Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.

Identifieur interne : 002D08 ( Main/Exploration ); précédent : 002D07; suivant : 002D09

GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.

Auteurs : Arnaud Besserer [France] ; Guillaume Bécard ; Alain Jauneau ; Christophe Roux ; Nathalie Séjalon-Delmas

Source :

RBID : pubmed:18614712

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this study we show that treatment of Gigaspora rosea with a strigolactone analog (GR24) causes a rapid increase in the NADH concentration, the NADH dehydrogenase activity, and the ATP content of the fungal cell. This fully and rapidly (within minutes) activated oxidative metabolism does not require new gene expression. Up-regulation of the genes involved in mitochondrial metabolism and hyphal growth, and stimulation of the fungal mitotic activity, take place several days after this initial boost to the cellular energy of the fungus. Such a rapid and powerful action of GR24 on G. rosea cells suggests that strigolactones are important plant signals involved in switching AM fungi toward full germination and a presymbiotic state.

DOI: 10.1104/pp.108.121400
PubMed: 18614712
PubMed Central: PMC2528133


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.</title>
<author>
<name sortKey="Besserer, Arnaud" sort="Besserer, Arnaud" uniqKey="Besserer A" first="Arnaud" last="Besserer">Arnaud Besserer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Plant Cell Surfaces and Signaling Laboratory, UMR5546 CNRS/University of Toulouse, 31326 Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Plant Cell Surfaces and Signaling Laboratory, UMR5546 CNRS/University of Toulouse, 31326 Castanet-Tolosan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Becard, Guillaume" sort="Becard, Guillaume" uniqKey="Becard G" first="Guillaume" last="Bécard">Guillaume Bécard</name>
</author>
<author>
<name sortKey="Jauneau, Alain" sort="Jauneau, Alain" uniqKey="Jauneau A" first="Alain" last="Jauneau">Alain Jauneau</name>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
</author>
<author>
<name sortKey="Sejalon Delmas, Nathalie" sort="Sejalon Delmas, Nathalie" uniqKey="Sejalon Delmas N" first="Nathalie" last="Séjalon-Delmas">Nathalie Séjalon-Delmas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18614712</idno>
<idno type="pmid">18614712</idno>
<idno type="doi">10.1104/pp.108.121400</idno>
<idno type="pmc">PMC2528133</idno>
<idno type="wicri:Area/Main/Corpus">002C43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C43</idno>
<idno type="wicri:Area/Main/Curation">002C43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C43</idno>
<idno type="wicri:Area/Main/Exploration">002C43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.</title>
<author>
<name sortKey="Besserer, Arnaud" sort="Besserer, Arnaud" uniqKey="Besserer A" first="Arnaud" last="Besserer">Arnaud Besserer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Plant Cell Surfaces and Signaling Laboratory, UMR5546 CNRS/University of Toulouse, 31326 Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Plant Cell Surfaces and Signaling Laboratory, UMR5546 CNRS/University of Toulouse, 31326 Castanet-Tolosan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Castanet-Tolosan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Becard, Guillaume" sort="Becard, Guillaume" uniqKey="Becard G" first="Guillaume" last="Bécard">Guillaume Bécard</name>
</author>
<author>
<name sortKey="Jauneau, Alain" sort="Jauneau, Alain" uniqKey="Jauneau A" first="Alain" last="Jauneau">Alain Jauneau</name>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
</author>
<author>
<name sortKey="Sejalon Delmas, Nathalie" sort="Sejalon Delmas, Nathalie" uniqKey="Sejalon Delmas N" first="Nathalie" last="Séjalon-Delmas">Nathalie Séjalon-Delmas</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Energy Metabolism (drug effects)</term>
<term>Hyphae (drug effects)</term>
<term>Lactones (metabolism)</term>
<term>Lactones (pharmacology)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitosis (drug effects)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>NAD (metabolism)</term>
<term>NADH Dehydrogenase (metabolism)</term>
<term>NADP (biosynthesis)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Hyphae (effets des médicaments et des substances chimiques)</term>
<term>Lactones (métabolisme)</term>
<term>Lactones (pharmacologie)</term>
<term>Mitochondries (effets des médicaments et des substances chimiques)</term>
<term>Mitose (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Métabolisme énergétique (effets des médicaments et des substances chimiques)</term>
<term>NAD (métabolisme)</term>
<term>NADH dehydrogenase (métabolisme)</term>
<term>NADP (biosynthèse)</term>
<term>Symbiose (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Lactones</term>
<term>NAD</term>
<term>NADH Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Energy Metabolism</term>
<term>Hyphae</term>
<term>Mitochondria</term>
<term>Mitosis</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Hyphae</term>
<term>Mitochondries</term>
<term>Mitose</term>
<term>Mycorhizes</term>
<term>Métabolisme énergétique</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Lactones</term>
<term>Mycorhizes</term>
<term>NAD</term>
<term>NADH dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Lactones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Lactones</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Symbiose</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this study we show that treatment of Gigaspora rosea with a strigolactone analog (GR24) causes a rapid increase in the NADH concentration, the NADH dehydrogenase activity, and the ATP content of the fungal cell. This fully and rapidly (within minutes) activated oxidative metabolism does not require new gene expression. Up-regulation of the genes involved in mitochondrial metabolism and hyphal growth, and stimulation of the fungal mitotic activity, take place several days after this initial boost to the cellular energy of the fungus. Such a rapid and powerful action of GR24 on G. rosea cells suggests that strigolactones are important plant signals involved in switching AM fungi toward full germination and a presymbiotic state.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18614712</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>148</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>402-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.121400</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this study we show that treatment of Gigaspora rosea with a strigolactone analog (GR24) causes a rapid increase in the NADH concentration, the NADH dehydrogenase activity, and the ATP content of the fungal cell. This fully and rapidly (within minutes) activated oxidative metabolism does not require new gene expression. Up-regulation of the genes involved in mitochondrial metabolism and hyphal growth, and stimulation of the fungal mitotic activity, take place several days after this initial boost to the cellular energy of the fungus. Such a rapid and powerful action of GR24 on G. rosea cells suggests that strigolactones are important plant signals involved in switching AM fungi toward full germination and a presymbiotic state.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Besserer</LastName>
