Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.

Identifieur interne : 001119 ( Main/Exploration ); précédent : 001118; suivant : 001120

In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.

Auteurs : Fei Wang [République populaire de Chine] ; Ning Shi [République populaire de Chine] ; Rongfeng Jiang [République populaire de Chine] ; Fusuo Zhang [République populaire de Chine] ; Gu Feng [République populaire de Chine]

Source :

RBID : pubmed:26802172

Descripteurs français

English descriptors

Abstract

This study used a [(13)C]DNA stable isotope probing (SIP) technique to elucidate a direct pathway for the translocation of (13)C-labeled photoassimilate from maize plants to extraradical mycelium-associated phosphate-solubilizing bacteria (PSB) that mediate the mineralization and turnover of soil organic phosphorus (P) in the hyphosphere. Inoculation with PSB alone did not provide any benefit to maize plants but utilized the added phytate-P to their own advantage, while inoculation with Rhizophagus irregularis alone significantly promoted shoot biomass and P content compared with the control. However, compared with both sole inoculation treatments, combined inoculation with PSB and R. irregularis in the hyphosphere enhanced organic P mineralization and increased microbial biomass P in the soil. There was no extra benefit to plant P uptake but the hyphal growth of R. irregularis was reduced, suggesting that PSB benefited from the arbuscular mycorrhizal (AM) fungal mycelium and competed for soil P with the fungus. The combination of T-RFLP (terminal restriction fragment length polymorphism) analysis with a clone library revealed that one of the bacteria that actively assimilated carbon derived from pulse-labeled maize plants was Pseudomonas alcaligenes (Pseudomonadaceae) that was initially inoculated into the hyphosphere soil. These results provide the first in situ demonstration of the pathway underlying the carbon flux from plants to the AM mycelium-associated PSB, and the PSB assimilated the photosynthates exuded by the fungus and promoted mineralization and turnover of organic P in the soil.

