ± 22.0</td>
</tr>
<tr>
<td>AUC
<sub>(0–∞)</sub>
(μmol/L)</td>
<td align="char">197 ± 79</td>
<td align="char">198 ± 78</td>
<td align="char">199 ± 91</td>
<td align="char">98.0 ± 47.7</td>
</tr>
<tr>
<td>MRT
<sub>(0–t)</sub>
(h)</td>
<td align="char">9.79 ± 4.47</td>
<td align="char">10.7 ± 4.30</td>
<td align="char">8.12 ± 3.37</td>
<td align="char">8.54 ± 2.01</td>
</tr>
<tr>
<td>MRT
<sub>(0–∞)</sub>
(h)</td>
<td align="char">20.4 ± 16.7</td>
<td align="char">13.7 ± 6.00</td>
<td align="char">15.9 ± 7.12</td>
<td align="char">12.5 ± 3.90</td>
</tr>
<tr>
<td>CL/F (L/h/kg)</td>
<td align="char">2.13 ± 0.96</td>
<td align="char">2.35 ± 0.76</td>
<td align="char">3.28 ± 1.85</td>
<td align="char">8.13 ± 3.57</td>
</tr>
<tr>
<td>V/F (L/kg)</td>
<td align="char">31.3 ± 13.8</td>
<td align="char">31.0 ± 23.1</td>
<td align="char">37.9 ± 20.9</td>
<td align="char">80.7 ± 33.1</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0310">
<p>Data are mean ± standard deviation (n = 6).</p>
</fn>
<fn id="tspara0315">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent plasma clearance.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl31" position="float">
<label>Table 31</label>
<caption>
<p>Pharmacokinetic parameters of paeonol in rat plasma after single oral administration of paeonol alone and paeonol contained in the herbal preparation Qingfu Guanjieshu.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="3">Paeonol
<hr></hr>
</th>
<th>QFGJS
<hr></hr>
</th>
</tr>
<tr>
<th>35 mg/kg</th>
<th>70 mg/kg</th>
<th>140 mg/kg</th>
<th>3.89 g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">0.73 ± 0.07</td>
<td align="char">2.02 ± 0.23</td>
<td align="char">4.16 ± 0.50</td>
<td align="char">8.61 ± 1.30**</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td align="char">9.00 ± 2.45</td>
<td align="char">5.00 ± 0.00</td>
<td align="char">7.00 ± 2.00</td>
<td align="char">5.00 ± 0.00</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
 E phase (min)</td>
<td align="char">34.25 ± 3.91</td>
<td align="char">34.18 ± 1.77</td>
<td align="char">50.13 ± 4.11</td>
<td align="char">38.25 ± 2.99</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
D/A phase (min)</td>
<td align="char">12.02 ± 1.73</td>
<td align="char">12.74 ± 1.69</td>
<td align="char">12.79 ± 1.81</td>
<td align="char">11.66 ± 0.62</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
A phase (min)</td>
<td align="char">2.60 ± 0.53</td>
<td align="char">1.92 ± 0.44</td>
<td align="char">2.51 ± 0.38</td>
<td align="char">1.58 ± 0.21</td>
</tr>
<tr>
<td>MRT (min)</td>
<td align="char">51.62 ± 8.86</td>
<td align="char">36.65 ± 2.18</td>
<td align="char">56.14 ± 3.13</td>
<td align="char">37.43 ± 2.58</td>
</tr>
<tr>
<td>Vd (ml/kg)</td>
<td align="char">47,170 ± 5984</td>
<td align="char">49,628 ± 6810</td>
<td align="char">48,329 ± 6424</td>
<td align="char">18,034 ± 1498*</td>
</tr>
<tr>
<td>CL/F (ml/(min kg))</td>
<td align="char">1016.8 ± 167.7</td>
<td align="char">1003.4 ± 110.5</td>
<td align="char">761.0 ± 70.6</td>
<td align="char">342.2 ± 39.8***</td>
</tr>
<tr>
<td>AUC
<sub>0−t</sub>
(μg min/mL)</td>
<td align="char">40.66 ± 9.99</td>
<td align="char">74.13 ± 8.68</td>
<td align="char">188.50 ± 16.35</td>
<td align="char">229.64 ± 27.38**</td>
</tr>
<tr>
<td>AUC
<sub>0−∞</sub>
(μg min/mL)</td>
<td align="char">40.72 ± 10.01</td>
<td align="char">74.38 ± 8.77</td>
<td align="char">189.22 ± 16.47</td>
<td align="char">229.88 ± 27.46**</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0325">
<p>Data are expressed as the mean ± standard error of the mean of 6 to 8 rats. Paeonol contained in QFGJS at dosage of 3.89 g/kg is equivalent to 70 mg/kg pure paeonol to rat.
