Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]

Identifieur interne : 000483 ( PascalFrancis/Curation ); précédent : 000482; suivant : 000484

Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]

Auteurs : Angela Roberta Lo Piero [Italie] ; Ivana Puglisi [Italie] ; Goffredo Petrone [Italie]

Source :

RBID : Pascal:07-0005154

Descripteurs français

English descriptors

Abstract

Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having considered gene organization and homology data, we suggest that the isolated GSTgene is probably involved in the vacuolar import of anthocyanins. We also found that the blood and blond orange GSTs shared the same nucleotide sequences, but as expected, the GST expression in the nonpigmented orange cultivar [Citrus sinensis L. (Osbeck)] (Navel and Ovale) was strongly reduced as compared to that of the pigmented orange (Tarocco). Interestingly, in the crude extracts of pigmented orange fruits, the GSTactivity was reproducibly detected by providing either 1-chloro-2,4 dinitrobenzene (CDNB) or cyanidin-3-O-glucoside (C-3-G) as substrates; moreover, we have shown that cyanidin-3-O-glucoside acted as a powerful competitive inhibitor of 1-chloro-2,4 dinitrobenzene conjugation to reduced glutathione (GSH) in the pigmented orange, confirming that this molecule might easily bind to the active site of the enzyme and functions as a putative substrate. In addition, we have reported here the successful in vitro expression of orange GSTcDNAs leading to a GST enzyme that is active against cyanidin-3-O-glucoside, thus suggesting the probable involvement of the isolated gene in the tagging of anthocyanins for vacuolar import. This last result will help to study the kinetic and structural properties of orange fruit GSTavoiding time-consuming protein purification procedures.
pA  
A01 01  1    @0 0021-8561
A02 01      @0 JAFCAU
A03   1    @0 J. agric. food chem. : (Print)
A05       @2 54
A06       @2 24
A08 01  1  ENG  @1 Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]
A11 01  1    @1 LO PIERO (Angela Roberta)
A11 02  1    @1 PUGLISI (Ivana)
A11 03  1    @1 PETRONE (Goffredo)
A14 01      @1 Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98 @2 95123 Catania @3 ITA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 9227-9233
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 7332 @5 354000159060360330
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 07-0005154
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of agricultural and food chemistry : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having considered gene organization and homology data, we suggest that the isolated GSTgene is probably involved in the vacuolar import of anthocyanins. We also found that the blood and blond orange GSTs shared the same nucleotide sequences, but as expected, the GST expression in the nonpigmented orange cultivar [Citrus sinensis L. (Osbeck)] (Navel and Ovale) was strongly reduced as compared to that of the pigmented orange (Tarocco). Interestingly, in the crude extracts of pigmented orange fruits, the GSTactivity was reproducibly detected by providing either 1-chloro-2,4 dinitrobenzene (CDNB) or cyanidin-3-O-glucoside (C-3-G) as substrates; moreover, we have shown that cyanidin-3-O-glucoside acted as a powerful competitive inhibitor of 1-chloro-2,4 dinitrobenzene conjugation to reduced glutathione (GSH) in the pigmented orange, confirming that this molecule might easily bind to the active site of the enzyme and functions as a putative substrate. In addition, we have reported here the successful in vitro expression of orange GSTcDNAs leading to a GST enzyme that is active against cyanidin-3-O-glucoside, thus suggesting the probable involvement of the isolated gene in the tagging of anthocyanins for vacuolar import. This last result will help to study the kinetic and structural properties of orange fruit GSTavoiding time-consuming protein purification procedures.
