Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increased growth of young citrus trees under reduced radiation load in a semi-arid climate

Identifieur interne : 000787 ( PascalFrancis/Corpus ); précédent : 000786; suivant : 000788

Increased growth of young citrus trees under reduced radiation load in a semi-arid climate

Auteurs : E. Raveh ; S. Cohen ; T. Raz ; D. Yakir ; A. Grava ; E. E. Goldschmidt

Source :

RBID : Pascal:03-0102057

Descripteurs français

English descriptors

Abstract

This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ13C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO2 concentrations at the chloroplasts (Cc), as would be expected from increased conductance. Substomatal CO2 concentrations, C1, computed from leaf net CO2 assimilation rate and conductance values, also indicate that shading increases internal CO2 concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-0957
A02 01      @0 JEBOA6
A03   1    @0 J. Exp. Bot.
A05       @2 54
A06       @2 381
A08 01  1  ENG  @1 Increased growth of young citrus trees under reduced radiation load in a semi-arid climate
A11 01  1    @1 RAVEH (E.)
A11 02  1    @1 COHEN (S.)
A11 03  1    @1 RAZ (T.)
A11 04  1    @1 YAKIR (D.)
A11 05  1    @1 GRAVA (A.)
A11 06  1    @1 GOLDSCHMIDT (E. E.)
A14 01      @1 Institute of Horticulture, ARO Volcani Center, POB 6 @2 Bet Dagan 50250 @3 ISR @Z 1 aut.
A14 02      @1 Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6 @2 Bet Dagan 50250 @3 ISR @Z 2 aut. @Z 5 aut.
A14 03      @1 The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem @2 Rehovot 76100 @3 ISR @Z 3 aut. @Z 6 aut.
A14 04      @1 Department of Environmental Sciences, Weizmann Inst. of Science @2 Rehovot 76100 @3 ISR @Z 4 aut.
A20       @1 365-373
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 6923 @5 354000107257120210
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 36 ref.
A47 01  1    @0 03-0102057
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Journal of Experimental Botany
A66 01      @0 GBR
C01 01    ENG  @0 This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ13C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO2 concentrations at the chloroplasts (Cc), as would be expected from increased conductance. Substomatal CO2 concentrations, C1, computed from leaf net CO2 assimilation rate and conductance values, also indicate that shading increases internal CO2 concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.
C02 01  X    @0 002A32C06B
C03 01  X  FRE  @0 Croissance @5 01
C03 01  X  ENG  @0 Growth @5 01
C03 01  X  SPA  @0 Crecimiento @5 01
C03 02  X  FRE  @0 Climat @5 02
C03 02  X  ENG  @0 Climate @5 02
C03 02  X  SPA  @0 Clima @5 02
C03 03  X  FRE  @0 Lumière @5 03
C03 03  X  ENG  @0 Light @5 03
C03 03  X  SPA  @0 Luz @5 03