<italic>p</italic>
is significantly different from that of the paeonol alone (at a dosage of 70 mg/kg) group by Student
<italic>t</italic>
test. *
<italic>p</italic>
 < 0.05; **
<italic>p</italic>
 < 0.01; ***
<italic>p</italic>
 < 0.001.</p>
</fn>
<fn id="tspara0330">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; QFGJS = Qingfu Guanjieshu; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent plasma clearance; Vd = volume of distribution; T
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl32" position="float">
<label>Table 32</label>
<caption>
<p>Pharmacokinetic parameters of hederacolchiside E after oral administration of SKPC-B70M at a dose of 400 mg/kg in male Sprague Dawley rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="3">SK-PC-B70M
<hr></hr>
</th>
</tr>
<tr>
<th>100 mg/kg</th>
<th>200 mg/kg</th>
<th>400 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (μg h/mL)</td>
<td align="char">0.56 ± 0.10</td>
<td align="char">1.27 ± 0.27</td>
<td align="char">6.46 ± 4.1</td>
</tr>
<tr>
<td>MRT (h)</td>
<td align="char">9.46 ± 0.61</td>
<td align="char">10.1 ± 0.41</td>
<td align="char">16.1 ± 2.3</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.38 ± 0.14</td>
<td align="char">5.69 ± 4.13</td>
<td align="char">11.5 ± 9.1</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">0.07 ± 0.04</td>
<td align="char">0.13 ± 0.08</td>
<td align="char">0.36 ± 0.11</td>
</tr>
<tr>
<td>Tλ1/2 (h)</td>
<td align="char">31.1 ± 37.2</td>
<td align="char">19.0 ± 18.5</td>
<td align="char">28.9 ± 19.9</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; Tλ
<sub>1/2</sub>
 = terminal elimination half-life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl33" position="float">
<label>Table 33</label>
<caption>
<p>Mean pharmacokinetic parameters of three alkaloids after oral administration of
<italic>Rhizoma Corydalis Decumbentis</italic>
extract at 2.0 g kg
<sup>−1</sup>
to rats (
<italic>n</italic>
 = 6).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Tetrahydropalmatine</th>
<th>Protopine</th>
<th>Palmatine</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">6.68 ± 0.64</td>
<td align="char">4.98 ± 1.64</td>
<td align="char">12.84 ± 4.58</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">1.50 ± 1.14</td>
<td align="char">3.50 ± 0.55</td>
<td align="char">1.92 ± 0.74</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL
<sup>−1</sup>
)</td>
<td align="char">435.8 ± 58.5</td>
<td align="char">347.9 ± 51.51</td>
<td align="char">8.53 ± 2.95</td>
</tr>
<tr>
<td>MRT
<sub>(0−t)</sub>
(h)</td>
<td align="char">7.21 ± 0.21</td>
<td align="char">7.36 ± 0.64</td>
<td align="char">8.10 ± 1.07</td>
</tr>
<tr>
<td>MRT
<sub>(0−∞)</sub>
(h)</td>
<td align="char">9.32 ± 0.58</td>
<td align="char">8.84 ± 1.88</td>
<td align="char">16.89 ± 6.27</td>
</tr>
<tr>
<td>AUC
<sub>(0−t)</sub>
(ng/h/mL
<sup>−1</sup>
)</td>
<td align="char">3450.1 ± 480.9</td>
<td align="char">2987.0 ± 354.0</td>
<td align="char">57.85 ± 13.44</td>
</tr>
<tr>
<td>AUC
<sub>(0−∞)</sub>
(ng/h/mL
<sup>−1</sup>
)</td>
<td align="char">3720.1 ± 498.3</td>
<td align="char">3150.8 ± 482.8</td>
<td align="char">77.58 ± 27.01</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl34" position="float">
<label>Table 34</label>
<caption>
<p>Pharmacokinetic parameter of rhein.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Administration route</th>
<th>Parameters</th>
<th>RE</th>
<th>REM</th>
<th>REE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.g.</td>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.9 ± 0.1</td>
<td align="char">6.7 ± 2.3*</td>
<td align="char">10.7 ± 2.3**</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(mg/L)</td>
<td align="char">42.66 ± 14.41</td>
<td align="char">0.058 ± 0.035**</td>
<td align="char">0.95 ± 0.090**</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
ka (h)</td>
<td align="char">0.2 ± 0.1</td>
<td align="char">4.1 ± 1.6*</td>
<td align="char">3.0 ± 0.5**</td>
</tr>
<tr>
<td>t
<sub>1/2 α</sub>
(h)</td>
<td align="char">1.1 ± 0.8</td>
<td align="char">5.7 ± 1.6*</td>
<td align="char">1.5 ± 0.6</td>
</tr>
<tr>
<td>t
<sub>1/2 β</sub>
(h)</td>
<td align="char">3.2 ± 0.6</td>
<td align="char">6.0 ± 1.7**</td>
<td align="char">6.4 ± 1.0**</td>
</tr>
<tr>
<td>CL/F (L/h/kg)</td>
<td align="char">0.78 ± 0.28</td>
<td align="char">97.65 ± 66.61**</td>
<td align="char">5.21 ± 0.51*</td>
</tr>
<tr>
<td>i.v.</td>
<td>AUC
<sub>0-∞</sub>
(h·mg/L)</td>
<td align="char">80.28 ± 13.59</td>
<td align="char">1.03 ± 0.76**</td>
<td align="char">12.79 ± 0.96*</td>
</tr>
<tr>
<td>t
<sub>1/2α</sub>
(h)</td>
<td align="char">0.1 ± 0.04</td>
<td align="char">0.6 ± 0.4*</td>
<td align="char">0.2 ± 0.1</td>
</tr>
<tr>
<td>t
<sub>1/2β</sub>
(h)</td>
<td align="char">0.4 ± 0.1</td>
<td align="char">3.8 ± 0.8**</td>
<td align="char">2.9 ± 1.6*</td>
</tr>
<tr>
<td>CL/F (L/h/kg)</td>
<td align="char">0.36 ± 0.11</td>
<td align="char">0.93 ± 0.54</td>
<td align="char">1.95 ± 0.68*</td>
</tr>
<tr>
<td>AUC
<sub>0-∞</sub>
(h·mg/L)</td>
<td align="char">2.40 ± 1.15</td>
<td align="char">0.84 ± 0.40*</td>
<td align="char">0.36 ± 0.092*</td>
</tr>
<tr>
<td>F abs (%)</td>
<td>33.5</td>
<td>15.2</td>
<td>2.9</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0360">
<p>*
<italic>P</italic>
 < 0.05, **
<italic>P</italic>
 < 0.01 versus RE group.</p>
</fn>
<fn id="tspara0365">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; i.g. = intragastric administration; i.v. = intravenous; RE = rhein; REE = rhein ethylate; REM = rhein methylate; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl35" position="float">
<label>Table 35</label>
<caption>
<p>Pharmacokinetic parameters in rats after intravenous administration 5 mg/kg.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="4">Animal no.