C02 01  X    @0 002A35B09
C03 01  X  FRE  @0 Expression génique @5 01
C03 01  X  ENG  @0 Gene expression @5 01
C03 01  X  SPA  @0 Expresión genética @5 01
C03 02  X  FRE  @0 Isolement @5 02
C03 02  X  ENG  @0 Isolation @5 02
C03 02  X  SPA  @0 Aislamiento @5 02
C03 03  X  FRE  @0 In vitro @5 10
C03 03  X  ENG  @0 In vitro @5 10
C03 03  X  SPA  @0 In vitro @5 10
C03 04  X  FRE  @0 Citrus sinensis @2 NS @5 13
C03 04  X  ENG  @0 Citrus sinensis @2 NS @5 13
C03 04  X  SPA  @0 Citrus sinensis @2 NS @5 13
C03 05  X  FRE  @0 Synthèse @5 19
C03 05  X  ENG  @0 Synthesis @5 19
C03 05  X  SPA  @0 Síntesis @5 19
C03 06  X  FRE  @0 Glutathione transferase @2 FE @5 20
C03 06  X  ENG  @0 Glutathione transferase @2 FE @5 20
C03 06  X  SPA  @0 Glutathione transferase @2 FE @5 20
C03 07  X  FRE  @0 Orange @5 24
C03 07  X  ENG  @0 Orange @5 24
C03 07  X  SPA  @0 Naranja @5 24
C03 08  X  FRE  @0 Agrume @5 26
C03 08  X  ENG  @0 Citrus fruit @5 26
C03 08  X  SPA  @0 Agrios @5 26
C03 09  X  FRE  @0 Flavonoïde @5 28
C03 09  X  ENG  @0 Flavonoid @5 28
C03 09  X  SPA  @0 Flavonoide @5 28
C03 10  X  FRE  @0 Anthocyane @5 48
C03 10  X  ENG  @0 Anthocyanin @5 48
C03 10  X  SPA  @0 Antocianina @5 48
C03 11  X  FRE  @0 Sang @5 53
C03 11  X  ENG  @0 Blood @5 53
C03 11  X  SPA  @0 Sangre @5 53
C03 12  X  FRE  @0 Froid @5 63
C03 12  X  ENG  @0 Cold @5 63
C03 12  X  SPA  @0 Frío @5 63
C03 13  X  FRE  @0 Stress @5 64
C03 13  X  ENG  @0 Stress @5 64
C03 13  X  SPA  @0 Estrés @5 64
C03 14  X  FRE  @0 Temps réel @5 65
C03 14  X  ENG  @0 Real time @5 65
C03 14  X  SPA  @0 Tiempo real @5 65
C03 15  X  FRE  @0 Réaction chaîne polymérase @5 66
C03 15  X  ENG  @0 Polymerase chain reaction @5 66
C03 15  X  SPA  @0 Reacción cadena polimerasa @5 66
C07 01  X  FRE  @0 Fruit @5 08
C07 01  X  ENG  @0 Fruit @5 08
C07 01  X  SPA  @0 Fruto @5 08
C07 02  X  FRE  @0 Rutaceae @2 NS
C07 02  X  ENG  @0 Rutaceae @2 NS
C07 02  X  SPA  @0 Rutaceae @2 NS
C07 03  X  FRE  @0 Dicotyledones @2 NS
C07 03  X  ENG  @0 Dicotyledones @2 NS
C07 03  X  SPA  @0 Dicotyledones @2 NS
C07 04  X  FRE  @0 Angiospermae @2 NS
C07 04  X  ENG  @0 Angiospermae @2 NS
C07 04  X  SPA  @0 Angiospermae @2 NS
C07 05  X  FRE  @0 Spermatophyta @2 NS
C07 05  X  ENG  @0 Spermatophyta @2 NS
C07 05  X  SPA  @0 Spermatophyta @2 NS
C07 06  X  FRE  @0 Transferases @2 FE
C07 06  X  ENG  @0 Transferases @2 FE
C07 06  X  SPA  @0 Transferases @2 FE
C07 07  X  FRE  @0 Enzyme @2 FE
C07 07  X  ENG  @0 Enzyme @2 FE
C07 07  X  SPA  @0 Enzima @2 FE
C07 08  X  FRE  @0 Pigment @5 49
C07 08  X  ENG  @0 Pigments @5 49
C07 08  X  SPA  @0 Pigmento @5 49
C07 09  X  FRE  @0 Facteur milieu @5 50
C07 09  X  ENG  @0 Environmental factor @5 50
C07 09  X  SPA  @0 Factor medio @5 50
C07 10  X  FRE  @0 Température @5 51
C07 10  X  ENG  @0 Temperature @5 51
C07 10  X  SPA  @0 Temperatura @5 51
C07 11  X  FRE  @0 Biologie moléculaire @5 52
C07 11  X  ENG  @0 Molecular biology @5 52
C07 11  X  SPA  @0 Biología molecular @5 52
C07 12  X  FRE  @0 Polyphénol @5 75
C07 12  X  ENG  @0 Polyphenol @5 75
C07 12  X  SPA  @0 Polifenol @5 75
N21       @1 008
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0005154

