Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biogenic emissions from Citrus species in California

Identifieur interne : 000853 ( PascalFrancis/Curation ); précédent : 000852; suivant : 000854

Biogenic emissions from Citrus species in California

Auteurs : Silvano Fares [États-Unis, Italie] ; Drew R. Gentner [États-Unis] ; Jeong-Hoo Park [États-Unis] ; Elena Ormeno [États-Unis, France] ; John Karlik [États-Unis] ; Allen H. Goldstein [États-Unis]

Source :

RBID : Pascal:11-0439520

Descripteurs français

English descriptors

Abstract

Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California (Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW)-1 h-1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW)-1 h-1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene emissions among all Citrus species are dominated by ocimenes, β-caryophyllene, and linalool, respectively. In addition to utilizing our reported emission factors in BVOC emission models, we recommend that future BVOC emission models consider additional emissions from flowering and harvest, which occur seasonally and may have a significant impact on regional atmospheric chemistry.
pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 45
A06       @2 27
A08 01  1  ENG  @1 Biogenic emissions from Citrus species in California
A11 01  1    @1 FARES (Silvano)
A11 02  1    @1 GENTNER (Drew R.)
A11 03  1    @1 PARK (Jeong-Hoo)
A11 04  1    @1 ORMENO (Elena)
A11 05  1    @1 KARLIK (John)
A11 06  1    @1 GOLDSTEIN (Allen H.)
A14 01      @1 University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management @2 CA @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 CRA (Agricultural Research Council) - Research Center for the Soil-Plant System @2 Rome @3 ITA @Z 1 aut.
A14 03      @1 University of Califomia, Berkeley, Department of Civil and Environmental Engineering @2 CA @3 USA @Z 2 aut. @Z 6 aut.
A14 04      @1 CNRS - INEE - IMEP (National Center of Scientific Research, Institute of Ecology and Environment - Mediterranean Institute of Ecology and Paleoecology @2 Marseille @3 FRA @Z 4 aut.
A14 05      @1 University of California Cooperative Extension, Kern County @2 CA @3 USA @Z 5 aut.
A20       @1 4557-4568
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000191098680030
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 11-0439520
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California (Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW)-1 h-1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW)-1 h-1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene emissions among all Citrus species are dominated by ocimenes, β-caryophyllene, and linalool, respectively. In addition to utilizing our reported emission factors in BVOC emission models, we recommend that future BVOC emission models consider additional emissions from flowering and harvest, which occur seasonally and may have a significant impact on regional atmospheric chemistry.
C02 01  X    @0 001D16C
C03 01  X  FRE  @0 Facteur biogène @5 01
C03 01  X  ENG  @0 Biogenic factor @5 01
C03 01  X  SPA  @0 Factor biógeno @5 01
C03 02  X  FRE  @0 Composé organique volatil @5 02
C03 02  X  ENG  @0 Volatile organic compound @5 02
C03 02  X  SPA  @0 Compuesto orgánico volátil @5 02
C03 03  X  FRE  @0 Précurseur @5 03
C03 03  X  ENG  @0 Precursor @5 03
C03 03  X  SPA  @0 Precursor @5 03
C03 04  X  FRE  @0 Ozone @2 NK @2 FX @5 04