C03 04  X  FRE  @0 Stade juvénile plante @5 04
C03 04  X  ENG  @0 Plant juvenile growth stage @5 04
C03 04  X  SPA  @0 Estado juvenil planta @5 04
C03 05  X  FRE  @0 Ombrage(environnement) @5 05
C03 05  X  ENG  @0 Shading @5 05
C03 05  X  SPA  @0 Sombrajo @5 05
C03 06  X  FRE  @0 Conductance stomatique @5 06
C03 06  X  ENG  @0 Stomatal conductance @5 06
C03 06  X  SPA  @0 Conductancia estomática @5 06
C03 07  X  FRE  @0 Poids sec @5 07
C03 07  X  ENG  @0 Dry weight @5 07
C03 07  X  SPA  @0 Peso seco @5 07
C03 08  X  FRE  @0 Partie aérienne végétal @5 08
C03 08  X  ENG  @0 Above ground plant part @5 08
C03 08  X  SPA  @0 Parte aérea vegetal @5 08
C03 09  X  FRE  @0 Partie souterraine végétal @5 09
C03 09  X  ENG  @0 Below ground plant part @5 09
C03 09  X  SPA  @0 Parte subterránea vegetal @5 09
C03 10  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 15
C03 10  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 10  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 11  X  FRE  @0 Amidon @5 16
C03 11  X  ENG  @0 Starch @5 16
C03 11  X  SPA  @0 Almidón @5 16
C03 12  X  FRE  @0 Israël @2 NG @5 20
C03 12  X  ENG  @0 Israel @2 NG @5 20
C03 12  X  SPA  @0 Israel @2 NG @5 20
C03 13  X  FRE  @0 Culture protégée @5 27
C03 13  X  ENG  @0 Protected cultivation @5 27
C03 13  X  SPA  @0 Cultivo protegido(invernadero) @5 27
C03 14  X  FRE  @0 Photosynthèse @5 35
C03 14  X  ENG  @0 Photosynthesis @5 35
C03 14  X  SPA  @0 Fotosíntesis @5 35
C03 15  X  FRE  @0 Hauteur plante @5 36
C03 15  X  ENG  @0 Plant height @5 36
C03 15  X  SPA  @0 Altura planta @5 36
C03 16  X  FRE  @0 Allocation ressource @5 37
C03 16  X  ENG  @0 Resource allocation @5 37
C03 16  X  SPA  @0 Asignación recurso @5 37
C03 17  X  FRE  @0 Discrimination isotopique carbone @5 38
C03 17  X  ENG  @0 Carbon isotope discrimination @5 38
C03 17  X  SPA  @0 Discriminación isotópica carbono @5 38
C03 18  X  FRE  @0 Citrus reticulata Citrus sinensis @2 NS @4 INC @5 77
C07 01  X  FRE  @0 Asie @2 NG
C07 01  X  ENG  @0 Asia @2 NG
C07 01  X  SPA  @0 Asia @2 NG
C07 02  X  FRE  @0 Facteur photique @5 33
C07 02  X  ENG  @0 Light effect @5 33
C07 02  X  SPA  @0 Factor fótico @5 33
C07 03  X  FRE  @0 Facteur milieu @5 34
C07 03  X  ENG  @0 Environmental factor @5 34
C07 03  X  SPA  @0 Factor medio @5 34
C07 04  X  FRE  @0 Agrume @5 39
C07 04  X  ENG  @0 Citrus fruit @5 39
C07 04  X  SPA  @0 Agrios @5 39
C07 05  X  FRE  @0 Rutaceae @2 NS @5 40
C07 05  X  ENG  @0 Rutaceae @2 NS @5 40
C07 05  X  SPA  @0 Rutaceae @2 NS @5 40
C07 06  X  FRE  @0 Dicotyledones @2 NS
C07 06  X  ENG  @0 Dicotyledones @2 NS
C07 06  X  SPA  @0 Dicotyledones @2 NS
C07 07  X  FRE  @0 Angiospermae @2 NS
C07 07  X  ENG  @0 Angiospermae @2 NS
C07 07  X  SPA  @0 Angiospermae @2 NS
C07 08  X  FRE  @0 Spermatophyta @2 NS
C07 08  X  ENG  @0 Spermatophyta @2 NS