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]</title>
<author>
<name sortKey="Lo Piero, Angela Roberta" sort="Lo Piero, Angela Roberta" uniqKey="Lo Piero A" first="Angela Roberta" last="Lo Piero">Angela Roberta Lo Piero</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Puglisi, Ivana" sort="Puglisi, Ivana" uniqKey="Puglisi I" first="Ivana" last="Puglisi">Ivana Puglisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Petrone, Goffredo" sort="Petrone, Goffredo" uniqKey="Petrone G" first="Goffredo" last="Petrone">Goffredo Petrone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0005154</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0005154 INIST</idno>
<idno type="RBID">Pascal:07-0005154</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000521</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000483</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]</title>
<author>
<name sortKey="Lo Piero, Angela Roberta" sort="Lo Piero, Angela Roberta" uniqKey="Lo Piero A" first="Angela Roberta" last="Lo Piero">Angela Roberta Lo Piero</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Puglisi, Ivana" sort="Puglisi, Ivana" uniqKey="Puglisi I" first="Ivana" last="Puglisi">Ivana Puglisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Petrone, Goffredo" sort="Petrone, Goffredo" uniqKey="Petrone G" first="Goffredo" last="Petrone">Goffredo Petrone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of agricultural and food chemistry : (Print)</title>
<title level="j" type="abbreviated">J. agric. food chem. : (Print)</title>
<idno type="ISSN">0021-8561</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of agricultural and food chemistry : (Print)</title>
<title level="j" type="abbreviated">J. agric. food chem. : (Print)</title>
<idno type="ISSN">0021-8561</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthocyanin</term>
<term>Blood</term>
<term>Citrus fruit</term>
<term>Citrus sinensis</term>
<term>Cold</term>
<term>Flavonoid</term>
<term>Gene expression</term>
<term>Glutathione transferase</term>
<term>In vitro</term>
<term>Isolation</term>
<term>Orange</term>
<term>Polymerase chain reaction</term>
<term>Real time</term>
<term>Stress</term>
<term>Synthesis</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Expression génique</term>
<term>Isolement</term>
<term>In vitro</term>
<term>Citrus sinensis</term>
<term>Synthèse</term>
<term>Glutathione transferase</term>
<term>Orange</term>
<term>Agrume</term>
<term>Flavonoïde</term>
<term>Anthocyane</term>
<term>Sang</term>
<term>Froid</term>
<term>Stress</term>
<term>Temps réel</term>
<term>Réaction chaîne polymérase</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Agrume</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having considered gene organization and homology data, we suggest that the isolated GSTgene is probably involved in the vacuolar import of anthocyanins. We also found that the blood and blond orange GSTs shared the same nucleotide sequences, but as expected, the GST expression in the nonpigmented orange cultivar [Citrus sinensis L. (Osbeck)] (Navel and Ovale) was strongly reduced as compared to that of the pigmented orange (Tarocco). Interestingly, in the crude extracts of pigmented orange fruits, the GSTactivity was reproducibly detected by providing either 1-chloro-2,4 dinitrobenzene (CDNB) or cyanidin-3-O-glucoside (C-3-G) as substrates; moreover, we have shown that cyanidin-3-O-glucoside acted as a powerful competitive inhibitor of 1-chloro-2,4 dinitrobenzene conjugation to reduced glutathione (GSH) in the pigmented orange, confirming that this molecule might easily bind to the active site of the enzyme and functions as a putative substrate. In addition, we have reported here the successful in vitro expression of orange GSTcDNAs leading to a GST enzyme that is active against cyanidin-3-O-glucoside, thus suggesting the probable involvement of the isolated gene in the tagging of anthocyanins for vacuolar import. This last result will help to study the kinetic and structural properties of orange fruit GSTavoiding time-consuming protein purification procedures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8561</s0>
</fA01>
<fA02 i1="01">
<s0>JAFCAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. agric. food chem. : (Print)</s0>
</fA03>
<fA05>
<s2>54</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LO PIERO (Angela Roberta)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PUGLISI (Ivana)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PETRONE (Goffredo)</s1>
</fA11>
<fA14 i1="01">
<s1>Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali (DACPA), Facoltà di Agraria, Università degli Studi Catania, via S. Sofia no. 98</s1>
<s2>95123 Catania</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>9227-9233</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7332</s2>
