Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2

Identifieur interne : 001B53 ( Istex/Corpus ); précédent : 001B52; suivant : 001B54

A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2

Auteurs : Christophe Riondet ; Jean Paul Desouris ; Jocelyne Guilleminot Montoya ; Yvette Chartier ; Yves Meyer ; Jean-Philippe Reichheld

Source :

RBID : ISTEX:C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080

English descriptors

Abstract

The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster in vitro, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in Arabidopsis thaliana, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster. In planta, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster in vivo. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster in vitro. Knock‐out mutants in grxc1 or grxc2 are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.

Url:
DOI: 10.1111/j.1365-3040.2011.02355.x

Links to Exploration step

ISTEX:C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
<author>
<name sortKey="Riondet, Christophe" sort="Riondet, Christophe" uniqKey="Riondet C" first="Christophe" last="Riondet">Christophe Riondet</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desouris, Jean Paul" sort="Desouris, Jean Paul" uniqKey="Desouris J" first="Jean Paul" last="Desouris">Jean Paul Desouris</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montoya, Jocelyne Guilleminot" sort="Montoya, Jocelyne Guilleminot" uniqKey="Montoya J" first="Jocelyne Guilleminot" last="Montoya">Jocelyne Guilleminot Montoya</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chartier, Yvette" sort="Chartier, Yvette" uniqKey="Chartier Y" first="Yvette" last="Chartier">Yvette Chartier</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Hilippe" sort="Reichheld, Jean Hilippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1365-3040.2011.02355.x</idno>
<idno type="url">https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001B53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
<author>
<name sortKey="Riondet, Christophe" sort="Riondet, Christophe" uniqKey="Riondet C" first="Christophe" last="Riondet">Christophe Riondet</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desouris, Jean Paul" sort="Desouris, Jean Paul" uniqKey="Desouris J" first="Jean Paul" last="Desouris">Jean Paul Desouris</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montoya, Jocelyne Guilleminot" sort="Montoya, Jocelyne Guilleminot" uniqKey="Montoya J" first="Jocelyne Guilleminot" last="Montoya">Jocelyne Guilleminot Montoya</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chartier, Yvette" sort="Chartier, Yvette" uniqKey="Chartier Y" first="Yvette" last="Chartier">Yvette Chartier</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Hilippe" sort="Reichheld, Jean Hilippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation>
<mods:affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Plant, Cell & Environment</title>
<idno type="ISSN">0140-7791</idno>
<idno type="eISSN">1365-3040</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-02">2012-02</date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="360">360</biblScope>
<biblScope unit="page" to="373">373</biblScope>
</imprint>
<idno type="ISSN">0140-7791</idno>
</series>
<idno type="istex">C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080</idno>
<idno type="DOI">10.1111/j.1365-3040.2011.02355.x</idno>
<idno type="ArticleID">PCE2355</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0140-7791</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis</term>
<term>iron–sulphur</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster in vitro, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in Arabidopsis thaliana, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster. In planta, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster in vivo. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster in vitro. Knock‐out mutants in grxc1 or grxc2 are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>CHRISTOPHE RIONDET</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>JEAN PAUL DESOURIS</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>JOCELYNE GUILLEMINOT MONTOYA</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>YVETTE CHARTIER</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>YVES MEYER</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>JEAN‐PHILIPPE REICHHELD</name>
<affiliations>
<json:string>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Arabidopsis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>iron–sulphur</value>
</json:item>
</subject>
<articleId>
<json:string>PCE2355</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>reviewArticle</json:string>
</originalGenre>
<abstract>The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster in vitro, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in Arabidopsis thaliana, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster. In planta, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster in vivo. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster in vitro. Knock‐out mutants in grxc1 or grxc2 are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.</abstract>
<qualityIndicators>
<score>7.34</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>2</keywordCount>
