Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.

Identifieur interne : 001B54 ( Main/Exploration ); précédent : 001B53; suivant : 001B55

The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.

Auteurs : Valentina Fiorilli [Italie] ; Luisa Lanfranco ; Paola Bonfante

Source :

RBID : pubmed:23361889

Descripteurs français

English descriptors

Abstract

The development of mutualistic interactions with arbuscular mycorrhizal (AM) fungi is one of the most important adaptation of terrestrial plants to face mineral nutrition requirements. As an essential plant nutrient, phosphorus uptake is acknowledged as a major benefit of the AM symbiosis, but the molecular mechanisms of its transport as inorganic phosphate (Pi) from the soil to root cells via AM fungi remain poorly known. Here we monitored the expression profile of the high-affinity phosphate transporter (PT) gene (GintPT) of Rhizophagus irregularis (DAOM 197198) in fungal structures (spores, extraradical mycelium and arbuscules), under different Pi availability, and in respect to plant connection. GintPT resulted constitutively expressed along the major steps of the fungal life cycle and the connection with the host plant was crucial to warrant GintPT high expression levels in the extraradical mycelium. The influence of Pi availability on gene expression of the fungal GintPT and the Medicago truncatula symbiosis-specific Pi transporter (MtPT4) was examined by qRT-PCR assay on microdissected arbusculated cells. The expression profiles of both genes revealed that these transporters are sensitive to changing Pi conditions: we observed that MtPT4 mRNA abundance is higher at 320 than at 32 μM suggesting that the flow towards the plant requires high concentrations. Taken on the whole, the findings highlight novel traits for the functioning of the GintPT gene and offer a molecular scenario to the models describing nutrient transfers as a cooperation between the mycorrhizal partners.