C07 08  X  SPA  @0 Spermatophyta @2 NS
C07 09  X  FRE  @0 Glucide réserve @5 50
C07 09  X  ENG  @0 Storage carbohydrate @5 50
C07 09  X  SPA  @0 Glúcido reserva @5 50
C07 10  X  FRE  @0 Zone semi aride @5 59
C07 10  X  ENG  @0 Semi arid zone @5 59
C07 10  X  SPA  @0 Zona semiárida @5 59
N21       @1 055
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0102057 INIST
ET : Increased growth of young citrus trees under reduced radiation load in a semi-arid climate
AU : RAVEH (E.); COHEN (S.); RAZ (T.); YAKIR (D.); GRAVA (A.); GOLDSCHMIDT (E. E.)
AF : Institute of Horticulture, ARO Volcani Center, POB 6/Bet Dagan 50250/Israël (1 aut.); Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6/Bet Dagan 50250/Israël (2 aut., 5 aut.); The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem/Rehovot 76100/Israël (3 aut., 6 aut.); Department of Environmental Sciences, Weizmann Inst. of Science/Rehovot 76100/Israël (4 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Journal of Experimental Botany; ISSN 0022-0957; Coden JEBOA6; Royaume-Uni; Da. 2003; Vol. 54; No. 381; Pp. 365-373; Bibl. 36 ref.
LA : Anglais
EA : This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ13C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO2 concentrations at the chloroplasts (Cc), as would be expected from increased conductance. Substomatal CO2 concentrations, C1, computed from leaf net CO2 assimilation rate and conductance values, also indicate that shading increases internal CO2 concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.
CC : 002A32C06B
FD : Croissance; Climat; Lumière; Stade juvénile plante; Ombrage(environnement); Conductance stomatique; Poids sec; Partie aérienne végétal; Partie souterraine végétal; Carbone dioxyde; Amidon; Israël; Culture protégée; Photosynthèse; Hauteur plante; Allocation ressource; Discrimination isotopique carbone; Citrus reticulata Citrus sinensis
FG : Asie; Facteur photique; Facteur milieu; Agrume; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Glucide réserve; Zone semi aride
ED : Growth; Climate; Light; Plant juvenile growth stage; Shading; Stomatal conductance; Dry weight; Above ground plant part; Below ground plant part; Carbon dioxide; Starch; Israel; Protected cultivation; Photosynthesis; Plant height; Resource allocation; Carbon isotope discrimination
EG : Asia; Light effect; Environmental factor; Citrus fruit; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Storage carbohydrate; Semi arid zone
SD : Crecimiento; Clima; Luz; Estado juvenil planta; Sombrajo; Conductancia estomática; Peso seco; Parte aérea vegetal; Parte subterránea vegetal; Carbono dióxido; Almidón; Israel; Cultivo protegido(invernadero); Fotosíntesis; Altura planta; Asignación recurso; Discriminación isotópica carbono
LO : INIST-6923.354000107257120210
ID : 03-0102057