<hr></hr>
</th>
<th>Mean</th>
<th>SD</th>
</tr>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2α</sub>
(h)</td>
<td align="char">0.586</td>
<td align="char">0.155</td>
<td align="char">0.109</td>
<td align="char">0.131</td>
<td align="char">0.245</td>
<td align="char">0.228</td>
</tr>
<tr>
<td>t
<sub>1/2β</sub>
(h)</td>
<td align="char">5.34</td>
<td align="char">9.43</td>
<td align="char">5.47</td>
<td align="char">6.56</td>
<td align="char">6.70</td>
<td align="char">1.90</td>
</tr>
<tr>
<td>V (l/kg)</td>
<td align="char">0.101</td>
<td align="char">0.162</td>
<td align="char">0.092</td>
<td align="char">0.070</td>
<td align="char">0.106</td>
<td align="char">0.039</td>
</tr>
<tr>
<td>CL (l/(h kg))</td>
<td align="char">0.053</td>
<td align="char">0.117</td>
<td align="char">0.075</td>
<td align="char">0.073</td>
<td align="char">0.080</td>
<td align="char">0.027</td>
</tr>
<tr>
<td>AUC
<sub>0–24</sub>
(mg h/L)</td>
<td align="char">89.06</td>
<td align="char">36.24</td>
<td align="char">60.76</td>
<td align="char">59.46</td>
<td align="char">61.38</td>
<td align="char">21.62</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(mg h/L)</td>
<td align="char">95.09</td>
<td align="char">42.62</td>
<td align="char">66.44</td>
<td align="char">68.05</td>
<td align="char">68.05</td>
<td align="char">21.45</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; SD = standard deviation; CL = clearance; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl36" position="float">
<label>Table 36</label>
<caption>
<p>Pharmacokinetic parameters in rats after oral administration at 50 mg/kg.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Animal no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2α</sub>
(h)</td>
<td align="char">1.35</td>
<td align="char">0.67</td>
<td align="char">1.78</td>
<td align="char">1.55</td>
<td align="char">1.33</td>
<td align="char">0.48</td>
</tr>
<tr>
<td>t
<sub>1/2β</sub>
(h)</td>
<td align="char">1.53</td>
<td align="char">8.41</td>
<td align="char">1.95</td>
<td align="char">1.59</td>
<td align="char">3.37</td>
<td align="char">3.37</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
ka</td>
<td align="char">0.046</td>
<td align="char">0.491</td>
<td align="char">1.225</td>
<td align="char">1.310</td>
<td align="char">0.768</td>
<td align="char">0.606</td>
</tr>
<tr>
<td>AUC
<sub>0–8</sub>
(mg h/l)</td>
<td align="char">2.41</td>
<td align="char">1.52</td>
<td align="char">0.55</td>
<td align="char">0.93</td>
<td align="char">1.35</td>
<td align="char">0.81</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(mg h/l)</td>
<td align="char">2.67</td>
<td align="char">1.86</td>
<td align="char">0.62</td>
<td align="char">1.05</td>
<td align="char">1.55</td>
<td align="char">0.91</td>
</tr>
<tr>
<td>Bioavailability (%)</td>
<td align="char">0.39</td>
<td align="char">0.27</td>
<td align="char">0.09</td>
<td align="char">0.15</td>
<td align="char">0.23</td>
<td align="char">0.13</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">3.00</td>
<td align="char">2.00</td>
<td align="char">2.00</td>
<td align="char">4.00</td>
<td align="char">2.75</td>
<td align="char">0.96</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">1000.2</td>
<td align="char">611.3</td>
<td align="char">192.3</td>
<td align="char">895.2</td>
<td align="char">674.8</td>
<td align="char">361.2</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0385">
<p>Where
<italic>t</italic>
1/2ka is for the half-life of the absorption.</p>
</fn>
<fn id="tspara0390">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; SD = standard deviation; T
<sub>max</sub>
 = time of peak plasma concentration; t
<sub>1/2β</sub>
 = elimination half-life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl37" position="float">
<label>Table 37</label>
<caption>
<p>Pharmacokinetic parameters of ligustilide in rats after intravenous, intraperitoneal, and oral administration (n = 5).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pharmacokinetic parameter</th>
<th colspan="5">Administration route and dose (mg/kg)
<hr></hr>
</th>
</tr>
<tr>
<th colspan="2">i.v.
<hr></hr>
</th>
<th colspan="2">i.p.
<hr></hr>
</th>
<th>p.o.
