Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Citrus water uptake dynamics on a sandy Florida entisol

Identifieur interne : 000492 ( PascalFrancis/Corpus ); précédent : 000491; suivant : 000493

Citrus water uptake dynamics on a sandy Florida entisol

Auteurs : K. T. Morgan ; T. A. Obreza ; J. M. S. Scholberg ; L. R. Parsons ; T. A. Wheaton

Source :

RBID : Pascal:07-0217984

Descripteurs français

English descriptors

Abstract

Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ETc) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (Kc) from ETc and reference evapotranspiration (ETo), (iii) determine the relationship of soil water stress coefficient (Ks) to θ, and (iv) evaluate how ETc was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ETc averaged 1137 mm yr-1, and estimated Kc ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in Kc when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm3 cm-3) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm3 cm-3). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm-3 soil), where maximum soil water uptake was about 1.3 mm3 mm root-1 d-1at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0361-5995
A02 01      @0 SSSJD4
A03   1    @0 Soil Sci. Soc. Am. j.
A05       @2 70
A06       @2 1
A08 01  1  ENG  @1 Citrus water uptake dynamics on a sandy Florida entisol
A11 01  1    @1 MORGAN (K. T.)
A11 02  1    @1 OBREZA (T. A.)
A11 03  1    @1 SCHOLBERG (J. M. S.)
A11 04  1    @1 PARSONS (L. R.)
A11 05  1    @1 WHEATON (T. A.)
A14 01      @1 SWFREC, Univ. of Florida, 2689 SR 29N @2 Immokalee, FL 34142 @3 USA @Z 1 aut.
A14 02      @1 Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall @2 Gainesville, FL 32611 @3 USA @Z 2 aut.
A14 03      @1 Dep. of Agronomy, Univ. of Florida, 402 Newell Hall @2 Gainesville, FL 32611 @3 USA @Z 3 aut.
A14 04      @1 CREC, Univ. of Florida, 700 Experiment Station Rd @2 Lake Alfred, FL 33850 @3 USA @Z 4 aut. @Z 5 aut.
A20       @1 90-97
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 6109 @5 354000135332200120
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 07-0217984
A60       @1 P
A61       @0 A
A64 01  1    @0 Soil Science Society of America journal
A66 01      @0 USA
C01 01    ENG  @0 Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ETc) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (Kc) from ETc and reference evapotranspiration (ETo), (iii) determine the relationship of soil water stress coefficient (Ks) to θ, and (iv) evaluate how ETc was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ETc averaged 1137 mm yr-1, and estimated Kc ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in Kc when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm3 cm-3) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm3 cm-3). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm-3 soil), where maximum soil water uptake was about 1.3 mm3 mm root-1 d-1at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.
C02 01  X    @0 002A32C03A3
C02 02  X    @0 002A32C03B
C03 01  X  FRE  @0 Absorption eau @5 01
C03 01  X  ENG  @0 Water absorption @5 01
C03 01  X  SPA  @0 Absorción agua @5 01
C03 02  X  FRE  @0 Caractéristique dynamique @5 02
C03 02  X  ENG  @0 Dynamic characteristic @5 02
C03 02  X  SPA  @0 Característica dinámica @5 02
C03 03  X  FRE  @0 Dynamique processus @5 03
C03 03  X  ENG  @0 Process dynamics @5 03
C03 03  X  SPA  @0 Dinámica proceso @5 03
C03 04  X  FRE  @0 Evapotranspiration @5 04
C03 04  X  ENG  @0 Evapotranspiration @5 04
C03 04  X  SPA  @0 Evapotranspiración @5 04
C03 05  X  FRE  @0 Irrigation @5 05
C03 05  X  ENG  @0 Irrigation @5 05
C03 05  X  SPA  @0 Irrigación @5 05
C03 06  X  FRE  @0 Relation sol plante @5 06
C03 06  X  ENG  @0 Soil plant relation @5 06
