Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity

Identifieur interne : 000796 ( PascalFrancis/Corpus ); précédent : 000795; suivant : 000797

Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity

Auteurs : Maribela Pestana ; Manuela David ; Amarilis De Varennes ; Javier Abadia ; Eugénio Araujo Faria

Source :

RBID : Pascal:03-0026028

Descripteurs français

English descriptors

Abstract

Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0190-4167
A02 01      @0 JPNUDS
A03   1    @0 J. plant nutr.
A05       @2 24
A06       @2 10
A08 01  1  ENG  @1 Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity
A11 01  1    @1 PESTANA (Maribela)
A11 02  1    @1 DAVID (Manuela)
A11 03  1    @1 DE VARENNES (Amarilis)
A11 04  1    @1 ABADIA (Javier)
A11 05  1    @1 ARAUJO FARIA (Eugénio)
A14 01      @1 Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas @2 8000 Faro @3 PRT @Z 1 aut. @Z 2 aut. @Z 5 aut.
A14 02      @1 Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental @2 Tapada da Ajuda, 1300 Lisboa @3 PRT @Z 3 aut.
A14 03      @1 Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202 @2 50080 Zaragoza @3 ESP @Z 4 aut.
A20       @1 1609-1620
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 18386 @5 354000099770500090
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 34 ref.
A47 01  1    @0 03-0026028
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of plant nutrition
A66 01      @0 USA
C01 01    ENG  @0 Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.
C02 01  X    @0 002A32C02F
C02 02  X    @0 002A34K
C03 01  X  FRE  @0 Activité enzymatique @5 01
C03 01  X  ENG  @0 Enzymatic activity @5 01
C03 01  X  SPA  @0 Actividad enzimática @5 01
C03 02  X  FRE  @0 Chlorose ferrique @5 02
C03 02  X  ENG  @0 Iron chlorosis @5 02
C03 02  X  SPA  @0 Cloranemia @5 02
C03 03  X  FRE  @0 Composition chimique @5 03
C03 03  X  ENG  @0 Chemical composition @5 03
C03 03  X  SPA  @0 Composición química @5 03
C03 04  X  FRE  @0 Photosynthèse @5 04
C03 04  X  ENG  @0 Photosynthesis @5 04
C03 04  X  SPA  @0 Fotosíntesis @5 04
C03 05  X  FRE  @0 Modalité réponse @5 05
C03 05  X  ENG  @0 Response modality @5 05
C03 05  X  SPA  @0 Modalidad respuesta @5 05
C03 06  X  FRE  @0 Feuille végétal @5 08
C03 06  X  ENG  @0 Plant leaf @5 08
C03 06  X  SPA  @0 Hoja vegetal @5 08
C03 07  X  FRE  @0 Racine @5 09
C03 07  X  ENG  @0 Root @5 09
C03 07  X  SPA  @0 Raíz @5 09
C03 08  X  FRE  @0 Cultivar @5 10
C03 08  X  ENG  @0 Cultivar @5 10
C03 08  X  SPA  @0 Cultivar @5 10
C03 09  X  FRE  @0 Citrus sinensis @2 NS @5 11
C03 09  X  ENG  @0 Citrus sinensis @2 NS @5 11
C03 09  X  SPA  @0 Citrus sinensis @2 NS @5 11
C03 10  X  FRE  @0 Chlorophylle @5 15
C03 10  X  ENG  @0 Chlorophyll @5 15
C03 10  X  SPA  @0 Clorofila @5 15
C03 11  X  FRE  @0 Fer @2 NC @5 16
C03 11  X  ENG  @0 Iron @2 NC @5 16
C03 11  X  SPA  @0 Hierro @2 NC @5 16
