Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.

Identifieur interne : 001749 ( Main/Exploration ); précédent : 001748; suivant : 001750

Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.

Auteurs : Jaqueline Hess [Norvège] ; Inger Skrede [Norvège] ; Benjamin E. Wolfe [États-Unis] ; Kurt Labutti [États-Unis] ; Robin A. Ohm [États-Unis] ; Igor V. Grigoriev [États-Unis] ; Anne Pringle [États-Unis]

Source :

RBID : pubmed:24923322

Descripteurs français

English descriptors

Abstract

Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture.

DOI: 10.1093/gbe/evu121
PubMed: 24923322
PubMed Central: PMC4122921


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.</title>
<author>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University jaqueline.hess@ibv.uio.no.</nlm:affiliation>
<country wicri:rule="url">Norvège</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Skrede, Inger" sort="Skrede, Inger" uniqKey="Skrede I" first="Inger" last="Skrede">Inger Skrede</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo</wicri:regionArea>
<wicri:noRegion>University of Oslo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversityFAS Center for Systems Biology, Harvard University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Labutti, Kurt" sort="Labutti, Kurt" uniqKey="Labutti K" first="Kurt" last="Labutti">Kurt Labutti</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ohm, Robin A" sort="Ohm, Robin A" uniqKey="Ohm R" first="Robin A" last="Ohm">Robin A. Ohm</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24923322</idno>
<idno type="pmid">24923322</idno>
<idno type="doi">10.1093/gbe/evu121</idno>
<idno type="pmc">PMC4122921</idno>
<idno type="wicri:Area/Main/Corpus">001833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001833</idno>
<idno type="wicri:Area/Main/Curation">001833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001833</idno>
<idno type="wicri:Area/Main/Exploration">001833</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.</title>
<author>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University jaqueline.hess@ibv.uio.no.</nlm:affiliation>
<country wicri:rule="url">Norvège</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Skrede, Inger" sort="Skrede, Inger" uniqKey="Skrede I" first="Inger" last="Skrede">Inger Skrede</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo</wicri:regionArea>
<wicri:noRegion>University of Oslo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversityFAS Center for Systems Biology, Harvard University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Labutti, Kurt" sort="Labutti, Kurt" uniqKey="Labutti K" first="Kurt" last="Labutti">Kurt Labutti</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ohm, Robin A" sort="Ohm, Robin A" uniqKey="Ohm R" first="Robin A" last="Ohm">Robin A. Ohm</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>U.S. Department of Energy Joint Genome Institute, Walnut Creek</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amanita (genetics)</term>
<term>Biota (genetics)</term>
<term>DNA Transposable Elements (genetics)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amanita (génétique)</term>
<term>Biote (génétique)</term>
<term>Mycorhizes (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Symbiose (génétique)</term>
<term>Éléments transposables d'ADN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Transposable Elements</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amanita</term>
<term>Biota</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amanita</term>
<term>Biote</term>
<term>Mycorhizes</term>
<term>Symbiose</term>
<term>Éléments transposables d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24923322</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>1564-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evu121</ELocationID>
<Abstract>
<AbstractText>Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture. </AbstractText>
<CopyrightInformation>© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hess</LastName>
<ForeName>Jaqueline</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, Harvard University jaqueline.hess@ibv.uio.no.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Skrede</LastName>
<ForeName>Inger</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wolfe</LastName>
<ForeName>Benjamin E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, Harvard UniversityFAS Center for Systems Biology, Harvard University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>LaButti</LastName>
<ForeName>Kurt</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohm</LastName>
<ForeName>Robin A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>U.S. Department of Energy Joint Genome Institute, Walnut Creek, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, Harvard University.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000545" MajorTopicYN="N">Amanita</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058448" MajorTopicYN="N">Biota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ecological genomics</Keyword>
<Keyword MajorTopicYN="N">evolution of symbiosis</Keyword>
<Keyword MajorTopicYN="N">genome architecture</Keyword>
<Keyword MajorTopicYN="N">phylogeny</Keyword>
<Keyword MajorTopicYN="N">repetitive DNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24923322</ArticleId>
<ArticleId IdType="pii">evu121</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evu121</ArticleId>
<ArticleId IdType="pmc">PMC4122921</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 May;14(5):671-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11332731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e39597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Nov 16;226(4676):792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15739260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2011;6:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):e105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1993 Mar;3(3):266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8485583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1989 Apr;5(4):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2543105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(11):e1001180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2012 Jan-Feb;104(1):22-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):1855-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Aug;19(8):1419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2006 Jul;79(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16773564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(10):e7463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19829700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Apr 17;284(5757):601-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6245369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003;57 Suppl 1:S50-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15008403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1992 Jun;8(3):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2002 Apr;42(2):352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8714-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11447285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Jan;8(1):61-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21102452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e29425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22242120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23526973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Dec;186(4):1085-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Sep;12(9):615-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21850042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jul 1;28(13):1684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1982 Jul-Aug;101(3-4):519-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6293914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2012 Mar 07;3:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22394388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2007 Oct;56(5):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17886144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Apr 17;284(5757):604-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7366731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1987 Feb;49(1):31-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3032743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 Aug 7;277(1692):2381-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20356890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10863-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jun;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 May;14(5):988-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Mar;23(3):411-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23212949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):429-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Jul;3(7):e119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasite. 2008 Sep;15(3):449-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18814721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e40197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 21;302(5649):1401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(2):R18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21338519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Apr;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Aug;12(8):1269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jan;13(1):36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22124482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(5):1010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23595021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Feb;19(2):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12547512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jan;55(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11263730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e16526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011;2:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21326234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2008 Oct;57(5):758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Feb;9(1):27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18677522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2013 Sep;56(9):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24168669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(4):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20433697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(8):e1002869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2000 Aug;85 ( Pt 2):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Oct;3(10):1939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2008 Aug;48(2):694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2003;57:275-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Nov;17(11):619-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
</noRegion>
<name sortKey="Skrede, Inger" sort="Skrede, Inger" uniqKey="Skrede I" first="Inger" last="Skrede">Inger Skrede</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Wolfe, Benjamin E" sort="Wolfe, Benjamin E" uniqKey="Wolfe B" first="Benjamin E" last="Wolfe">Benjamin E. Wolfe</name>
</region>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<name sortKey="Labutti, Kurt" sort="Labutti, Kurt" uniqKey="Labutti K" first="Kurt" last="Labutti">Kurt Labutti</name>
<name sortKey="Ohm, Robin A" sort="Ohm, Robin A" uniqKey="Ohm R" first="Robin A" last="Ohm">Robin A. Ohm</name>
<name sortKey="Pringle, Anne" sort="Pringle, Anne" uniqKey="Pringle A" first="Anne" last="Pringle">Anne Pringle</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001749 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001749 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24923322
   |texte=   Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24923322" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020