Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution

Identifieur interne : 001C47 ( Ncbi/Merge ); précédent : 001C46; suivant : 001C48

Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution

Auteurs : Jennifer C. Mcelwain ; Charilaos Yiotis ; Tracy Lawson

Source :

RBID : PMC:5014202

Abstract

Summary

Understanding the drivers of geological‐scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function.

Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (gmax) and leaf vein density (Dv) and physiological measurements including operational stomatal conductance (gop), saturated (Asat) and maximum (Amax) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous.

Our study demonstrated significant relationships between gop, gmax and Dv that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high gmax in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high gmax (> 1400 mmol m−2 s−1) would have been capable of maintaining a high Amax as the atmospheric CO2 declined through the Cretaceous, whereas gymnosperms with a low gmax would experience severe photosynthetic penalty.

Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high gmax, Dv and increased plasticity in gop, adds further functional insights into the mechanisms driving angiosperm speciation.


Url:
DOI: 10.1111/nph.13579
PubMed: 26230251
PubMed Central: 5014202

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:5014202

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution</title>
<author>
<name sortKey="Mcelwain, Jennifer C" sort="Mcelwain, Jennifer C" uniqKey="Mcelwain J" first="Jennifer C." last="Mcelwain">Jennifer C. Mcelwain</name>
<affiliation>
<nlm:aff id="nph13579-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="nph13579-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yiotis, Charilaos" sort="Yiotis, Charilaos" uniqKey="Yiotis C" first="Charilaos" last="Yiotis">Charilaos Yiotis</name>
<affiliation>
<nlm:aff id="nph13579-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="nph13579-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawson, Tracy" sort="Lawson, Tracy" uniqKey="Lawson T" first="Tracy" last="Lawson">Tracy Lawson</name>
<affiliation>
<nlm:aff id="nph13579-aff-0003"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26230251</idno>
<idno type="pmc">5014202</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014202</idno>
<idno type="RBID">PMC:5014202</idno>
<idno type="doi">10.1111/nph.13579</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">001070</idno>
<idno type="wicri:Area/Pmc/Curation">001069</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000295</idno>
<idno type="wicri:Area/Ncbi/Merge">001C47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution</title>
<author>
<name sortKey="Mcelwain, Jennifer C" sort="Mcelwain, Jennifer C" uniqKey="Mcelwain J" first="Jennifer C." last="Mcelwain">Jennifer C. Mcelwain</name>
<affiliation>
<nlm:aff id="nph13579-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="nph13579-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yiotis, Charilaos" sort="Yiotis, Charilaos" uniqKey="Yiotis C" first="Charilaos" last="Yiotis">Charilaos Yiotis</name>
<affiliation>
<nlm:aff id="nph13579-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="nph13579-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawson, Tracy" sort="Lawson, Tracy" uniqKey="Lawson T" first="Tracy" last="Lawson">Tracy Lawson</name>
<affiliation>
<nlm:aff id="nph13579-aff-0003"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New Phytologist</title>
<idno type="ISSN">0028-646X</idno>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<p>
<list list-type="bullet" id="nph13579-list-0001">
<list-item>
<p>Understanding the drivers of geological‐scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function.</p>
</list-item>
<list-item>
<p>Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (
<italic>g</italic>
<sub>max</sub>
) and leaf vein density (
<italic>D</italic>
<sub>v</sub>
) and physiological measurements including operational stomatal conductance (
<italic>g</italic>
<sub>op</sub>
), saturated (
<italic>A</italic>
<sub>sat</sub>
<italic>)</italic>
and maximum (
<italic>A</italic>
<sub>max</sub>
) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous.</p>
</list-item>
<list-item>
<p>Our study demonstrated significant relationships between
<italic>g</italic>
<sub>op</sub>
,
<italic>g</italic>
<sub>max</sub>
and
<italic>D</italic>
<sub>v</sub>