<hr></hr>
</th>
</tr>
<tr>
<th>15.6</th>
<th>14.9
<xref rid="tbl37fna" ref-type="table-fn">a</xref>
</th>
<th>26</th>
<th>52</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td></td>
<td></td>
<td align="char">0.05 ± 0.02</td>
<td align="char">0.08 ± 0.01</td>
<td align="char">0.36 ± 0.19</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(mg/L)</td>
<td align="char">13.19 ± 0.84</td>
<td align="char">6.93 ± 0.60***</td>
<td align="char">7.48 ± 1.10***</td>
<td align="char">20.75 ± 2.55###</td>
<td align="char">0.66 ± 0.23***</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">0.31 ± 0.12</td>
<td align="char">0.22 ± 0.07</td>
<td align="char">0.36 ± 0.05</td>
<td align="char">0.44 ± 0.08#</td>
<td align="char">03.43 ± 1.01***</td>
</tr>
<tr>
<td>AUC
<sub>0-μ</sub>
(mg/L)
<xref rid="tbl37fnb" ref-type="table-fn">b</xref>
</td>
<td align="char">1.81 ± 0.24</td>
<td align="char">0.79 ± 0.10**</td>
<td align="char">0.93 ± 0.07*</td>
<td align="char">1.77 ± 0.23#</td>
<td align="char">0.047 ± 0.012**</td>
</tr>
<tr>
<td>Vd/F (L/kg)
<xref rid="tbl37fnc" ref-type="table-fn">c</xref>
</td>
<td align="char">3.76 ± 1.23</td>
<td align="char">5.62 ± 1.19</td>
<td align="char">6.54 ± 1.56</td>
<td align="char">6.32 ± 1.81</td>
<td align="char">1641.9 ± 121.6***</td>
</tr>
<tr>
<td>CL/F (L/h/kg)
<xref rid="tbl37fnc" ref-type="table-fn">c</xref>
</td>
<td align="char">9.14 ± 1.27</td>
<td align="char">20.35 ± 3.05**</td>
<td align="char">16.90 ± 1.21**</td>
<td align="char">9.26 ± 1.04##</td>
<td align="char">411.1 ± 145.7***</td>
</tr>
<tr>
<td>MRT (h)</td>
<td align="char">0.30 ± 0.07</td>
<td align="char">0.19 ± 0.03</td>
<td align="char">0.30 ± 0.05</td>
<td align="char">0.41 ± 0.03</td>
<td align="char">5.14 ± 1.56***</td>
</tr>
<tr>
<td>F (%)</td>
<td></td>
<td>45.7
<xref rid="tbl37fnd" ref-type="table-fn">d</xref>
</td>
<td>51.7</td>
<td>97.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0400">
<p>*
<italic>p</italic>
0.05, **
<italic>p</italic>
0.01, ***
<italic>p</italic>
0.001, compared with i.v. dosing of the isolated ligustilide.</p>
</fn>
<fn id="tspara0405">
<p>#
<italic>p</italic>
0.05, ##
<italic>p</italic>
0.01, ###
<italic>p</italic>
0.001, compared with the lower i.p. dose of the isolated ligustilide.</p>
</fn>
<fn id="tspara0410">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; i.p. = intraperitoneal; i.v. = intravenous; MRT = mean residence time; p.o. = by mouth; T
<sub>max</sub>
 = time of peak plasma concentration; CL = Clearance; Vd = Volume of Distribution; F = Absolute bioavailability; t1/2 = Half life; CL/F = apparent plasma clearance; Vd/F = apparent volume of distribution based on the terminal phase.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl37fna">
<label>a</label>
<p>Dose of ligustilide in 100 mg/kg of Chuanxiong extract.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl37fnb">
<label>b</label>
<p>Normalized with dose.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl37fnc">
<label>c</label>
<p>Data represent Vd and CL in the case of i.v. dosing of the isolated ligustilide.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl37fnd">
<label>d</label>
<p>Relative bioavailability compared with that of i.v. dosing of the isolated ligustilide.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl38" position="float">
<label>Table 38</label>
<caption>
<p>Pharmacokinetics parameters calculated from the intravenous oridonin study in the rat.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2α</sub>
(h)</td>
<td align="char">0.12</td>
</tr>
<tr>
<td>t
<sub>1/2β</sub>
(h)</td>
<td align="char">6.06</td>
</tr>
<tr>
<td>CL (L/kg/h)</td>
<td align="char">1.56</td>
</tr>
<tr>
<td>AUC (μg h/mL)</td>
<td align="char">7.96</td>
</tr>
<tr>
<td>Vd (L/kg)</td>
<td align="char">1.83</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; CL = clearance; Vd = volume of distribution.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl39" position="float">
<label>Table 39</label>
<caption>
<p>Pharmacokinetic parameters of prim-
<italic>O</italic>
-glucosylcimifugin and 4-
<italic>O</italic>
-
<sc>d</sc>
-glucosyl-5-
<italic>O</italic>
methylvisamminol in rats after oral administration of Fangfeng extract.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="2">Compounds
<hr></hr>
</th>
</tr>
<tr>
<th>P
<italic>ri</italic>
m-
<italic>O</italic>
-glucosylcimifugin</th>
<th>4-
<italic>O</italic>
-
<sc>d</sc>
-glucosyl-5-
<italic>O</italic>
-methylvisamminol</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>1/2</sub>
(h)</td>
<td align="char">1.31</td>
<td align="char">1.96</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">39.92</td>
<td align="char">41.53</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.54</td>
<td align="char">0.56</td>
</tr>
<tr>
<td>AUC
<sub>(0–t)</sub>
(ng/mL h)</td>
