Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Symbiosis and the social network of higher plants.

Identifieur interne : 001B67 ( Main/Exploration ); précédent : 001B66; suivant : 001B68

Symbiosis and the social network of higher plants.

Auteurs : Muthusubramanian Venkateshwaran [États-Unis] ; Jeremy D. Volkening ; Michael R. Sussman ; Jean-Michel Ané

Source :

RBID : pubmed:23246268

Descripteurs français

English descriptors

Abstract

In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.

DOI: 10.1016/j.pbi.2012.11.007
PubMed: 23246268


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Symbiosis and the social network of higher plants.</title>
<author>
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Agronomy, University of Wisconsin, Madison, WI 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Volkening, Jeremy D" sort="Volkening, Jeremy D" uniqKey="Volkening J" first="Jeremy D" last="Volkening">Jeremy D. Volkening</name>
</author>
<author>
<name sortKey="Sussman, Michael R" sort="Sussman, Michael R" uniqKey="Sussman M" first="Michael R" last="Sussman">Michael R. Sussman</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23246268</idno>
<idno type="pmid">23246268</idno>
<idno type="doi">10.1016/j.pbi.2012.11.007</idno>
<idno type="wicri:Area/Main/Corpus">001D66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D66</idno>
<idno type="wicri:Area/Main/Curation">001D66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D66</idno>
<idno type="wicri:Area/Main/Exploration">001D66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Symbiosis and the social network of higher plants.</title>
<author>
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Agronomy, University of Wisconsin, Madison, WI 53706, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Volkening, Jeremy D" sort="Volkening, Jeremy D" uniqKey="Volkening J" first="Jeremy D" last="Volkening">Jeremy D. Volkening</name>
</author>
<author>
<name sortKey="Sussman, Michael R" sort="Sussman, Michael R" uniqKey="Sussman M" first="Michael R" last="Sussman">Michael R. Sussman</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
</analytic>
<series>
<title level="j">Current opinion in plant biology</title>
<idno type="eISSN">1879-0356</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (MeSH)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Brassicaceae (metabolism)</term>
<term>Brassicaceae (microbiology)</term>
<term>Brassicaceae (physiology)</term>
<term>Fabaceae (metabolism)</term>
<term>Fabaceae (microbiology)</term>
<term>Fabaceae (physiology)</term>
<term>Fungi (physiology)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries (MeSH)</term>
<term>Brassicaceae (microbiologie)</term>
<term>Brassicaceae (métabolisme)</term>
<term>Brassicaceae (physiologie)</term>
<term>Champignons (physiologie)</term>
<term>Fabaceae (microbiologie)</term>
<term>Fabaceae (métabolisme)</term>
<term>Fabaceae (physiologie)</term>
<term>Fixation de l'azote (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Plantes (microbiologie)</term>
<term>Plantes (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Racines de plante (physiologie)</term>
<term>Symbiose (physiologie)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brassicaceae</term>
<term>Fabaceae</term>
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Brassicaceae</term>
<term>Fabaceae</term>
<term>Plantes</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Brassicaceae</term>
<term>Fabaceae</term>
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Brassicaceae</term>
<term>Fabaceae</term>
<term>Plantes</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Brassicaceae</term>
<term>Champignons</term>
<term>Fabaceae</term>
<term>Mycorhizes</term>
<term>Racines de plante</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brassicaceae</term>
<term>Fabaceae</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacteria</term>
<term>Bacterial Physiological Phenomena</term>
<term>Metabolic Networks and Pathways</term>
<term>Nitrogen Fixation</term>
<term>Plant Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bactéries</term>
<term>Fixation de l'azote</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23246268</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0356</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in plant biology</Title>
<ISOAbbreviation>Curr Opin Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Symbiosis and the social network of higher plants.</ArticleTitle>
<Pagination>
<MedlinePgn>118-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.pbi.2012.11.007</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1369-5266(12)00165-3</ELocationID>
<Abstract>
<AbstractText>In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Venkateshwaran</LastName>
<ForeName>Muthusubramanian</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, University of Wisconsin, Madison, WI 53706, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Volkening</LastName>
<ForeName>Jeremy D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sussman</LastName>
<ForeName>Michael R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ané</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Opin Plant Biol</MedlineTA>
<NlmUniqueID>100883395</NlmUniqueID>
<ISSNLinking>1369-5266</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="N">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019607" MajorTopicYN="N">Brassicaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="Y">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23246268</ArticleId>
<ArticleId IdType="pii">S1369-5266(12)00165-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.pbi.2012.11.007</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
<name sortKey="Sussman, Michael R" sort="Sussman, Michael R" uniqKey="Sussman M" first="Michael R" last="Sussman">Michael R. Sussman</name>
<name sortKey="Volkening, Jeremy D" sort="Volkening, Jeremy D" uniqKey="Volkening J" first="Jeremy D" last="Volkening">Jeremy D. Volkening</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23246268
   |texte=   Symbiosis and the social network of higher plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23246268" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020