<ForeName>Arnaud</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Plant Cell Surfaces and Signaling Laboratory, UMR5546 CNRS/University of Toulouse, 31326 Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bécard</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jauneau</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roux</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Séjalon-Delmas</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>07</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C507382">GR24 compound</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007783">Lactones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.99.3</RegistryNumber>
<NameOfSubstance UI="D009245">NADH Dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Signal Behav. 2009 Jan;4(1):75-7</RefSource>
<PMID Version="1">19704715</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007783" MajorTopicYN="N">Lactones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009245" MajorTopicYN="N">NADH Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
<ArticleId IdType="pii">pp.108.121400</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.121400</ArticleId>
<ArticleId IdType="pmc">PMC2528133</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Jan;292(1):C52-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16943247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1460-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2003 Jan;88(1):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12525861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1969 Feb;44(2):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 1998 Jul;191(Pt 1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9723186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2003 Apr;35(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1966 Dec 2;154(3753):1189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17780042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spectrochim Acta A Mol Biomol Spectrosc. 2007 Jun;67(2):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 1999 May;10(5):506-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10337626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(3):1559-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(1):177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Feb;286(2):C457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jul 25;16(14):R551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16860735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Nov;96(6):1121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):364-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):224-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1962 Aug 17;137(3529):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13878016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2001 Jun;21(3):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Apr;111(Pt 4):487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2003 Jan;88(1):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12552316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Mar;6(3):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1983 May;29(5):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6883219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 May;2(3):163-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Apr;67(7):636-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16483620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Feb;292(2):C615-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16943239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Dec;9(6):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1965 Feb 13;205:699-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14287411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Apr 15;23(8):3196-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12716927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2003 Jun;35(3):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2003 Sep;107(Pt 9):1075-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1979;56:530-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">459883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Opt Lett. 2006 Jun 15;31(12):1833-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16729086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):1756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Feb;16(2):918-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4791-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Feb 28;45(8):2524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Castanet-Tolosan</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Becard, Guillaume" sort="Becard, Guillaume" uniqKey="Becard G" first="Guillaume" last="Bécard">Guillaume Bécard</name>
<name sortKey="Jauneau, Alain" sort="Jauneau, Alain" uniqKey="Jauneau A" first="Alain" last="Jauneau">Alain Jauneau</name>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
<name sortKey="Sejalon Delmas, Nathalie" sort="Sejalon Delmas, Nathalie" uniqKey="Sejalon Delmas N" first="Nathalie" last="Séjalon-Delmas">Nathalie Séjalon-Delmas</name>
</noCountry>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Besserer, Arnaud" sort="Besserer, Arnaud" uniqKey="Besserer A" first="Arnaud" last="Besserer">Arnaud Besserer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18614712
   |texte=   GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18614712" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020