Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.

Identifieur interne : 001528 ( Main/Exploration ); précédent : 001527; suivant : 001529

Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.

Auteurs : Louisa Robinson Boyer [Royaume-Uni] ; Philip Brain ; Xiang-Ming Xu ; Peter Jeffries

Source :

RBID : pubmed:25186649

Descripteurs français

English descriptors

Abstract

The effect of inoculation with two arbuscular mycorrhizal fungi (AMF) on growth and drought tolerance of cultivated strawberry (Fragaria × ananassa) was studied. Three treatments (a single treatment either of Funneliformis mosseae BEG25, Funneliformis geosporus BEG11 or a 50:50 mixed inoculation treatment of both species) were compared to uninoculated plants. Species-specific primers for qPCR quantification of F. geosporus and F. mosseae DNA were developed to quantify the relative abundance of each fungus in roots of strawberry under different conditions of water stress. Co-occupation of the same root by both species was shown to commonly occur, but their relative abundance varied with water stress (reduced irrigation of up to 40%). Greater root colonisation was observed microscopically under water stress, but this increased colonisation was often accompanied with decreased amounts of fungal DNA in the root. F. mosseae tended to become more abundant under water stress relative to F. geosporus. There was significant correlation in the fungal colonisation measurements from the microscopic and qPCR methods under some conditions, but the nature of this relationship varied greatly with AMF inoculum and abiotic conditions. Single-species inoculation treatments gave similar benefits to the host to the mixed inoculation treatment regardless of irrigation regime; here, amount of colonisation was of greater importance than functional diversity. The addition of AMF inocula to plants subjected to reduced irrigation restored plant growth to the same or higher values as the non-mycorrhizal, fully-watered plants. The water use efficiency of plants was greater under the regulated deficit irrigation (RDI) regime and in AMF-inoculated plants, but there were no significant differences between plants inoculated with the single or combined inoculum. This study demonstrated that the increase in plant growth was directly influenced by an increase in root colonisation by AMF when individual plants were examined.