C03 12  X  FRE  @0 Ferric-chelate reductase @2 FE @5 17
C03 12  X  ENG  @0 Ferric-chelate reductase @2 FE @5 17
C03 12  X  SPA  @0 Ferric-chelate reductase @2 FE @5 17
C03 13  X  FRE  @0 Etude en serre @5 27
C03 13  X  ENG  @0 Greenhouse study @5 27
C03 13  X  SPA  @0 Estudio en invernadero @5 27
C03 14  X  FRE  @0 Culture hydroponique @5 28
C03 14  X  ENG  @0 Hydroponic cultivation @5 28
C03 14  X  SPA  @0 Cultivo hidropónico @5 28
C03 15  X  FRE  @0 Absorption @4 INC @5 68
C03 16  X  FRE  @0 Biodisponibilité @4 INC @5 69
C03 17  X  FRE  @0 Concentration chimique @4 INC @5 70
C03 18  X  FRE  @0 Echange gazeux @4 INC @5 71
C03 19  X  FRE  @0 Fluorescence @4 INC @5 72
C03 20  X  FRE  @0 Oxydoréduction @4 INC @5 73
C03 21  X  FRE  @0 Transport membranaire @4 INC @5 74
C03 22  X  FRE  @0 Trouble nutrition @4 INC @5 75
C03 23  X  FRE  @0 Membrane plasmique @4 INC @5 76
C03 24  X  FRE  @0 Photosystème 2 @4 INC @5 77
C03 25  X  FRE  @0 Facteur influence @4 INC @5 78
C03 26  X  FRE  @0 Facteur milieu @4 INC @5 79
C03 27  X  FRE  @0 Facteur édaphique @4 INC @5 80
C03 28  X  FRE  @0 Calcium carbonate @4 INC @5 81
C03 29  X  FRE  @0 Oxygène?Molécule @4 INC @5 82
C03 30  X  FRE  @0 Solution nutritive @4 INC @5 83
C03 31  X  FRE  @0 Sol calcaire @4 INC @5 84
C03 32  X  FRE  @0 Sol de verger @4 INC @5 85
C03 33  X  FRE  @0 Simulation physique @4 INC @5 86
C07 01  X  FRE  @0 Rutaceae @2 NS
C07 01  X  ENG  @0 Rutaceae @2 NS
C07 01  X  SPA  @0 Rutaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Oxidoreductases @2 FE
C07 05  X  ENG  @0 Oxidoreductases @2 FE
C07 05  X  SPA  @0 Oxidoreductases @2 FE
C07 06  X  FRE  @0 Enzyme
C07 06  X  ENG  @0 Enzyme
C07 06  X  SPA  @0 Enzima
C07 07  X  FRE  @0 Arboriculture @5 33
C07 07  X  ENG  @0 Arboriculture @5 33
C07 07  X  SPA  @0 Arboricultura @5 33
C07 08  X  FRE  @0 Nutrition @5 35
C07 08  X  ENG  @0 Nutrition @5 35
C07 08  X  SPA  @0 Nutrición @5 35
C07 09  X  FRE  @0 Physiologie @5 36
C07 09  X  ENG  @0 Physiology @5 36
C07 09  X  SPA  @0 Fisiología @5 36
C07 10  X  FRE  @0 Relation sol plante @5 37
C07 10  X  ENG  @0 Soil plant relation @5 37
C07 10  X  SPA  @0 Relación suelo planta @5 37
C07 11  X  FRE  @0 Agrume @5 41
C07 11  X  ENG  @0 Citrus fruit @5 41
C07 11  X  SPA  @0 Agrios @5 41
C07 12  X  FRE  @0 Arbre fruitier @5 42
C07 12  X  ENG  @0 Fruit tree @5 42
C07 12  X  SPA  @0 Arbol frutal @5 42
C07 13  X  FRE  @0 Plante fruitière @5 43
C07 13  X  ENG  @0 Fruit crop @5 43
C07 13  X  SPA  @0 Planta frutal @5 43
C07 14  X  FRE  @0 Elément minéral @5 50
C07 14  X  ENG  @0 Inorganic element @5 50
C07 14  X  SPA  @0 Elemento inorgánico @5 50
C07 15  X  FRE  @0 Oligoélément @5 51
C07 15  X  ENG  @0 Trace element (nutrient) @5 51
C07 15  X  SPA  @0 Oligoelemento @5 51
C07 16  X  FRE  @0 Pigment photosynthétique @5 52
C07 16  X  ENG  @0 Photosynthetic pigment @5 52
C07 16  X  SPA  @0 Pigmento fotosintético @5 52
N21       @1 013

