Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?

Identifieur interne : 002362 ( Main/Exploration ); précédent : 002361; suivant : 002363

Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?

Auteurs : Christian Staehelin [République populaire de Chine] ; Zhi-Ping Xie ; Antonio Illana ; Horst Vierheilig

Source :

RBID : pubmed:21455020

Descripteurs français

English descriptors

Abstract

Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of "systemic acquired resistance" in plant-pathogen interactions.

DOI: 10.4161/psb.6.3.13881
PubMed: 21455020
PubMed Central: PMC3142418


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?</title>
<author>
<name sortKey="Staehelin, Christian" sort="Staehelin, Christian" uniqKey="Staehelin C" first="Christian" last="Staehelin">Christian Staehelin</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University (East Campus), Guangzhou, China. cst@mail.sysu.edu.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University (East Campus), Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhi Ping" sort="Xie, Zhi Ping" uniqKey="Xie Z" first="Zhi-Ping" last="Xie">Zhi-Ping Xie</name>
</author>
<author>
<name sortKey="Illana, Antonio" sort="Illana, Antonio" uniqKey="Illana A" first="Antonio" last="Illana">Antonio Illana</name>
</author>
<author>
<name sortKey="Vierheilig, Horst" sort="Vierheilig, Horst" uniqKey="Vierheilig H" first="Horst" last="Vierheilig">Horst Vierheilig</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21455020</idno>
<idno type="pmid">21455020</idno>
<idno type="pmc">PMC3142418</idno>
<idno type="doi">10.4161/psb.6.3.13881</idno>
<idno type="wicri:Area/Main/Corpus">002364</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002364</idno>
<idno type="wicri:Area/Main/Curation">002364</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002364</idno>
<idno type="wicri:Area/Main/Exploration">002364</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?</title>
<author>
<name sortKey="Staehelin, Christian" sort="Staehelin, Christian" uniqKey="Staehelin C" first="Christian" last="Staehelin">Christian Staehelin</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University (East Campus), Guangzhou, China. cst@mail.sysu.edu.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University (East Campus), Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhi Ping" sort="Xie, Zhi Ping" uniqKey="Xie Z" first="Zhi-Ping" last="Xie">Zhi-Ping Xie</name>
</author>
<author>
<name sortKey="Illana, Antonio" sort="Illana, Antonio" uniqKey="Illana A" first="Antonio" last="Illana">Antonio Illana</name>
</author>
<author>
<name sortKey="Vierheilig, Horst" sort="Vierheilig, Horst" uniqKey="Vierheilig H" first="Horst" last="Vierheilig">Horst Vierheilig</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (genetics)</term>
<term>Fabaceae (metabolism)</term>
<term>Fabaceae (microbiology)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Symbiosis (genetics)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fabaceae (génétique)</term>
<term>Fabaceae (microbiologie)</term>
<term>Fabaceae (métabolisme)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Symbiose (génétique)</term>
<term>Symbiose (physiologie)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fabaceae</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Mycorrhizae</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of "systemic acquired resistance" in plant-pathogen interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21455020</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?</ArticleTitle>
<Pagination>
<MedlinePgn>372-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of "systemic acquired resistance" in plant-pathogen interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Staehelin</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University (East Campus), Guangzhou, China. cst@mail.sysu.edu.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Zhi-Ping</ForeName>
<Initials>ZP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Illana</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vierheilig</LastName>
<ForeName>Horst</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21455020</ArticleId>
<ArticleId IdType="pii">13881</ArticleId>
<ArticleId IdType="pmc">PMC3142418</ArticleId>
<ArticleId IdType="doi">10.4161/psb.6.3.13881</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2008;8:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Aug;19(6):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19347373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Jan;52(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Jun 1;166(9):955-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19403196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 3;299(5603):109-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12411574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Apr;5(4):403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Feb;10(1):98-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Mar;161(3):339-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Aug;43(8):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Jun;211(1):98-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10923709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Sep;4(9):818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:413-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Oct;21(10):1337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Nov;44(3):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 18;319(5861):294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2009 Jan;122(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Aug;58(6):809-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16240175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1991;45:345-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1741618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2009 Feb 28;27(2):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19277493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Jan;124(1):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20428922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 28;420(6914):426-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12442172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12397181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2010 Apr;240(1-4):33-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20016993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 28;420(6914):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12442170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Jun;13(3):167-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2010 Nov;179(5):472-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Apr;15(4):341-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12026172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):222-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 12;283(37):25381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 May;54(386):1481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12709494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jan;47(1):176-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Aug;5(8):578-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Nov;44(11):1176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Nov;140(3):238-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2007 Oct 31;24(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17978570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Mar;65(5):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(1):97-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Sep;19(9):988-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16941903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):998-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jan;50(1):67-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Mar;22(3):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Feb;11(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
</region>
<settlement>
<li>Jiangmen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Illana, Antonio" sort="Illana, Antonio" uniqKey="Illana A" first="Antonio" last="Illana">Antonio Illana</name>
<name sortKey="Vierheilig, Horst" sort="Vierheilig, Horst" uniqKey="Vierheilig H" first="Horst" last="Vierheilig">Horst Vierheilig</name>
<name sortKey="Xie, Zhi Ping" sort="Xie, Zhi Ping" uniqKey="Xie Z" first="Zhi-Ping" last="Xie">Zhi-Ping Xie</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Guangdong">
<name sortKey="Staehelin, Christian" sort="Staehelin, Christian" uniqKey="Staehelin C" first="Christian" last="Staehelin">Christian Staehelin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002362 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002362 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21455020
   |texte=   Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21455020" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020