Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.

Identifieur interne : 003040 ( Main/Exploration ); précédent : 003039; suivant : 003041

Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.

Auteurs : A. Marulanda [Espagne] ; R. Porcel ; J M Barea ; R. Azc N

Source :

RBID : pubmed:17431706

Descripteurs français

English descriptors

Abstract

This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H(2)O(2) by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H(2)O(2) by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.

DOI: 10.1007/s00248-007-9237-y
PubMed: 17431706


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.</title>
<author>
<name sortKey="Marulanda, A" sort="Marulanda, A" uniqKey="Marulanda A" first="A" last="Marulanda">A. Marulanda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda no. 1, 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda no. 1, 18008, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Porcel, R" sort="Porcel, R" uniqKey="Porcel R" first="R" last="Porcel">R. Porcel</name>
</author>
<author>
<name sortKey="Barea, J M" sort="Barea, J M" uniqKey="Barea J" first="J M" last="Barea">J M Barea</name>
</author>
<author>
<name sortKey="Azc N, R" sort="Azc N, R" uniqKey="Azc N R" first="R" last="Azc N">R. Azc N</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17431706</idno>
<idno type="pmid">17431706</idno>
<idno type="doi">10.1007/s00248-007-9237-y</idno>
<idno type="wicri:Area/Main/Corpus">002F72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F72</idno>
<idno type="wicri:Area/Main/Curation">002F72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F72</idno>
<idno type="wicri:Area/Main/Exploration">002F72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.</title>
<author>
<name sortKey="Marulanda, A" sort="Marulanda, A" uniqKey="Marulanda A" first="A" last="Marulanda">A. Marulanda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda no. 1, 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda no. 1, 18008, Granada</wicri:regionArea>
<wicri:noRegion>Granada</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Porcel, R" sort="Porcel, R" uniqKey="Porcel R" first="R" last="Porcel">R. Porcel</name>
</author>
<author>
<name sortKey="Barea, J M" sort="Barea, J M" uniqKey="Barea J" first="J M" last="Barea">J M Barea</name>
</author>
<author>
<name sortKey="Azc N, R" sort="Azc N, R" uniqKey="Azc N R" first="R" last="Azc N">R. Azc N</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="ISSN">0095-3628</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Alkaline Phosphatase (metabolism)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Disasters (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Lavandula (growth & development)</term>
<term>Lavandula (metabolism)</term>
<term>Lavandula (microbiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Plant Shoots (microbiology)</term>
<term>Potassium (metabolism)</term>
<term>Succinate Dehydrogenase (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (métabolisme)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Catastrophes (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Lavandula (croissance et développement)</term>
<term>Lavandula (microbiologie)</term>
<term>Lavandula (métabolisme)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (physiologie)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Phosphatase alcaline (métabolisme)</term>
<term>Potassium (métabolisme)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (microbiologie)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Succinate Dehydrogenase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
<term>Ascorbic Acid</term>
<term>Glutathione</term>
<term>Hydrogen Peroxide</term>
<term>Nitrogen</term>
<term>Potassium</term>
<term>Succinate Dehydrogenase</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Lavandula</term>
<term>Mycorhizes</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Lavandula</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lavandula</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lavandula</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lavandula</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Azote</term>
<term>Eau</term>
<term>Glutathion</term>
<term>Lavandula</term>
<term>Peroxyde d'hydrogène</term>
<term>Phosphatase alcaline</term>
<term>Potassium</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Succinate Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biomass</term>
<term>Disasters</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Biomasse</term>
<term>Catastrophes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H(2)O(2) by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H(2)O(2) by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17431706</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0095-3628</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>54</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.</ArticleTitle>
<Pagination>
<MedlinePgn>543-52</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H(2)O(2) by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H(2)O(2) by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marulanda</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda no. 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porcel</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barea</LastName>
<ForeName>J M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Azcón</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.3.99.1</RegistryNumber>
<NameOfSubstance UI="D013385">Succinate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.1</RegistryNumber>
<NameOfSubstance UI="D000469">Alkaline Phosphatase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000469" MajorTopicYN="N">Alkaline Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004190" MajorTopicYN="Y">Disasters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027523" MajorTopicYN="N">Lavandula</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013385" MajorTopicYN="N">Succinate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17431706</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-007-9237-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2006 Nov;52(4):670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2003 Oct;49(10):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14663492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Feb;61(2):456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1047-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Mar;161(2):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3034103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Aug;64(7):1219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Mar;59(3):411-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2002 Jan;4(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1983 Mar 15;210(3):899-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6307273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Mar;62(3):842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Sep;215(5):829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448732</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Azc N, R" sort="Azc N, R" uniqKey="Azc N R" first="R" last="Azc N">R. Azc N</name>
<name sortKey="Barea, J M" sort="Barea, J M" uniqKey="Barea J" first="J M" last="Barea">J M Barea</name>
<name sortKey="Porcel, R" sort="Porcel, R" uniqKey="Porcel R" first="R" last="Porcel">R. Porcel</name>
</noCountry>
<country name="Espagne">
<noRegion>
<name sortKey="Marulanda, A" sort="Marulanda, A" uniqKey="Marulanda A" first="A" last="Marulanda">A. Marulanda</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003040 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003040 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17431706
   |texte=   Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17431706" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020