Format Inist (serveur)

NO : PASCAL 03-0026028 INIST
ET : Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity
AU : PESTANA (Maribela); DAVID (Manuela); DE VARENNES (Amarilis); ABADIA (Javier); ARAUJO FARIA (Eugénio)
AF : Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas/8000 Faro/Portugal (1 aut., 2 aut., 5 aut.); Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental/Tapada da Ajuda, 1300 Lisboa/Portugal (3 aut.); Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202/50080 Zaragoza/Espagne (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of plant nutrition; ISSN 0190-4167; Coden JPNUDS; Etats-Unis; Da. 2001; Vol. 24; No. 10; Pp. 1609-1620; Bibl. 34 ref.
LA : Anglais
EA : Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.
CC : 002A32C02F; 002A34K
FD : Activité enzymatique; Chlorose ferrique; Composition chimique; Photosynthèse; Modalité réponse; Feuille végétal; Racine; Cultivar; Citrus sinensis; Chlorophylle; Fer; Ferric-chelate reductase; Etude en serre; Culture hydroponique; Absorption; Biodisponibilité; Concentration chimique; Echange gazeux; Fluorescence; Oxydoréduction; Transport membranaire; Trouble nutrition; Membrane plasmique; Photosystème 2; Facteur influence; Facteur milieu; Facteur édaphique; Calcium carbonate; Oxygène?Molécule; Solution nutritive; Sol calcaire; Sol de verger; Simulation physique
FG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Oxidoreductases; Enzyme; Arboriculture; Nutrition; Physiologie; Relation sol plante; Agrume; Arbre fruitier; Plante fruitière; Elément minéral; Oligoélément; Pigment photosynthétique
ED : Enzymatic activity; Iron chlorosis; Chemical composition; Photosynthesis; Response modality; Plant leaf; Root; Cultivar; Citrus sinensis; Chlorophyll; Iron; Ferric-chelate reductase; Greenhouse study; Hydroponic cultivation
EG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Oxidoreductases; Enzyme; Arboriculture; Nutrition; Physiology; Soil plant relation; Citrus fruit; Fruit tree; Fruit crop; Inorganic element; Trace element (nutrient); Photosynthetic pigment
SD : Actividad enzimática; Cloranemia; Composición química; Fotosíntesis; Modalidad respuesta; Hoja vegetal; Raíz; Cultivar; Citrus sinensis; Clorofila; Hierro; Ferric-chelate reductase; Estudio en invernadero; Cultivo hidropónico
LO : INIST-18386.354000099770500090
ID : 03-0026028