<abstractCharCount>1268</abstractCharCount>
<pdfWordCount>8919</pdfWordCount>
<pdfCharCount>57606</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>195</abstractWordCount>
</qualityIndicators>
<title>A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>35</volume>
<publisherId>
<json:string>PCE</json:string>
</publisherId>
<pages>
<total>14</total>
<last>373</last>
<first>360</first>
</pages>
<issn>
<json:string>0140-7791</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-3040</json:string>
</eissn>
<title>Plant, Cell & Environment</title>
<doi>
<json:string>10.1111/(ISSN)1365-3040</json:string>
</doi>
</host>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1365-3040.2011.02355.x</json:string>
</doi>
<id>C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080</id>
<score>0.10866295</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2011 Blackwell Publishing Ltd</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
<author xml:id="author-1">
<persName>
<forename type="first">CHRISTOPHE</forename>
<surname>RIONDET</surname>
</persName>
<note type="correspondence">
<p>Correspondence: C. Riondet. E‐mail:</p>
</note>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">JEAN PAUL</forename>
<surname>DESOURIS</surname>
</persName>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">JOCELYNE GUILLEMINOT</forename>
<surname>MONTOYA</surname>
</persName>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">YVETTE</forename>
<surname>CHARTIER</surname>
</persName>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">YVES</forename>
<surname>MEYER</surname>
</persName>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">JEAN‐PHILIPPE</forename>
<surname>REICHHELD</surname>
</persName>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Plant, Cell & Environment</title>
<idno type="pISSN">0140-7791</idno>
<idno type="eISSN">1365-3040</idno>
<idno type="DOI">10.1111/(ISSN)1365-3040</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-02"></date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="360">360</biblScope>
<biblScope unit="page" to="373">373</biblScope>
</imprint>
</monogr>
<idno type="istex">C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080</idno>
<idno type="DOI">10.1111/j.1365-3040.2011.02355.x</idno>
<idno type="ArticleID">PCE2355</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster in vitro, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in Arabidopsis thaliana, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster. In planta, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster in vivo. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster in vitro. Knock‐out mutants in grxc1 or grxc2 are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.</p>
</abstract>
<abstract style="short">
<p>Glutaredoxins are proteins implicated into environmental stress response, and among them, many present a capacity to bind an iron‐sulfur cluster. GRXC1 family is exclusively found in dicotyledonous plants and presents a reducing activity regulated by the redox dependent stability of the cluster. Those results suggest that glutaredoxin acts as a redox sensor to environmental stress.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Arabidopsis</term>
</item>
<item>
<term>iron–sulphur</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-3040</doi>
<issn type="print">0140-7791</issn>
<issn type="electronic">1365-3040</issn>
<idGroup>
<id type="product" value="PCE"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="PLANT CELL ENVIRONMENT">Plant, Cell & Environment</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="02102">
<doi origin="wiley">10.1111/pce.2012.35.issue-2</doi>
<titleGroup>
<title type="main">Special Issue on Redox Signaling</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="35">35</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2012-02">February 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="reviewArticle" position="14" status="forIssue">
<doi origin="wiley">10.1111/j.1365-3040.2011.02355.x</doi>
<idGroup>
<id type="unit" value="PCE2355"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Invited Reviews</title>
</titleGroup>
<copyright>© 2011 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.6 mode:FullText" date="2012-08-16"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-07-19"></event>
<event type="publishedOnlineFinalForm" date="2012-01-03"></event>
<event type="firstOnline" date="2011-07-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.7 mode:FullText" date="2015-03-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="360">360</numbering>
<numbering type="pageLast" number="373">373</numbering>
</numberingGroup>
<correspondenceTo>C. Riondet. E‐mail:
<email normalForm="christophe.riondet@univ-perp.fr">christophe.riondet@univ‐perp.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PCE.PCE2355.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 1 February 2011; received in revised form 14 April 2011; accepted for publication 17 April 2011</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="43"></count>
<count type="wordTotal" number="9778"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
<title type="shortAuthors">C. Riondet
<i>et al</i>
.</title>
