Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.

Identifieur interne : 002A91 ( Main/Exploration ); précédent : 002A90; suivant : 002A92

Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.

Auteurs : L L Taylor [Royaume-Uni] ; J R Leake ; J. Quirk ; K. Hardy ; S A Banwart ; D J Beerling

Source :

RBID : pubmed:19323695

Descripteurs français

English descriptors

Abstract

The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0-359.2 Ma) and the gradual decline from the Cretaceous (145.5-65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF),while the Cenozoic (c. 65.5-0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon-energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.

DOI: 10.1111/j.1472-4669.2009.00194.x
PubMed: 19323695


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.</title>
<author>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L L" last="Taylor">L L Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J R" last="Leake">J R Leake</name>
</author>
<author>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J" last="Quirk">J. Quirk</name>
</author>
<author>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K" last="Hardy">K. Hardy</name>
</author>
<author>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S A" last="Banwart">S A Banwart</name>
</author>
<author>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D J" last="Beerling">D J Beerling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19323695</idno>
<idno type="pmid">19323695</idno>
<idno type="doi">10.1111/j.1472-4669.2009.00194.x</idno>
<idno type="wicri:Area/Main/Corpus">002A07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A07</idno>
<idno type="wicri:Area/Main/Curation">002A07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A07</idno>
<idno type="wicri:Area/Main/Exploration">002A07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.</title>
<author>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L L" last="Taylor">L L Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Animal and Plant Sciences, University of Sheffield, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J R" last="Leake">J R Leake</name>
</author>
<author>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J" last="Quirk">J. Quirk</name>
</author>
<author>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K" last="Hardy">K. Hardy</name>
</author>
<author>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S A" last="Banwart">S A Banwart</name>
</author>
<author>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D J" last="Beerling">D J Beerling</name>
</author>
</analytic>
<series>
<title level="j">Geobiology</title>
<idno type="eISSN">1472-4669</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carbone (métabolisme)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microbiologie du sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0-359.2 Ma) and the gradual decline from the Cretaceous (145.5-65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF),while the Cenozoic (c. 65.5-0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon-energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19323695</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2009</Year>
<Month>04</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1472-4669</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Geobiology</Title>
<ISOAbbreviation>Geobiology</ISOAbbreviation>
</Journal>
<ArticleTitle>Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.</ArticleTitle>
<Pagination>
<MedlinePgn>171-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1472-4669.2009.00194.x</ELocationID>
<Abstract>
<AbstractText>The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0-359.2 Ma) and the gradual decline from the Cretaceous (145.5-65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF),while the Cenozoic (c. 65.5-0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon-energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>L L</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leake</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Quirk</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hardy</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Banwart</LastName>
<ForeName>S A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beerling</LastName>
<ForeName>D J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Geobiology</MedlineTA>
<NlmUniqueID>101185472</NlmUniqueID>
<ISSNLinking>1472-4669</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>223</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19323695</ArticleId>
<ArticleId IdType="pii">GBI194</ArticleId>
<ArticleId IdType="doi">10.1111/j.1472-4669.2009.00194.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Banwart, S A" sort="Banwart, S A" uniqKey="Banwart S" first="S A" last="Banwart">S A Banwart</name>
<name sortKey="Beerling, D J" sort="Beerling, D J" uniqKey="Beerling D" first="D J" last="Beerling">D J Beerling</name>
<name sortKey="Hardy, K" sort="Hardy, K" uniqKey="Hardy K" first="K" last="Hardy">K. Hardy</name>
<name sortKey="Leake, J R" sort="Leake, J R" uniqKey="Leake J" first="J R" last="Leake">J R Leake</name>
<name sortKey="Quirk, J" sort="Quirk, J" uniqKey="Quirk J" first="J" last="Quirk">J. Quirk</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Taylor, L L" sort="Taylor, L L" uniqKey="Taylor L" first="L L" last="Taylor">L L Taylor</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19323695
   |texte=   Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19323695" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020