Links to Exploration step

Pascal:03-0026028

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity</title>
<author>
<name sortKey="Pestana, Maribela" sort="Pestana, Maribela" uniqKey="Pestana M" first="Maribela" last="Pestana">Maribela Pestana</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="David, Manuela" sort="David, Manuela" uniqKey="David M" first="Manuela" last="David">Manuela David</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Varennes, Amarilis" sort="De Varennes, Amarilis" uniqKey="De Varennes A" first="Amarilis" last="De Varennes">Amarilis De Varennes</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental</s1>
<s2>Tapada da Ajuda, 1300 Lisboa</s2>
<s3>PRT</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abadia, Javier" sort="Abadia, Javier" uniqKey="Abadia J" first="Javier" last="Abadia">Javier Abadia</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202</s1>
<s2>50080 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Araujo Faria, Eugenio" sort="Araujo Faria, Eugenio" uniqKey="Araujo Faria E" first="Eugénio" last="Araujo Faria">Eugénio Araujo Faria</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0026028</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 03-0026028 INIST</idno>
<idno type="RBID">Pascal:03-0026028</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000796</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity</title>
<author>
<name sortKey="Pestana, Maribela" sort="Pestana, Maribela" uniqKey="Pestana M" first="Maribela" last="Pestana">Maribela Pestana</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="David, Manuela" sort="David, Manuela" uniqKey="David M" first="Manuela" last="David">Manuela David</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="De Varennes, Amarilis" sort="De Varennes, Amarilis" uniqKey="De Varennes A" first="Amarilis" last="De Varennes">Amarilis De Varennes</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental</s1>
<s2>Tapada da Ajuda, 1300 Lisboa</s2>
<s3>PRT</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abadia, Javier" sort="Abadia, Javier" uniqKey="Abadia J" first="Javier" last="Abadia">Javier Abadia</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202</s1>
<s2>50080 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Araujo Faria, Eugenio" sort="Araujo Faria, Eugenio" uniqKey="Araujo Faria E" first="Eugénio" last="Araujo Faria">Eugénio Araujo Faria</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of plant nutrition</title>
<title level="j" type="abbreviated">J. plant nutr.</title>
<idno type="ISSN">0190-4167</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of plant nutrition</title>
<title level="j" type="abbreviated">J. plant nutr.</title>
<idno type="ISSN">0190-4167</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical composition</term>
<term>Chlorophyll</term>
<term>Citrus sinensis</term>
<term>Cultivar</term>
<term>Enzymatic activity</term>
<term>Ferric-chelate reductase</term>
<term>Greenhouse study</term>
<term>Hydroponic cultivation</term>
<term>Iron</term>
<term>Iron chlorosis</term>
<term>Photosynthesis</term>
<term>Plant leaf</term>
<term>Response modality</term>
<term>Root</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Activité enzymatique</term>
<term>Chlorose ferrique</term>
<term>Composition chimique</term>
<term>Photosynthèse</term>
<term>Modalité réponse</term>
<term>Feuille végétal</term>
<term>Racine</term>
<term>Cultivar</term>
<term>Citrus sinensis</term>
<term>Chlorophylle</term>
<term>Fer</term>
<term>Ferric-chelate reductase</term>
<term>Etude en serre</term>
<term>Culture hydroponique</term>
<term>Absorption</term>
<term>Biodisponibilité</term>
<term>Concentration chimique</term>
<term>Echange gazeux</term>
<term>Fluorescence</term>
<term>Oxydoréduction</term>
<term>Transport membranaire</term>
<term>Trouble nutrition</term>
<term>Membrane plasmique</term>
<term>Photosystème 2</term>
<term>Facteur influence</term>
<term>Facteur milieu</term>
<term>Facteur édaphique</term>
<term>Calcium carbonate</term>
<term>Oxygène?Molécule</term>
<term>Solution nutritive</term>
<term>Sol calcaire</term>
<term>Sol de verger</term>
<term>Simulation physique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0190-4167</s0>
</fA01>
<fA02 i1="01">
<s0>JPNUDS</s0>
</fA02>
<fA03 i2="1">
<s0>J. plant nutr.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PESTANA (Maribela)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DAVID (Manuela)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DE VARENNES (Amarilis)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ABADIA (Javier)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ARAUJO FARIA (Eugénio)</s1>
</fA11>
<fA14 i1="01">
<s1>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas</s1>
<s2>8000 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental</s1>
<s2>Tapada da Ajuda, 1300 Lisboa</s2>
<s3>PRT</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202</s1>
<s2>50080 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1609-1620</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18386</s2>