<title type="short">A dicotyledon‐specific glutaredoxin</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>CHRISTOPHE</givenNames>
<familyName>RIONDET</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>JEAN PAUL</givenNames>
<familyName>DESOURIS</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>JOCELYNE GUILLEMINOT</givenNames>
<familyName>MONTOYA</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>YVETTE</givenNames>
<familyName>CHARTIER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a1">
<personName>
<givenNames>YVES</givenNames>
<familyName>MEYER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>JEAN‐PHILIPPE</givenNames>
<familyName>REICHHELD</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">
<i>Arabidopsis</i>
</keyword>
<keyword xml:id="k2">iron–sulphur</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>Figure S1.</b>
Sequence analyses of [CGYC] Grxs. Alignment of CGYC Grxs sequences was performed with ClustalW software. The conserved putative sequence of myristylation MG[SLTNA]xx[SGAN], dithiol active motif YCGYC and the glutathion fixation site TVPxVFIxGxxxGG are indicated by asterisks.</p>
<p>
<b>Figure S2.</b>
Sequences analyses of GRXC2 orthologues. Alignment of GRXC2 sequences was performed with ClustalW software. The conserved putative sequence of the dithiol active motif CPF/YC and the glutathion fixation site, TVPxVFIxGxxxGG, are indicated by asterisks.</p>
<p>
<b>Figure S3.</b>
(A) Expression of GRXC1 and GRXC2 genes in Arabidopsis. Semi‐quantitative RT‐PCR was performed using gene‐specific and reference gene (Act2) primers in different plant tissues R: roots, S: stems, L: leaves, B: buds, Fl: flowers, S: siliques, Se: seeds, P:
<i>in vitro</i>
plants, C: exponential phase cell suspension. (B) Subcellular localization of GRXC1 (I) and GRXC2 (II) by GFP fusion (GFP alone (III)). On the left, fluorescence. On the right, visible light of the construction.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:01407791:media:pce2355:PCE_2355_sm_figS1"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:01407791:media:pce2355:PCE_2355_sm_figS2"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:01407791:media:pce2355:PCE_2355_sm_figS3"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster
<i>in vitro</i>
, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in
<i>Arabidopsis thaliana</i>
, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster.
<i>In planta</i>
, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster
<i>in vivo</i>
. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster
<i>in vitro</i>
. Knock‐out mutants in
<i>grxc1</i>
or
<i>grxc2</i>
are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.</p>
</abstract>
<abstract type="short">
<p>Glutaredoxins are proteins implicated into environmental stress response, and among them, many present a capacity to bind an iron‐sulfur cluster. GRXC1 family is exclusively found in dicotyledonous plants and presents a reducing activity regulated by the redox dependent stability of the cluster. Those results suggest that glutaredoxin acts as a redox sensor to environmental stress.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>A dicotyledon‐specific glutaredoxin</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2</title>
</titleInfo>
<name type="personal">
<namePart type="given">CHRISTOPHE</namePart>
<namePart type="family">RIONDET</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<description>Correspondence: C. Riondet. E‐mail: </description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JEAN PAUL</namePart>
<namePart type="family">DESOURIS</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JOCELYNE GUILLEMINOT</namePart>
<namePart type="family">MONTOYA</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">YVETTE</namePart>
<namePart type="family">CHARTIER</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">YVES</namePart>
<namePart type="family">MEYER</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JEAN‐PHILIPPE</namePart>
<namePart type="family">REICHHELD</namePart>
<affiliation>Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS‐UPVD, 58 Avenue de Villeneuve – Bat T, 66860 Perpignan Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="reviewArticle"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-02</dateIssued>
<edition>Received 1 February 2011; received in revised form 14 April 2011; accepted for publication 17 April 2011</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="tables">3</extent>
<extent unit="references">43</extent>
<extent unit="words">9778</extent>
</physicalDescription>
<abstract lang="en">The major known function of glutaredoxins (Grxs) is to reduce disulphide bridges. Recently, some have also been shown to interact with iron–sulphur clusters. These can be classified in two subgroups: class II Grx are found in all living organisms and are implicated in assembly of iron–sulphur clusters, while class I Grx are represented by only two members known to form a holodimer structure containing a cluster in vitro, but with an unknown function different from class II. Here, we report that in eukaryotic plants, GRXC1 (class I) orthologs are exclusively present in dicotyledonous plants, suggesting a specific function. Indeed, in Arabidopsis thaliana, reducing activity of recombinant GRXC1 is regulated by redox‐dependent stability of the cluster. In planta, GRXC1 has been found predominantly in a holodimeric form, indicating the presence of the cluster in vivo. This suggests that GRXC1 acts as a redox sensor, reducing downstream pathways under oxidative conditions. GRXC2, the closest homolog of GRXC1, is unable to form a cluster in vitro. Knock‐out mutants in grxc1 or grxc2 are aphenotypic, but the double mutant produces a lethal phenotype at an early stage after pollinization, suggesting that GRXC1 and GRXC2 share redundant and vital functions.</abstract>