C03 06  X  SPA  @0 Relación suelo planta @5 06
C03 07  X  FRE  @0 Citrus sinensis @2 NS @5 10
C03 07  X  ENG  @0 Citrus sinensis @2 NS @5 10
C03 07  X  SPA  @0 Citrus sinensis @2 NS @5 10
C03 08  X  FRE  @0 Floride @2 NG @5 20
C03 08  X  ENG  @0 Florida @2 NG @5 20
C03 08  X  SPA  @0 Florida @2 NG @5 20
C03 09  X  FRE  @0 Caractéristique sol @5 21
C03 09  X  ENG  @0 Property of soil @5 21
C03 09  X  SPA  @0 Característica suelo @5 21
C03 10  X  FRE  @0 Entisol @2 NT @5 24
C03 10  X  ENG  @0 Entisols @2 NT @5 24
C03 10  X  SPA  @0 Entisols @2 NT @5 24
C03 11  X  FRE  @0 Sol sableux @2 NT @5 25
C03 11  X  ENG  @0 Sandy soil @2 NT @5 25
C03 11  X  SPA  @0 Suelo arenoso @2 NT @5 25
C03 12  X  FRE  @0 Humidité sol @5 26
C03 12  X  ENG  @0 Soil moisture @5 26
C03 12  X  SPA  @0 Humedad suelo @5 26
C03 13  X  FRE  @0 Teneur eau @5 28
C03 13  X  ENG  @0 Water content @5 28
C03 13  X  SPA  @0 Dosis agua @5 28
C03 14  X  FRE  @0 Coefficient cultural @4 CD @5 96
C03 14  X  ENG  @0 Crop coefficient @4 CD @5 96
C03 14  X  SPA  @0 Coeficiente cultural @4 CD @5 96
C03 15  X  FRE  @0 Sol de verger @4 CD @5 97
C03 15  X  ENG  @0 Orchard soils @4 CD @5 97
C03 15  X  SPA  @0 Suelo de huertos @4 CD @5 97
C03 16  X  FRE  @0 Relation sol plante eau @4 CD @5 98
C03 16  X  ENG  @0 Soil plant water relation @4 CD @5 98
C03 16  X  SPA  @0 Relación suelo planta agua @4 CD @5 98
C07 01  X  FRE  @0 Rutaceae @2 NS
C07 01  X  ENG  @0 Rutaceae @2 NS
C07 01  X  SPA  @0 Rutaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Etats Unis @2 NG
C07 05  X  ENG  @0 United States @2 NG
C07 05  X  SPA  @0 Estados Unidos @2 NG
C07 06  X  FRE  @0 Amérique du Nord @2 NG
C07 06  X  ENG  @0 North America @2 NG
C07 06  X  SPA  @0 America del norte @2 NG
C07 07  X  FRE  @0 Amérique @2 NG
C07 07  X  ENG  @0 America @2 NG
C07 07  X  SPA  @0 America @2 NG
C07 08  X  FRE  @0 Agrume @5 31
C07 08  X  ENG  @0 Citrus fruit @5 31
C07 08  X  SPA  @0 Agrios @5 31
C07 09  X  FRE  @0 Arbre fruitier @5 32
C07 09  X  ENG  @0 Fruit tree @5 32
C07 09  X  SPA  @0 Arbol frutal @5 32
C07 10  X  FRE  @0 Plante fruitière @5 33
C07 10  X  ENG  @0 Fruit crop @5 33
C07 10  X  SPA  @0 Planta frutal @5 33
C07 11  X  FRE  @0 Aménagement hydraulique @5 34
C07 11  X  ENG  @0 Water engineering @5 34
C07 11  X  SPA  @0 Aprovechamiento hidráulico @5 34
C07 12  X  FRE  @0 Ecophysiologie @5 35
C07 12  X  ENG  @0 Ecophysiology @5 35
C07 12  X  SPA  @0 Ecofisiología @5 35
C07 13  X  FRE  @0 Régime hydrique @5 36
C07 13  X  ENG  @0 Water regime @5 36
C07 13  X  SPA  @0 Régimen hídrico @5 36
C07 14  X  FRE  @0 Verger @5 37
C07 14  X  ENG  @0 Orchard @5 37
C07 14  X  SPA  @0 Huerto @5 37
C07 15  X  FRE  @0 Agrométéorologie @5 38
C07 15  X  ENG  @0 Agrometeorology @5 38
C07 15  X  SPA  @0 Agrometeorología @5 38
C07 16  X  FRE  @0 Propriété hydrique sol @5 39
C07 16  X  ENG  @0 Soil water properties @5 39
C07 16  X  SPA  @0 Propiedad hídrica @5 39
C07 17  X  FRE  @0 Texture @5 40
C07 17  X  ENG  @0 Texture @5 40
C07 17  X  SPA  @0 Textura @5 40
C07 18  X  FRE  @0 Propriété physique @5 41
C07 18  X  ENG  @0 Physical properties @5 41
C07 18  X  SPA  @0 Propiedad física @5 41
C07 19  X  FRE  @0 Gestion ressource eau @5 42
C07 19  X  ENG  @0 Water resource management @5 42
C07 19  X  SPA  @0 Gestión recurso agua @5 42
C07 20  X  FRE  @0 Zone subtropicale @5 59
C07 20  X  ENG  @0 Subtropical zone @5 59
C07 20  X  SPA  @0 Zona subtropical @5 59
C07 21  X  FRE  @0 Arboriculture @5 64
C07 21  X  ENG  @0 Arboriculture @5 64
C07 21  X  SPA  @0 Arboricultura @5 64
C07 22  X  FRE  @0 Science du sol @5 65
C07 22  X  ENG  @0 Soil science @5 65
C07 22  X  SPA  @0 Ciencia del suelo @5 65
C07 23  X  FRE  @0 Etats du sud est (EU) @4 INC @5 68
C07 24  X  FRE  @0 Etats du sud (EU) @4 INC @5 69
N21       @1 148