<s5>354000099770500090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0026028</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of plant nutrition</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C02F</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A34K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Activité enzymatique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Enzymatic activity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Actividad enzimática</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Chlorose ferrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Iron chlorosis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cloranemia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composition chimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemical composition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Composición química</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Photosynthèse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photosynthesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fotosíntesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modalité réponse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Response modality</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modalidad respuesta</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Racine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Root</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Raíz</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cultivar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cultivar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cultivar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Chlorophylle</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chlorophyll</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Clorofila</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hierro</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Ferric-chelate reductase</s0>
<s2>FE</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Ferric-chelate reductase</s0>
<s2>FE</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ferric-chelate reductase</s0>
<s2>FE</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude en serre</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Greenhouse study</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio en invernadero</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Culture hydroponique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hydroponic cultivation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cultivo hidropónico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Absorption</s0>
<s4>INC</s4>
<s5>68</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Biodisponibilité</s0>
<s4>INC</s4>
<s5>69</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Concentration chimique</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Echange gazeux</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fluorescence</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxydoréduction</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Transport membranaire</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Trouble nutrition</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Membrane plasmique</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Photosystème 2</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Facteur influence</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Facteur édaphique</s0>
<s4>INC</s4>
<s5>80</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Calcium carbonate</s0>
<s4>INC</s4>
<s5>81</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Oxygène?Molécule</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Solution nutritive</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Sol calcaire</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Sol de verger</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>Simulation physique</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Oxidoreductases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Enzyme</s0>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Enzyme</s0>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Enzima</s0>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Arboriculture</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Arboriculture</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Arboricultura</s0>
<s5>33</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Nutrition</s0>
<s5>35</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Nutrition</s0>
<s5>35</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Nutrición</s0>
<s5>35</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Physiologie</s0>
<s5>36</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Physiology</s0>
<s5>36</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Fisiología</s0>
<s5>36</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>37</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>37</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>37</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>41</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>41</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>41</s5>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Arbre fruitier</s0>
