Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response

Identifieur interne : 000958 ( PascalFrancis/Curation ); précédent : 000957; suivant : 000959

Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response

Auteurs : Gui-Dong Liu [République populaire de Chine] ; Rui-Dong Wang [République populaire de Chine] ; Lei-Chao Liu [République populaire de Chine] ; Li-Shu Wu [République populaire de Chine] ; Cun-Cang Jiang [République populaire de Chine]

Source :

RBID : Pascal:13-0289581

Descripteurs français

English descriptors

Abstract

Aims Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock. Methods Plants were grown hydroponically in a nutrient solution supplemented with 5 μMB for 14 days and then transferred to a B-free medium (0 μMB) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined. Results After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange. Conclusions These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.
pA  
A01 01  1    @0 0032-079X
A02 01      @0 PLSOA2
A03   1    @0 Plant soil
A05       @2 370
A06       @2 1-2
A08 01  1  ENG  @1 Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response
A11 01  1    @1 LIU (Gui-Dong)
A11 02  1    @1 WANG (Rui-Dong)
A11 03  1    @1 LIU (Lei-Chao)
A11 04  1    @1 WU (Li-Shu)
A11 05  1    @1 JIANG (Cun-Cang)
A14 01      @1 Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University @2 Wuhan, Hubei Province 430070 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 555-565
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 4772 @5 354000501941000410
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 13-0289581
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant and soil
A66 01      @0 NLD
C01 01    ENG  @0 Aims Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock. Methods Plants were grown hydroponically in a nutrient solution supplemented with 5 μMB for 14 days and then transferred to a B-free medium (0 μMB) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined. Results After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange. Conclusions These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.
C02 01  X    @0 002A32C02B
C02 02  X    @0 002A14
C03 01  X  FRE  @0 Affectation @5 01
C03 01  X  ENG  @0 Allocation @5 01
C03 01  X  SPA  @0 Afectación @5 01
C03 02  X  FRE  @0 Porte greffe @5 02
C03 02  X  ENG  @0 Rootstock @5 02
C03 02  X  SPA  @0 Portainjerto @5 02
C03 03  X  FRE  @0 Stade juvénile plante @5 03
C03 03  X  ENG  @0 Plant juvenile growth stage @5 03
C03 03  X  SPA  @0 Estado juvenil planta @5 03
C03 04  X  FRE  @0 Déficit @5 04
C03 04  X  ENG  @0 Deficiency @5 04
C03 04  X  SPA  @0 Déficiencia @5 04
C03 05  X  FRE  @0 Réponse @5 05
C03 05  X  ENG  @0 Response @5 05
C03 05  X  SPA  @0 Respuesta @5 05
C03 06  X  FRE  @0 Efficacité @5 06
C03 06  X  ENG  @0 Efficiency @5 06
C03 06  X  SPA  @0 Eficacia @5 06
C03 07  X  FRE  @0 Paroi cellulaire @5 07
C03 07  X  ENG  @0 Cell wall @5 07
C03 07  X  SPA  @0 Pared celular @5 07
C03 08  X  FRE  @0 Relation sol plante @5 08
C03 08  X  ENG  @0 Soil plant relation @5 08
C03 08  X  SPA  @0 Relación suelo planta @5 08
C03 09  X  FRE  @0 Rutaceae @2 NS @5 09
C03 09  X  ENG  @0 Rutaceae @2 NS @5 09
C03 09  X  SPA  @0 Rutaceae @2 NS @5 09
C03 10  X  FRE  @0 Agrume @5 10
C03 10  X  ENG  @0 Citrus fruit @5 10
C03 10  X  SPA  @0 Agrios @5 10
C03 11  X  FRE  @0 Bore @2 NC @5 15
C03 11  X  ENG  @0 Boron @2 NC @5 15
C03 11  X  SPA  @0 Boro @2 NC @5 15
C03 12  X  FRE  @0 Pectine @5 16
C03 12  X  ENG  @0 Pectin @5 16
C03 12  X  SPA  @0 Pectina @5 16
C07 01  X  FRE  @0 Dicotyledones @2 NS
C07 01  X  ENG  @0 Dicotyledones @2 NS
C07 01  X  SPA  @0 Dicotyledones @2 NS
C07 02  X  FRE  @0 Angiospermae @2 NS
C07 02  X  ENG  @0 Angiospermae @2 NS
C07 02  X  SPA  @0 Angiospermae @2 NS
C07 03  X  FRE  @0 Spermatophyta @2 NS
C07 03  X  ENG  @0 Spermatophyta @2 NS
C07 03  X  SPA  @0 Spermatophyta @2 NS
C07 04  X  FRE  @0 Non métal @2 NC @5 33
C07 04  X  ENG  @0 Non metal @2 NC @5 33
C07 04  X  SPA  @0 No metal @2 NC @5 33
C07 05  X  FRE  @0 Stade développement @5 34
C07 05  X  ENG  @0 Developmental stage @5 34
C07 05  X  SPA  @0 Grado desarrollo @5 34
C07 06  X  FRE  @0 Polyoside @2 NK @5 50
C07 06  X  ENG  @0 Polysaccharide @2 NK @5 50
C07 06  X  SPA  @0 Poliósido @2 NK @5 50
C07 07  X  FRE  @0 Glucide @5 51
C07 07  X  ENG  @0 Carbohydrate @5 51
C07 07  X  SPA  @0 Glúcido @5 51
C07 08  X  FRE  @0 Oside @5 52
C07 08  X  ENG  @0 Oside @5 52
C07 08  X  SPA  @0 Osido @5 52
C07 09  X  FRE  @0 Composé biochimique @5 53
C07 09  X  ENG  @0 Biochemical compound @5 53
C07 09  X  SPA  @0 Compuesto bioquímico @5 53
N21       @1 273
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0289581