Format Inist (serveur)

NO : PASCAL 07-0217984 INIST
ET : Citrus water uptake dynamics on a sandy Florida entisol
AU : MORGAN (K. T.); OBREZA (T. A.); SCHOLBERG (J. M. S.); PARSONS (L. R.); WHEATON (T. A.)
AF : SWFREC, Univ. of Florida, 2689 SR 29N/Immokalee, FL 34142/Etats-Unis (1 aut.); Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall/Gainesville, FL 32611/Etats-Unis (2 aut.); Dep. of Agronomy, Univ. of Florida, 402 Newell Hall/Gainesville, FL 32611/Etats-Unis (3 aut.); CREC, Univ. of Florida, 700 Experiment Station Rd/Lake Alfred, FL 33850/Etats-Unis (4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Soil Science Society of America journal; ISSN 0361-5995; Coden SSSJD4; Etats-Unis; Da. 2006; Vol. 70; No. 1; Pp. 90-97; Bibl. 30 ref.
LA : Anglais
EA : Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ETc) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (Kc) from ETc and reference evapotranspiration (ETo), (iii) determine the relationship of soil water stress coefficient (Ks) to θ, and (iv) evaluate how ETc was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ETc averaged 1137 mm yr-1, and estimated Kc ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in Kc when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm3 cm-3) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm3 cm-3). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm-3 soil), where maximum soil water uptake was about 1.3 mm3 mm root-1 d-1at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.
CC : 002A32C03A3; 002A32C03B
FD : Absorption eau; Caractéristique dynamique; Dynamique processus; Evapotranspiration; Irrigation; Relation sol plante; Citrus sinensis; Floride; Caractéristique sol; Entisol; Sol sableux; Humidité sol; Teneur eau; Coefficient cultural; Sol de verger; Relation sol plante eau
FG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Etats Unis; Amérique du Nord; Amérique; Agrume; Arbre fruitier; Plante fruitière; Aménagement hydraulique; Ecophysiologie; Régime hydrique; Verger; Agrométéorologie; Propriété hydrique sol; Texture; Propriété physique; Gestion ressource eau; Zone subtropicale; Arboriculture; Science du sol; Etats du sud est (EU); Etats du sud (EU)
ED : Water absorption; Dynamic characteristic; Process dynamics; Evapotranspiration; Irrigation; Soil plant relation; Citrus sinensis; Florida; Property of soil; Entisols; Sandy soil; Soil moisture; Water content; Crop coefficient; Orchard soils; Soil plant water relation
EG : Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; United States; North America; America; Citrus fruit; Fruit tree; Fruit crop; Water engineering; Ecophysiology; Water regime; Orchard; Agrometeorology; Soil water properties; Texture; Physical properties; Water resource management; Subtropical zone; Arboriculture; Soil science
SD : Absorción agua; Característica dinámica; Dinámica proceso; Evapotranspiración; Irrigación; Relación suelo planta; Citrus sinensis; Florida; Característica suelo; Entisols; Suelo arenoso; Humedad suelo; Dosis agua; Coeficiente cultural; Suelo de huertos; Relación suelo planta agua
LO : INIST-6109.354000135332200120
ID : 07-0217984