<td align="char">66.77</td>
<td align="char">65.65</td>
</tr>
<tr>
<td>AUC
<sub>(0–∞)</sub>
(ng/mL h)</td>
<td align="char">75.63</td>
<td align="char">73.05</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl40" position="float">
<label>Table 40</label>
<caption>
<p>Main pharmacokinetic parameters of swertiamarin after oral administration of 20 mg/kg to rats (
<italic>n</italic>
 = 6, mean ± standard deviation).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>t
<sub>1/2z</sub>
(h)</td>
<td align="char">1.104 ± 0.229</td>
</tr>
<tr>
<td>Vz/F (L/kg)</td>
<td align="char">9.637 ± 4.322</td>
</tr>
<tr>
<td>CLz/F (L/h/kg)</td>
<td align="char">5.638 ± 2.151</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(μg/L h)</td>
<td align="char">3593.7 ± 985.4</td>
</tr>
<tr>
<td>MRT
<sub>0–∞</sub>
(h)</td>
<td align="char">1.929 ± 0.364</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.945 ± 0.136</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">1920.1 ± 947.0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; SD = standard deviation; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = Apparent clearance; CL = Clearance; t1/2 = Half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl41" position="float">
<label>Table 41</label>
<caption>
<p>Pharmacokinetic parameters of chamaechromone in rats following intravenous (5 mg/kg) and oral (100 mg/kg) administration.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="2">Oral
<hr></hr>
</th>
<th colspan="2">Intravenous
<hr></hr>
</th>
</tr>
<tr>
<th>Parameters</th>
<th>Mean ± SD</th>
<th>Parameters</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
(ng/L)</td>
<td align="char">795.9 ± 14.6</td>
<td>C
<sub>max</sub>
(ng/L)</td>
<td align="char">4300.7 ± 113.6</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">11.3 ± 0.8</td>
<td>t
<sub>1/2α</sub>
(h)</td>
<td align="char">0.47 ± 0.22</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">30.0 ± 19.3</td>
<td>t
<sub>1/2β</sub>
(h)</td>
<td align="char">19.5 ± 9.5</td>
</tr>
<tr>
<td>AUC
<sub>0–60</sub>
(ng h/L)</td>
<td align="char">6976.7 ± 1026.9</td>
<td>CL (L/(h kg))</td>
<td align="char">1202.1 ± 121.8</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(ng h/L)</td>
<td align="char">7388.6 ± 940.0</td>
<td>AUC
<sub>0–48</sub>
(ng h/L)</td>
<td align="char">3672.1 ± 225.4</td>
</tr>
<tr>
<td>CL z/F (L/(h kg))</td>
<td align="char">13,731.8 ± 1871.6</td>
<td>AUC
<sub>0–∞</sub>
(ng h/L)</td>
<td align="char">4129.2 ± 231.8</td>
</tr>
<tr>
<td>Vz/F (L/kg)</td>
<td align="char">277,476.2 ± 132,126.1</td>
<td>K10 (1/h)</td>
<td align="char">0.72 ± 0.66</td>
</tr>
<tr>
<td>MRT
<sub>0–t</sub>
(h)</td>
<td align="char">18.5 ± 0.675</td>
<td>K12 (1/h)</td>
<td align="char">1.67 ± 2.34</td>
</tr>
<tr>
<td>MRT
<sub>0–∞</sub>
(h)</td>
<td align="char">22.3 ± 4.9</td>
<td>K21 (1/h)</td>
<td align="char">0.185 ± 0.261</td>
</tr>
<tr>
<td>F (%)</td>
<td>8.9</td>
<td>MRT
<sub>0–t</sub>
(h)</td>
<td align="char">8.1 ± 0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRT
<sub>0–∞</sub>
(h)</td>
<td align="char">16.1 ± 3.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0455">
<p>All data are expressed as mean ± SD (n = 6).</p>
</fn>
<fn id="tspara0460">
<p>AUC = are under the concentration curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; SD = standard deviation; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent clearance; CL = clearance; F = absolute bioavailability; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl42" position="float">
<label>Table 42</label>
<caption>
<p>Pharmacokinetic parameters of magnesium lithospermate B after intravenous administration in beagle dogs.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="3">Dose/mg/kg
<hr></hr>
</th>
</tr>
<tr>
<th>3</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>0</sub>
(/mg/L)</td>
<td align="char">24 ± 4</td>
<td align="char">47 ± 12</td>
<td align="char">107 ± 15</td>
</tr>
<tr>
<td>AUC
<sub>0-tn</sub>
(/mg·min/L)</td>
<td align="char">109 ± 24</td>
<td align="char">248 ± 55</td>
<td align="char">582 ± 84</td>
</tr>
<tr>
<td>AUC
<sub>0-∞</sub>
(/mg·min/L)</td>
<td align="char">109 ± 24</td>
<td align="char">248 ± 55</td>
<td align="char">583 ± 84</td>
</tr>
<tr>
<td>MRT
<sub>0-∞</sub>
(/min)</td>
<td align="char">16.3 ± 3.8</td>
<td align="char">14.8 ± 2.9</td>
<td align="char">14.0 ± 0.8</td>
</tr>
<tr>
<td>k10 (/h)</td>
<td align="char">13.2 ± 2.1</td>
<td align="char">11.6 ± 1.5</td>
<td align="char">11.2 ± 1.3</td>
</tr>
<tr>
<td>k12 (/h)</td>
<td align="char">5.2 ± 1.6</td>
<td align="char">3.9 ± 2.2</td>
<td align="char">3.1 ± 0.5</td>
</tr>
<tr>
<td>k21 (/h)</td>
<td align="char">1.5 ± 0.5</td>
<td align="char">1.4 ± 0.4</td>
<td align="char">1.4 ± 0.3</td>
</tr>
<tr>
<td>V/L (/kg)</td>
<td align="char">1.7 ± 0.5</td>
<td align="char">1.6 ± 0.6</td>