<s5>42</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Fruit tree</s0>
<s5>42</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Arbol frutal</s0>
<s5>42</s5>
</fC07>
<fC07 i1="13" i2="X" l="FRE">
<s0>Plante fruitière</s0>
<s5>43</s5>
</fC07>
<fC07 i1="13" i2="X" l="ENG">
<s0>Fruit crop</s0>
<s5>43</s5>
</fC07>
<fC07 i1="13" i2="X" l="SPA">
<s0>Planta frutal</s0>
<s5>43</s5>
</fC07>
<fC07 i1="14" i2="X" l="FRE">
<s0>Elément minéral</s0>
<s5>50</s5>
</fC07>
<fC07 i1="14" i2="X" l="ENG">
<s0>Inorganic element</s0>
<s5>50</s5>
</fC07>
<fC07 i1="14" i2="X" l="SPA">
<s0>Elemento inorgánico</s0>
<s5>50</s5>
</fC07>
<fC07 i1="15" i2="X" l="FRE">
<s0>Oligoélément</s0>
<s5>51</s5>
</fC07>
<fC07 i1="15" i2="X" l="ENG">
<s0>Trace element (nutrient)</s0>
<s5>51</s5>
</fC07>
<fC07 i1="15" i2="X" l="SPA">
<s0>Oligoelemento</s0>
<s5>51</s5>
</fC07>
<fC07 i1="16" i2="X" l="FRE">
<s0>Pigment photosynthétique</s0>
<s5>52</s5>
</fC07>
<fC07 i1="16" i2="X" l="ENG">
<s0>Photosynthetic pigment</s0>
<s5>52</s5>
</fC07>
<fC07 i1="16" i2="X" l="SPA">
<s0>Pigmento fotosintético</s0>
<s5>52</s5>
</fC07>
<fN21>
<s1>013</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 03-0026028 INIST</NO>
<ET>Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity</ET>
<AU>PESTANA (Maribela); DAVID (Manuela); DE VARENNES (Amarilis); ABADIA (Javier); ARAUJO FARIA (Eugénio)</AU>
<AF>Universidade do Algarve, Unidade de Ciências Tecnologias Agrárias, Campus de Gambelas/8000 Faro/Portugal (1 aut., 2 aut., 5 aut.); Instituto Superior de Agronomia, Departamento de Química Agrícola e Ambiental/Tapada da Ajuda, 1300 Lisboa/Portugal (3 aut.); Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202/50080 Zaragoza/Espagne (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of plant nutrition; ISSN 0190-4167; Coden JPNUDS; Etats-Unis; Da. 2001; Vol. 24; No. 10; Pp. 1609-1620; Bibl. 34 ref.</SO>
<LA>Anglais</LA>
<EA>Orange (Citrus sinensis L. Osb. cv. 'Newhall') plants grafted on Citrange troyer rootstock were grown in nutrient solution with 0, 5, 10, or 20 μM iron (Fe), with and without calcium carbonate. Calcium carbonate was added in order to mimic the natural conditions in calcareous soils. Leaf chlorophyll concentration was estimated every 3-4 days using the portable instrument SPAD-502 meter. Chlorophyll fluorescence parameters, photosynthetic capacity estimated from oxygen evolution, leaf Fe concentrations, and root tip ferric chelate reductase activity were measured at the end of the experiment. Plants from the 0 and 5 μM Fe treatments showed leaf chlorosis and had decreased leaf chlorophyll concentrations. Leaves of plants grown in the absence of Fe in the solution had smaller rates of oxygen evolution both in the presence and absence of calcium carbonate, compared with plants grown in the presence of 10 μM Fe. In the absence of calcium carbonate the photosystem II efficiency, estimated from fluorescence parameters, was similar in all treatments. A slight decrease in photosystem II efficiency was observed in plants grown without Fe and in the presence of calcium carbonate. A 2.5-fold increase in root tip ferric chelate reductase activity over the control values was found only when plants were grown with low levels of Fe and in the presence of calcium carbonate.</EA>
<CC>002A32C02F; 002A34K</CC>
<FD>Activité enzymatique; Chlorose ferrique; Composition chimique; Photosynthèse; Modalité réponse; Feuille végétal; Racine; Cultivar; Citrus sinensis; Chlorophylle; Fer; Ferric-chelate reductase; Etude en serre; Culture hydroponique; Absorption; Biodisponibilité; Concentration chimique; Echange gazeux; Fluorescence; Oxydoréduction; Transport membranaire; Trouble nutrition; Membrane plasmique; Photosystème 2; Facteur influence; Facteur milieu; Facteur édaphique; Calcium carbonate; Oxygène?Molécule; Solution nutritive; Sol calcaire; Sol de verger; Simulation physique</FD>
<FG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Oxidoreductases; Enzyme; Arboriculture; Nutrition; Physiologie; Relation sol plante; Agrume; Arbre fruitier; Plante fruitière; Elément minéral; Oligoélément; Pigment photosynthétique</FG>
<ED>Enzymatic activity; Iron chlorosis; Chemical composition; Photosynthesis; Response modality; Plant leaf; Root; Cultivar; Citrus sinensis; Chlorophyll; Iron; Ferric-chelate reductase; Greenhouse study; Hydroponic cultivation</ED>
<EG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Oxidoreductases; Enzyme; Arboriculture; Nutrition; Physiology; Soil plant relation; Citrus fruit; Fruit tree; Fruit crop; Inorganic element; Trace element (nutrient); Photosynthetic pigment</EG>
<SD>Actividad enzimática; Cloranemia; Composición química; Fotosíntesis; Modalidad respuesta; Hoja vegetal; Raíz; Cultivar; Citrus sinensis; Clorofila; Hierro; Ferric-chelate reductase; Estudio en invernadero; Cultivo hidropónico</SD>
<LO>INIST-18386.354000099770500090</LO>
<ID>03-0026028</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000796 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000796 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0026028
   |texte=   Responses of "Newhall" orange trees to iron deficiency in hydroponics : Effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024