Links to Exploration step

Pascal:07-0217984

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Citrus water uptake dynamics on a sandy Florida entisol</title>
<author>
<name sortKey="Morgan, K T" sort="Morgan, K T" uniqKey="Morgan K" first="K. T." last="Morgan">K. T. Morgan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SWFREC, Univ. of Florida, 2689 SR 29N</s1>
<s2>Immokalee, FL 34142</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Obreza, T A" sort="Obreza, T A" uniqKey="Obreza T" first="T. A." last="Obreza">T. A. Obreza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scholberg, J M S" sort="Scholberg, J M S" uniqKey="Scholberg J" first="J. M. S." last="Scholberg">J. M. S. Scholberg</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Dep. of Agronomy, Univ. of Florida, 402 Newell Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parsons, L R" sort="Parsons, L R" uniqKey="Parsons L" first="L. R." last="Parsons">L. R. Parsons</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CREC, Univ. of Florida, 700 Experiment Station Rd</s1>
<s2>Lake Alfred, FL 33850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wheaton, T A" sort="Wheaton, T A" uniqKey="Wheaton T" first="T. A." last="Wheaton">T. A. Wheaton</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CREC, Univ. of Florida, 700 Experiment Station Rd</s1>
<s2>Lake Alfred, FL 33850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0217984</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0217984 INIST</idno>
<idno type="RBID">Pascal:07-0217984</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000492</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Citrus water uptake dynamics on a sandy Florida entisol</title>
<author>
<name sortKey="Morgan, K T" sort="Morgan, K T" uniqKey="Morgan K" first="K. T." last="Morgan">K. T. Morgan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>SWFREC, Univ. of Florida, 2689 SR 29N</s1>
<s2>Immokalee, FL 34142</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Obreza, T A" sort="Obreza, T A" uniqKey="Obreza T" first="T. A." last="Obreza">T. A. Obreza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Scholberg, J M S" sort="Scholberg, J M S" uniqKey="Scholberg J" first="J. M. S." last="Scholberg">J. M. S. Scholberg</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Dep. of Agronomy, Univ. of Florida, 402 Newell Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Parsons, L R" sort="Parsons, L R" uniqKey="Parsons L" first="L. R." last="Parsons">L. R. Parsons</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CREC, Univ. of Florida, 700 Experiment Station Rd</s1>
<s2>Lake Alfred, FL 33850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wheaton, T A" sort="Wheaton, T A" uniqKey="Wheaton T" first="T. A." last="Wheaton">T. A. Wheaton</name>
<affiliation>
<inist:fA14 i1="04">
<s1>CREC, Univ. of Florida, 700 Experiment Station Rd</s1>
<s2>Lake Alfred, FL 33850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Soil Science Society of America journal</title>
<title level="j" type="abbreviated">Soil Sci. Soc. Am. j.</title>
<idno type="ISSN">0361-5995</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Soil Science Society of America journal</title>
<title level="j" type="abbreviated">Soil Sci. Soc. Am. j.</title>
<idno type="ISSN">0361-5995</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus sinensis</term>
<term>Crop coefficient</term>
<term>Dynamic characteristic</term>
<term>Entisols</term>
<term>Evapotranspiration</term>
<term>Florida</term>
<term>Irrigation</term>
<term>Orchard soils</term>
<term>Process dynamics</term>
<term>Property of soil</term>
<term>Sandy soil</term>
<term>Soil moisture</term>
<term>Soil plant relation</term>
<term>Soil plant water relation</term>
<term>Water absorption</term>
<term>Water content</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Absorption eau</term>
<term>Caractéristique dynamique</term>
<term>Dynamique processus</term>
<term>Evapotranspiration</term>
<term>Irrigation</term>
<term>Relation sol plante</term>
<term>Citrus sinensis</term>
<term>Floride</term>
<term>Caractéristique sol</term>
<term>Entisol</term>
<term>Sol sableux</term>
<term>Humidité sol</term>
<term>Teneur eau</term>
<term>Coefficient cultural</term>
<term>Sol de verger</term>
<term>Relation sol plante eau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ET
<sub>c</sub>
) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (K
<sub>c</sub>
) from ET
<sub>c</sub>
and reference evapotranspiration (ET
<sub>o</sub>
), (iii) determine the relationship of soil water stress coefficient (K
<sub>s</sub>
) to θ, and (iv) evaluate how ET