<td align="char">1.3 ± 0.3</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
α (/min)</td>
<td align="char">2.2 ± 0.2</td>
<td align="char">2.7 ± 0.5</td>
<td align="char">2.9 ± 0.3</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
β (/min)</td>
<td align="char">43 ± 9</td>
<td align="char">42 ± 7</td>
<td align="char">42 ± 10</td>
</tr>
<tr>
<td>CL(/mL/min/kg)</td>
<td align="char">28 ± 5</td>
<td align="char">26 ± 7</td>
<td align="char">21 ± 3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0470">
<p>
<italic>n</italic>
 = 6. Mean ± SD.</p>
</fn>
<fn id="tspara0475">
<p>AUC = area under the concentration-time curve; MRT = mean residence time; SD = standard deviation; C
<sub>0</sub>
 = initial plasma concentration; CL = clearance; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl43" position="float">
<label>Table 43</label>
<caption>
<p>Pharmacokinetics parameters of Dhpl and Pal after oral administration, dose 10 g/kg.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="2">
<italic>Radix Salviae miltiorrhizae</italic>
extract
<hr></hr>
</th>
</tr>
<tr>
<th>Dhpl</th>
<th>Pal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRT (h)</td>
<td>3.43 ± 0.07</td>
<td>4.31 ± 0.06</td>
</tr>
<tr>
<td>AUC
<sub>0-∞</sub>
(μg·h/mL)</td>
<td>396.82 ± 17.27</td>
<td>15.64 ± 0.66</td>
</tr>
<tr>
<td>Calibration curve (μg/mL)</td>
<td>1.43–228.48 a determination coefficient (
<italic>r</italic>
) of 0.996 (
<italic>n</italic>
 = 8)</td>
<td>0.12–7.94 a determination coefficient (
<italic>r</italic>
2) of 0.994 (
<italic>n</italic>
 = 8)</td>
</tr>
<tr>
<td>LOQ (μg/mL)</td>
<td>1.43.</td>
<td>0.12</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; LOQ = limit of quantification; MRT = mean residence time.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl44" position="float">
<label>Table 44</label>
<caption>
<p>Pharmacokinetic parameters of tetrandrine after single oral administration of 50 mg/kg in six Sprague Dawley rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Tetrandrine (50 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">6.0 ± 1.8</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">237.1 ± 95.9</td>
</tr>
<tr>
<td>AUC(0–72) (μg/mL)</td>
<td align="char">6279.2 ± 2411.5</td>
</tr>
<tr>
<td>AUC0→∞) (μg/mL)</td>
<td align="char">7002.7 ± 2528.0</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
(h)</td>
<td align="char">20.6 ± 3.7</td>
</tr>
<tr>
<td>ke (L/h)</td>
<td align="char">0.034 ± 0.006</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration; Ke : elimination rate constant; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl45" position="float">
<label>Table 45</label>
<caption>
<p>Pharmacokinetic parameters after silibinin administration (100 mg/kg, intravenously and 500 mg/kg by mouth) for blood.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="2">Silibinin (100 mg/kg i.v.)
<hr></hr>
</th>
<th colspan="2">Silibinin (500 mg/kg p.o.)
<hr></hr>
</th>
</tr>
<tr>
<th>Unconjugated</th>
<th>Total</th>
<th>Unconjugated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (min mg/mL)</td>
<td align="char">5.5 ± 0.73</td>
<td align="char">35.5 ± 5.9</td>
<td align="char">0.26 ± 0.07</td>
<td align="char">7.17 ± 1.42</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">256 ± 36</td>
<td align="char">239 ± 19</td>
<td align="char">8.5 ± 2.6</td>
<td align="char">76 ± 15</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(min)</td>
<td align="char">68 ± 7.2</td>
<td align="char">105 ± 29</td>
<td align="char">12.2 ± 1.8</td>
<td align="char">77 ± 3.2</td>
</tr>
<tr>
<td>T
<sub>max</sub>
</td>
<td>0</td>
<td align="char">8.2 ± 4.5</td>
<td align="char">11 ± 1.8</td>
<td align="char">30 ± 4.7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0505">
<p>Data are expressed as mean ± standard error of the mean (
<italic>n</italic>
 = 6).</p>
</fn>
<fn id="tspara0510">
<p>AUC = area under the concentration time curve; C
<sub>max</sub>
 = peak plasma concentration; i.v. = intravenous; p.o. = by mouth.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl46" position="float">
<label>Table 46</label>
<caption>
<p>Pharmacokinetic parameters after silibinin administration (100 mg/kg, intravenous and 500 mg/kg by mouth) for bile.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Unconjugated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (min mg/mL)</td>
<td align="char">11.1 ± 2.84</td>
<td align="char">1202 ± 186</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/mL)</td>
<td align="char">517 ± 85</td>
<td align="char">7910 ± 2080</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(min)</td>
<td align="char">33 ± 8.3</td>
<td align="char">97 ± 28</td>
</tr>
<tr>
<td>T
<sub>max</sub>
</td>
<td align="char">5.1 ± 1.0</td>
<td align="char">50 ± 18</td>
</tr>
<tr>