C03 04  X  ENG  @0 Ozone @2 NK @2 FX @5 04
C03 04  X  SPA  @0 Ozono @2 NK @2 FX @5 04
C03 05  X  FRE  @0 Polluant secondaire @5 05
C03 05  X  ENG  @0 Secondary pollutant @5 05
C03 05  X  SPA  @0 Contaminante secundario @5 05
C03 06  X  FRE  @0 Aérosol @5 06
C03 06  X  ENG  @0 Aerosols @5 06
C03 06  X  SPA  @0 Aerosol @5 06
C03 07  X  FRE  @0 Composé organique @2 NA @5 07
C03 07  X  ENG  @0 Organic compounds @2 NA @5 07
C03 07  X  SPA  @0 Compuesto orgánico @2 NA @5 07
C03 08  X  FRE  @0 Occupation sol @5 08
C03 08  X  ENG  @0 Land use @5 08
C03 08  X  SPA  @0 Ocupación terreno @5 08
C03 09  X  FRE  @0 Agriculture @5 09
C03 09  X  ENG  @0 Agriculture @5 09
C03 09  X  SPA  @0 Agricultura @5 09
C03 10  X  FRE  @0 Modélisation @5 10
C03 10  X  ENG  @0 Modeling @5 10
C03 10  X  SPA  @0 Modelización @5 10
C03 11  X  FRE  @0 Monoterpène @5 11
C03 11  X  ENG  @0 Monoterpene @5 11
C03 11  X  SPA  @0 Monoterpeno @5 11
C03 12  X  FRE  @0 Sesquiterpène @5 12
C03 12  X  ENG  @0 Sesquiterpenes @5 12
C03 12  X  SPA  @0 Sesquiterpeno @5 12
C03 13  X  FRE  @0 Spectrométrie masse @5 13
C03 13  X  ENG  @0 Mass spectrometry @5 13
C03 13  X  SPA  @0 Espectrometría masa @5 13
C03 14  X  FRE  @0 Chromatographie phase gazeuse @5 14
C03 14  X  ENG  @0 Gas chromatography @5 14
C03 14  X  SPA  @0 Cromatografía fase gaseosa @5 14
C03 15  X  FRE  @0 Méthanol @2 NK @2 FX @5 15
C03 15  X  ENG  @0 Methanol @2 NK @2 FX @5 15
C03 15  X  SPA  @0 Metanol @2 NK @2 FX @5 15
C03 16  X  FRE  @0 Teneur émission @5 16
C03 16  X  ENG  @0 Emission content @5 16
C03 16  X  SPA  @0 Contenido emisión @5 16
C03 17  X  FRE  @0 Algorithme @5 17
C03 17  X  ENG  @0 Algorithm @5 17
C03 17  X  SPA  @0 Algoritmo @5 17
C03 18  X  FRE  @0 Spéciation @5 18
C03 18  X  ENG  @0 Speciation @5 18
C03 18  X  SPA  @0 Especiación @5 18
C03 19  X  FRE  @0 Terpène @2 FX @5 19
C03 19  X  ENG  @0 Terpene @2 FX @5 19
C03 19  X  SPA  @0 Terpeno @2 FX @5 19
C03 20  X  FRE  @0 Prévision pollution atmosphérique @5 20
C03 20  X  ENG  @0 Atmospheric pollution forecasting @5 20
C03 20  X  SPA  @0 Previsión contaminación del ambiente @5 20
C03 21  3  FRE  @0 Chimie atmosphérique @5 21
C03 21  3  ENG  @0 Atmospheric chemistry @5 21
C03 22  X  FRE  @0 Californie @2 NG @5 31
C03 22  X  ENG  @0 California @2 NG @5 31
C03 22  X  SPA  @0 California @2 NG @5 31
C03 23  X  FRE  @0 Pollution origine naturelle @5 35
C03 23  X  ENG  @0 Natural origin pollution @5 35
C03 23  X  SPA  @0 Polución origen natural @5 35
C03 24  3  FRE  @0 Oxydant photochimique @5 36
C03 24  3  ENG  @0 Photochemical oxidants @5 36
C03 25  X  FRE  @0 Pollution air @5 37
C03 25  X  ENG  @0 Air pollution @5 37
C03 25  X  SPA  @0 Contaminación aire @5 37
C03 26  X  FRE  @0 Alcool @5 38
C03 26  X  ENG  @0 Alcohol @5 38
C03 26  X  SPA  @0 Alcohol @5 38
C03 27  X  FRE  @0 Devenir polluant @5 39
C03 27  X  ENG  @0 Pollutant behavior @5 39
C03 27  X  SPA  @0 Evolución contaminante @5 39
C03 28  X  FRE  @0 Hydrocarbure @2 FX @5 40
C03 28  X  ENG  @0 Hydrocarbon @2 FX @5 40
C03 28  X  SPA  @0 Hidrocarburo @2 FX @5 40
C07 01  X  FRE  @0 Etats-Unis @2 NG
C07 01  X  ENG  @0 United States @2 NG
C07 01  X  SPA  @0 Estados Unidos @2 NG
C07 02  X  FRE  @0 Amérique du Nord @2 NG
C07 02  X  ENG  @0 North America @2 NG
C07 02  X  SPA  @0 America del norte @2 NG
C07 03  X  FRE  @0 Amérique @2 NG
C07 03  X  ENG  @0 America @2 NG
C07 03  X  SPA  @0 America @2 NG
N21       @1 297
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0439520