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response</title>
<author>
<name sortKey="Liu, Gui Dong" sort="Liu, Gui Dong" uniqKey="Liu G" first="Gui-Dong" last="Liu">Gui-Dong Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Wang, Rui Dong" sort="Wang, Rui Dong" uniqKey="Wang R" first="Rui-Dong" last="Wang">Rui-Dong Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Liu, Lei Chao" sort="Liu, Lei Chao" uniqKey="Liu L" first="Lei-Chao" last="Liu">Lei-Chao Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Wu, Li Shu" sort="Wu, Li Shu" uniqKey="Wu L" first="Li-Shu" last="Wu">Li-Shu Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Cun Cang" sort="Jiang, Cun Cang" uniqKey="Jiang C" first="Cun-Cang" last="Jiang">Cun-Cang Jiang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0289581</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0289581 INIST</idno>
<idno type="RBID">Pascal:13-0289581</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000042</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000958</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response</title>
<author>
<name sortKey="Liu, Gui Dong" sort="Liu, Gui Dong" uniqKey="Liu G" first="Gui-Dong" last="Liu">Gui-Dong Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Wang, Rui Dong" sort="Wang, Rui Dong" uniqKey="Wang R" first="Rui-Dong" last="Wang">Rui-Dong Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Liu, Lei Chao" sort="Liu, Lei Chao" uniqKey="Liu L" first="Lei-Chao" last="Liu">Lei-Chao Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Wu, Li Shu" sort="Wu, Li Shu" uniqKey="Wu L" first="Li-Shu" last="Wu">Li-Shu Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Cun Cang" sort="Jiang, Cun Cang" uniqKey="Jiang C" first="Cun-Cang" last="Jiang">Cun-Cang Jiang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allocation</term>
<term>Boron</term>
<term>Cell wall</term>
<term>Citrus fruit</term>
<term>Deficiency</term>
<term>Efficiency</term>
<term>Pectin</term>
<term>Plant juvenile growth stage</term>
<term>Response</term>
<term>Rootstock</term>
<term>Rutaceae</term>
<term>Soil plant relation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Affectation</term>
<term>Porte greffe</term>
<term>Stade juvénile plante</term>
<term>Déficit</term>
<term>Réponse</term>
<term>Efficacité</term>
<term>Paroi cellulaire</term>
<term>Relation sol plante</term>
<term>Rutaceae</term>
<term>Agrume</term>
<term>Bore</term>
<term>Pectine</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Déficit</term>
<term>Agrume</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aims Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock. Methods Plants were grown hydroponically in a nutrient solution supplemented with 5 μMB for 14 days and then transferred to a B-free medium (0 μMB) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined. Results After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na
<sub>2</sub>
CO
<sub>3</sub>
-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange. Conclusions These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-079X</s0>
</fA01>
<fA02 i1="01">
<s0>PLSOA2</s0>
</fA02>
<fA03 i2="1">
<s0>Plant soil</s0>
</fA03>
<fA05>
<s2>370</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIU (Gui-Dong)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Rui-Dong)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIU (Lei-Chao)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WU (Li-Shu)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIANG (Cun-Cang)</s1>
</fA11>
<fA14 i1="01">
<s1>Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University</s1>
<s2>Wuhan, Hubei Province 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>555-565</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4772</s2>
<s5>354000501941000410</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0289581</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant and soil</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Aims Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. x Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock. Methods Plants were grown hydroponically in a nutrient solution supplemented with 5 μMB for 14 days and then transferred to a B-free medium (0 μMB) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined. Results After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na
<sub>2</sub>
CO
<sub>3</sub>
-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange. Conclusions These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C02B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Affectation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Allocation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Afectación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Porte greffe</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Rootstock</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Portainjerto</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Stade juvénile plante</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Plant juvenile growth stage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estado juvenil planta</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Déficit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Deficiency</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Déficiencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réponse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Response</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Respuesta</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Efficacité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Efficiency</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Eficacia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Paroi cellulaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cell wall</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pared celular</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Bore</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Boron</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Boro</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Pectine</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Pectin</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Pectina</s0>
<s5>16</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Non métal</s0>
<s2>NC</s2>
<s5>33</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Non metal</s0>
<s2>NC</s2>
<s5>33</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>No metal</s0>
<s2>NC</s2>
<s5>33</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Stade développement</s0>
<s5>34</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Developmental stage</s0>
<s5>34</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Grado desarrollo</s0>
<s5>34</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Polyoside</s0>
<s2>NK</s2>
<s5>50</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Polysaccharide</s0>
<s2>NK</s2>
<s5>50</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Poliósido</s0>
<s2>NK</s2>
<s5>50</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Glucide</s0>
<s5>51</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Carbohydrate</s0>
<s5>51</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Glúcido</s0>
<s5>51</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Oside</s0>
<s5>52</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Oside</s0>
<s5>52</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Osido</s0>
<s5>52</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Composé biochimique</s0>
<s5>53</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Biochemical compound</s0>
<s5>53</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Compuesto bioquímico</s0>
<s5>53</s5>
</fC07>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0289581
   |texte=   Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron-deficiency response
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024