Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the low affinity transport system for NO3- uptake by Citrus roots

Identifieur interne : 000929 ( PascalFrancis/Corpus ); précédent : 000928; suivant : 000930

Characterization of the low affinity transport system for NO3- uptake by Citrus roots

Auteurs : M. Cerezo ; V. Flor ; F. Legaz ; Pilar Garcia-Agustin

Source :

RBID : Pascal:01-0106859

Descripteurs français

English descriptors

Abstract

Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO3- starvation, plants were transferred to solutions enriched with K15NO3 (96% atoms 15N excess) to measure 13NO3 uptake rates as a function of external 15NO3 concentrations. Two different NO3 uptake systems were found. Between 1 and 50 mM 15NO3 in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO3], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO3 uptake rate measured at 5 or 30 mM external [15NO3]. The extent of the inhibition depended on the [NO3] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in 15NO3 uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO24 did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [15NO3]. However, these compounds had little effect when 15NO3 uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced 15NO3 uptake by 68.8%-35.6%, at both external [15NO3]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO3 uptake.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0168-9452
A02 01      @0 PLSCE4
A03   1    @0 Plant sci. : (Limerick)
A05       @2 160
A06       @2 1
A08 01  1  ENG  @1 Characterization of the low affinity transport system for NO3- uptake by Citrus roots
A11 01  1    @1 CEREZO (M.)
A11 02  1    @1 FLOR (V.)
A11 03  1    @1 LEGAZ (F.)
A11 04  1    @1 GARCIA-AGUSTIN (Pilar)
A14 01      @1 Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I @2 Castellon 12071 @3 ESP @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 Departamento de Citricultura, IVIA, Apartado Oficial 46113 @2 Moncada, Valencia @3 ESP @Z 3 aut.
A20       @1 95-104
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 15982 @5 354000094081890100
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 51 ref.
A47 01  1    @0 01-0106859
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant science : (Limerick)
A66 01      @0 IRL
C01 01    ENG  @0 Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO3- starvation, plants were transferred to solutions enriched with K15NO3 (96% atoms 15N excess) to measure 13NO3 uptake rates as a function of external 15NO3 concentrations. Two different NO3 uptake systems were found. Between 1 and 50 mM 15NO3 in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO3], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO3 uptake rate measured at 5 or 30 mM external [15NO3]. The extent of the inhibition depended on the [NO3] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in 15NO3 uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO24 did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [15NO3]. However, these compounds had little effect when 15NO3 uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced 15NO3 uptake by 68.8%-35.6%, at both external [15NO3]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO3 uptake.
C02 01  X    @0 002A10C
C02 02  X    @0 002A32E05C
C03 01  X  FRE  @0 Caractérisation @5 01
C03 01  X  ENG  @0 Characterization @5 01
C03 01  X  SPA  @0 Caracterización @5 01
C03 02  X  FRE  @0 Nutrition @5 02
C03 02  X  ENG  @0 Nutrition @5 02
C03 02  X  SPA  @0 Nutrición @5 02
C03 03  X  FRE  @0 Absorption @5 03
C03 03  X  ENG  @0 Absorption @5 03
C03 03  X  SPA  @0 Absorción @5 03
C03 04  X  FRE  @0 Protéine membranaire @5 04
C03 04  X  ENG  @0 Membrane protein @5 04
C03 04  X  SPA  @0 Proteína membranar @5 04
C03 05  X  FRE  @0 Canal ionique @5 05
C03 05  X  ENG  @0 Ionic channel @5 05
C03 05  X  SPA  @0 Canal iónico @5 05
C03 06  X  FRE  @0 Adenosinetriphosphatase @2 FE @5 06
C03 06  X  ENG  @0 Adenosinetriphosphatase @2 FE @5 06
C03 06  X  SPA  @0 Adenosinetriphosphatase @2 FE @5 06
C03 07  X  FRE  @0 Affinité @5 07
C03 07  X  ENG  @0 Affinity @5 07
C03 07  X  SPA  @0 Afinidad @5 07
C03 08  X  FRE  @0 Racine @5 08
C03 08  X  ENG  @0 Root @5 08
C03 08  X  SPA  @0 Raíz @5 08
C03 09  X  FRE  @0 Marquage isotopique @5 09
C03 09  X  ENG  @0 Isotope labelling @5 09
C03 09  X  SPA  @0 Marcación isotópica @5 09
C03 10  X  FRE  @0 Nitrate @2 NA @2 FX @5 15
C03 10  X  ENG  @0 Nitrates @2 NA @2 FX @5 15
C03 10  X  SPA  @0 Nitrato @2 NA @2 FX @5 15
C03 11  X  FRE  @0 Azote Isotope @2 NC @2 NA @5 16
C03 11  X  ENG  @0 Nitrogen Isotopes @2 NC @2 NA @5 16
C03 11  X  SPA  @0 Nitrógeno Isótopo @2 NC @2 NA @5 16
C03 12  X  FRE  @0 Inhibition @5 33
C03 12  X  ENG  @0 Inhibition @5 33
C03 12  X  SPA  @0 Inhibición @5 33
C03 13  X  FRE  @0 pH @5 34
C03 13  X  ENG  @0 pH @5 34
C03 13  X  SPA  @0 pH @5 34
C03 14  X  FRE  @0 Régulation @5 35
C03 14  X  ENG  @0 Regulation(control) @5 35
C03 14  X  SPA  @0 Regulación @5 35
C03 15  X  FRE  @0 Citrus sinensis Poncirus trifoliata @2 NS @4 INC @5 77
C07 01  X  FRE  @0 Hydrolases @2 FE
C07 01  X  ENG  @0 Hydrolases @2 FE
C07 01  X  SPA  @0 Hydrolases @2 FE
C07 02  X  FRE  @0 Enzyme
C07 02  X  ENG  @0 Enzyme
C07 02  X  SPA  @0 Enzima
C07 03  X  FRE  @0 Agrume @5 40
C07 03  X  ENG  @0 Citrus fruit @5 40
C07 03  X  SPA  @0 Agrios @5 40
C07 04  X  FRE  @0 Rutaceae @2 NS @5 46
C07 04  X  ENG  @0 Rutaceae @2 NS @5 46
C07 04  X  SPA  @0 Rutaceae @2 NS @5 46
C07 05  X  FRE  @0 Dicotyledones @2 NS
C07 05  X  ENG  @0 Dicotyledones @2 NS
C07 05  X  SPA  @0 Dicotyledones @2 NS
C07 06  X  FRE  @0 Angiospermae @2 NS
C07 06  X  ENG  @0 Angiospermae @2 NS
C07 06  X  SPA  @0 Angiospermae @2 NS
C07 07  X  FRE  @0 Spermatophyta @2 NS
C07 07  X  ENG  @0 Spermatophyta @2 NS
C07 07  X  SPA  @0 Spermatophyta @2 NS
C07 08  X  FRE  @0 Nutriment @5 50
C07 08  X  ENG  @0 Nutrient @5 50
C07 08  X  SPA  @0 Nutriente @5 50
C07 09  X  FRE  @0 Elément minéral @5 51
C07 09  X  ENG  @0 Inorganic element @5 51
C07 09  X  SPA  @0 Elemento inorgánico @5 51
N21       @1 071