DOI: 10.1007/s00572-014-0603-6
PubMed: 25186649


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.</title>
<author>
<name sortKey="Boyer, Louisa Robinson" sort="Boyer, Louisa Robinson" uniqKey="Boyer L" first="Louisa Robinson" last="Boyer">Louisa Robinson Boyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK, louisa.robinson-boyer@emr.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK</wicri:regionArea>
<wicri:noRegion>UK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brain, Philip" sort="Brain, Philip" uniqKey="Brain P" first="Philip" last="Brain">Philip Brain</name>
</author>
<author>
<name sortKey="Xu, Xiang Ming" sort="Xu, Xiang Ming" uniqKey="Xu X" first="Xiang-Ming" last="Xu">Xiang-Ming Xu</name>
</author>
<author>
<name sortKey="Jeffries, Peter" sort="Jeffries, Peter" uniqKey="Jeffries P" first="Peter" last="Jeffries">Peter Jeffries</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25186649</idno>
<idno type="pmid">25186649</idno>
<idno type="doi">10.1007/s00572-014-0603-6</idno>
<idno type="wicri:Area/Main/Corpus">001739</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001739</idno>
<idno type="wicri:Area/Main/Curation">001739</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001739</idno>
<idno type="wicri:Area/Main/Exploration">001739</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.</title>
<author>
<name sortKey="Boyer, Louisa Robinson" sort="Boyer, Louisa Robinson" uniqKey="Boyer L" first="Louisa Robinson" last="Boyer">Louisa Robinson Boyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK, louisa.robinson-boyer@emr.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK</wicri:regionArea>
<wicri:noRegion>UK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brain, Philip" sort="Brain, Philip" uniqKey="Brain P" first="Philip" last="Brain">Philip Brain</name>
</author>
<author>
<name sortKey="Xu, Xiang Ming" sort="Xu, Xiang Ming" uniqKey="Xu X" first="Xiang-Ming" last="Xu">Xiang-Ming Xu</name>
</author>
<author>
<name sortKey="Jeffries, Peter" sort="Jeffries, Peter" uniqKey="Jeffries P" first="Peter" last="Jeffries">Peter Jeffries</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agricultural Irrigation (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Fragaria (growth & development)</term>
<term>Fragaria (microbiology)</term>
<term>Fragaria (physiology)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (isolation & purification)</term>
<term>Glomeromycota (physiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biodiversité (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Fragaria (croissance et développement)</term>
<term>Fragaria (microbiologie)</term>
<term>Fragaria (physiologie)</term>
<term>Glomeromycota (génétique)</term>
<term>Glomeromycota (isolement et purification)</term>
<term>Glomeromycota (physiologie)</term>
<term>Irrigation agricole (MeSH)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (isolement et purification)</term>
<term>Mycorhizes (physiologie)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Fragaria</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fragaria</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fragaria</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fragaria</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fragaria</term>
<term>Glomeromycota</term>
<term>Mycorhizes</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fragaria</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agricultural Irrigation</term>
<term>Biodiversity</term>
<term>Droughts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biodiversité</term>
<term>Irrigation agricole</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of inoculation with two arbuscular mycorrhizal fungi (AMF) on growth and drought tolerance of cultivated strawberry (Fragaria × ananassa) was studied. Three treatments (a single treatment either of Funneliformis mosseae BEG25, Funneliformis geosporus BEG11 or a 50:50 mixed inoculation treatment of both species) were compared to uninoculated plants. Species-specific primers for qPCR quantification of F. geosporus and F. mosseae DNA were developed to quantify the relative abundance of each fungus in roots of strawberry under different conditions of water stress. Co-occupation of the same root by both species was shown to commonly occur, but their relative abundance varied with water stress (reduced irrigation of up to 40%). Greater root colonisation was observed microscopically under water stress, but this increased colonisation was often accompanied with decreased amounts of fungal DNA in the root. F. mosseae tended to become more abundant under water stress relative to F. geosporus. There was significant correlation in the fungal colonisation measurements from the microscopic and qPCR methods under some conditions, but the nature of this relationship varied greatly with AMF inoculum and abiotic conditions. Single-species inoculation treatments gave similar benefits to the host to the mixed inoculation treatment regardless of irrigation regime; here, amount of colonisation was of greater importance than functional diversity. The addition of AMF inocula to plants subjected to reduced irrigation restored plant growth to the same or higher values as the non-mycorrhizal, fully-watered plants. The water use efficiency of plants was greater under the regulated deficit irrigation (RDI) regime and in AMF-inoculated plants, but there were no significant differences between plants inoculated with the single or combined inoculum. This study demonstrated that the increase in plant growth was directly influenced by an increase in root colonisation by AMF when individual plants were examined.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25186649</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.</ArticleTitle>
<Pagination>
<MedlinePgn>215-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-014-0603-6</ELocationID>
<Abstract>
<AbstractText>The effect of inoculation with two arbuscular mycorrhizal fungi (AMF) on growth and drought tolerance of cultivated strawberry (Fragaria × ananassa) was studied. Three treatments (a single treatment either of Funneliformis mosseae BEG25, Funneliformis geosporus BEG11 or a 50:50 mixed inoculation treatment of both species) were compared to uninoculated plants. Species-specific primers for qPCR quantification of F. geosporus and F. mosseae DNA were developed to quantify the relative abundance of each fungus in roots of strawberry under different conditions of water stress. Co-occupation of the same root by both species was shown to commonly occur, but their relative abundance varied with water stress (reduced irrigation of up to 40%). Greater root colonisation was observed microscopically under water stress, but this increased colonisation was often accompanied with decreased amounts of fungal DNA in the root. F. mosseae tended to become more abundant under water stress relative to F. geosporus. There was significant correlation in the fungal colonisation measurements from the microscopic and qPCR methods under some conditions, but the nature of this relationship varied greatly with AMF inoculum and abiotic conditions. Single-species inoculation treatments gave similar benefits to the host to the mixed inoculation treatment regardless of irrigation regime; here, amount of colonisation was of greater importance than functional diversity. The addition of AMF inocula to plants subjected to reduced irrigation restored plant growth to the same or higher values as the non-mycorrhizal, fully-watered plants. The water use efficiency of plants was greater under the regulated deficit irrigation (RDI) regime and in AMF-inoculated plants, but there were no significant differences between plants inoculated with the single or combined inoculum. This study demonstrated that the increase in plant growth was directly influenced by an increase in root colonisation by AMF when individual plants were examined.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boyer</LastName>
<ForeName>Louisa Robinson</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK, louisa.robinson-boyer@emr.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brain</LastName>
<ForeName>Philip</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xiang-Ming</ForeName>
<Initials>XM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jeffries</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057914" MajorTopicYN="N">Agricultural Irrigation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031985" MajorTopicYN="N">Fragaria</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25186649</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-014-0603-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Sci Food Agric. 2010 Aug 30;90(11):1774-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):197-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1950 Jun;6(2):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15420239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(2):379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Oct;14(10):1001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21790936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):612-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16059721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Apr;22(3):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21710352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1998 Jul;7(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Oct;79(20):6507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Nov;7(11):2137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Dec;161(12):1379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15658808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Jul;62(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21373814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Feb;9(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Apr;8(4):143-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jun;72(6):4192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22606282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jan;23(1):45-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22692547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Jun;92(6):1303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21797158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 May;78(10):3630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22407684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Aug;19(6):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):581-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Mar;12(2):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Jul;22(5):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21894519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):189-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Feb;24(2):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23917611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brain, Philip" sort="Brain, Philip" uniqKey="Brain P" first="Philip" last="Brain">Philip Brain</name>
<name sortKey="Jeffries, Peter" sort="Jeffries, Peter" uniqKey="Jeffries P" first="Peter" last="Jeffries">Peter Jeffries</name>
<name sortKey="Xu, Xiang Ming" sort="Xu, Xiang Ming" uniqKey="Xu X" first="Xiang-Ming" last="Xu">Xiang-Ming Xu</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Boyer, Louisa Robinson" sort="Boyer, Louisa Robinson" uniqKey="Boyer L" first="Louisa Robinson" last="Boyer">Louisa Robinson Boyer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001528 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001528 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25186649
   |texte=   Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25186649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020