<td>AUC bile/AUC blood</td>
<td align="char">3.1 ± 0.95</td>
<td align="char">30 ± 9.4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0520">
<p>Data are expressed as mean ± standard error of the mean (
<italic>n</italic>
 = 6).</p>
</fn>
<fn id="tspara0525">
<p>AUC = area under the concentration time curve; C
<sub>max</sub>
 = peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl47" position="float">
<label>Table 47</label>
<caption>
<p>Pharmacokinetic parameters after a single intravenous dose of 1.0, 2.0, and 4.0 mg/kg solamargine in rats (n = 5).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th colspan="3">Mean ± SD
<hr></hr>
</th>
</tr>
<tr>
<th>1.0 mg/kg</th>
<th>2.0 mg/kg</th>
<th>4.0 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>The plasma concentration at 5min (C
<sub>5</sub>
) (ng/mL)</td>
<td align="char">538.54 ± 278.79</td>
<td align="char">1094.37 ± 694.87</td>
<td align="char">2483.40 ± 272.89</td>
</tr>
<tr>
<td>Cl (L/kg h)</td>
<td align="char">3.81 ± 0.68</td>
<td align="char">4.10 ± 1.23</td>
<td align="char">3.97 ± 0.44</td>
</tr>
<tr>
<td>Vd (L/kg)</td>
<td align="char">20.16 ± 10.34</td>
<td align="char">19.78 ± 12.55</td>
<td align="char">15.68 ± 6.19</td>
</tr>
<tr>
<td>t
<sub>1/2</sub>
(h)</td>
<td align="char">3.54 ± 1.50</td>
<td align="char">3.29 ± 1.52</td>
<td align="char">2.76 ± 1.10</td>
</tr>
<tr>
<td>AUC
<sub>0–t</sub>
(ng h/mL)</td>
<td align="char">242.41 ± 65.68</td>
<td align="char">482.36 ± 138.07</td>
<td align="char">947.74 ± 124.76</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(ng h/mL)</td>
<td align="char">270.50 ± 54.66</td>
<td align="char">526.92 ± 161.72</td>
<td align="char">1018.91 ± 117.26</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration time curve; SD = standard deviation; Cl = clearance; Vd = volume of distribution; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl48" position="float">
<label>Table 48</label>
<caption>
<p>Pharmacokinetic parameters of FK-3000 [6,7-di-O-acetylsinococuline] isolated from
<italic>Stephania delavayi</italic>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pharmacokinetic parameters</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">0.20 ± 0.06</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
(h)</td>
<td align="char">1.79 ± 0.09</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(ng/mL)</td>
<td align="char">251.9 ± 168.2</td>
</tr>
<tr>
<td>MRT (h)</td>
<td align="char">1.61 ± 0.33</td>
</tr>
<tr>
<td>AUC
<sub>0–6</sub>
 h (ng h/mL)</td>
<td align="char">209.3 ± 42.0</td>
</tr>
<tr>
<td>AUC
<sub>0–∞</sub>
(ng h/mL)</td>
<td align="char">245.7 ± 40.5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; SD = standard deviation; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl49" position="float">
<label>Table 49</label>
<caption>
<p>Pharmacokinetic parameters of triptolide in rats after oral or intravenous administration of triptolide.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th colspan="3">Oral dose/mg/kg
<hr></hr>
</th>
<th>Intravenous dose/mg/kg
<hr></hr>
</th>
</tr>
<tr>
<th>0.6</th>
<th>1.2</th>
<th>2.4</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ka (L/min)</td>
<td align="char">0.37 ± 0.17</td>
<td align="char">0.39 ± 0.16</td>
<td align="char">0.251 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>ke (L/min)</td>
<td align="char">0.03 ± 0.01</td>
<td align="char">0.04 ± 0.02</td>
<td align="char">0.03 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>V/F (L/kg)</td>
<td align="char">0.32 ± 0.34</td>
<td align="char">0.33 ± 0.30</td>
<td align="char">0.22 ± 0.17</td>
<td>1.27 ± 0.25</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
ka (min)</td>
<td align="char">2.19 ± 0.92</td>
<td align="char">2.06 ± 0.83</td>
<td align="char">3.00 ± 0.87</td>
<td></td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
ke (min)</td>
<td align="char">21.70 ± 3.00</td>
<td align="char">16.81 ± 5.24</td>
<td align="char">20.40 ± 3.75</td>
<td>15.10 ± 4.44</td>
</tr>
<tr>
<td>AUC
<sub>(0–tn)</sub>
(mg/L min)</td>
<td align="char">7057.14 ± 1826.04</td>
<td align="char">10445.67 ± 3178.42</td>
<td align="char">14538.98 ± 5636.58</td>
<td>9791.18 ± 585.88</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(min)</td>
<td align="char">11.00 ± 2.24</td>
<td align="char">10.00 ± 0.00</td>
<td align="char">10.00 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>C
<sub>max</sub>
(mg/L)</td>
<td align="char">254.00 ± 47.34</td>
<td align="char">446.65 ± 112.86</td>
<td align="char">537.33 ± 143.34</td>
<td></td>
</tr>
<tr>
<td>CL/F (L/min/kg)</td>
<td align="char">0.06 ± 0.02</td>
<td align="char">0.06 ± 0.02</td>
<td align="char">0.06 ± 0.03</td>
<td>0.06 ± 0.01</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0555">
<p>
<italic>n</italic>
 = 6, mean ± standard deviation.</p>
</fn>