Format Inist (serveur)

NO : PASCAL 01-0106859 INIST
ET : Characterization of the low affinity transport system for NO3- uptake by Citrus roots
AU : CEREZO (M.); FLOR (V.); LEGAZ (F.); GARCIA-AGUSTIN (Pilar)
AF : Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I/Castellon 12071/Espagne (1 aut., 2 aut., 4 aut.); Departamento de Citricultura, IVIA, Apartado Oficial 46113/Moncada, Valencia/Espagne (3 aut.)
DT : Publication en série; Niveau analytique
SO : Plant science : (Limerick); ISSN 0168-9452; Coden PLSCE4; Irlande; Da. 2000; Vol. 160; No. 1; Pp. 95-104; Bibl. 51 ref.
LA : Anglais
EA : Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO3- starvation, plants were transferred to solutions enriched with K15NO3 (96% atoms 15N excess) to measure 13NO3 uptake rates as a function of external 15NO3 concentrations. Two different NO3 uptake systems were found. Between 1 and 50 mM 15NO3 in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO3], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO3 uptake rate measured at 5 or 30 mM external [15NO3]. The extent of the inhibition depended on the [NO3] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in 15NO3 uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO24 did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [15NO3]. However, these compounds had little effect when 15NO3 uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced 15NO3 uptake by 68.8%-35.6%, at both external [15NO3]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO3 uptake.
CC : 002A10C; 002A32E05C
FD : Caractérisation; Nutrition; Absorption; Protéine membranaire; Canal ionique; Adenosinetriphosphatase; Affinité; Racine; Marquage isotopique; Nitrate; Azote Isotope; Inhibition; pH; Régulation; Citrus sinensis Poncirus trifoliata
FG : Hydrolases; Enzyme; Agrume; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Nutriment; Elément minéral
ED : Characterization; Nutrition; Absorption; Membrane protein; Ionic channel; Adenosinetriphosphatase; Affinity; Root; Isotope labelling; Nitrates; Nitrogen Isotopes; Inhibition; pH; Regulation(control)
EG : Hydrolases; Enzyme; Citrus fruit; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Nutrient; Inorganic element
SD : Caracterización; Nutrición; Absorción; Proteína membranar; Canal iónico; Adenosinetriphosphatase; Afinidad; Raíz; Marcación isotópica; Nitrato; Nitrógeno Isótopo; Inhibición; pH; Regulación
LO : INIST-15982.354000094081890100
ID : 01-0106859

