Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets

Identifieur interne : 000774 ( PascalFrancis/Corpus ); précédent : 000773; suivant : 000775

Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets

Auteurs : Camilo L. Medina ; Rogéria P. Souza ; Eduardo C. Machado ; Rafael V. Ribeiro ; José A. B. Silva

Source :

RBID : Pascal:03-0187827

Descripteurs français

English descriptors

Abstract

High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO2 assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO2 assimilation rates were observed in shaded plants, so that integrated daily net CO2 uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (Fv/Fm) and effective (ΔF/F'm) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0304-4238
A02 01      @0 SHRTAH
A03   1    @0 Sci. hortic.
A05       @2 96
A06       @2 1-4
A08 01  1  ENG  @1 Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets
A11 01  1    @1 MEDINA (Camilo L.)
A11 02  1    @1 SOUZA (Rogéria P.)
A11 03  1    @1 MACHADO (Eduardo C.)
A11 04  1    @1 RIBEIRO (Rafael V.)
A11 05  1    @1 SILVA (José A. B.)
A14 01      @1 Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109 @2 13083-970 Campinas @3 BRA @Z 1 aut. @Z 5 aut.
A14 02      @1 Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28 @2 13001-970 Campinas, SP @3 BRA @Z 2 aut. @Z 3 aut.
A14 03      @1 Escola Superior de Agricultures Luiz de Queiroz, CP 9 @2 13400-000 Piracicaba, SP @3 BRA @Z 4 aut.
A20       @1 115-125
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 16233 @5 354000106763520100
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 03-0187827
A60       @1 P
A61       @0 A
A64 01  1    @0 Scientia horticulturae
A66 01      @0 NLD
C01 01    ENG  @0 High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO2 assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO2 assimilation rates were observed in shaded plants, so that integrated daily net CO2 uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (Fv/Fm) and effective (ΔF/F'm) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.
C02 01  X    @0 002A32C06B
C03 01  X  FRE  @0 Photosynthèse @5 01
C03 01  X  ENG  @0 Photosynthesis @5 01
C03 01  X  SPA  @0 Fotosíntesis @5 01
C03 02  X  FRE  @0 Culture protégée @5 02
C03 02  X  ENG  @0 Protected cultivation @5 02
C03 02  X  SPA  @0 Cultivo protegido(invernadero) @5 02
C03 03  X  FRE  @0 Ombrage(environnement) @5 03
C03 03  X  ENG  @0 Shading @5 03
C03 03  X  SPA  @0 Sombrajo @5 03
C03 04  X  FRE  @0 Filet @5 04
C03 04  X  ENG  @0 Net @5 04
C03 04  X  SPA  @0 Red @5 04
C03 05  X  FRE  @0 Aluminisation @5 05
C03 05  X  ENG  @0 Aluminizing @5 05
C03 05  X  SPA  @0 Aluminizacion @5 05
C03 06  X  FRE  @0 Surface réfléchissante @5 06
C03 06  X  ENG  @0 Reflecting surface @5 06
C03 06  X  SPA  @0 Superficie reflexiva @5 06
C03 07  X  FRE  @0 Conductance stomatique @5 07
C03 07  X  ENG  @0 Stomatal conductance @5 07
C03 07  X  SPA  @0 Conductancia estomática @5 07
C03 08  X  FRE  @0 Rayonnement photosynthétiquement actif @5 08
C03 08  X  ENG  @0 Photosynthetically active radiation @5 08
C03 08  X  SPA  @0 Radiación fotosinteticamente activa @5 08
C03 09  X  FRE  @0 Photoinhibition @5 09
C03 09  X  ENG  @0 Photoinhibition @5 09
C03 09  X  SPA  @0 Fotoinhibición @5 09
C03 10  X  FRE  @0 Citrus sinensis @2 NS @5 10
C03 10  X  ENG  @0 Citrus sinensis @2 NS @5 10
C03 10  X  SPA  @0 Citrus sinensis @2 NS @5 10
C03 11  X  FRE  @0 Transpiration @5 11
C03 11  X  ENG  @0 Transpiration @5 11
C03 11  X  SPA  @0 Transpiración @5 11
C03 12  X  FRE  @0 Propène polymère @2 NK @5 15
C03 12  X  ENG  @0 Propylene polymer @2 NK @5 15