Links to Exploration step

Pascal:03-0102057

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Increased growth of young citrus trees under reduced radiation load in a semi-arid climate</title>
<author>
<name sortKey="Raveh, E" sort="Raveh, E" uniqKey="Raveh E" first="E." last="Raveh">E. Raveh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Horticulture, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cohen, S" sort="Cohen, S" uniqKey="Cohen S" first="S." last="Cohen">S. Cohen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Raz, T" sort="Raz, T" uniqKey="Raz T" first="T." last="Raz">T. Raz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yakir, D" sort="Yakir, D" uniqKey="Yakir D" first="D." last="Yakir">D. Yakir</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Environmental Sciences, Weizmann Inst. of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grava, A" sort="Grava, A" uniqKey="Grava A" first="A." last="Grava">A. Grava</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goldschmidt, E E" sort="Goldschmidt, E E" uniqKey="Goldschmidt E" first="E. E." last="Goldschmidt">E. E. Goldschmidt</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0102057</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0102057 INIST</idno>
<idno type="RBID">Pascal:03-0102057</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000787</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Increased growth of young citrus trees under reduced radiation load in a semi-arid climate</title>
<author>
<name sortKey="Raveh, E" sort="Raveh, E" uniqKey="Raveh E" first="E." last="Raveh">E. Raveh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Horticulture, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cohen, S" sort="Cohen, S" uniqKey="Cohen S" first="S." last="Cohen">S. Cohen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Raz, T" sort="Raz, T" uniqKey="Raz T" first="T." last="Raz">T. Raz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yakir, D" sort="Yakir, D" uniqKey="Yakir D" first="D." last="Yakir">D. Yakir</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Environmental Sciences, Weizmann Inst. of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grava, A" sort="Grava, A" uniqKey="Grava A" first="A." last="Grava">A. Grava</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goldschmidt, E E" sort="Goldschmidt, E E" uniqKey="Goldschmidt E" first="E. E." last="Goldschmidt">E. E. Goldschmidt</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Experimental Botany</title>
<title level="j" type="abbreviated">J. Exp. Bot.</title>
<idno type="ISSN">0022-0957</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Experimental Botany</title>
<title level="j" type="abbreviated">J. Exp. Bot.</title>
<idno type="ISSN">0022-0957</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Above ground plant part</term>
<term>Below ground plant part</term>
<term>Carbon dioxide</term>
<term>Carbon isotope discrimination</term>
<term>Climate</term>
<term>Dry weight</term>
<term>Growth</term>
<term>Israel</term>
<term>Light</term>
<term>Photosynthesis</term>
<term>Plant height</term>
<term>Plant juvenile growth stage</term>
<term>Protected cultivation</term>
<term>Resource allocation</term>
<term>Shading</term>
<term>Starch</term>
<term>Stomatal conductance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Croissance</term>
<term>Climat</term>
<term>Lumière</term>
<term>Stade juvénile plante</term>
<term>Ombrage(environnement)</term>
<term>Conductance stomatique</term>
<term>Poids sec</term>
<term>Partie aérienne végétal</term>
<term>Partie souterraine végétal</term>
<term>Carbone dioxyde</term>
<term>Amidon</term>
<term>Israël</term>
<term>Culture protégée</term>
<term>Photosynthèse</term>
<term>Hauteur plante</term>
<term>Allocation ressource</term>
<term>Discrimination isotopique carbone</term>
<term>Citrus reticulata Citrus sinensis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ
<sup>13</sup>
C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO
<sub>2</sub>
concentrations at the chloroplasts (C
<sub>c</sub>
), as would be expected from increased conductance. Substomatal CO
<sub>2</sub>
concentrations, C
<sub>1</sub>
, computed from leaf net CO
<sub>2</sub>
assimilation rate and conductance values, also indicate that shading increases internal CO
<sub>2</sub>
concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0957</s0>
</fA01>
<fA02 i1="01">
<s0>JEBOA6</s0>
</fA02>
<fA03 i2="1">
<s0>J. Exp. Bot.</s0>
</fA03>
<fA05>
<s2>54</s2>
</fA05>
<fA06>
<s2>381</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Increased growth of young citrus trees under reduced radiation load in a semi-arid climate</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAVEH (E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COHEN (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAZ (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YAKIR (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GRAVA (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOLDSCHMIDT (E. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Horticulture, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6</s1>
<s2>Bet Dagan 50250</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Environmental Sciences, Weizmann Inst. of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>365-373</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6923</s2>
<s5>354000107257120210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0102057</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Experimental Botany</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ
<sup>13</sup>
C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO
<sub>2</sub>
concentrations at the chloroplasts (C
<sub>c</sub>
), as would be expected from increased conductance. Substomatal CO
<sub>2</sub>
concentrations, C
<sub>1</sub>
, computed from leaf net CO
<sub>2</sub>
assimilation rate and conductance values, also indicate that shading increases internal CO
<sub>2</sub>
concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C06B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Climat</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Climate</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Clima</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Lumière</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Light</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Luz</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Stade juvénile plante</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Plant juvenile growth stage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estado juvenil planta</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ombrage(environnement)</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Shading</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sombrajo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conductance stomatique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Stomatal conductance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conductancia estomática</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Poids sec</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dry weight</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Peso seco</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Partie aérienne végétal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Above ground plant part</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Parte aérea vegetal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Partie souterraine végétal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Below ground plant part</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Parte subterránea vegetal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Amidon</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Starch</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Almidón</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Israël</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Israel</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Israel</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Culture protégée</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Protected cultivation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cultivo protegido(invernadero)</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Photosynthèse</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Photosynthesis</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fotosíntesis</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Hauteur plante</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Plant height</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Altura planta</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Allocation ressource</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Resource allocation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Asignación recurso</s0>
<s5>37</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Discrimination isotopique carbone</s0>
<s5>38</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Carbon isotope discrimination</s0>
<s5>38</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Discriminación isotópica carbono</s0>
<s5>38</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Citrus reticulata Citrus sinensis</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Facteur photique</s0>
<s5>33</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Light effect</s0>
<s5>33</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Factor fótico</s0>
<s5>33</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Facteur milieu</s0>
<s5>34</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Environmental factor</s0>
<s5>34</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Factor medio</s0>
<s5>34</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>39</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
<s5>40</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Glucide réserve</s0>
<s5>50</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Storage carbohydrate</s0>
<s5>50</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Glúcido reserva</s0>
<s5>50</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Zone semi aride</s0>
<s5>59</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Semi arid zone</s0>
<s5>59</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Zona semiárida</s0>
<s5>59</s5>
</fC07>
<fN21>
<s1>055</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0102057 INIST</NO>
<ET>Increased growth of young citrus trees under reduced radiation load in a semi-arid climate</ET>
<AU>RAVEH (E.); COHEN (S.); RAZ (T.); YAKIR (D.); GRAVA (A.); GOLDSCHMIDT (E. E.)</AU>
<AF>Institute of Horticulture, ARO Volcani Center, POB 6/Bet Dagan 50250/Israël (1 aut.); Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, POB 6/Bet Dagan 50250/Israël (2 aut., 5 aut.); The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem/Rehovot 76100/Israël (3 aut., 6 aut.); Department of Environmental Sciences, Weizmann Inst. of Science/Rehovot 76100/Israël (4 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Journal of Experimental Botany; ISSN 0022-0957; Coden JEBOA6; Royaume-Uni; Da. 2003; Vol. 54; No. 381; Pp. 365-373; Bibl. 36 ref.</SO>
<LA>Anglais</LA>
<EA>This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 °C. Two-year-old de-fruited Murcott tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (δ
<sup>13</sup>
C) of exposed leaves that developed under shading was significantly reduced by 1.9%o in the 60% Tunnel, indicating that shading increased CO
<sub>2</sub>
concentrations at the chloroplasts (C
<sub>c</sub>
), as would be expected from increased conductance. Substomatal CO
<sub>2</sub>
concentrations, C
<sub>1</sub>
, computed from leaf net CO
<sub>2</sub>
assimilation rate and conductance values, also indicate that shading increases internal CO
<sub>2</sub>
concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.</EA>
<CC>002A32C06B</CC>
<FD>Croissance; Climat; Lumière; Stade juvénile plante; Ombrage(environnement); Conductance stomatique; Poids sec; Partie aérienne végétal; Partie souterraine végétal; Carbone dioxyde; Amidon; Israël; Culture protégée; Photosynthèse; Hauteur plante; Allocation ressource; Discrimination isotopique carbone; Citrus reticulata Citrus sinensis</FD>
<FG>Asie; Facteur photique; Facteur milieu; Agrume; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Glucide réserve; Zone semi aride</FG>
<ED>Growth; Climate; Light; Plant juvenile growth stage; Shading; Stomatal conductance; Dry weight; Above ground plant part; Below ground plant part; Carbon dioxide; Starch; Israel; Protected cultivation; Photosynthesis; Plant height; Resource allocation; Carbon isotope discrimination</ED>
<EG>Asia; Light effect; Environmental factor; Citrus fruit; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Storage carbohydrate; Semi arid zone</EG>
<SD>Crecimiento; Clima; Luz; Estado juvenil planta; Sombrajo; Conductancia estomática; Peso seco; Parte aérea vegetal; Parte subterránea vegetal; Carbono dióxido; Almidón; Israel; Cultivo protegido(invernadero); Fotosíntesis; Altura planta; Asignación recurso; Discriminación isotópica carbono</SD>
<LO>INIST-6923.354000107257120210</LO>
<ID>03-0102057</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000787 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000787 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0102057
   |texte=   Increased growth of young citrus trees under reduced radiation load in a semi-arid climate
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024