<s5>354000159060360330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0005154</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of agricultural and food chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having considered gene organization and homology data, we suggest that the isolated GSTgene is probably involved in the vacuolar import of anthocyanins. We also found that the blood and blond orange GSTs shared the same nucleotide sequences, but as expected, the GST expression in the nonpigmented orange cultivar [Citrus sinensis L. (Osbeck)] (Navel and Ovale) was strongly reduced as compared to that of the pigmented orange (Tarocco). Interestingly, in the crude extracts of pigmented orange fruits, the GSTactivity was reproducibly detected by providing either 1-chloro-2,4 dinitrobenzene (CDNB) or cyanidin-3-O-glucoside (C-3-G) as substrates; moreover, we have shown that cyanidin-3-O-glucoside acted as a powerful competitive inhibitor of 1-chloro-2,4 dinitrobenzene conjugation to reduced glutathione (GSH) in the pigmented orange, confirming that this molecule might easily bind to the active site of the enzyme and functions as a putative substrate. In addition, we have reported here the successful in vitro expression of orange GSTcDNAs leading to a GST enzyme that is active against cyanidin-3-O-glucoside, thus suggesting the probable involvement of the isolated gene in the tagging of anthocyanins for vacuolar import. This last result will help to study the kinetic and structural properties of orange fruit GSTavoiding time-consuming protein purification procedures.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A35B09</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Expression génique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Gene expression</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Expresión genética</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Isolement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Isolation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aislamiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>In vitro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>In vitro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>In vitro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Glutathione transferase</s0>
<s2>FE</s2>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Glutathione transferase</s0>
<s2>FE</s2>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Glutathione transferase</s0>
<s2>FE</s2>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Orange</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Orange</s0>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Naranja</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>26</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>26</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>26</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Flavonoïde</s0>
<s5>28</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Flavonoid</s0>
<s5>28</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Flavonoide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Anthocyane</s0>
<s5>48</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Anthocyanin</s0>
<s5>48</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Antocianina</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sang</s0>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Blood</s0>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sangre</s0>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Froid</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Cold</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Frío</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stress</s0>
<s5>64</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stress</s0>
<s5>64</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estrés</s0>
<s5>64</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>65</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Real time</s0>
<s5>65</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>65</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réaction chaîne polymérase</s0>
<s5>66</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Polymerase chain reaction</s0>
<s5>66</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Reacción cadena polimerasa</s0>
<s5>66</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Fruit</s0>
<s5>08</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fruit</s0>
<s5>08</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Fruto</s0>
<s5>08</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Pigment</s0>
<s5>49</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Pigments</s0>
<s5>49</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Pigmento</s0>
<s5>49</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s5>50</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Environmental factor</s0>
<s5>50</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Factor medio</s0>
<s5>50</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Température</s0>
<s5>51</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Temperature</s0>
<s5>51</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Temperatura</s0>
<s5>51</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Biologie moléculaire</s0>
<s5>52</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Molecular biology</s0>
<s5>52</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Biología molecular</s0>
<s5>52</s5>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Polyphénol</s0>
<s5>75</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Polyphenol</s0>
<s5>75</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Polifenol</s0>
<s5>75</s5>
</fC07>
<fN21>
<s1>008</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000483 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000483 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:07-0005154
   |texte=   Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024