Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

Identifieur interne : 002284 ( Main/Exploration ); précédent : 002283; suivant : 002285

Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

Auteurs : Julie Marleau [Canada] ; Yolande Dalpé ; Marc St-Arnaud ; Mohamed Hijri

Source :

RBID : pubmed:21349193

Descripteurs français

English descriptors

Abstract

BACKGROUND

A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed.

RESULTS

We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time.

CONCLUSIONS

We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.


DOI: 10.1186/1471-2148-11-51
PubMed: 21349193
PubMed Central: PMC3060866


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Marleau, Julie" sort="Marleau, Julie" uniqKey="Marleau J" first="Julie" last="Marleau">Julie Marleau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Montréal, Département de sciences biologiques, Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, QC, H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Université de Montréal, Département de sciences biologiques, Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, QC, H1X 2B2</wicri:regionArea>
<wicri:noRegion>H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dalpe, Yolande" sort="Dalpe, Yolande" uniqKey="Dalpe Y" first="Yolande" last="Dalpé">Yolande Dalpé</name>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21349193</idno>
<idno type="pmid">21349193</idno>
<idno type="doi">10.1186/1471-2148-11-51</idno>
<idno type="pmc">PMC3060866</idno>
<idno type="wicri:Area/Main/Corpus">002397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002397</idno>
<idno type="wicri:Area/Main/Curation">002397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002397</idno>
<idno type="wicri:Area/Main/Exploration">002397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.</title>
<author>
<name sortKey="Marleau, Julie" sort="Marleau, Julie" uniqKey="Marleau J" first="Julie" last="Marleau">Julie Marleau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Montréal, Département de sciences biologiques, Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, QC, H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Université de Montréal, Département de sciences biologiques, Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, QC, H1X 2B2</wicri:regionArea>
<wicri:noRegion>H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dalpe, Yolande" sort="Dalpe, Yolande" uniqKey="Dalpe Y" first="Yolande" last="Dalpé">Yolande Dalpé</name>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (genetics)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Mitosis (MeSH)</term>
<term>Mycorrhizae (cytology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Spores, Fungal (cytology)</term>
<term>Spores, Fungal (genetics)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs temps (MeSH)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Mitose (MeSH)</term>
<term>Mycorhizes (cytologie)</term>
<term>Mycorhizes (génétique)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Spores fongiques (cytologie)</term>
<term>Spores fongiques (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Mycorrhizae</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mycorhizes</term>
<term>Noyau de la cellule</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Confocal</term>
<term>Mitosis</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Microscopie confocale</term>
<term>Mitose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21349193</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-11-51</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marleau</LastName>
<ForeName>Julie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Université de Montréal, Département de sciences biologiques, Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, QC, H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dalpé</LastName>
<ForeName>Yolande</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>St-Arnaud</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hijri</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>BMC Evol Biol. 2011;11:97</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21349193</ArticleId>
<ArticleId IdType="pii">1471-2148-11-51</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-11-51</ArticleId>
<ArticleId IdType="pmc">PMC3060866</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Jul 13;20(13):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 Jul;23(7):1519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Aug;20(6):415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Nov;27(11):2474-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20566475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):924-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7847-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Dec;65(12):5571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Dec 13;414(6865):745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stain Technol. 1978 Sep;53(5):293-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">87039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jul;140(3):965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1999 Jan;8(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1999 Mar;26(2):141-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10328984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1999 Jun;27(1):1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10413611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):E3-4; discussion E4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jul;17(5):375-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17476535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Dec;44(12):1380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17467313</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dalpe, Yolande" sort="Dalpe, Yolande" uniqKey="Dalpe Y" first="Yolande" last="Dalpé">Yolande Dalpé</name>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Marleau, Julie" sort="Marleau, Julie" uniqKey="Marleau J" first="Julie" last="Marleau">Julie Marleau</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002284 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002284 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21349193
   |texte=   Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21349193" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020