that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high
<italic>g</italic>
<sub>max</sub>
in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high
<italic>g</italic>
<sub>max</sub>
(> 1400 mmol m
<sup>−2</sup>
 s
<sup>−1</sup>
) would have been capable of maintaining a high
<italic>A</italic>
<sub>max</sub>
as the atmospheric
<styled-content style="fixed-case">CO</styled-content>
<sub>2</sub>
declined through the Cretaceous, whereas gymnosperms with a low
<italic>g</italic>
<sub>max</sub>
would experience severe photosynthetic penalty.</p>
</list-item>
<list-item>
<p>Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high
<italic>g</italic>
<sub>max</sub>
<italic>, D</italic>
<sub>v</sub>
and increased plasticity in
<italic>g</italic>
<sub>op</sub>
<italic>,</italic>
adds further functional insights into the mechanisms driving angiosperm speciation.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulze, Ed" uniqKey="Schulze E">ED Schulze</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemsley, Ar" uniqKey="Hemsley A">AR Hemsley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luttge, U" uniqKey="Luttge U">U Lüttge</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greihuber, J" uniqKey="Greihuber J">J Greihuber</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehleringer, Jr" uniqKey="Ehleringer J">JR Ehleringer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">New Phytol</journal-id>
<journal-id journal-id-type="iso-abbrev">New Phytol</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1469-8137</journal-id>
<journal-id journal-id-type="publisher-id">NPH</journal-id>
<journal-title-group>
<journal-title>The New Phytologist</journal-title>
</journal-title-group>
<issn pub-type="ppub">0028-646X</issn>
<issn pub-type="epub">1469-8137</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26230251</article-id>
<article-id pub-id-type="pmc">5014202</article-id>
<article-id pub-id-type="doi">10.1111/nph.13579</article-id>
<article-id pub-id-type="publisher-id">NPH13579</article-id>
<article-id pub-id-type="other">2015-19478</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Full Paper</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Research</subject>
<subj-group subj-group-type="heading">
<subject>Full Papers</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution</article-title>
</title-group>
<contrib-group>
<contrib id="nph13579-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>McElwain</surname>
<given-names>Jennifer C.</given-names>
</name>
<xref ref-type="aff" rid="nph13579-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="nph13579-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="nph13579-cr-0002" contrib-type="author">
<name>
<surname>Yiotis</surname>
<given-names>Charilaos</given-names>
</name>
<xref ref-type="aff" rid="nph13579-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="nph13579-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="nph13579-cr-0003" contrib-type="author">
<name>
<surname>Lawson</surname>
<given-names>Tracy</given-names>
</name>
<xref ref-type="aff" rid="nph13579-aff-0003">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="nph13579-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Earth Institute</named-content>
<named-content content-type="organisation-division">O'Brien Centre for Science</named-content>
<institution>University College Dublin</institution>
<named-content content-type="city">Belfield</named-content>
<country country="IE">Ireland</country>
</aff>
<aff id="nph13579-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">School of Biology and Environmental Science</named-content>
<institution>University College Dublin</institution>
<named-content content-type="city">Belfield</named-content>
<country country="IE">Ireland</country>
</aff>
<aff id="nph13579-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">School of Biological Science</named-content>
<institution>University of Essex</institution>
<named-content content-type="city">Colchester</named-content>
<named-content content-type="post-code">CO4 3SQ</named-content>
<country country="GB">UK</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Author for correspondence:
<break></break>
<italic>Jennifer C. McElwain</italic>
<break></break>
<italic>Tel: +00 353 17162524</italic>
<break></break>
<italic>Email: </italic>
<email>jennifer.mcelwain@ucd.ie</email>
<break></break>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>7</month>