Links to Exploration step

Pascal:01-0106859

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Characterization of the low affinity transport system for NO
<sub>3</sub>
<sup>-</sup>
uptake by Citrus roots</title>
<author>
<name sortKey="Cerezo, M" sort="Cerezo, M" uniqKey="Cerezo M" first="M." last="Cerezo">M. Cerezo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Flor, V" sort="Flor, V" uniqKey="Flor V" first="V." last="Flor">V. Flor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Legaz, F" sort="Legaz, F" uniqKey="Legaz F" first="F." last="Legaz">F. Legaz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Departamento de Citricultura, IVIA, Apartado Oficial 46113</s1>
<s2>Moncada, Valencia</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia Agustin, Pilar" sort="Garcia Agustin, Pilar" uniqKey="Garcia Agustin P" first="Pilar" last="Garcia-Agustin">Pilar Garcia-Agustin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0106859</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0106859 INIST</idno>
<idno type="RBID">Pascal:01-0106859</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Characterization of the low affinity transport system for NO
<sub>3</sub>
<sup>-</sup>
uptake by Citrus roots</title>
<author>
<name sortKey="Cerezo, M" sort="Cerezo, M" uniqKey="Cerezo M" first="M." last="Cerezo">M. Cerezo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Flor, V" sort="Flor, V" uniqKey="Flor V" first="V." last="Flor">V. Flor</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Legaz, F" sort="Legaz, F" uniqKey="Legaz F" first="F." last="Legaz">F. Legaz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Departamento de Citricultura, IVIA, Apartado Oficial 46113</s1>
<s2>Moncada, Valencia</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia Agustin, Pilar" sort="Garcia Agustin, Pilar" uniqKey="Garcia Agustin P" first="Pilar" last="Garcia-Agustin">Pilar Garcia-Agustin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant science : (Limerick)</title>
<title level="j" type="abbreviated">Plant sci. : (Limerick)</title>
<idno type="ISSN">0168-9452</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant science : (Limerick)</title>
<title level="j" type="abbreviated">Plant sci. : (Limerick)</title>
<idno type="ISSN">0168-9452</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption</term>
<term>Adenosinetriphosphatase</term>
<term>Affinity</term>
<term>Characterization</term>
<term>Inhibition</term>
<term>Ionic channel</term>
<term>Isotope labelling</term>
<term>Membrane protein</term>
<term>Nitrates</term>
<term>Nitrogen Isotopes</term>
<term>Nutrition</term>
<term>Regulation(control)</term>
<term>Root</term>
<term>pH</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractérisation</term>
<term>Nutrition</term>
<term>Absorption</term>
<term>Protéine membranaire</term>
<term>Canal ionique</term>
<term>Adenosinetriphosphatase</term>
<term>Affinité</term>
<term>Racine</term>
<term>Marquage isotopique</term>
<term>Nitrate</term>
<term>Azote Isotope</term>
<term>Inhibition</term>
<term>pH</term>
<term>Régulation</term>
<term>Citrus sinensis Poncirus trifoliata</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO
<sub>3</sub>
<sup>-</sup>
starvation, plants were transferred to solutions enriched with K
<sup>15</sup>
NO
<sub>3</sub>
(96% atoms
<sup>15</sup>
N excess) to measure
<sup>13</sup>
NO
<sub>3</sub>
uptake rates as a function of external
<sup>15</sup>
NO
<sub>3</sub>
concentrations. Two different NO
<sub>3</sub>
uptake systems were found. Between 1 and 50 mM
<sup>15</sup>
NO
<sub>3</sub>
in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO
<sub>3</sub>
], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO
<sub>3</sub>
uptake rate measured at 5 or 30 mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. The extent of the inhibition depended on the [NO
<sub>3</sub>
] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in
<sup>15</sup>
NO
<sub>3</sub>
uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO
<sup>2</sup>
<sub>4</sub>
did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. However, these compounds had little effect when
<sup>15</sup>
NO
<sub>3</sub>
uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced
<sup>15</sup>
NO
<sub>3</sub>
uptake by 68.8%-35.6%, at both external [
<sup>15</sup>
NO
<sub>3</sub>
]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO
<sub>3</sub>
uptake.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0168-9452</s0>
</fA01>
<fA02 i1="01">
<s0>PLSCE4</s0>
</fA02>
<fA03 i2="1">
<s0>Plant sci. : (Limerick)</s0>
</fA03>
<fA05>
<s2>160</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Characterization of the low affinity transport system for NO
<sub>3</sub>
<sup>-</sup>