C03 12  X  SPA  @0 Propeno polímero @2 NK @5 15
C03 13  X  FRE  @0 Chlorophylle a @5 16
C03 13  X  ENG  @0 Chlorophyll a @5 16
C03 13  X  SPA  @0 Clorofila a @5 16
C03 14  X  FRE  @0 Assimilation nette @5 17
C03 14  X  ENG  @0 Net assimilation rate @5 17
C03 14  X  SPA  @0 Asimilación neta @5 17
C03 15  X  FRE  @0 Brésil @2 NG @5 20
C03 15  X  ENG  @0 Brazil @2 NG @5 20
C03 15  X  SPA  @0 Brasil @2 NG @5 20
C03 16  X  FRE  @0 Serre @5 21
C03 16  X  ENG  @0 Greenhouse @5 21
C03 16  X  SPA  @0 Invernadero @5 21
C07 01  X  FRE  @0 Rutaceae @2 NS
C07 01  X  ENG  @0 Rutaceae @2 NS
C07 01  X  SPA  @0 Rutaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Amérique du Sud @2 NG
C07 05  X  ENG  @0 South America @2 NG
C07 05  X  SPA  @0 America del sur @2 NG
C07 06  X  FRE  @0 Amérique @2 NG
C07 06  X  ENG  @0 America @2 NG
C07 06  X  SPA  @0 America @2 NG
C07 07  X  FRE  @0 Echange gazeux @5 33
C07 07  X  ENG  @0 Gas exchange @5 33
C07 07  X  SPA  @0 Intercambio gaseoso @5 33
C07 08  X  FRE  @0 Arboriculture @5 34
C07 08  X  ENG  @0 Arboriculture @5 34
C07 08  X  SPA  @0 Arboricultura @5 34
C07 09  X  FRE  @0 Agrume @5 39
C07 09  X  ENG  @0 Citrus fruit @5 39
C07 09  X  SPA  @0 Agrios @5 39
C07 10  X  FRE  @0 Arbre fruitier @5 40
C07 10  X  ENG  @0 Fruit tree @5 40
C07 10  X  SPA  @0 Arbol frutal @5 40
N21       @1 111
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0187827 INIST
ET : Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets
AU : MEDINA (Camilo L.); SOUZA (Rogéria P.); MACHADO (Eduardo C.); RIBEIRO (Rafael V.); SILVA (José A. B.)
AF : Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109/13083-970 Campinas/Brésil (1 aut., 5 aut.); Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28/13001-970 Campinas, SP/Brésil (2 aut., 3 aut.); Escola Superior de Agricultures Luiz de Queiroz, CP 9/13400-000 Piracicaba, SP/Brésil (4 aut.)
DT : Publication en série; Niveau analytique
SO : Scientia horticulturae; ISSN 0304-4238; Coden SHRTAH; Pays-Bas; Da. 2002; Vol. 96; No. 1-4; Pp. 115-125; Bibl. 1 p.1/2
LA : Anglais
EA : High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO2 assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO2 assimilation rates were observed in shaded plants, so that integrated daily net CO2 uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (Fv/Fm) and effective (ΔF/F'm) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.
CC : 002A32C06B
FD : Photosynthèse; Culture protégée; Ombrage(environnement); Filet; Aluminisation; Surface réfléchissante; Conductance stomatique; Rayonnement photosynthétiquement actif; Photoinhibition; Citrus sinensis; Transpiration; Propène polymère; Chlorophylle a; Assimilation nette; Brésil; Serre
FG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Amérique du Sud; Amérique; Echange gazeux; Arboriculture; Agrume; Arbre fruitier
ED : Photosynthesis; Protected cultivation; Shading; Net; Aluminizing; Reflecting surface; Stomatal conductance; Photosynthetically active radiation; Photoinhibition; Citrus sinensis; Transpiration; Propylene polymer; Chlorophyll a; Net assimilation rate; Brazil; Greenhouse
EG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; South America; America; Gas exchange; Arboriculture; Citrus fruit; Fruit tree
SD : Fotosíntesis; Cultivo protegido(invernadero); Sombrajo; Red; Aluminizacion; Superficie reflexiva; Conductancia estomática; Radiación fotosinteticamente activa; Fotoinhibición; Citrus sinensis; Transpiración; Propeno polímero; Clorofila a; Asimilación neta; Brasil; Invernadero
LO : INIST-16233.354000106763520100
ID : 03-0187827