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Biogenic emissions from Citrus species in California</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRA (Agricultural Research Council) - Research Center for the Soil-Plant System</s1>
<s2>Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Gentner, Drew R" sort="Gentner, Drew R" uniqKey="Gentner D" first="Drew R." last="Gentner">Drew R. Gentner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Califomia, Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Park, Jeong Hoo" sort="Park, Jeong Hoo" uniqKey="Park J" first="Jeong-Hoo" last="Park">Jeong-Hoo Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ormeno, Elena" sort="Ormeno, Elena" uniqKey="Ormeno E" first="Elena" last="Ormeno">Elena Ormeno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNRS - INEE - IMEP (National Center of Scientific Research, Institute of Ecology and Environment - Mediterranean Institute of Ecology and Paleoecology</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Karlik, John" sort="Karlik, John" uniqKey="Karlik J" first="John" last="Karlik">John Karlik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of California Cooperative Extension, Kern County</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Califomia, Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0439520</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0439520 INIST</idno>
<idno type="RBID">Pascal:11-0439520</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000147</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000853</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Biogenic emissions from Citrus species in California</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CRA (Agricultural Research Council) - Research Center for the Soil-Plant System</s1>
<s2>Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Gentner, Drew R" sort="Gentner, Drew R" uniqKey="Gentner D" first="Drew R." last="Gentner">Drew R. Gentner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Califomia, Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Park, Jeong Hoo" sort="Park, Jeong Hoo" uniqKey="Park J" first="Jeong-Hoo" last="Park">Jeong-Hoo Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ormeno, Elena" sort="Ormeno, Elena" uniqKey="Ormeno E" first="Elena" last="Ormeno">Elena Ormeno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNRS - INEE - IMEP (National Center of Scientific Research, Institute of Ecology and Environment - Mediterranean Institute of Ecology and Paleoecology</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Karlik, John" sort="Karlik, John" uniqKey="Karlik J" first="John" last="Karlik">John Karlik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of California Cooperative Extension, Kern County</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of Califomia, Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Agriculture</term>
<term>Air pollution</term>
<term>Alcohol</term>
<term>Algorithm</term>
<term>Atmospheric chemistry</term>
<term>Atmospheric pollution forecasting</term>
<term>Biogenic factor</term>
<term>California</term>
<term>Emission content</term>
<term>Gas chromatography</term>
<term>Hydrocarbon</term>
<term>Land use</term>
<term>Mass spectrometry</term>
<term>Methanol</term>
<term>Modeling</term>
<term>Monoterpene</term>
<term>Natural origin pollution</term>
<term>Organic compounds</term>
<term>Ozone</term>
<term>Photochemical oxidants</term>
<term>Pollutant behavior</term>
<term>Precursor</term>
<term>Secondary pollutant</term>
<term>Sesquiterpenes</term>
<term>Speciation</term>
<term>Terpene</term>
<term>Volatile organic compound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Facteur biogène</term>
<term>Composé organique volatil</term>
<term>Précurseur</term>
<term>Ozone</term>
<term>Polluant secondaire</term>
<term>Aérosol</term>
<term>Composé organique</term>
<term>Occupation sol</term>
<term>Agriculture</term>
<term>Modélisation</term>
<term>Monoterpène</term>
<term>Sesquiterpène</term>
<term>Spectrométrie masse</term>
<term>Chromatographie phase gazeuse</term>
<term>Méthanol</term>
<term>Teneur émission</term>
<term>Algorithme</term>
<term>Spéciation</term>
<term>Terpène</term>
<term>Prévision pollution atmosphérique</term>
<term>Chimie atmosphérique</term>
<term>Californie</term>
<term>Pollution origine naturelle</term>
<term>Oxydant photochimique</term>
<term>Pollution air</term>
<term>Alcool</term>
<term>Devenir polluant</term>
<term>Hydrocarbure</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Ozone</term>
<term>Aérosol</term>
<term>Méthanol</term>
<term>Alcool</term>
<term>Hydrocarbure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California (Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW)
<sup>-1</sup>
h
<sup>-1</sup>
), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW)
<sup>-1</sup>
h
<sup>-1</sup>
). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene emissions among all Citrus species are dominated by ocimenes, β-caryophyllene, and linalool, respectively. In addition to utilizing our reported emission factors in BVOC emission models, we recommend that future BVOC emission models consider additional emissions from flowering and harvest, which occur seasonally and may have a significant impact on regional atmospheric chemistry.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>27</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Biogenic emissions from Citrus species in California</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FARES (Silvano)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GENTNER (Drew R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARK (Jeong-Hoo)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ORMENO (Elena)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KARLIK (John)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOLDSTEIN (Allen H.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of California, Berkeley, Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CRA (Agricultural Research Council) - Research Center for the Soil-Plant System</s1>
