Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Major transitions in the evolution of early land plants: a bryological perspective.

Identifieur interne : 002033 ( Main/Exploration ); précédent : 002032; suivant : 002034

Major transitions in the evolution of early land plants: a bryological perspective.

Auteurs : Roberto Ligrone [Italie] ; Jeffrey G. Duckett ; Karen S. Renzaglia

Source :

RBID : pubmed:22356739

Descripteurs français

English descriptors

Abstract

Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.

DOI: 10.1093/aob/mcs017
PubMed: 22356739
PubMed Central: PMC3310499


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Major transitions in the evolution of early land plants: a bryological perspective.</title>
<author>
<name sortKey="Ligrone, Roberto" sort="Ligrone, Roberto" uniqKey="Ligrone R" first="Roberto" last="Ligrone">Roberto Ligrone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy. roberto.ligrone@unina2.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta</wicri:regionArea>
<wicri:noRegion>Caserta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duckett, Jeffrey G" sort="Duckett, Jeffrey G" uniqKey="Duckett J" first="Jeffrey G" last="Duckett">Jeffrey G. Duckett</name>
</author>
<author>
<name sortKey="Renzaglia, Karen S" sort="Renzaglia, Karen S" uniqKey="Renzaglia K" first="Karen S" last="Renzaglia">Karen S. Renzaglia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22356739</idno>
<idno type="pmid">22356739</idno>
<idno type="doi">10.1093/aob/mcs017</idno>
<idno type="pmc">PMC3310499</idno>
<idno type="wicri:Area/Main/Corpus">002061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002061</idno>
<idno type="wicri:Area/Main/Curation">002061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002061</idno>
<idno type="wicri:Area/Main/Exploration">002061</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Major transitions in the evolution of early land plants: a bryological perspective.</title>
<author>
<name sortKey="Ligrone, Roberto" sort="Ligrone, Roberto" uniqKey="Ligrone R" first="Roberto" last="Ligrone">Roberto Ligrone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy. roberto.ligrone@unina2.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta</wicri:regionArea>
<wicri:noRegion>Caserta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duckett, Jeffrey G" sort="Duckett, Jeffrey G" uniqKey="Duckett J" first="Jeffrey G" last="Duckett">Jeffrey G. Duckett</name>
</author>
<author>
<name sortKey="Renzaglia, Karen S" sort="Renzaglia, Karen S" uniqKey="Renzaglia K" first="Karen S" last="Renzaglia">Karen S. Renzaglia</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthocerotophyta (anatomy & histology)</term>
<term>Anthocerotophyta (genetics)</term>
<term>Anthocerotophyta (growth & development)</term>
<term>Biological Evolution (MeSH)</term>
<term>Bryophyta (anatomy & histology)</term>
<term>Bryophyta (genetics)</term>
<term>Bryophyta (growth & development)</term>
<term>Embryophyta (anatomy & histology)</term>
<term>Embryophyta (genetics)</term>
<term>Embryophyta (growth & development)</term>
<term>Embryophyta (physiology)</term>
<term>Ferns (anatomy & histology)</term>
<term>Ferns (genetics)</term>
<term>Ferns (growth & development)</term>
<term>Fungi (physiology)</term>
<term>Germ Cells, Plant (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Stomata (anatomy & histology)</term>
<term>Plant Stomata (metabolism)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anthocerotophyta (anatomie et histologie)</term>
<term>Anthocerotophyta (croissance et développement)</term>
<term>Anthocerotophyta (génétique)</term>
<term>Bryophyta (anatomie et histologie)</term>
<term>Bryophyta (croissance et développement)</term>
<term>Bryophyta (génétique)</term>
<term>Cellules germinales de plante (croissance et développement)</term>
<term>Champignons (physiologie)</term>
<term>Embryophyta (anatomie et histologie)</term>
<term>Embryophyta (croissance et développement)</term>
<term>Embryophyta (génétique)</term>
<term>Embryophyta (physiologie)</term>
<term>Fougères (anatomie et histologie)</term>
<term>Fougères (croissance et développement)</term>
<term>Fougères (génétique)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Stomates de plante (anatomie et histologie)</term>
<term>Stomates de plante (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Transpiration des plantes (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Fougères</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Ferns</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Cellules germinales de plante</term>
<term>Embryophyta</term>
<term>Fougères</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Ferns</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Ferns</term>
<term>Germ Cells, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Anthocerotophyta</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Fougères</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
<term>Embryophyta</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Embryophyta</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Phylogeny</term>
<term>Plant Transpiration</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Symbiose</term>
<term>Transpiration des plantes</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22356739</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>109</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Major transitions in the evolution of early land plants: a bryological perspective.</ArticleTitle>
<Pagination>
<MedlinePgn>851-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcs017</ELocationID>
<Abstract>
<AbstractText>Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ligrone</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy. roberto.ligrone@unina2.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duckett</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renzaglia</LastName>
<ForeName>Karen S</ForeName>
<Initials>KS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D049936" MajorTopicYN="N">Anthocerotophyta</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044002" MajorTopicYN="N">Bryophyta</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019669" MajorTopicYN="N">Embryophyta</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029624" MajorTopicYN="N">Ferns</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055993" MajorTopicYN="N">Germ Cells, Plant</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22356739</ArticleId>
<ArticleId IdType="pii">mcs017</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcs017</ArticleId>
<ArticleId IdType="pmc">PMC3310499</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2010 Dec 21;20(24):2217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Jun;14(3):340-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Mar;134(5):881-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2005 Nov;45(5):685-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Mar;98(3):352-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Nov;88(11):1945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Genes Evol. 2004 Mar;214(3):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14986133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):795-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jun 21;21(12):1030-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2011;2011:plr028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2005 Jan-Feb;7(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Jul;87(3):577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2010 May;70(5):506-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19552695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Aug;183(3):839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):717-31; discussion 731-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Jan;28(1):803-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Mar;52(Spec Issue):381-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11326045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2011 Jan;13(1):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Dec;26(12):2039-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Nov;94(11):1756-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Oct 1;400(1-2):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17614216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 May;98(5):839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):769-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1477-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 4;331(6017):582-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21163966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):241-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):757-66; discussion 766-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):921-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19702775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):545-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 4;304(5676):1494-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jun 21;21(12):1025-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2011 Aug 23;7(4):574-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21389014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(3):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Oct;84(10):1337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):875-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21418225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):815-30; discussion 830-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2005 Nov;45(5):788-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):733-54; discussion 754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Jun;93(6):797-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):231-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2008 Sep-Oct;10(5):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Feb;13(1):12-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19942473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1982 Aug;155(3):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):282-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13679913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Jun;107(8):1279-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Oct;90(10):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1978 Aug;32:325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">701399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2008 Mar-Apr;10(2):176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):27-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19863728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Jan;15(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22017636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1557-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):504-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Feb;4(1):33-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15699346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Aug;102(2):227-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 May;27(5):1201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Duckett, Jeffrey G" sort="Duckett, Jeffrey G" uniqKey="Duckett J" first="Jeffrey G" last="Duckett">Jeffrey G. Duckett</name>
<name sortKey="Renzaglia, Karen S" sort="Renzaglia, Karen S" uniqKey="Renzaglia K" first="Karen S" last="Renzaglia">Karen S. Renzaglia</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Ligrone, Roberto" sort="Ligrone, Roberto" uniqKey="Ligrone R" first="Roberto" last="Ligrone">Roberto Ligrone</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002033 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002033 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22356739
   |texte=   Major transitions in the evolution of early land plants: a bryological perspective.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22356739" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020