Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.

Identifieur interne : 002178 ( Main/Exploration ); précédent : 002177; suivant : 002179

Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.

Auteurs : Emiru Birhane [Pays-Bas] ; Frank J. Sterck ; Masresha Fetene ; Frans Bongers ; Thomas W. Kuyper

Source :

RBID : pubmed:22286084

Descripteurs français

English descriptors

Abstract

Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.

DOI: 10.1007/s00442-012-2258-3
PubMed: 22286084
PubMed Central: PMC3398253


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.</title>
<author>
<name sortKey="Birhane, Emiru" sort="Birhane, Emiru" uniqKey="Birhane E" first="Emiru" last="Birhane">Emiru Birhane</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sterck, Frank J" sort="Sterck, Frank J" uniqKey="Sterck F" first="Frank J" last="Sterck">Frank J. Sterck</name>
</author>
<author>
<name sortKey="Fetene, Masresha" sort="Fetene, Masresha" uniqKey="Fetene M" first="Masresha" last="Fetene">Masresha Fetene</name>
</author>
<author>
<name sortKey="Bongers, Frans" sort="Bongers, Frans" uniqKey="Bongers F" first="Frans" last="Bongers">Frans Bongers</name>
</author>
<author>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22286084</idno>
<idno type="pmid">22286084</idno>
<idno type="doi">10.1007/s00442-012-2258-3</idno>
<idno type="pmc">PMC3398253</idno>
<idno type="wicri:Area/Main/Corpus">002091</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002091</idno>
<idno type="wicri:Area/Main/Curation">002091</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002091</idno>
<idno type="wicri:Area/Main/Exploration">002091</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.</title>
<author>
<name sortKey="Birhane, Emiru" sort="Birhane, Emiru" uniqKey="Birhane E" first="Emiru" last="Birhane">Emiru Birhane</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sterck, Frank J" sort="Sterck, Frank J" uniqKey="Sterck F" first="Frank J" last="Sterck">Frank J. Sterck</name>
</author>
<author>
<name sortKey="Fetene, Masresha" sort="Fetene, Masresha" uniqKey="Fetene M" first="Masresha" last="Fetene">Masresha Fetene</name>
</author>
<author>
<name sortKey="Bongers, Frans" sort="Bongers, Frans" uniqKey="Bongers F" first="Frans" last="Bongers">Frans Bongers</name>
</author>
<author>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Boswellia (growth & development)</term>
<term>Boswellia (microbiology)</term>
<term>Boswellia (physiology)</term>
<term>Carbon (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Potassium (metabolism)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (microbiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Boswellia (croissance et développement)</term>
<term>Boswellia (microbiologie)</term>
<term>Boswellia (physiologie)</term>
<term>Carbone (métabolisme)</term>
<term>Eau (MeSH)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phosphore (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (microbiologie)</term>
<term>Potassium (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Stomates de plante (physiologie)</term>
<term>Symbiose (MeSH)</term>
<term>Transpiration des plantes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>Phosphorus</term>
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Boswellia</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Boswellia</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Boswellia</term>
<term>Plant</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Boswellia</term>
<term>Plant Roots</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Phosphore</term>
<term>Potassium</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Boswellia</term>
<term>Feuilles de plante</term>
<term>Mycorhizes</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Boswellia</term>
<term>Mycorrhizae</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Photosynthesis</term>
<term>Plant Transpiration</term>
<term>Symbiosis</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Eau</term>
<term>Photosynthèse</term>
<term>Symbiose</term>
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22286084</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>169</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>895-904</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-012-2258-3</ELocationID>
<Abstract>
<AbstractText>Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Birhane</LastName>
<ForeName>Emiru</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sterck</LastName>
<ForeName>Frank J</ForeName>
<Initials>FJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fetene</LastName>
<ForeName>Masresha</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bongers</LastName>
<ForeName>Frans</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuyper</LastName>
<ForeName>Thomas W</ForeName>
<Initials>TW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029743" MajorTopicYN="N">Boswellia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22286084</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-012-2258-3</ArticleId>
<ArticleId IdType="pmc">PMC3398253</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;169(2):379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Nov;52(4):670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Oct;113(2):151-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Oct;141(2):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Oct;141(2):236-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 May;135(4):510-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Gueldre (province)</li>
</region>
<settlement>
<li>Wageningue</li>
</settlement>
<orgName>
<li>Université de Wageningue</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bongers, Frans" sort="Bongers, Frans" uniqKey="Bongers F" first="Frans" last="Bongers">Frans Bongers</name>
<name sortKey="Fetene, Masresha" sort="Fetene, Masresha" uniqKey="Fetene M" first="Masresha" last="Fetene">Masresha Fetene</name>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
<name sortKey="Sterck, Frank J" sort="Sterck, Frank J" uniqKey="Sterck F" first="Frank J" last="Sterck">Frank J. Sterck</name>
</noCountry>
<country name="Pays-Bas">
<region name="Gueldre (province)">
<name sortKey="Birhane, Emiru" sort="Birhane, Emiru" uniqKey="Birhane E" first="Emiru" last="Birhane">Emiru Birhane</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002178 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002178 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22286084
   |texte=   Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22286084" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020