<s2>Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of Califomia, Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNRS - INEE - IMEP (National Center of Scientific Research, Institute of Ecology and Environment - Mediterranean Institute of Ecology and Paleoecology</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of California Cooperative Extension, Kern County</s1>
<s2>CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>4557-4568</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000191098680030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0439520</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California (Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW)
<sup>-1</sup>
h
<sup>-1</sup>
), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW)
<sup>-1</sup>
h
<sup>-1</sup>
). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene emissions among all Citrus species are dominated by ocimenes, β-caryophyllene, and linalool, respectively. In addition to utilizing our reported emission factors in BVOC emission models, we recommend that future BVOC emission models consider additional emissions from flowering and harvest, which occur seasonally and may have a significant impact on regional atmospheric chemistry.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Facteur biogène</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Biogenic factor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Factor biógeno</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé organique volatil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Volatile organic compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto orgánico volátil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Polluant secondaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Secondary pollutant</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Contaminante secundario</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Occupation sol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Land use</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ocupación terreno</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Agriculture</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Agriculture</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Agricultura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Monoterpène</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Monoterpene</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Monoterpeno</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sesquiterpène</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sesquiterpenes</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sesquiterpeno</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Mass spectrometry</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espectrometría masa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Chromatographie phase gazeuse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gas chromatography</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cromatografía fase gaseosa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Methanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Metanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Teneur émission</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Emission content</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Contenido emisión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Spéciation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Speciation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Especiación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Terpène</s0>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Terpene</s0>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Terpeno</s0>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Prévision pollution atmosphérique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Atmospheric pollution forecasting</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Previsión contaminación del ambiente</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Californie</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>California</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>California</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Pollution origine naturelle</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Natural origin pollution</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Polución origen natural</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Oxydant photochimique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Photochemical oxidants</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Devenir polluant</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Pollutant behavior</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Evolución contaminante</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Hydrocarbure</s0>
<s2>FX</s2>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Hydrocarbon</s0>
<s2>FX</s2>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Hidrocarburo</s0>
<s2>FX</s2>
<s5>40</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Etats-Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000853 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000853 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0439520
   |texte=   Biogenic emissions from Citrus species in California
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024