Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol

Identifieur interne : 000296 ( PascalFrancis/Checkpoint ); précédent : 000295; suivant : 000297

Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol

Auteurs : Xiao-Ba Wu [République populaire de Chine] ; JING WANG [République populaire de Chine] ; Ji-Hong Liu [République populaire de Chine] ; Xiu-Xin Deng [République populaire de Chine]

Source :

RBID : Pascal:09-0086904

Descripteurs français

English descriptors

Abstract

Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20 d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of α-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1 mM putrescine to EIM together with 5mM α-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0086904

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol</title>
<author>
<name sortKey="Wu, Xiao Ba" sort="Wu, Xiao Ba" uniqKey="Wu X" first="Xiao-Ba" last="Wu">Xiao-Ba Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jing Wang" sort="Jing Wang" uniqKey="Jing Wang" last="Jing Wang">JING WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ji Hong" sort="Liu, Ji Hong" uniqKey="Liu J" first="Ji-Hong" last="Liu">Ji-Hong Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deng, Xiu Xin" sort="Deng, Xiu Xin" uniqKey="Deng X" first="Xiu-Xin" last="Deng">Xiu-Xin Deng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0086904</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0086904 INIST</idno>
<idno type="RBID">Pascal:09-0086904</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000351</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000652</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000296</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol</title>
<author>
<name sortKey="Wu, Xiao Ba" sort="Wu, Xiao Ba" uniqKey="Wu X" first="Xiao-Ba" last="Wu">Xiao-Ba Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jing Wang" sort="Jing Wang" uniqKey="Jing Wang" last="Jing Wang">JING WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ji Hong" sort="Liu, Ji Hong" uniqKey="Liu J" first="Ji-Hong" last="Liu">Ji-Hong Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deng, Xiu Xin" sort="Deng, Xiu Xin" uniqKey="Deng X" first="Xiu-Xin" last="Deng">Xiu-Xin Deng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of plant physiology</title>
<title level="j" type="abbreviated">J. plant physiol.</title>
<idno type="ISSN">0176-1617</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of plant physiology</title>
<title level="j" type="abbreviated">J. plant physiol.</title>
<idno type="ISSN">0176-1617</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biosynthesis</term>
<term>Citrus sinensis</term>
<term>Embryonic development</term>
<term>Gene expression</term>
<term>Glycerol</term>
<term>Plant physiology</term>
<term>Polyamine</term>
<term>Somatic embryo</term>
<term>Tissue culture</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polyamine</term>
<term>Biosynthèse</term>
<term>Développement embryonnaire</term>
<term>Embryon somatique</term>
<term>Culture tissu</term>
<term>Expression génique</term>
<term>Citrus sinensis</term>
<term>Glycérol</term>
<term>Ornithine(2-difluorométhyl)</term>
<term>Ornithine(2-difluorométhyl)</term>
<term>Physiologie végétale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20 d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of α-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1 mM putrescine to EIM together with 5mM α-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0176-1617</s0>
</fA01>
<fA02 i1="01">
<s0>JPPHEY</s0>
</fA02>
<fA03 i2="1">
<s0>J. plant physiol.</s0>
</fA03>
<fA05>
<s2>166</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WU (Xiao-Ba)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JING WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIU (Ji-Hong)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DENG (Xiu-Xin)</s1>
</fA11>
<fA14 i1="01">
<s1>National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>52-62</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>922</s2>
<s5>354000185152300060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0086904</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of plant physiology</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20 d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of α-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1 mM putrescine to EIM together with 5mM α-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Polyamine</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Polyamine</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Poliamina</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Biosynthèse</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Biosynthesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Biosíntesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Développement embryonnaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Embryonic development</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Desarrollo embrionario</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Embryon somatique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Somatic embryo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Embrión somático</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Culture tissu</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tissue culture</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cultivo tejido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Expression génique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Gene expression</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Expresión genética</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Citrus sinensis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Glycérol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Glycerol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Glicerol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Ornithine(2-difluorométhyl)</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ornithine(2-difluorométhyl)</s0>
<s4>INC</s4>
<s5>79</s5>
<s6>Ornithine(«2»-difluorométhyl)</s6>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Physiologie végétale</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Plant physiology</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fisiología vegetal</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>31</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Systémique</s0>
<s5>33</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Systemic</s0>
<s5>33</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Sistémico</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Aminoacide</s0>
<s5>50</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Aminoacid</s0>
<s5>50</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Aminoácido</s0>
<s5>50</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Fongicide</s0>
<s5>51</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Fungicide</s0>
<s5>51</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Fungicida</s0>
<s5>51</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Pesticide</s0>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Pesticides</s0>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Plaguicida</s0>
</fC07>
<fN21>
<s1>061</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wu, Xiao Ba" sort="Wu, Xiao Ba" uniqKey="Wu X" first="Xiao-Ba" last="Wu">Xiao-Ba Wu</name>
</noRegion>
<name sortKey="Deng, Xiu Xin" sort="Deng, Xiu Xin" uniqKey="Deng X" first="Xiu-Xin" last="Deng">Xiu-Xin Deng</name>
<name sortKey="Jing Wang" sort="Jing Wang" uniqKey="Jing Wang" last="Jing Wang">JING WANG</name>
<name sortKey="Liu, Ji Hong" sort="Liu, Ji Hong" uniqKey="Liu J" first="Ji-Hong" last="Liu">Ji-Hong Liu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000296 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000296 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:09-0086904
   |texte=   Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024