Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.

Identifieur interne : 001A47 ( Main/Exploration ); précédent : 001A46; suivant : 001A48

Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.

Auteurs : Rodica Pena [Allemagne] ; Andrea Polle [Allemagne]

Source :

RBID : pubmed:24030593

Descripteurs français

English descriptors

Abstract

Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via (15)N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific (15)N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of (15)N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific (15)N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities.

DOI: 10.1038/ismej.2013.158
PubMed: 24030593
PubMed Central: PMC3906819


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.</title>
<author>
<name sortKey="Pena, Rodica" sort="Pena, Rodica" uniqKey="Pena R" first="Rodica" last="Pena">Rodica Pena</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24030593</idno>
<idno type="pmid">24030593</idno>
<idno type="doi">10.1038/ismej.2013.158</idno>
<idno type="pmc">PMC3906819</idno>
<idno type="wicri:Area/Main/Corpus">001B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B05</idno>
<idno type="wicri:Area/Main/Curation">001B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B05</idno>
<idno type="wicri:Area/Main/Exploration">001B05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.</title>
<author>
<name sortKey="Pena, Rodica" sort="Pena, Rodica" uniqKey="Pena R" first="Rodica" last="Pena">Rodica Pena</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
<orgName type="university">Université de Göttingen</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The ISME journal</title>
<idno type="eISSN">1751-7370</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Fagus (chemistry)</term>
<term>Fagus (metabolism)</term>
<term>Fagus (microbiology)</term>
<term>Fungi (classification)</term>
<term>Fungi (metabolism)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (analysis)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Isotopes (analysis)</term>
<term>Plant Roots (microbiology)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse en composantes principales (MeSH)</term>
<term>Azote (analyse)</term>
<term>Azote (métabolisme)</term>
<term>Biodiversité (MeSH)</term>
<term>Champignons (classification)</term>
<term>Champignons (métabolisme)</term>
<term>Fagus (composition chimique)</term>
<term>Fagus (microbiologie)</term>
<term>Fagus (métabolisme)</term>
<term>Isotopes de l'azote (analyse)</term>
<term>Mycorhizes (classification)</term>
<term>Mycorhizes (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrogen</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Azote</term>
<term>Isotopes de l'azote</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Fagus</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Champignons</term>
<term>Fagus</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fagus</term>
<term>Fungi</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fagus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fagus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Champignons</term>
<term>Fagus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Principal Component Analysis</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Biodiversité</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via (15)N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific (15)N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of (15)N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific (15)N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24030593</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1751-7370</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>The ISME journal</Title>
<ISOAbbreviation>ISME J</ISOAbbreviation>
</Journal>
<ArticleTitle>Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.</ArticleTitle>
<Pagination>
<MedlinePgn>321-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ismej.2013.158</ELocationID>
<Abstract>
<AbstractText>Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via (15)N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific (15)N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of (15)N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific (15)N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pena</LastName>
<ForeName>Rodica</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>ISME J</MedlineTA>
<NlmUniqueID>101301086</NlmUniqueID>
<ISSNLinking>1751-7362</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24030593</ArticleId>
<ArticleId IdType="pii">ismej2013158</ArticleId>
<ArticleId IdType="doi">10.1038/ismej.2013.158</ArticleId>
<ArticleId IdType="pmc">PMC3906819</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2008 Feb;89(2):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18409427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Jul;140(2):234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 May-Jun;98(3):374-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Aug;161(1):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19415337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Mar;13(3):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Sep;21(17):4160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22568722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):832-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22758212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Mar;76(6):1831-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Oct;54(3):567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2010 Jan;54(1):23-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19629535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2001 Jun;36(1):73-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11377775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jul;17(5):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):71-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21140277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1902-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22320387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Sep;17(6):547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2013 May;88(2):349-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23217173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):992-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Jul;18(5):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18437431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):531-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jan;15 Suppl 1:230-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22686410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(2):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23510186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jun;15(4):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
<orgName>
<li>Université de Göttingen</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Pena, Rodica" sort="Pena, Rodica" uniqKey="Pena R" first="Rodica" last="Pena">Rodica Pena</name>
</region>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24030593
   |texte=   Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24030593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020