<year>2015</year>
</pub-date>
<volume>209</volume>
<issue>1</issue>
<issue-id pub-id-type="doi">10.1111/nph.2016.209.issue-1</issue-id>
<fpage>94</fpage>
<lpage>103</lpage>
<history>
<date date-type="received">
<day>26</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>6</month>
<year>2015</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2015 New Phytologist Trust </pmc-comment>
<copyright-statement content-type="article-copyright">© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust</copyright-statement>
<license license-type="creativeCommonsBy">
<license-p>This is an open access article under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution</ext-link>
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="file:NPH-209-94.pdf"></self-uri>
<abstract id="nph13579-abs-0001">
<title>Summary</title>
<p>
<list list-type="bullet" id="nph13579-list-0001">
<list-item>
<p>Understanding the drivers of geological‐scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function.</p>
</list-item>
<list-item>
<p>Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (
<italic>g</italic>
<sub>max</sub>
) and leaf vein density (
<italic>D</italic>
<sub>v</sub>
) and physiological measurements including operational stomatal conductance (
<italic>g</italic>
<sub>op</sub>
), saturated (
<italic>A</italic>
<sub>sat</sub>
<italic>)</italic>
and maximum (
<italic>A</italic>
<sub>max</sub>
) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous.</p>
</list-item>
<list-item>
<p>Our study demonstrated significant relationships between
<italic>g</italic>
<sub>op</sub>
,
<italic>g</italic>
<sub>max</sub>
and
<italic>D</italic>
<sub>v</sub>
that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high
<italic>g</italic>
<sub>max</sub>
in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high
<italic>g</italic>
<sub>max</sub>
(> 1400 mmol m
<sup>−2</sup>
 s
<sup>−1</sup>
) would have been capable of maintaining a high
<italic>A</italic>
<sub>max</sub>
as the atmospheric
<styled-content style="fixed-case">CO</styled-content>
<sub>2</sub>
declined through the Cretaceous, whereas gymnosperms with a low
<italic>g</italic>
<sub>max</sub>
would experience severe photosynthetic penalty.</p>
</list-item>
<list-item>
<p>Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high
<italic>g</italic>
<sub>max</sub>
<italic>, D</italic>
<sub>v</sub>
and increased plasticity in
<italic>g</italic>
<sub>op</sub>
<italic>,</italic>
adds further functional insights into the mechanisms driving angiosperm speciation.</p>
</list-item>
</list>
</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="nph13579-kwd-0001">evolution of angiosperms</kwd>
<kwd id="nph13579-kwd-0002">functional traits</kwd>
<kwd id="nph13579-kwd-0003">maximum theoretical stomatal conductance (
<italic>g</italic>
<sub>max</sub>
)</kwd>
<kwd id="nph13579-kwd-0004">palaeophysiology</kwd>
<kwd id="nph13579-kwd-0005">plasticity</kwd>
<kwd id="nph13579-kwd-0006">stomatal density</kwd>
<kwd id="nph13579-kwd-0007">stomatal evolution</kwd>
<kwd id="nph13579-kwd-0008">vein density (
<italic>D</italic>
<sub>v</sub>
)</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>Science Foundation Ireland</funding-source>
<award-id>SFI‐PI‐1103</award-id>
</award-group>
</funding-group>
<counts>
<page-count count="10"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>component-id</meta-name>
<meta-value>nph13579</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>January 2016</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:09.09.2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<fn-group id="nph13579-ntgp-0001">
<fn id="nph13579-note-0111">
<p>The copyright line for this article was changed on 19 August 2015 after original online publication.</p>
</fn>
</fn-group>
</notes>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Lawson, Tracy" sort="Lawson, Tracy" uniqKey="Lawson T" first="Tracy" last="Lawson">Tracy Lawson</name>
<name sortKey="Mcelwain, Jennifer C" sort="Mcelwain, Jennifer C" uniqKey="Mcelwain J" first="Jennifer C." last="Mcelwain">Jennifer C. Mcelwain</name>
<name sortKey="Yiotis, Charilaos" sort="Yiotis, Charilaos" uniqKey="Yiotis C" first="Charilaos" last="Yiotis">Charilaos Yiotis</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001C47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:5014202
   |texte=   Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:26230251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024