uptake by Citrus roots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CEREZO (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FLOR (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEGAZ (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GARCIA-AGUSTIN (Pilar)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I</s1>
<s2>Castellon 12071</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Departamento de Citricultura, IVIA, Apartado Oficial 46113</s1>
<s2>Moncada, Valencia</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>95-104</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15982</s2>
<s5>354000094081890100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0106859</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant science : (Limerick)</s0>
</fA64>
<fA66 i1="01">
<s0>IRL</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO
<sub>3</sub>
<sup>-</sup>
starvation, plants were transferred to solutions enriched with K
<sup>15</sup>
NO
<sub>3</sub>
(96% atoms
<sup>15</sup>
N excess) to measure
<sup>13</sup>
NO
<sub>3</sub>
uptake rates as a function of external
<sup>15</sup>
NO
<sub>3</sub>
concentrations. Two different NO
<sub>3</sub>
uptake systems were found. Between 1 and 50 mM
<sup>15</sup>
NO
<sub>3</sub>
in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO
<sub>3</sub>
], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO
<sub>3</sub>
uptake rate measured at 5 or 30 mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. The extent of the inhibition depended on the [NO
<sub>3</sub>
] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in
<sup>15</sup>
NO
<sub>3</sub>
uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO
<sup>2</sup>
<sub>4</sub>
did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. However, these compounds had little effect when
<sup>15</sup>
NO
<sub>3</sub>
uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced
<sup>15</sup>
NO
<sub>3</sub>
uptake by 68.8%-35.6%, at both external [
<sup>15</sup>
NO
<sub>3</sub>
]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO
<sub>3</sub>
uptake.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A32E05C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nutrition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nutrition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nutrición</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Absorption</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Absorption</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Absorción</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Protéine membranaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Membrane protein</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Proteína membranar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Canal ionique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ionic channel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Canal iónico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Adenosinetriphosphatase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Adenosinetriphosphatase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adenosinetriphosphatase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Affinité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Affinity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Afinidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Racine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Root</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Raíz</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Marquage isotopique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Isotope labelling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Marcación isotópica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nitrate</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nitrates</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Nitrato</s0>
<s2>NA</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Azote Isotope</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nitrogen Isotopes</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nitrógeno Isótopo</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Inhibition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Inhibition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Inhibición</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>pH</s0>
<s5>34</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>pH</s0>
<s5>34</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>pH</s0>
<s5>34</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Régulation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Regulation(control)</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Regulación</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Citrus sinensis Poncirus trifoliata</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Enzyme</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Enzyme</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Enzima</s0>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>40</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>40</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>46</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>46</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>46</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Nutriment</s0>