<sub>c</sub>
was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ET
<sub>c</sub>
averaged 1137 mm yr
<sup>-1</sup>
, and estimated K
<sub>c</sub>
ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in K
<sub>c</sub>
when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm
<sup>3</sup>
cm
<sup>-3</sup>
) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm
<sup>3</sup>
cm
<sup>-3</sup>
). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm
<sup>-3</sup>
soil), where maximum soil water uptake was about 1.3 mm
<sup>3</sup>
mm root
<sup>-1</sup>
d
<sup>-1</sup>
at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5995</s0>
</fA01>
<fA02 i1="01">
<s0>SSSJD4</s0>
</fA02>
<fA03 i2="1">
<s0>Soil Sci. Soc. Am. j.</s0>
</fA03>
<fA05>
<s2>70</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Citrus water uptake dynamics on a sandy Florida entisol</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MORGAN (K. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OBREZA (T. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHOLBERG (J. M. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARSONS (L. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WHEATON (T. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>SWFREC, Univ. of Florida, 2689 SR 29N</s1>
<s2>Immokalee, FL 34142</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Dep. of Agronomy, Univ. of Florida, 402 Newell Hall</s1>
<s2>Gainesville, FL 32611</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CREC, Univ. of Florida, 700 Experiment Station Rd</s1>
<s2>Lake Alfred, FL 33850</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>90-97</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6109</s2>
<s5>354000135332200120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0217984</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Soil Science Society of America journal</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ET
<sub>c</sub>
) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (K
<sub>c</sub>
) from ET
<sub>c</sub>
and reference evapotranspiration (ET
<sub>o</sub>
), (iii) determine the relationship of soil water stress coefficient (K
<sub>s</sub>
) to θ, and (iv) evaluate how ET
<sub>c</sub>
was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ET
<sub>c</sub>
averaged 1137 mm yr
<sup>-1</sup>
, and estimated K
<sub>c</sub>
ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in K
<sub>c</sub>
when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm
<sup>3</sup>
cm
<sup>-3</sup>
) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm
<sup>3</sup>
cm
<sup>-3</sup>
). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm
<sup>-3</sup>
soil), where maximum soil water uptake was about 1.3 mm
<sup>3</sup>
mm root
<sup>-1</sup>
d
<sup>-1</sup>
at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C03A3</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A32C03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Absorption eau</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Water absorption</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Absorción agua</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Caractéristique dynamique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dynamic characteristic</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Característica dinámica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dynamique processus</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Process dynamics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Dinámica proceso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Evapotranspiration</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Evapotranspiration</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Evapotranspiración</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Irrigation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Irrigation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Irrigación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Floride</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Florida</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Florida</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Caractéristique sol</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Property of soil</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Característica suelo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Entisol</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Entisols</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Entisols</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sol sableux</s0>