<abstract type="short">Glutaredoxins are proteins implicated into environmental stress response, and among them, many present a capacity to bind an iron‐sulfur cluster. GRXC1 family is exclusively found in dicotyledonous plants and presents a reducing activity regulated by the redox dependent stability of the cluster. Those results suggest that glutaredoxin acts as a redox sensor to environmental stress.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Arabidopsis</topic>
<topic>iron–sulphur</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Plant, Cell & Environment</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Figure S1. Sequence analyses of [CGYC] Grxs. Alignment of CGYC Grxs sequences was performed with ClustalW software. The conserved putative sequence of myristylation MG[SLTNA]xx[SGAN], dithiol active motif YCGYC and the glutathion fixation site TVPxVFIxGxxxGG are indicated by asterisks. Figure S2. Sequences analyses of GRXC2 orthologues. Alignment of GRXC2 sequences was performed with ClustalW software. The conserved putative sequence of the dithiol active motif CPF/YC and the glutathion fixation site, TVPxVFIxGxxxGG, are indicated by asterisks. Figure S3. (A) Expression of GRXC1 and GRXC2 genes in Arabidopsis. Semi‐quantitative RT‐PCR was performed using gene‐specific and reference gene (Act2) primers in different plant tissues R: roots, S: stems, L: leaves, B: buds, Fl: flowers, S: siliques, Se: seeds, P: in vitro plants, C: exponential phase cell suspension. (B) Subcellular localization of GRXC1 (I) and GRXC2 (II) by GFP fusion (GFP alone (III)). On the left, fluorescence. On the right, visible light of the construction. Figure S1. Sequence analyses of [CGYC] Grxs. Alignment of CGYC Grxs sequences was performed with ClustalW software. The conserved putative sequence of myristylation MG[SLTNA]xx[SGAN], dithiol active motif YCGYC and the glutathion fixation site TVPxVFIxGxxxGG are indicated by asterisks. Figure S2. Sequences analyses of GRXC2 orthologues. Alignment of GRXC2 sequences was performed with ClustalW software. The conserved putative sequence of the dithiol active motif CPF/YC and the glutathion fixation site, TVPxVFIxGxxxGG, are indicated by asterisks. Figure S3. (A) Expression of GRXC1 and GRXC2 genes in Arabidopsis. Semi‐quantitative RT‐PCR was performed using gene‐specific and reference gene (Act2) primers in different plant tissues R: roots, S: stems, L: leaves, B: buds, Fl: flowers, S: siliques, Se: seeds, P: in vitro plants, C: exponential phase cell suspension. (B) Subcellular localization of GRXC1 (I) and GRXC2 (II) by GFP fusion (GFP alone (III)). On the left, fluorescence. On the right, visible light of the construction. Figure S1. Sequence analyses of [CGYC] Grxs. Alignment of CGYC Grxs sequences was performed with ClustalW software. The conserved putative sequence of myristylation MG[SLTNA]xx[SGAN], dithiol active motif YCGYC and the glutathion fixation site TVPxVFIxGxxxGG are indicated by asterisks. Figure S2. Sequences analyses of GRXC2 orthologues. Alignment of GRXC2 sequences was performed with ClustalW software. The conserved putative sequence of the dithiol active motif CPF/YC and the glutathion fixation site, TVPxVFIxGxxxGG, are indicated by asterisks. Figure S3. (A) Expression of GRXC1 and GRXC2 genes in Arabidopsis. Semi‐quantitative RT‐PCR was performed using gene‐specific and reference gene (Act2) primers in different plant tissues R: roots, S: stems, L: leaves, B: buds, Fl: flowers, S: siliques, Se: seeds, P: in vitro plants, C: exponential phase cell suspension. (B) Subcellular localization of GRXC1 (I) and GRXC2 (II) by GFP fusion (GFP alone (III)). On the left, fluorescence. On the right, visible light of the construction.Supporting Info Item: Supporting info item - Supporting info item - Supporting info item - </note>
<identifier type="ISSN">0140-7791</identifier>
<identifier type="eISSN">1365-3040</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-3040</identifier>
<identifier type="PublisherID">PCE</identifier>
<part>
<date>2012</date>
<detail type="title">
<title>Special Issue on Redox Signaling</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>360</start>
<end>373</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080</identifier>
<identifier type="DOI">10.1111/j.1365-3040.2011.02355.x</identifier>
<identifier type="ArticleID">PCE2355</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001B53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C6BFC8E899511A09D4BC9AD4A0DEB5CD204E6080
   |texte=   A dicotyledon‐specific glutaredoxin GRXC1 family with dimer‐dependent redox regulation is functionally redundant with GRXC2
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024