Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.

Identifieur interne : 003155 ( Main/Exploration ); précédent : 003154; suivant : 003156

Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.

Auteurs : Hongyan Zhu [États-Unis] ; Brendan K. Riely ; Nicole J. Burns ; Jean-Michel Ané

Source :

RBID : pubmed:16452143

Descripteurs français

English descriptors

Abstract

Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.

DOI: 10.1534/genetics.105.051185
PubMed: 16452143
PubMed Central: PMC1456400


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.</title>
<author>
<name sortKey="Zhu, Hongyan" sort="Zhu, Hongyan" uniqKey="Zhu H" first="Hongyan" last="Zhu">Hongyan Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546, USA. hzhu4@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546</wicri:regionArea>
<wicri:noRegion>Lexington 40546</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riely, Brendan K" sort="Riely, Brendan K" uniqKey="Riely B" first="Brendan K" last="Riely">Brendan K. Riely</name>
</author>
<author>
<name sortKey="Burns, Nicole J" sort="Burns, Nicole J" uniqKey="Burns N" first="Nicole J" last="Burns">Nicole J. Burns</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16452143</idno>
<idno type="pmid">16452143</idno>
<idno type="doi">10.1534/genetics.105.051185</idno>
<idno type="pmc">PMC1456400</idno>
<idno type="wicri:Area/Main/Corpus">003350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003350</idno>
<idno type="wicri:Area/Main/Curation">003350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003350</idno>
<idno type="wicri:Area/Main/Exploration">003350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.</title>
<author>
<name sortKey="Zhu, Hongyan" sort="Zhu, Hongyan" uniqKey="Zhu H" first="Hongyan" last="Zhu">Hongyan Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546, USA. hzhu4@uky.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546</wicri:regionArea>
<wicri:noRegion>Lexington 40546</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riely, Brendan K" sort="Riely, Brendan K" uniqKey="Riely B" first="Brendan K" last="Riely">Brendan K. Riely</name>
</author>
<author>
<name sortKey="Burns, Nicole J" sort="Burns, Nicole J" uniqKey="Burns N" first="Nicole J" last="Burns">Nicole J. Burns</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Complementary (metabolism)</term>
<term>Fabaceae (genetics)</term>
<term>Fabaceae (microbiology)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (métabolisme)</term>
<term>Fabaceae (génétique)</term>
<term>Fabaceae (microbiologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Fungal</term>
<term>Genes, Plant</term>
<term>Models, Biological</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Gènes fongiques</term>
<term>Modèles biologiques</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Symbiose</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16452143</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0016-6731</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>172</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.</ArticleTitle>
<Pagination>
<MedlinePgn>2491-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Hongyan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546, USA. hzhu4@uky.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riely</LastName>
<ForeName>Brendan K</ForeName>
<Initials>BK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burns</LastName>
<ForeName>Nicole J</ForeName>
<Initials>NJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ané</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>02</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16452143</ArticleId>
<ArticleId IdType="pii">genetics.105.051185</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.105.051185</ArticleId>
<ArticleId IdType="pmc">PMC1456400</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 2005 Feb;60(2):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15785851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 3;299(5603):109-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12411574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Aug;43(8):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:503-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:257-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Aug;58(6):809-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16240175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):575-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 16;89(4):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9160749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 28;420(6914):426-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12442172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jun;15(4):283-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 24;275(5299):527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8999796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jun 16;299(4):1113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10843862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 28;420(6914):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12442170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2003 Aug;46(4):665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 25;402(6760):402-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10586878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4701-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Dec;2(6):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):900-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):181-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Jan;6(1):24-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Jul;5(7):566-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):998-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 11;402(6758):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jan 15;18(2):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):840-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644646</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
<name sortKey="Burns, Nicole J" sort="Burns, Nicole J" uniqKey="Burns N" first="Nicole J" last="Burns">Nicole J. Burns</name>
<name sortKey="Riely, Brendan K" sort="Riely, Brendan K" uniqKey="Riely B" first="Brendan K" last="Riely">Brendan K. Riely</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhu, Hongyan" sort="Zhu, Hongyan" uniqKey="Zhu H" first="Hongyan" last="Zhu">Hongyan Zhu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003155 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003155 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16452143
   |texte=   Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16452143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020