<s2>NT</s2>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Sandy soil</s0>
<s2>NT</s2>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Suelo arenoso</s0>
<s2>NT</s2>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Humidité sol</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Soil moisture</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Humedad suelo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Teneur eau</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Water content</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Dosis agua</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Coefficient cultural</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Crop coefficient</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Coeficiente cultural</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sol de verger</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Orchard soils</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Suelo de huertos</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Relation sol plante eau</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Soil plant water relation</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Relación suelo planta agua</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>31</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>31</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>31</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Arbre fruitier</s0>
<s5>32</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Fruit tree</s0>
<s5>32</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Arbol frutal</s0>
<s5>32</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Plante fruitière</s0>
<s5>33</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Fruit crop</s0>
<s5>33</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Planta frutal</s0>
<s5>33</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Aménagement hydraulique</s0>
<s5>34</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Water engineering</s0>
<s5>34</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Aprovechamiento hidráulico</s0>
<s5>34</s5>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Ecophysiologie</s0>
<s5>35</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Ecophysiology</s0>
<s5>35</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Ecofisiología</s0>
<s5>35</s5>
</fC07>
<fC07 i1="13" i2="X" l="FRE">
<s0>Régime hydrique</s0>
<s5>36</s5>
</fC07>
<fC07 i1="13" i2="X" l="ENG">
<s0>Water regime</s0>
<s5>36</s5>
</fC07>
<fC07 i1="13" i2="X" l="SPA">
<s0>Régimen hídrico</s0>
<s5>36</s5>
</fC07>
<fC07 i1="14" i2="X" l="FRE">
<s0>Verger</s0>
<s5>37</s5>
</fC07>
<fC07 i1="14" i2="X" l="ENG">
<s0>Orchard</s0>
<s5>37</s5>
</fC07>
<fC07 i1="14" i2="X" l="SPA">
<s0>Huerto</s0>
<s5>37</s5>
</fC07>
<fC07 i1="15" i2="X" l="FRE">
<s0>Agrométéorologie</s0>
<s5>38</s5>
</fC07>
<fC07 i1="15" i2="X" l="ENG">
<s0>Agrometeorology</s0>
<s5>38</s5>
</fC07>
<fC07 i1="15" i2="X" l="SPA">
<s0>Agrometeorología</s0>
<s5>38</s5>
</fC07>
<fC07 i1="16" i2="X" l="FRE">
<s0>Propriété hydrique sol</s0>
<s5>39</s5>
</fC07>
<fC07 i1="16" i2="X" l="ENG">
<s0>Soil water properties</s0>
<s5>39</s5>
</fC07>
<fC07 i1="16" i2="X" l="SPA">
<s0>Propiedad hídrica</s0>
<s5>39</s5>
</fC07>
<fC07 i1="17" i2="X" l="FRE">
<s0>Texture</s0>
<s5>40</s5>
</fC07>
<fC07 i1="17" i2="X" l="ENG">
<s0>Texture</s0>
<s5>40</s5>
</fC07>
<fC07 i1="17" i2="X" l="SPA">
<s0>Textura</s0>
<s5>40</s5>
</fC07>
<fC07 i1="18" i2="X" l="FRE">
<s0>Propriété physique</s0>
<s5>41</s5>
</fC07>
<fC07 i1="18" i2="X" l="ENG">
<s0>Physical properties</s0>
<s5>41</s5>
</fC07>
<fC07 i1="18" i2="X" l="SPA">
<s0>Propiedad física</s0>
<s5>41</s5>
</fC07>
<fC07 i1="19" i2="X" l="FRE">
<s0>Gestion ressource eau</s0>
<s5>42</s5>
</fC07>
<fC07 i1="19" i2="X" l="ENG">
<s0>Water resource management</s0>
<s5>42</s5>
</fC07>
<fC07 i1="19" i2="X" l="SPA">
<s0>Gestión recurso agua</s0>
<s5>42</s5>
</fC07>
<fC07 i1="20" i2="X" l="FRE">
<s0>Zone subtropicale</s0>
<s5>59</s5>
</fC07>
<fC07 i1="20" i2="X" l="ENG">
<s0>Subtropical zone</s0>
<s5>59</s5>
</fC07>
<fC07 i1="20" i2="X" l="SPA">
<s0>Zona subtropical</s0>
<s5>59</s5>
</fC07>
<fC07 i1="21" i2="X" l="FRE">
<s0>Arboriculture</s0>
<s5>64</s5>
</fC07>
<fC07 i1="21" i2="X" l="ENG">
<s0>Arboriculture</s0>
<s5>64</s5>
</fC07>
<fC07 i1="21" i2="X" l="SPA">
<s0>Arboricultura</s0>
<s5>64</s5>
</fC07>
<fC07 i1="22" i2="X" l="FRE">
<s0>Science du sol</s0>
<s5>65</s5>
</fC07>
<fC07 i1="22" i2="X" l="ENG">
<s0>Soil science</s0>
<s5>65</s5>
</fC07>
<fC07 i1="22" i2="X" l="SPA">
<s0>Ciencia del suelo</s0>
<s5>65</s5>
</fC07>
<fC07 i1="23" i2="X" l="FRE">