DOI: 10.1093/jxb/erv561
PubMed: 26802172
PubMed Central: PMC4783358


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.</title>
<author>
<name sortKey="Wang, Fei" sort="Wang, Fei" uniqKey="Wang F" first="Fei" last="Wang">Fei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Ning" sort="Shi, Ning" uniqKey="Shi N" first="Ning" last="Shi">Ning Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Rongfeng" sort="Jiang, Rongfeng" uniqKey="Jiang R" first="Rongfeng" last="Jiang">Rongfeng Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Fusuo" sort="Zhang, Fusuo" uniqKey="Zhang F" first="Fusuo" last="Zhang">Fusuo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Gu" sort="Feng, Gu" uniqKey="Feng G" first="Gu" last="Feng">Gu Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China fenggu@cau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26802172</idno>
<idno type="pmid">26802172</idno>
<idno type="doi">10.1093/jxb/erv561</idno>
<idno type="pmc">PMC4783358</idno>
<idno type="wicri:Area/Main/Corpus">001201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001201</idno>
<idno type="wicri:Area/Main/Curation">001201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001201</idno>
<idno type="wicri:Area/Main/Exploration">001201</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.</title>
<author>
<name sortKey="Wang, Fei" sort="Wang, Fei" uniqKey="Wang F" first="Fei" last="Wang">Fei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Ning" sort="Shi, Ning" uniqKey="Shi N" first="Ning" last="Shi">Ning Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Rongfeng" sort="Jiang, Rongfeng" uniqKey="Jiang R" first="Rongfeng" last="Jiang">Rongfeng Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Fusuo" sort="Zhang, Fusuo" uniqKey="Zhang F" first="Fusuo" last="Zhang">Fusuo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Gu" sort="Feng, Gu" uniqKey="Feng G" first="Gu" last="Feng">Gu Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China fenggu@cau.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (drug effects)</term>
<term>Bacteria (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Carbohydrate Metabolism (drug effects)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hyphae (drug effects)</term>
<term>Hyphae (growth & development)</term>
<term>Isotope Labeling (methods)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphates (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Shoots (drug effects)</term>
<term>Plant Shoots (metabolism)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>RNA, Ribosomal (genetics)</term>
<term>Sodium Bicarbonate (pharmacology)</term>
<term>Soil (MeSH)</term>
<term>Solubility (MeSH)</term>
<term>Zea mays (drug effects)</term>
<term>Zea mays (metabolism)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique (génétique)</term>
<term>Bactéries (effets des médicaments et des substances chimiques)</term>
<term>Bactéries (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Hydrogénocarbonate de sodium (pharmacologie)</term>
<term>Hyphae (croissance et développement)</term>
<term>Hyphae (effets des médicaments et des substances chimiques)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Marquage isotopique (méthodes)</term>
<term>Mycorhizes (physiologie)</term>
<term>Métabolisme glucidique (effets des médicaments et des substances chimiques)</term>
<term>Phosphates (métabolisme)</term>
<term>Phosphore (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de restriction (MeSH)</term>
<term>Pousses de plante (effets des médicaments et des substances chimiques)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Sol (MeSH)</term>
<term>Solubilité (MeSH)</term>
<term>Zea mays (effets des médicaments et des substances chimiques)</term>
<term>Zea mays (microbiologie)</term>
<term>Zea mays (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Phosphates</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacteria</term>
<term>Carbohydrate Metabolism</term>
<term>Hyphae</term>
<term>Plant Shoots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bactéries</term>
<term>Hyphae</term>
<term>Métabolisme glucidique</term>
<term>Pousses de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Plant Shoots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Isotope Labeling</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Dioxyde de carbone</term>
<term>Phosphates</term>
<term>Phosphore</term>
<term>Pousses de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Marquage isotopique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Hydrogénocarbonate de sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Bicarbonate</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Carbon Isotopes</term>
<term>Hydrogen-Ion Concentration</term>
<term>Phylogeny</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Soil</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Isotopes du carbone</term>
<term>Phylogenèse</term>
<term>Polymorphisme de restriction</term>
<term>Sol</term>
<term>Solubilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study used a [(13)C]DNA stable isotope probing (SIP) technique to elucidate a direct pathway for the translocation of (13)C-labeled photoassimilate from maize plants to extraradical mycelium-associated phosphate-solubilizing bacteria (PSB) that mediate the mineralization and turnover of soil organic phosphorus (P) in the hyphosphere. Inoculation with PSB alone did not provide any benefit to maize plants but utilized the added phytate-P to their own advantage, while inoculation with Rhizophagus irregularis alone significantly promoted shoot biomass and P content compared with the control. However, compared with both sole inoculation treatments, combined inoculation with PSB and R. irregularis in the hyphosphere enhanced organic P mineralization and increased microbial biomass P in the soil. There was no extra benefit to plant P uptake but the hyphal growth of R. irregularis was reduced, suggesting that PSB benefited from the arbuscular mycorrhizal (AM) fungal mycelium and competed for soil P with the fungus. The combination of T-RFLP (terminal restriction fragment length polymorphism) analysis with a clone library revealed that one of the bacteria that actively assimilated carbon derived from pulse-labeled maize plants was Pseudomonas alcaligenes (Pseudomonadaceae) that was initially inoculated into the hyphosphere soil. These results provide the first in situ demonstration of the pathway underlying the carbon flux from plants to the AM mycelium-associated PSB, and the PSB assimilated the photosynthates exuded by the fungus and promoted mineralization and turnover of organic P in the soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26802172</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>67</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.</ArticleTitle>
<Pagination>
<MedlinePgn>1689-701</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erv561</ELocationID>
<Abstract>
<AbstractText>This study used a [(13)C]DNA stable isotope probing (SIP) technique to elucidate a direct pathway for the translocation of (13)C-labeled photoassimilate from maize plants to extraradical mycelium-associated phosphate-solubilizing bacteria (PSB) that mediate the mineralization and turnover of soil organic phosphorus (P) in the hyphosphere. Inoculation with PSB alone did not provide any benefit to maize plants but utilized the added phytate-P to their own advantage, while inoculation with Rhizophagus irregularis alone significantly promoted shoot biomass and P content compared with the control. However, compared with both sole inoculation treatments, combined inoculation with PSB and R. irregularis in the hyphosphere enhanced organic P mineralization and increased microbial biomass P in the soil. There was no extra benefit to plant P uptake but the hyphal growth of R. irregularis was reduced, suggesting that PSB benefited from the arbuscular mycorrhizal (AM) fungal mycelium and competed for soil P with the fungus. The combination of T-RFLP (terminal restriction fragment length polymorphism) analysis with a clone library revealed that one of the bacteria that actively assimilated carbon derived from pulse-labeled maize plants was Pseudomonas alcaligenes (Pseudomonadaceae) that was initially inoculated into the hyphosphere soil. These results provide the first in situ demonstration of the pathway underlying the carbon flux from plants to the AM mycelium-associated PSB, and the PSB assimilated the photosynthates exuded by the fungus and promoted mineralization and turnover of organic P in the soil.</AbstractText>
<CopyrightInformation>© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Rongfeng</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Fusuo</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Gu</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China fenggu@cau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8MDF5V39QO</RegistryNumber>
<NameOfSubstance UI="D017693">Sodium Bicarbonate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017693" MajorTopicYN="N">Sodium Bicarbonate</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">13CO2 pulse labeling</Keyword>
<Keyword MajorTopicYN="N">AM fungus</Keyword>
<Keyword MajorTopicYN="N">hyphosphere</Keyword>
<Keyword MajorTopicYN="N">maize</Keyword>
<Keyword MajorTopicYN="N">organic phosphate</Keyword>
<Keyword MajorTopicYN="N">phosphate-solubilizing bacteria (PSB).</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26802172</ArticleId>
<ArticleId IdType="pii">erv561</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erv561</ArticleId>
<ArticleId IdType="pmc">PMC4783358</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Jun;76(3):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21303398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jun;4(6):752-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 16;300(5622):1138-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Jan;8(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1088-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):449-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 16;4:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Aug;61(2):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 15;5:548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1537-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21606316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Mar;17(3):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1412693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Aug;1(4):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Jan;6(1):60-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14686942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 8;450(7167):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Aug 1;41(2):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Apr;80(1):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Sep;8(9):407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Jan;6(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14686943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Fei" sort="Wang, Fei" uniqKey="Wang F" first="Fei" last="Wang">Fei Wang</name>
</noRegion>
<name sortKey="Feng, Gu" sort="Feng, Gu" uniqKey="Feng G" first="Gu" last="Feng">Gu Feng</name>
<name sortKey="Jiang, Rongfeng" sort="Jiang, Rongfeng" uniqKey="Jiang R" first="Rongfeng" last="Jiang">Rongfeng Jiang</name>
<name sortKey="Shi, Ning" sort="Shi, Ning" uniqKey="Shi N" first="Ning" last="Shi">Ning Shi</name>
<name sortKey="Zhang, Fusuo" sort="Zhang, Fusuo" uniqKey="Zhang F" first="Fusuo" last="Zhang">Fusuo Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26802172
   |texte=   In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26802172" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020