Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.

Identifieur interne : 001F83 ( Main/Exploration ); précédent : 001F82; suivant : 001F84

Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.

Auteurs : Rafael Jorge Le N Morcillo [Espagne] ; Juan A. Ocampo ; José M. García Garrido

Source :

RBID : pubmed:23073021

Descripteurs français

English descriptors

Abstract

The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants.

DOI: 10.4161/psb.22098
PubMed: 23073021
PubMed Central: PMC3578897


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.</title>
<author>
<name sortKey="Le N Morcillo, Rafael Jorge" sort="Le N Morcillo, Rafael Jorge" uniqKey="Le N Morcillo R" first="Rafael Jorge" last="Le N Morcillo">Rafael Jorge Le N Morcillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ocampo, Juan A" sort="Ocampo, Juan A" uniqKey="Ocampo J" first="Juan A" last="Ocampo">Juan A. Ocampo</name>
</author>
<author>
<name sortKey="Garcia Garrido, Jose M" sort="Garcia Garrido, Jose M" uniqKey="Garcia Garrido J" first="José M" last="García Garrido">José M. García Garrido</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23073021</idno>
<idno type="pmid">23073021</idno>
<idno type="doi">10.4161/psb.22098</idno>
<idno type="pmc">PMC3578897</idno>
<idno type="wicri:Area/Main/Corpus">001E26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E26</idno>
<idno type="wicri:Area/Main/Curation">001E26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E26</idno>
<idno type="wicri:Area/Main/Exploration">001E26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.</title>
<author>
<name sortKey="Le N Morcillo, Rafael Jorge" sort="Le N Morcillo, Rafael Jorge" uniqKey="Le N Morcillo R" first="Rafael Jorge" last="Le N Morcillo">Rafael Jorge Le N Morcillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ocampo, Juan A" sort="Ocampo, Juan A" uniqKey="Ocampo J" first="Juan A" last="Ocampo">Juan A. Ocampo</name>
</author>
<author>
<name sortKey="Garcia Garrido, Jose M" sort="Garcia Garrido, Jose M" uniqKey="Garcia Garrido J" first="José M" last="García Garrido">José M. García Garrido</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclopentanes (metabolism)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oxylipins (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cyclopentanes (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Oxylipines (métabolisme)</term>
<term>Plantes (microbiologie)</term>
<term>Plantes (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cyclopentanes</term>
<term>Oxylipines</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Mycorrhizae</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23073021</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.</ArticleTitle>
<Pagination>
<MedlinePgn>1584-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.22098</ELocationID>
<Abstract>
<AbstractText>The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>León Morcillo</LastName>
<ForeName>Rafael Jorge</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Departament of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ocampo</LastName>
<ForeName>Juan A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>García Garrido</LastName>
<ForeName>José M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">oxylipins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23073021</ArticleId>
<ArticleId IdType="pii">22098</ArticleId>
<ArticleId IdType="doi">10.4161/psb.22098</ArticleId>
<ArticleId IdType="pmc">PMC3578897</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):199-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Apr;66(7):781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2589-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 May;6(5):751-759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 May 15;167(8):606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):831-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):126-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14688297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):46051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1646-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1902-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Sep;29(9):1955-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14584670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Jun;2(3):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10375568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:355-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Oct;24(1):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1268-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jan;21(1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Sep;31(9):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 May 15;580(11):2540-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jun;47(6):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Jun;6(6):268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11378469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1589-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22459758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):372-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 May;23(5):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 1998 May;37(1):33-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9764311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jul;22(7):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Mar;13(3):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):61-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Garcia Garrido, Jose M" sort="Garcia Garrido, Jose M" uniqKey="Garcia Garrido J" first="José M" last="García Garrido">José M. García Garrido</name>
<name sortKey="Ocampo, Juan A" sort="Ocampo, Juan A" uniqKey="Ocampo J" first="Juan A" last="Ocampo">Juan A. Ocampo</name>
</noCountry>
<country name="Espagne">
<noRegion>
<name sortKey="Le N Morcillo, Rafael Jorge" sort="Le N Morcillo, Rafael Jorge" uniqKey="Le N Morcillo R" first="Rafael Jorge" last="Le N Morcillo">Rafael Jorge Le N Morcillo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23073021
   |texte=   Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23073021" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020