<fn id="tspara0560">
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent clearance; Ke = elimination rate constant; Ka = absorption rate constant; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl50" position="float">
<label>Table 50</label>
<caption>
<p>The pharmacokinetic study of six beagle dogs following i.g. administration at a single dose of 0.05 mg/kg triptolide solution.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C
<sub>max</sub>
</td>
<td align="char">28.03 ± 11.76 ng/mL</td>
</tr>
<tr>
<td>T
<sub>max</sub>
</td>
<td align="char">0.96 ± 0.30 h</td>
</tr>
<tr>
<td>MRT
<sub>0−tn</sub>
</td>
<td align="char">3.00 ± 0.54 h</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
ka</td>
<td align="char">0.50 ± 0.38 h</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl51" position="float">
<label>Table 51</label>
<caption>
<p>Pharmacokinetic parameters of acteoside in rats after 10 mg/kg administration.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameters</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (μg/mL)</td>
<td align="char">71.9 ± 30.9</td>
</tr>
<tr>
<td>B (μg/mL)</td>
<td align="char">2.9 ± 0.5</td>
</tr>
<tr>
<td>α (L/min)</td>
<td align="char">0.14 ± 0.03</td>
</tr>
<tr>
<td>β (L/min)</td>
<td align="char">0.02 ± 0.004</td>
</tr>
<tr>
<td>t
<sub>1/2α</sub>
(min)</td>
<td align="char">5.0 ± 1.2</td>
</tr>
<tr>
<td>t
<sub>1/2β</sub>
(min)</td>
<td align="char">28.5 ± 4.7</td>
</tr>
<tr>
<td>AUC (min μg/mL)</td>
<td align="char">592.3 ± 124.7</td>
</tr>
<tr>
<td>Vss (mL/kg)</td>
<td align="char">277.7 ± 185.8</td>
</tr>
<tr>
<td>Cl (mL/min/kg)</td>
<td align="char">17.7 ± 4.5</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tspara0580">
<p>Data expressed as mean ± standard deviation (
<italic>n</italic>
 = 6);
<italic>t</italic>
1/2, α: distribution half-life;
<italic>t</italic>
1/2,
<italic>β</italic>
: elimination half-life.</p>
</fn>
<fn id="tspara0585">
<p>AUC = area under the concentration-time curve; Cl = clearance; Vss = volume of distribution at steady state.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl52" position="float">
<label>Table 52</label>
<caption>
<p>Estimated pharmacokinetic parameters after single oral administration of 300 mg/kg ginger oleoresin to five rats.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Parameter</th>
<th>6-Gingerol</th>
<th>8-Gingerol</th>
<th>10-Gingerol</th>
<th>6-Shogaol</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC
<sub>(0-t)</sub>
(μg/mL/h)</td>
<td align="char">1.689 ± 0.38</td>
<td align="char">0.177 ± 0.025</td>
<td align="char">0.222 ± 0.021</td>
<td align="char">0.14 ± 0.011</td>
</tr>
<tr>
<td>MRT
<sub>(0-t)</sub>
(h)</td>
<td align="char">1.776 ± 0.502</td>
<td align="char">1.845 ± 0.169</td>
<td align="char">1.84 ± 0.263</td>
<td align="char">1.932 ± 0.592</td>
</tr>
<tr>
<td>T
<sub>1/2</sub>
(h)</td>
<td align="char">3.574 ± 1.994</td>
<td align="char">1.08 ± 0.439</td>
<td align="char">1.576 ± 1.03</td>
<td align="char">1.127 ± 0.745</td>
</tr>
<tr>
<td>T
<sub>max</sub>
(h)</td>
<td align="char">1.167 ± 0.764</td>
<td align="char">0.833 ± 0.289</td>
<td align="char">0.361 ± 0.141</td>
<td align="char">1 ± 0.866</td>
</tr>
<tr>
<td>C
<sub>max</sub>
(μg/L)</td>
<td align="char">0.933 ± 0.545</td>
<td align="char">0.092 ± 0.018</td>
<td align="char">0.156 ± 0.012</td>
<td align="char">0.111 ± 0.041</td>
</tr>
<tr>
<td>CL/F (L/h/kg)</td>
<td align="char">57.43 ± 22.359</td>
<td align="char">60.59 ± 8.849</td>
<td align="char">154.898 ± 101.852</td>
<td align="char">133.652 ± 14.032</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>AUC = area under the concentration-time curve; C
<sub>max</sub>
 = peak plasma concentration; MRT = mean residence time; T
<sub>max</sub>
 = time of peak plasma concentration; CL/F = apparent plasma clearance; t
<sub>1/2</sub>
 = half life.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Inde</li>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Mehta, Piyush" sort="Mehta, Piyush" uniqKey="Mehta P" first="Piyush" last="Mehta">Piyush Mehta</name>
</noRegion>
<name sortKey="Lohidasan, Sathiyanarayanan" sort="Lohidasan, Sathiyanarayanan" uniqKey="Lohidasan S" first="Sathiyanarayanan" last="Lohidasan">Sathiyanarayanan Lohidasan</name>
<name sortKey="Mahadik, K R" sort="Mahadik, K R" uniqKey="Mahadik K" first="K. R." last="Mahadik">K. R. Mahadik</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Shah, Rishi" sort="Shah, Rishi" uniqKey="Shah R" first="Rishi" last="Shah">Rishi Shah</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000396 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000396 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4624361
   |texte=   Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:26587392" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024