DOI: 10.1007/s00425-013-1842-z
PubMed: 23361889


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.</title>
<author>
<name sortKey="Fiorilli, Valentina" sort="Fiorilli, Valentina" uniqKey="Fiorilli V" first="Valentina" last="Fiorilli">Valentina Fiorilli</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Plant Protection, Consiglio Nazionale Delle Ricerche, Viale Mattioli 25, 10125, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Plant Protection, Consiglio Nazionale Delle Ricerche, Viale Mattioli 25, 10125, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lanfranco, Luisa" sort="Lanfranco, Luisa" uniqKey="Lanfranco L" first="Luisa" last="Lanfranco">Luisa Lanfranco</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23361889</idno>
<idno type="pmid">23361889</idno>
<idno type="doi">10.1007/s00425-013-1842-z</idno>
<idno type="wicri:Area/Main/Corpus">001D34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D34</idno>
<idno type="wicri:Area/Main/Curation">001D34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D34</idno>
<idno type="wicri:Area/Main/Exploration">001D34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.</title>
<author>
<name sortKey="Fiorilli, Valentina" sort="Fiorilli, Valentina" uniqKey="Fiorilli V" first="Valentina" last="Fiorilli">Valentina Fiorilli</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Plant Protection, Consiglio Nazionale Delle Ricerche, Viale Mattioli 25, 10125, Turin, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Institute for Plant Protection, Consiglio Nazionale Delle Ricerche, Viale Mattioli 25, 10125, Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lanfranco, Luisa" sort="Lanfranco, Luisa" uniqKey="Lanfranco L" first="Luisa" last="Lanfranco">Luisa Lanfranco</name>
</author>
<author>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glomeromycota (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphate Transport Proteins (genetics)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glomeromycota (métabolisme)</term>
<term>Glomeromycota (physiologie)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phosphates (métabolisme)</term>
<term>Protéines de transport du phosphate (génétique)</term>
<term>Protéines de transport du phosphate (métabolisme)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphate Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de transport du phosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Phosphate Transport Proteins</term>
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
<term>Phosphates</term>
<term>Protéines de transport du phosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of mutualistic interactions with arbuscular mycorrhizal (AM) fungi is one of the most important adaptation of terrestrial plants to face mineral nutrition requirements. As an essential plant nutrient, phosphorus uptake is acknowledged as a major benefit of the AM symbiosis, but the molecular mechanisms of its transport as inorganic phosphate (Pi) from the soil to root cells via AM fungi remain poorly known. Here we monitored the expression profile of the high-affinity phosphate transporter (PT) gene (GintPT) of Rhizophagus irregularis (DAOM 197198) in fungal structures (spores, extraradical mycelium and arbuscules), under different Pi availability, and in respect to plant connection. GintPT resulted constitutively expressed along the major steps of the fungal life cycle and the connection with the host plant was crucial to warrant GintPT high expression levels in the extraradical mycelium. The influence of Pi availability on gene expression of the fungal GintPT and the Medicago truncatula symbiosis-specific Pi transporter (MtPT4) was examined by qRT-PCR assay on microdissected arbusculated cells. The expression profiles of both genes revealed that these transporters are sensitive to changing Pi conditions: we observed that MtPT4 mRNA abundance is higher at 320 than at 32 μM suggesting that the flow towards the plant requires high concentrations. Taken on the whole, the findings highlight novel traits for the functioning of the GintPT gene and offer a molecular scenario to the models describing nutrient transfers as a cooperation between the mycorrhizal partners.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23361889</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>237</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.</ArticleTitle>
<Pagination>
<MedlinePgn>1267-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-013-1842-z</ELocationID>
<Abstract>
<AbstractText>The development of mutualistic interactions with arbuscular mycorrhizal (AM) fungi is one of the most important adaptation of terrestrial plants to face mineral nutrition requirements. As an essential plant nutrient, phosphorus uptake is acknowledged as a major benefit of the AM symbiosis, but the molecular mechanisms of its transport as inorganic phosphate (Pi) from the soil to root cells via AM fungi remain poorly known. Here we monitored the expression profile of the high-affinity phosphate transporter (PT) gene (GintPT) of Rhizophagus irregularis (DAOM 197198) in fungal structures (spores, extraradical mycelium and arbuscules), under different Pi availability, and in respect to plant connection. GintPT resulted constitutively expressed along the major steps of the fungal life cycle and the connection with the host plant was crucial to warrant GintPT high expression levels in the extraradical mycelium. The influence of Pi availability on gene expression of the fungal GintPT and the Medicago truncatula symbiosis-specific Pi transporter (MtPT4) was examined by qRT-PCR assay on microdissected arbusculated cells. The expression profiles of both genes revealed that these transporters are sensitive to changing Pi conditions: we observed that MtPT4 mRNA abundance is higher at 320 than at 32 μM suggesting that the flow towards the plant requires high concentrations. Taken on the whole, the findings highlight novel traits for the functioning of the GintPT gene and offer a molecular scenario to the models describing nutrient transfers as a cooperation between the mycorrhizal partners.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fiorilli</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Institute for Plant Protection, Consiglio Nazionale Delle Ricerche, Viale Mattioli 25, 10125, Turin, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lanfranco</LastName>
<ForeName>Luisa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonfante</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23361889</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-013-1842-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Dec;65(12):5604-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):899-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Jun-Jul;46(6-7):486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Jul;21(5):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1997 Feb 15;245(2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9056205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Oct;11(5):536-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Jul 15;39(14):5475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16082983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2010 Sep;3(5-6):547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Dec;133(4):517-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28466171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):828-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Nov 02;1:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Jun;56(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20379721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Jul 27;1:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 7;378(6557):626-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Nov;48(11):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21907817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jun;6(6):837-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Aug;4(8):781-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1058-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Piémont</li>
</region>
<settlement>
<li>Turin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bonfante, Paola" sort="Bonfante, Paola" uniqKey="Bonfante P" first="Paola" last="Bonfante">Paola Bonfante</name>
<name sortKey="Lanfranco, Luisa" sort="Lanfranco, Luisa" uniqKey="Lanfranco L" first="Luisa" last="Lanfranco">Luisa Lanfranco</name>
</noCountry>
<country name="Italie">
<region name="Piémont">
<name sortKey="Fiorilli, Valentina" sort="Fiorilli, Valentina" uniqKey="Fiorilli V" first="Valentina" last="Fiorilli">Valentina Fiorilli</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23361889
   |texte=   The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23361889" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020