Links to Exploration step

Pascal:03-0187827

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets</title>
<author>
<name sortKey="Medina, Camilo L" sort="Medina, Camilo L" uniqKey="Medina C" first="Camilo L." last="Medina">Camilo L. Medina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109</s1>
<s2>13083-970 Campinas</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Souza, Rogeria P" sort="Souza, Rogeria P" uniqKey="Souza R" first="Rogéria P." last="Souza">Rogéria P. Souza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28</s1>
<s2>13001-970 Campinas, SP</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Machado, Eduardo C" sort="Machado, Eduardo C" uniqKey="Machado E" first="Eduardo C." last="Machado">Eduardo C. Machado</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28</s1>
<s2>13001-970 Campinas, SP</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, Rafael V" sort="Ribeiro, Rafael V" uniqKey="Ribeiro R" first="Rafael V." last="Ribeiro">Rafael V. Ribeiro</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Escola Superior de Agricultures Luiz de Queiroz, CP 9</s1>
<s2>13400-000 Piracicaba, SP</s2>
<s3>BRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Silva, Jose A B" sort="Silva, Jose A B" uniqKey="Silva J" first="José A. B." last="Silva">José A. B. Silva</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109</s1>
<s2>13083-970 Campinas</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0187827</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0187827 INIST</idno>
<idno type="RBID">Pascal:03-0187827</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000774</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets</title>
<author>
<name sortKey="Medina, Camilo L" sort="Medina, Camilo L" uniqKey="Medina C" first="Camilo L." last="Medina">Camilo L. Medina</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109</s1>
<s2>13083-970 Campinas</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Souza, Rogeria P" sort="Souza, Rogeria P" uniqKey="Souza R" first="Rogéria P." last="Souza">Rogéria P. Souza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28</s1>
<s2>13001-970 Campinas, SP</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Machado, Eduardo C" sort="Machado, Eduardo C" uniqKey="Machado E" first="Eduardo C." last="Machado">Eduardo C. Machado</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28</s1>
<s2>13001-970 Campinas, SP</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, Rafael V" sort="Ribeiro, Rafael V" uniqKey="Ribeiro R" first="Rafael V." last="Ribeiro">Rafael V. Ribeiro</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Escola Superior de Agricultures Luiz de Queiroz, CP 9</s1>
<s2>13400-000 Piracicaba, SP</s2>
<s3>BRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Silva, Jose A B" sort="Silva, Jose A B" uniqKey="Silva J" first="José A. B." last="Silva">José A. B. Silva</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109</s1>
<s2>13083-970 Campinas</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Scientia horticulturae</title>
<title level="j" type="abbreviated">Sci. hortic.</title>
<idno type="ISSN">0304-4238</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Scientia horticulturae</title>
<title level="j" type="abbreviated">Sci. hortic.</title>
<idno type="ISSN">0304-4238</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminizing</term>
<term>Brazil</term>
<term>Chlorophyll a</term>
<term>Citrus sinensis</term>
<term>Greenhouse</term>
<term>Net</term>
<term>Net assimilation rate</term>
<term>Photoinhibition</term>
<term>Photosynthesis</term>
<term>Photosynthetically active radiation</term>
<term>Propylene polymer</term>
<term>Protected cultivation</term>
<term>Reflecting surface</term>
<term>Shading</term>
<term>Stomatal conductance</term>
<term>Transpiration</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photosynthèse</term>
<term>Culture protégée</term>
<term>Ombrage(environnement)</term>
<term>Filet</term>
<term>Aluminisation</term>
<term>Surface réfléchissante</term>
<term>Conductance stomatique</term>
<term>Rayonnement photosynthétiquement actif</term>
<term>Photoinhibition</term>
<term>Citrus sinensis</term>
<term>Transpiration</term>
<term>Propène polymère</term>
<term>Chlorophylle a</term>
<term>Assimilation nette</term>
<term>Brésil</term>
<term>Serre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO
<sub>2</sub>
assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO
<sub>2</sub>
assimilation rates were observed in shaded plants, so that integrated daily net CO
<sub>2</sub>
uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (F
<sub>v</sub>
/F
<sub>m</sub>
) and effective (ΔF/F'
<sub>m</sub>
) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-4238</s0>
</fA01>
<fA02 i1="01">
<s0>SHRTAH</s0>
</fA02>
<fA03 i2="1">
<s0>Sci. hortic.</s0>
</fA03>
<fA05>
<s2>96</s2>
</fA05>
<fA06>
<s2>1-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MEDINA (Camilo L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SOUZA (Rogéria P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MACHADO (Eduardo C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RIBEIRO (Rafael V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SILVA (José A. B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109</s1>
<s2>13083-970 Campinas</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28</s1>
<s2>13001-970 Campinas, SP</s2>
<s3>BRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Escola Superior de Agricultures Luiz de Queiroz, CP 9</s1>
<s2>13400-000 Piracicaba, SP</s2>
<s3>BRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>115-125</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16233</s2>
<s5>354000106763520100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0187827</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Scientia horticulturae</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO
<sub>2</sub>
assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO
<sub>2</sub>
assimilation rates were observed in shaded plants, so that integrated daily net CO
<sub>2</sub>
uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (F
<sub>v</sub>
/F
<sub>m</sub>
) and effective (ΔF/F'
<sub>m</sub>
) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C06B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photosynthèse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photosynthesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotosíntesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Culture protégée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Protected cultivation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cultivo protegido(invernadero)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ombrage(environnement)</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Shading</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sombrajo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Filet</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Net</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Red</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Aluminisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Aluminizing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Aluminizacion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Surface réfléchissante</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reflecting surface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Superficie reflexiva</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conductance stomatique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stomatal conductance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Conductancia estomática</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Rayonnement photosynthétiquement actif</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photosynthetically active radiation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Radiación fotosinteticamente activa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Photoinhibition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photoinhibition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fotoinhibición</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transpiration</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Transpiration</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transpiración</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propène polymère</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Propylene polymer</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Propeno polímero</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Chlorophylle a</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Chlorophyll a</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Clorofila a</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Assimilation nette</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Net assimilation rate</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Asimilación neta</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Brésil</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Brazil</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Brasil</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Serre</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Greenhouse</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Invernadero</s0>
<s5>21</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Amérique du Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>South America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>America del sur</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Echange gazeux</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Gas exchange</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Intercambio gaseoso</s0>
<s5>33</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Arboriculture</s0>
<s5>34</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Arboriculture</s0>
<s5>34</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Arboricultura</s0>
<s5>34</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>39</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>39</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>39</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Arbre fruitier</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Fruit tree</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Arbol frutal</s0>
<s5>40</s5>
</fC07>
<fN21>
<s1>111</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0187827 INIST</NO>
<ET>Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets</ET>
<AU>MEDINA (Camilo L.); SOUZA (Rogéria P.); MACHADO (Eduardo C.); RIBEIRO (Rafael V.); SILVA (José A. B.)</AU>
<AF>Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109/13083-970 Campinas/Brésil (1 aut., 5 aut.); Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, CP 28/13001-970 Campinas, SP/Brésil (2 aut., 3 aut.); Escola Superior de Agricultures Luiz de Queiroz, CP 9/13400-000 Piracicaba, SP/Brésil (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Scientia horticulturae; ISSN 0304-4238; Coden SHRTAH; Pays-Bas; Da. 2002; Vol. 96; No. 1-4; Pp. 115-125; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>High temperatures and high atmospheric vapor pressure deficits (VPDs) are usually encountered in greenhouses in hot climates. For citrus, these environmental conditions can lead to decreases in photosynthetic activity with detrimental effects on plant growth. The aim of this study was to evaluate the use of reflective aluminized polypropylene shading nets on photosynthetic performance of citrus plants, by measuring CO
<sub>2</sub>
assimilation, transpiration rate, stomatal conductance and chlorophyll a fluorescence. Incident photosynthetically active radiation (PAR) levels and leaf temperatures were reduced when the reflective nets were used. Higher stomatal conductance and higher CO
<sub>2</sub>
assimilation rates were observed in shaded plants, so that integrated daily net CO
<sub>2</sub>
uptake was approximately 20% higher than in exposed plants. The better performance of shaded plants, however, was observed only during the middle of the day, being PAR-limited in early morning and late afternoon. The reflective net was also effective in preventing photoinhibition of photosynthesis in shaded plants, which sustained higher maximum (F
<sub>v</sub>
/F
<sub>m</sub>
) and effective (ΔF/F'
<sub>m</sub>
) quantum yield with higher apparent electron transport rates (ETRs) than exposed plants. Observed photoinhibition in exposed plants was transient, probably reflecting photosynthetic regulatory responses to excess absorbed light energy. Therefore, the results clearly showed that photosynthetic performance of citrus cultivated in greenhouses can be improved by the use of reflective nets. Favorable effects comprised not only the maintenance of proper stomatal aperture for gas exchange but also a better functioning of the photosystem II (PSII) under non-photoinhibitory conditions.</EA>
<CC>002A32C06B</CC>
<FD>Photosynthèse; Culture protégée; Ombrage(environnement); Filet; Aluminisation; Surface réfléchissante; Conductance stomatique; Rayonnement photosynthétiquement actif; Photoinhibition; Citrus sinensis; Transpiration; Propène polymère; Chlorophylle a; Assimilation nette; Brésil; Serre</FD>
<FG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Amérique du Sud; Amérique; Echange gazeux; Arboriculture; Agrume; Arbre fruitier</FG>
<ED>Photosynthesis; Protected cultivation; Shading; Net; Aluminizing; Reflecting surface; Stomatal conductance; Photosynthetically active radiation; Photoinhibition; Citrus sinensis; Transpiration; Propylene polymer; Chlorophyll a; Net assimilation rate; Brazil; Greenhouse</ED>
<EG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; South America; America; Gas exchange; Arboriculture; Citrus fruit; Fruit tree</EG>
<SD>Fotosíntesis; Cultivo protegido(invernadero); Sombrajo; Red; Aluminizacion; Superficie reflexiva; Conductancia estomática; Radiación fotosinteticamente activa; Fotoinhibición; Citrus sinensis; Transpiración; Propeno polímero; Clorofila a; Asimilación neta; Brasil; Invernadero</SD>
<LO>INIST-16233.354000106763520100</LO>
<ID>03-0187827</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0187827
   |texte=   Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024