<s5>50</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Nutrient</s0>
<s5>50</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Nutriente</s0>
<s5>50</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Elément minéral</s0>
<s5>51</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Inorganic element</s0>
<s5>51</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Elemento inorgánico</s0>
<s5>51</s5>
</fC07>
<fN21>
<s1>071</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0106859 INIST</NO>
<ET>Characterization of the low affinity transport system for NO
<sub>3</sub>
<sup>-</sup>
uptake by Citrus roots</ET>
<AU>CEREZO (M.); FLOR (V.); LEGAZ (F.); GARCIA-AGUSTIN (Pilar)</AU>
<AF>Departamento de Ciencias Experimentales, Unidad de Biotecnología Vegetal, ESTCE, Campus Riu Sec, Universidad Jaume I/Castellon 12071/Espagne (1 aut., 2 aut., 4 aut.); Departamento de Citricultura, IVIA, Apartado Oficial 46113/Moncada, Valencia/Espagne (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Plant science : (Limerick); ISSN 0168-9452; Coden PLSCE4; Irlande; Da. 2000; Vol. 160; No. 1; Pp. 95-104; Bibl. 51 ref.</SO>
<LA>Anglais</LA>
<EA>Three-month old citrange Troyer (hybrid of Citrus sinensis x Poncirus trifoliata) seedlings were grown hydroponically and, after a period of NO
<sub>3</sub>
<sup>-</sup>
starvation, plants were transferred to solutions enriched with K
<sup>15</sup>
NO
<sub>3</sub>
(96% atoms
<sup>15</sup>
N excess) to measure
<sup>13</sup>
NO
<sub>3</sub>
uptake rates as a function of external
<sup>15</sup>
NO
<sub>3</sub>
concentrations. Two different NO
<sub>3</sub>
uptake systems were found. Between 1 and 50 mM
<sup>15</sup>
NO
<sub>3</sub>
in the uptake solution medium, the uptake rate increased linearly due to the low affinity transport system (LATS). Nitrate reductase activity showed the same response to external [NO
<sub>3</sub>
], and also appears to be regulated by the rate of nitrate uptake. Nitrate pre-treatments had a represive effect on NO
<sub>3</sub>
uptake rate measured at 5 or 30 mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. The extent of the inhibition depended on the [NO
<sub>3</sub>
] during the pre-treatment and in the uptake solution. These results suggest that the LATS of Citrus seedlings is under feedback control by the N status of the plant. Accordingly, addition of amino acids (Glu, Asp, Asn. Gln) to the uptake solution resulted in a decrease in
<sup>15</sup>
NO
<sub>3</sub>
uptake rate. However, the inactivation of nitrate reductase activity after treatment of the seedlings with either 100 or 500 μM WO
<sup>2</sup>
<sub>4</sub>
did not affect the activity of the LATS. Metabolic uncouplers, 2,4-DNP and KCN, reduced the uptake rate by 43.3%, and 41.4% respectively at 5mM external [
<sup>15</sup>
NO
<sub>3</sub>
]. However, these compounds had little effect when
<sup>15</sup>
NO
<sub>3</sub>
uptake was assayed at 30 mM external concentration. The ATPase inhibitors DCCD and DES reduced
<sup>15</sup>
NO
<sub>3</sub>
uptake by 68.8%-35.6%, at both external [
<sup>15</sup>
NO
<sub>3</sub>
]. Nitrate uptake by the LATS declined with the increase of the solution pH beyond pH 4. The data presented are discussed in the context of the kinetics, energy dependence and regulation of NO
<sub>3</sub>
uptake.</EA>
<CC>002A10C; 002A32E05C</CC>
<FD>Caractérisation; Nutrition; Absorption; Protéine membranaire; Canal ionique; Adenosinetriphosphatase; Affinité; Racine; Marquage isotopique; Nitrate; Azote Isotope; Inhibition; pH; Régulation; Citrus sinensis Poncirus trifoliata</FD>
<FG>Hydrolases; Enzyme; Agrume; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Nutriment; Elément minéral</FG>
<ED>Characterization; Nutrition; Absorption; Membrane protein; Ionic channel; Adenosinetriphosphatase; Affinity; Root; Isotope labelling; Nitrates; Nitrogen Isotopes; Inhibition; pH; Regulation(control)</ED>
<EG>Hydrolases; Enzyme; Citrus fruit; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Nutrient; Inorganic element</EG>
<SD>Caracterización; Nutrición; Absorción; Proteína membranar; Canal iónico; Adenosinetriphosphatase; Afinidad; Raíz; Marcación isotópica; Nitrato; Nitrógeno Isótopo; Inhibición; pH; Regulación</SD>
<LO>INIST-15982.354000094081890100</LO>
<ID>01-0106859</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0106859
   |texte=   Characterization of the low affinity transport system for NO3- uptake by Citrus roots
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024