<s0>Etats du sud est (EU)</s0>
<s4>INC</s4>
<s5>68</s5>
</fC07>
<fC07 i1="24" i2="X" l="FRE">
<s0>Etats du sud (EU)</s0>
<s4>INC</s4>
<s5>69</s5>
</fC07>
<fN21>
<s1>148</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 07-0217984 INIST</NO>
<ET>Citrus water uptake dynamics on a sandy Florida entisol</ET>
<AU>MORGAN (K. T.); OBREZA (T. A.); SCHOLBERG (J. M. S.); PARSONS (L. R.); WHEATON (T. A.)</AU>
<AF>SWFREC, Univ. of Florida, 2689 SR 29N/Immokalee, FL 34142/Etats-Unis (1 aut.); Dep. of Soil and Water Science, Univ. of Florida, 2169 McCarty Hall/Gainesville, FL 32611/Etats-Unis (2 aut.); Dep. of Agronomy, Univ. of Florida, 402 Newell Hall/Gainesville, FL 32611/Etats-Unis (3 aut.); CREC, Univ. of Florida, 700 Experiment Station Rd/Lake Alfred, FL 33850/Etats-Unis (4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Soil Science Society of America journal; ISSN 0361-5995; Coden SSSJD4; Etats-Unis; Da. 2006; Vol. 70; No. 1; Pp. 90-97; Bibl. 30 ref.</SO>
<LA>Anglais</LA>
<EA>Florida citrus trees must be irrigated to reach maximum production due to low soil water-holding capacity. In a highly urbanizing state with limited water resources, improved understanding of soil water uptake dynamics isneeded to optimize irrigation volume and timing. The objectives of this study were: (i) estimate mature citrus daily evapotranspiration (ET
<sub>c</sub>
) from changes in soil water content (θ), (ii) calculate citrus crop coefficients (K
<sub>c</sub>
) from ET
<sub>c</sub>
and reference evapotranspiration (ET
<sub>o</sub>
), (iii) determine the relationship of soil water stress coefficient (K
<sub>s</sub>
) to θ, and (iv) evaluate how ET
<sub>c</sub>
was related to root length density. In a 25-mo field study using mature 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees, ET
<sub>c</sub>
averaged 1137 mm yr
<sup>-1</sup>
, and estimated K
<sub>c</sub>
ranged between 0.7 and 1.1. Day of year explained more than 88% of the variation in K
<sub>c</sub>
when 0 was near field capacity. The value of K, decreased steadily from 1.0 at field capacity (θ = 0.072 cm
<sup>3</sup>
cm
<sup>-3</sup>
) to approximately 0.5 at 50% available soil water depletion (θ = 0.045 cm
<sup>3</sup>
cm
<sup>-3</sup>
). Roots were concentrated in the top 15 cm of soil under the tree canopy (0.71 to 1.16 cm roots cm
<sup>-3</sup>
soil), where maximum soil water uptake was about 1.3 mm
<sup>3</sup>
mm root
<sup>-1</sup>
d
<sup>-1</sup>
at field capacity, decreasing quadratically as 0 decreased. Estimating daily plant water uptake and resulting soil water depletion based on root length density distribution would provide a reasonable basis for a citrus soil water balance model.</EA>
<CC>002A32C03A3; 002A32C03B</CC>
<FD>Absorption eau; Caractéristique dynamique; Dynamique processus; Evapotranspiration; Irrigation; Relation sol plante; Citrus sinensis; Floride; Caractéristique sol; Entisol; Sol sableux; Humidité sol; Teneur eau; Coefficient cultural; Sol de verger; Relation sol plante eau</FD>
<FG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Etats Unis; Amérique du Nord; Amérique; Agrume; Arbre fruitier; Plante fruitière; Aménagement hydraulique; Ecophysiologie; Régime hydrique; Verger; Agrométéorologie; Propriété hydrique sol; Texture; Propriété physique; Gestion ressource eau; Zone subtropicale; Arboriculture; Science du sol; Etats du sud est (EU); Etats du sud (EU)</FG>
<ED>Water absorption; Dynamic characteristic; Process dynamics; Evapotranspiration; Irrigation; Soil plant relation; Citrus sinensis; Florida; Property of soil; Entisols; Sandy soil; Soil moisture; Water content; Crop coefficient; Orchard soils; Soil plant water relation</ED>
<EG>Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; United States; North America; America; Citrus fruit; Fruit tree; Fruit crop; Water engineering; Ecophysiology; Water regime; Orchard; Agrometeorology; Soil water properties; Texture; Physical properties; Water resource management; Subtropical zone; Arboriculture; Soil science</EG>
<SD>Absorción agua; Característica dinámica; Dinámica proceso; Evapotranspiración; Irrigación; Relación suelo planta; Citrus sinensis; Florida; Característica suelo; Entisols; Suelo arenoso; Humedad suelo; Dosis agua; Coeficiente cultural; Suelo de huertos; Relación suelo planta agua</SD>
<LO>INIST-6109.354000135332200120</LO>
<ID>07-0217984</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000492 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000492 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0217984
   |texte=   Citrus water uptake dynamics on a sandy Florida entisol
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024